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Abstract Exact non-reflecting boundary conditions for a linear incompletely parabolic
system in one dimension have been studied. The system is a model for the linearized
compressible Navier-Stokes equations, but is less complicated which allows for a
detailed analysis without approximations. It is shown that well-posedness is a funda-
mental property of the exact non-reflecting boundary conditions. By using summation
by parts operators for the numerical approximation and a weak boundary implemen-
tation, it is also shown that energy stability follows automatically.
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1 Introduction

In computational physics one often encounters the problem of how to limit the com-
putational domain and introduce artificial boundary conditions (ABC). Such bound-
aries will generate non-physical disturbances, and in many applications, especially
where high accuracy is required, it is essential that these disturbances are minimized.
If the errors produced at the boundary stay localized, the boundary conditions have
limited influence on the solution and a simple boundary condition of Dirichlet type
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can be used. However, this scenario is rare and often a significant portion of the errors
will reflect back.

In the classical paper [9], exact boundary closures are constructed in transformed
space for the wave equation. The approach is to express the solution as a superposi-
tion of waves, and eliminate the incoming waves at the boundaries. Similar techniques
for deriving the non-reflecting boundary conditions (NRBC), for other types of equa-
tions, are used in [20,14,24]. Note that these conditions are exact, but formulated in
transformed space.

The area of ABC’s has been the subject of massive research, especially for hyper-
bolic problems, [12,15,13,21,5]. In [22,19,18,24], approximative NRBC’s for dif-
ferent problems of advection-diffusion type are considered. For an extensive review
on ABC’s, see [47]. An alternative to the above mentioned methods is to introduce
zones outside the artificial boundary, where the governing equations are modified
such that waves are damped. When these zones are constructed to be exactly non-
reflecting, they are called perfectly matched layers (PML), see [6,25,4,3,32,28]. Yet
another strategy is to construct exact NRBC’s for the discrete problem directly, as is
done in [49,48,27,23,40]

Exact NRBC’s are in most cases global in space and time, and can therefore be
cumbersome to implement numerically. For special geometries it is possible to lo-
calize the boundary conditions in time while still keeping them exact. See [20] for
details on exact and approximate NRBC on special computational domains. These
techniques are unfortunately not always feasible, and in [35] computations are per-
formed for the Schrödinger equation with the exact NRBC’s transformed back to
time-domain using convolution quadratures. See [2] for other approximations of time
convolution.
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(a) Solution at t = 0.4
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(b) Solution at t = 0.4

Fig. 1.1 The solution to equation (2.1), with initial condition given by (8.1). At x = 1 either (a) a Dirichlet
boundary condition, or (b) a zeroth order approximate NRBC, is imposed.

Due to the difficulties associated with the transformed domains, it is common to
approximate or localize the NRBC’s in space or time. In [9], where the exact NRBC’s
are made local in space and time using expansions, it is shown that some approxima-
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tions are well-posed, and some ill-posed. To achieve boundary conditions that give
sufficiently small reflections, high order expansions are necessary, which typically
yields an ill-posed problem. For low order expansions it is easier to obtain well-
posedness, and the results are clearly better than the results obtained using Dirichlet
boundary conditions, see Figure 1.1.

The main drawback with the approximative NRBC’s is that they ruin the in-
creased accuracy expected from mesh refinement of the interior scheme. From Ta-
ble 1.1 it is evident that the solution obtained using the low order NRBC’s, although
it looks promising in Figure 1.1(b), does not converge to the correct solution as we
refine the mesh. There will always be an order one error remaining in the solution,
because the lowest order NRBC’s (since they are not exact) describes and converges
to another solution than the infinite domain solution.

Table 1.1 Results obtained using the approximative, low order NRBC.

N Error(u) ratio conv. rate
16 0.01390245
32 0.01407590 0.9877 -0.0179
64 0.01409017 0.9990 -0.0015

128 0.01409115 0.9999 -0.0001

In this paper we follow the work and technique in [9] to some extent, but with
a slightly different purpose. Our goal is to show that the exact NRBC’s result in a
well-posed problem, and that this leads to energy estimates both for the continuous
and the discrete formulation of the problem. We can thus, by a chain of arguments,
guarantee a stable numerical procedure. We will also extend the results in [9] by con-
sidering an incompletely parabolic system which we see as a model of the compress-
ible Navier-Stokes equations in the linear regime. Our model problem lends itself to
a more detailed analysis, and yet keeps the characteristics of the full problem. Most
importantly; the continuous boundary conditions will not be approximated.

The exact NRBC’s are derived in Laplace transformed space, and are hence global
in time. They are thereafter transformed back for the numerical simulations. We use
high order accurate finite difference techniques, see [36,7,44,38], such that the error
originating from the interior discretization is kept at a minimum. The stability in
combination with our finite difference method results in a reliable, efficient and high
order accurate method.

The studied system is in one space dimension. To generalize the technique in
this paper to the multidimensional case, it must be possible to handle the dimensions
tangential to the boundary using appropriate expansions, for example Fourier trans-
forms or spherical harmonics. This in turn require special computational domains,
for example cylindrical or spherical domains.

As mentioned earlier, high order expansions of NRBC’s are often found to be ill-
posed, but given that the exact NRBC’s yields a well-posed problem it is likely that
well-posed high order approximations exist, which motivates increased efforts to find
the right way to approximate the exact NRBC’s.
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The rest of the paper is organized as follows. In Sect. 2 we formulate the con-
tinuous problem. In Sect. 3 exact non-reflecting boundary conditions are derived.
In Sect. 4 we show that the continuous problem is well-posed when using the non-
reflecting boundary conditions, and that this leads to an energy estimate. The corre-
sponding semi-discrete problem is presented in Sect. 5. In Sect. 6, a boundary pro-
cedure that leads to energy stability is presented. Then, in Sect. 7, numerical details
on how the boundary procedure in Laplace space is transformed to time domain are
given. In Sect. 8 numerical experiments are presented and conclusions are drawn in
Sect. 9.

2 The continuous problem formulation

Consider the linear 2×2 system of partial differential equations

Ut +AUx−BUxx = F, x ∈ [xL,xR], t ≥ 0

U = f , x ∈ [xL,xR], t = 0

LL,RU = gL,R, x = xL,R, t ≥ 0,

(2.1)

where

U =

[
p
u

]
, A =

[
v c
c v

]
, B =

[
0 0
0 ε

]
, v > 0.

F(x, t) is the forcing function and f (x) is the initial data. The operators LL(t) and
LR(t) and the data gL(t) and gR(t) in the boundary conditions LL,RU = gL,R are at
this stage unknown, and the aim is to derive them such that the solution U(x, t) will
resemble the solution obtained if we would have x∈ (−∞,+∞). The data in F , f , LL,R
and gL,R is assumed to be sufficiently smooth and compatible with the problem, see
also Remark 3.2. The Initial Boundary Value Problem (IBVP) (2.1) is incompletely
parabolic and hence it has most of the properties and difficulties associated with the
linearized compressible Navier-Stokes equations. Throughout the paper we assume
v > 0. Exactly the same analysis can be done for negative values of v.

The Laplace transformed version of (2.1) is

sÛ +AÛx−BÛxx = F̂ + f , x ∈ [xL,xR]

L̂L,RÛ = ĝL,R, x = xL,R,
(2.2)

where s = η +ξ i is the dual variable to time, and Û = [ p̂, û ]T is defined as

Û(x,s) = L {U(x, t)}=
∫

∞

0
e−stU(x, t)dt, L {U ′(x, t)}= sÛ(x,s)−U(x,0).

For the Laplace transform to be valid η must be large enough such that the integrand
exists. Further, for later purposes we assume that U(·, t) ∈ L2[xL,xR].To simplify the
analysis, we write (2.2) on first order form by introducing ŵ = ûx, which yields

S̄Ū + ĀŪx = F̄ , x ∈ [xL,xR]

L̄L,RŪ = ĝL,R, x = xL,R,
(2.3)
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where S̄ = diag(s,s,1) and where

Ā =

 v c 0
c v −ε

0 −1 0

 , Ū =

 p̂
û
ŵ

 , F̄ =

 F̂1 + f1
F̂2 + f2

0

 .
The solution to (2.3) consists of a homogenous and a particular part, such that Ū =
Ūh +Ūp. The particular solution Ūp (which depends on the data F̄) is assumed to be
known. The ansatz Ūh = eκxΨ leads to a generalized eigenvalue problem for κ(s)
and Ψ(s) on the form (S̄+κĀ)Ψ = 0. This eigenvalue problem can only have non-
trivial solutions Ψ 6= 0 if the determinant |S̄+κĀ| is zero. Written out explicitly the
determinant is

|S̄+κĀ|= q(κ,s), q(κ,s) = s2 +2svκ +(v2− c2− sε)κ2− εvκ
3. (2.4)

Solving q(κ,s) = 0 for the eigenvalues κ , and assuming that the three roots κ j are
distinct, gives the general homogeneous solution

Ūh =
3

∑
j=1

σ jeκ jxΨj. (2.5)

The coefficients σ j can be determined using the boundary conditions. This procedure
is described in detail in [16,37].

Remark 2.1 The solution Ūh can be written on the form given in (2.5) unless s = 0 at
the same time as v = c, see Appendix A. In the rest of the paper we assume v 6= c.

Remark 2.2 This technique requires a one-dimensional problem. For problems in
multiple dimensions the dimensions tangential to the boundary can be handled by
using appropriate expansions, e.g. Fourier transforms (as in [37]) or spherical har-
monics, which in turn require an appropriate choice of computational domain.

3 Derivation of the boundary conditions

Before the boundary conditions are constructed it is essential to know how many are
needed at each boundary. It is shown in [43,30,16] that for each negative Re(κ) we
need one condition at the left boundary, and for each positive Re(κ) we need one
condition at the right boundary. The number of roots with negative and positive real
parts, respectively, is given by

Proposition 3.1 Consider the roots of q(κ,s) = 0 in (2.4). For v > 0 and s such that
Re(s)> 0, two of the κ’s have negative real part and one of the κ’s has positive real
part.

Proof Assume that κ passes the imaginary axis, i.e. that κ = β i. Inserting this into
equation (2.4) and using that s = η +ξ i yields

c2
β

2 + εηβ
2 +η

2− (ξ + vβ )2 +(2η + εβ
2)(ξ + vβ )i = 0. (3.1)
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The imaginary part of (3.1) is zero if either ξ + vβ = 0 or 2η + εβ 2 = 0. In both of
these cases, it is required that either η < 0 or that η = ξ = 0 to cancel the real part.
That is, as long as the real part of s is positive (η > 0), no purely imaginary κ can
exist and hence the real part of the κ’s can not change sign. Dividing q(κ,s) in (2.4)
by −εv yields

q̃(κ,s) = κ
3− (v2− c2− sε)

εv︸ ︷︷ ︸
r2

κ
2 +
−2s

ε︸︷︷︸
r1

κ− s2

εv︸︷︷︸
r0

= (κ−κ1)(κ−κ2)(κ−κ3)

r2 = κ1 +κ2 +κ3, r1 = κ1κ2 +κ1κ3 +κ2κ3, r0 = κ1κ2κ3,

(3.2)

and by assuming s real and large, we get r0 > 0, r1 < 0 and r2 < 0. According to
Descartes’ rule of signs [39], the polynomial q̃(κ,s) has exactly one positive root for
these values of r0, r1 and r2. ut

Thus two boundary conditions are needed at the left boundary and one bound-
ary condition is needed at the right boundary, which is a known result for the prob-
lem (2.1), see e.g. [31] . Without loss of generality, let Re(κ1) < 0, Re(κ2) < 0 and
Re(κ3)> 0. In addition, it holds that

Proposition 3.2 For v > 0 and s such that Re(s) > 0, it holds that Re(κ1/s) < 0,
Re(κ2/s)< 0 and Re(κ3/s)> 0.

The proof of Proposition 3.2 is given in Appendix B.

3.1 Non-reflecting boundary conditions

When constructing non-reflecting boundary conditions one prohibits the solution out-
side the artificial boundary from growing, i.e. Ūh(x)→ 0 as x→±∞ is demanded,
see [47]. This is accomplished by canceling the coefficients σ j in (2.5) corresponding
to the growing modes at each boundary.

Remark 3.1 To get an intuitive feeling of the meaning of κ j, we consider a simplified
case. Consider the hyperbolic version of (2.1), where the characteristics of U(x, t)
travel with constant wave speed a j. In this case the eigenvalues of the Laplace trans-
formed solution have the form κ j = −s/a j and the eigenvectors Ψj are independent
of s, such that

U(x, t) = ∑
j

h j(t− x/a j)Ψj, Û(x,s) = ∑
j

ĥ j(s)e−xs/a jΨj.

Thus a positive wave speed a j means that the eigensolution Ψj is right-going, and im-
plies that Re(κ j) =−Re(s)/a j is negative. Likewise, if Re(κ j)> 0, the eigenfunction
Ψj is left-going. For a hyperbolic problem, providing zero data directly to the ingo-
ing variables means that the outgoing waves can pass through the boundary freely,
without reflections. Analogously, in (2.5) we will cancel the modes that are growing
outwards, from the computational domain.
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Recall that the real parts of κ1 and κ2 are negative and the real part of κ3 is positive
for Re(s)> 0. Our aim is to construct boundary conditions for the left boundary that
force σ1 and σ2 to zero, and a boundary condition for the right boundary that forces
σ3 to zero. With access to the eigenvalues κi (they will be computed numerically for
each s) we compute the eigenvectors Ψi and the corresponding orthogonal vector Φi

Ψi =

 −c
(s+ vκi)/κi

s+ vκi

 , Φi =

 ε(vκ j + s)(vκk + s)/sc
εvκ jκk/s

ε

 , (3.3)

where κ j and κk are the remaining two roots (if κi = κ1 then κ j,k = κ2,3). The vector
Φl is orthogonal to Ψi for i 6= l, such that

Φ
T
i Ψi = εv(κi−κ j)(κi−κk)/κi, Φ

T
j Ψi = 0, Φ

T
k Ψi = 0. (3.4)

Using (2.5) and (3.4) we see that the boundary condition ΦT
i Ūh = 0 is equivalent to

σieκixΦT
i Ψi = 0, which forces σi to zero. This gives the exact non-reflecting boundary

conditions

x = xL :
{

ΦT
1 Ūh = 0

ΦT
2 Ūh = 0 , x = xR : Φ

T
3 Ūh = 0. (3.5)

The boundary conditions (3.5) are L̄LŪh = 0 and L̄RŪh = 0, where

L̄L = [Φ1, Φ2]
T , L̄R = Φ

T
3 . (3.6)

Thus we can identify the data in (2.3), as

L̄L,RŪ = L̄L,R(Ūh +Ūp) = L̄L,RŪp =⇒ ĝL,R = L̄L,RŪp.

Finding the data ĝL,R can be difficult. Common choices are to assume that Ūp is
constant or zero. To take the (non-optimal) possibility of inaccurate data into account,
assume that the boundary data has been chosen such that ĝL,R = L̄L,RŪp +g′L,R. Then,
in practice, the boundary conditions imposed are

x = xL : L̄LŪh = g′L, x = xR : L̄RŪh = g′R, (3.7)

where g′L,R are perturbations close to (or preferably equal to) zero.

Remark 3.2 The particular solution Ūp depends on F̄, which in turn depends on the
forcing function F and the initial function f in (2.1). Often these functions are defined
so that they have compact support, which implies that Ūp = 0 at the boundaries and
that ĝL,R = 0.
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3.2 The resulting boundary operators

The boundary operators in (3.6) can be written

L̄L =

[
α1 β1 ε

α2 β2 ε

]
, L̄R =

[
α3 β3 ε

]
, (3.8)

where α j,β j depend on s and κ j(s). The structure of the complementing vectors in
(3.3) and the relations in (3.2) gives

αi =
−sc

s+ vκi
, βi =

s
κi
.

The operators in (3.8) are suitable for the problem formulation in (2.3) but can also
be rewritten such that they are appropriate for the problem (2.2), as

L̂LÛ = HLÛ +GLÛx = ĝL, HL =

[
α1 β1
α2 β2

]
, GL =

[
0 ε

0 ε

]
,

L̂RÛ = HRÛ +GRÛx = ĝR, HR =
[

α3 β3
]
, GR =

[
0 ε

]
.

(3.9)

3.3 The boundary operators in the hyperbolic limit

In the limit ε → 0 the problem (2.1) becomes hyperbolic. From (2.4) we can see
that the determinant will be reduced to a second order polynomial in κ , with two
roots. Since the determinant can be rescaled such that κ/s is a function of εs, see
Appendix B, the Taylor expansion for small ε is the same as for small s. Thus the two
roots in the hyperbolic case will correspond to κ2 and κ3 (since κ1→−∞ as ε→ 0 ),
see Appendix A.1, and the operators in (3.9) become

HL =−(v+ c)
[

0 0
1 1

]
, GL =

[
0 0
0 0

]
,

HR = (v− c)
[

1 −1
]
, GR =

[
0 0

]
.

(3.10)

Note that the first rows of HL and GL are equal to zero, which implies that only one
boundary condition will be given at the left boundary. Note also that we have here
assumed that v < c. For v > c we would instead get two boundary conditions at the
left boundary and none at the right boundary.

4 Well-posedness of the IBVP

A problem is well-posed (Hadamard’s well-posedness) if: i) A solution exists, ii)
The solution is unique, iii) The solution depends continuously on (and is bounded
by) provided data. Existence is guaranteed by using the right number of boundary
conditions and uniqueness follows from iii). We will focus on the third requirement,
which is equivalent to limit the growth of the solution, see [16].
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The problem (2.1) is well-posed if there does not exist any solution U(x, t) that
grow exponentially in time, see for example [30,16,17,31]. If a problem is well-
posed in this particular sense, it has a negative spectrum and will fulfill the Kreiss
condition, see below. (A more generous definition of well-posedness, that opens up
for a wider range of problems, is to accept bounded growth of the solution. In this
paper we limit ourselves to zero growth.)

4.1 Well-posedness in the sense of Kreiss

Consider the homogeneous solution (2.5). By defining

Ψ = [Ψ1,Ψ2,Ψ3], K(x) = diag(eκ1x, eκ2x, eκ3x), σ = [σ1,σ2,σ3]
T ,

we can write Ūh =ΨKσ . Next, the boundary conditions in (3.7) are applied, yielding

E(s)σ = g′, E(s) =
[

L̄LΨK(xL)
L̄RΨK(xR)

]
=

 eκ1xL ΦT
1 Ψ1 eκ2xL ΦT

1 Ψ2 eκ3xL ΦT
1 Ψ3

eκ1xL ΦT
2 Ψ1 eκ2xL ΦT

2 Ψ2 eκ3xL ΦT
2 Ψ3

eκ1xRΦT
3 Ψ1 eκ2xRΦT

3 Ψ2 eκ3xRΦT
3 Ψ3

 ,
where g′ = [(g′L)

T ,(g′R)
T ]T . Each row of the system above corresponds to one bound-

ary condition, and for general boundary conditions the matrix E(s) is full. If E(s) is
non-singular we can solve for σ and obtain a unique solution Ū = Ūp+ΨKE(s)−1g′.
Recalling that the first two entries of Ū are denoted Û , we can formally transform
back to the time domain, as

U(x, t) = L −1{Û}= eη0t
(

1
2π

∫ +∞

−∞

Û(x,η0 + iξ )eiξ tdξ

)
where E(s) must be non-singular for η ≥ η0.

Definition 4.1 The problem (2.1) is well-posed in the sense of Kreiss if |E(s)| 6= 0
holds for Re(s)≥ 0, see [16], i.e. if η0 ≤ 0.

The Kreiss condition is a stronger version of the Lopatinskii condition, see [16,
11,31].

Proposition 4.1 Consider the ordinary differential equation (2.3) with boundary op-
erators (3.6). For v > 0, v 6= c the corresponding matrix E(s) satisfies the Kreiss
condition, and hence the problem (2.1) is well-posed in the sense of Definition 4.1.

Proof Using that ΦT
j Ψi = 0 for i 6= j leads to

E(s) =

 eκ1xL ΦT
1 Ψ1 0 0

0 eκ2xL ΦT
2 Ψ2 0

0 0 eκ3xRΦT
3 Ψ3

 .
From (3.4) we know that ΦT

i Ψi = εv(κi−κ j)(κi−κk)/κi and thereby the three entries
of E(s) are non-zero if the roots κi, κ j, κk are distinct. In Appendix A it is shown that
there are no multiple roots for Re(s) ≥ 0, unless s = 0. This special case is treated
separately in Appendix A.1, where it is shown that lims→0 ΦT

j Ψj 6= 0 as long as v 6= c.
Consequently |E(s)| 6= 0 for all Re(s)≥ 0 when v 6= c. ut



10 Sofia Eriksson, Jan Nordström

Remark 4.1 Well-posedness in the sense of Definition 4.1 states that the solution does
not have exponential growth in time (if η0≤ 0). The same holds for the energy norm of
the solution, and hence this well-posedness result leads to the existence of an energy
estimate.

4.2 Well-posedness in the energy sense

Next we show that the non-reflecting boundary conditions also lead to an energy esti-
mate (which is guaranteed, as stated in Remark 4.1). We will do this by showing that
the homogenous solution Ûh is bounded using the energy method. The homogenous
version of equation (2.2) is multiplied by the conjugate transpose of Ûh (denoted Û∗h )
from the left and integrated with respect to x. Adding the complex conjugate of the
resulting relation to itself, and using that s = η +ξ i, we get

2η

∫ xR

xL

Û∗h Ûhdx+2
∫ xR

xL

(Ûh)
∗
xB(Ûh)xdx = BTL +BTR (4.1)

where

BTL = Û∗h AÛh−Û∗h B(Ûh)x−(Ûh)
∗
xBÛh

∣∣
xL
, BTR =−Û∗h AÛh+Û∗h B(Ûh)x+(Ûh)

∗
xBÛh

∣∣
xR
. (4.2)

We know from the previous analysis of E(s) that the operators in (3.6) give a well-
posed problem. However, if the boundary conditions can be imposed such that the
boundary terms BTL and BTR are non-positive, we obtain an energy estimate which
will lead directly to stability of the discrete problem.

Since we have derived the boundary conditions for the first order form in (2.3) we
rewrite (4.2) on the equivalent form

BTL = Ū∗h ÃŪh

∣∣∣
xL
, BTR =− Ū∗h ÃŪh

∣∣∣
xR
, Ã =

 v c 0
c v −ε

0 −ε 0

 . (4.3)

Proposition 4.2 The left boundary term in (4.3) is non-positive, i.e. BTL ≤ 0.

Proof The left boundary conditions in (3.5) force σ1 and σ2 to zero which yields the
solution Ūh = σ3eκ3xΨ3. Inserting this into (4.3) we obtain BTL = |σ3eκ3xL |2AL where

AL =Ψ
∗

3 ÃΨ3 =−Re
(

s
κ3

)(
c2 +

∣∣∣∣ s+ vκ3

κ3

∣∣∣∣2
)
− εRe(κ3)

∣∣∣∣ s+ vκ3

κ3

∣∣∣∣2 ≤ 0. (4.4)

In the last inequality we used that Re(κ3/s) > 0 and Re(κ3) > 0 for Re(s) > 0, see
Proposition 3.1 and Proposition 3.2. For details on the derivation of (4.4) see Ap-
pendix C. ut

Proposition 4.3 The right boundary term in (4.3) is non-positive, i.e.BTR≤0.
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The proof of Proposition 4.3 is given in Appendix C.1 and results in

BTR =−
[

σ1eκ1xR

σ2eκ2xR

]∗
AR

[
σ1eκ1xR

σ2eκ2xR

]
, AR =

[
Ψ ∗1 ÃΨ1 Ψ ∗1 ÃΨ2

Ψ ∗2 ÃΨ1 Ψ ∗2 ÃΨ2

]
≥ 0. (4.5)

Since the boundary terms BTL and BTR are non-positive, the right hand side of (4.1)
is bounded, which leads to η ≤ 0 and an energy estimate. We have assumed that
the solution is in L2, and hence boundedness of the transformed solution Û leads to
boundedness of U , via the Plancherel theorem, see [31].

In the proofs of Proposition 4.2 and Proposition 4.3 we have assumed that the
provided data is exact, such that σ1,2 = 0 at the left boundary or σ3 = 0 at the right
boundary. In Sect. 6 we will also include the possibility of having non-zero (incorrect)
boundary data and show that the problem is in fact strongly well-posed.

A derivation of NRBC’s similar to the one presented in Section 3 above, can
be found in [48] for a parabolic system and a system of Schrödinger-type. In [48], a
corresponding derivation of NRBC’s for the discrete problem is also performed. Here
we instead continue by discretizing the derived problem directly.

5 The semi-discrete problem formulation

Next, we will derive the semi-discrete problem formulation. We employ a finite dif-
ference method to approximate the space differentiation, and the difference operators
are on so called summation by parts (SBP) form. Further, the boundary conditions are
implemented using penalty terms, a technique also known as weak boundary imple-
mentation or as the simultaneous approximation term (SAT) technique. For a read-up
on SBP and SAT, see [46] and references therein.

5.1 The numerical scheme

Consider our original problem (2.1). The domain x ∈ [xL,xR] is discretized in space
using N +1 equidistant grid points, as xi = xL +(xR− xL)i/N, where i = 0,1, . . . ,N.
The solution U is represented by a discrete solution vector V of length 2(N+1), such
that V = [V T

0 ,V T
1 , . . . ,V T

N ]T where Vi(t)≈U(xi, t). The semi-discrete scheme for the
IBVP in (2.1) is then written

Vt +(D⊗A)V − (D2⊗B)V = F +((Σ0 ∗V )(t)−Γ0)+((ΣN ∗V )(t)−ΓN) ,

V (0)= f ,
(5.1)

where the symbol ⊗ refers to the Kronecker product, and the symbol ∗ refers to the
convolution operation. The boundary conditions (3.9) are imposed weakly in (5.1)
using the SAT technique, by the penalty terms ((Σ0,N ∗V )(t)−Γ0,N(t)) which are
yet unknown but will be derived in the Laplace transformed domain. Further, the
difference operator D (which mimics ∂/∂x ) is on SBP form, and hence the following
holds

D = P−1Q, Q+QT = eNeT
N− e0eT

0 , P = PT > 0, (5.2)
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where e0 = [1,0, . . . ,0]T and eN = [0, . . . ,0,1]T . Typical examples of P and Q can be
found in [42,7]. The second derivative ∂ 2/∂x2 is approximated by the wide operator
D2. Note that we use the same notation for F, f both in the continuous and the discrete
setting.

Analogously to the continuous case, stability will be shown in the Laplace trans-
formed space. By Laplace transforming (5.1) the discrete representation of (2.2) is
obtained, as

sV̂ +(D⊗A)V̂ − (D2⊗B)V̂ = F̂ + f +
(
Σ̂0V̂ − Γ̂0

)
+
(
Σ̂NV̂ − Γ̂N

)
, (5.3)

where V̂ (s) = L {V (t)} and where Σ̂0,N , Γ̂0,N remains to be determined. As in the
continuous case we omit the forcing function F̂ + f . We multiply (5.3) by V̂ ∗P̄ from
the left, where P̄ = P⊗ I2, and add the conjugate transpose of the equation to itself.
Thereafter using the SBP-properties in (5.2) yields

2ηV̂ ∗P̄V̂ +2(D̄V̂ )∗(P⊗B)D̄V̂ = BT D
L +BT D

R , (5.4)

where D̄ = D⊗ I2 and where

BT D
L = V̂ ∗0 AV̂0 −V̂ ∗0 B(D̄V̂ )0 − (D̄V̂ )∗0BV̂0

+V̂ ∗P̄(Σ̂0V̂ − Γ̂0) +(Σ̂0V̂ − Γ̂0)
∗P̄V̂

BT D
R =−V̂ ∗NAV̂N +V̂ ∗NB(D̄V̂ )N +(D̄V̂ )∗NBV̂N

+V̂ ∗P̄(Σ̂NV̂ − Γ̂N)+(Σ̂NV̂ − Γ̂N)
∗P̄V̂ .

(5.5)

Note the similarity between the semi-discrete energy growth rate (5.4) and the con-
tinuous one in (4.1).

The matrices Σ̂0,N and the vectors Γ̂0,N depend on how the boundary conditions
are imposed. We use the following ansätze for the penalty terms

Σ̂0V̂ − Γ̂0 = (P−1e0 ⊗ τ0 +P−1DT e0 ⊗σ0 )(HLV̂0 + GL(D̄V̂ )0− ĝL)

Σ̂NV̂ − Γ̂N = (P−1eN⊗ τN +P−1DT eN⊗σN)(HRV̂N +GR(D̄V̂ )N− ĝR),
(5.6)

where the boundary operators HL,R, GL,R are given in (3.9). The penalty parameters
τ0,N , σ0,N (where τ0 and σ0 are 2×2 matrices and τN and σN are 2×1 vectors) will
be determined in the next section. Note that all dependence of boundary data sits in
Γ̂0,N , such that Γ̂0,N = 0 if ĝL,R = 0. By inserting the expressions (5.6) into (5.5), the
boundary terms can be written as

BT D
L =

[
V̂0

(D̄V̂ )0

]∗ [ A+ τ0HL +(τ0HL)
∗ −B+ τ0GL +(σ0HL)

∗

−B+σ0HL +(τ0GL)
∗ σ0GL +(σ0GL)

∗

][
V̂0

(D̄V̂ )0

]
−
[

V̂0
(D̄V̂ )0

]∗ [
τ0
σ0

]
ĝL−

([
V̂0

(D̄V̂ )0

]∗ [
τ0
σ0

]
ĝL

)∗ (5.7)

and

BT D
R =

[
V̂N

(D̄V̂ )N

]∗ [−A+ τNHR +(τNHR)
∗ B+ τNGR +(σNHR)

∗

B+σNHR +(τNGR)
∗ σNGR +(σNGR)

∗

][
V̂N

(D̄V̂ )N

]
−
[

V̂N
(D̄V̂ )N

]∗ [
τN
σN

]
ĝR−

([
V̂N

(D̄V̂ )N

]∗ [
τN
σN

]
ĝR

)∗
,

(5.8)

respectively.
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Similarly to the definition of well-posedness for the continuous problem, a nu-
merical scheme is energy stable if the growth of the solution is bounded. As in the
continuous case we limit ourselves to zero growth, which means that η ≤ 0 in (5.4)
is needed. Hence, to prove stability, we must show that the boundary terms in (5.7)
and (5.8) are non-positive for zero data. In the next section, we show how to choose
the penalty parameters τ0,N and σ0,N such that BT D

L,R ≤ 0.

Remark 5.1 As mentioned, in the next section we will show that the penalty param-
eters can be chosen such that the discrete boundary terms mimics the continuous
ones, see Propositions 6.3 and 6.4. This is manageable because of the summation by
part properties of our numerical method. However, the procedure presented here is
of course not limited to finite differences methods, but is feasible also with various
Galerkin or discontinuous Galerkin techniques where the discrete energy estimate
mimics the continuous energy estimate, e.g. the discontinuous Galerkin collocation
spectral element method in [29].

6 Energy estimates in Laplace space

The penalty parameters τ0,N and σ0,N in (5.6) are not uniquely determined from the
stability requirements. The strategy is to first reformulate the continuous boundary
terms BTL,R using the boundary conditions, and then to choose the penalty parameters
such that the discrete boundary terms BT D

L,R mimic the continuous ones. This can be
done in several ways, of which we will present one here. See [10] for an alternative
formulation.

6.1 The continuous boundary terms

Consider the matrix Ã in (4.3), and assume that we have found a rotation such that
Ã = XΛXT , where Λ is diagonal. Note that the elements of Λ are not necessarily the
eigenvalues of Ã, and that the vectors in X may then not be orthogonal. According to
Sylvester’s law of inertia, the matrices Ã and Λ will always have the same number
of positive/negative eigenvalues for a non-singular X . The matrix Λ has two positive
entries and one negative entry for v > 0, and is sorted as Λ = diag(Λ+,Λ−). The
vectors are divided correspondingly, X = [x+,x−], and the boundary terms in (4.3)
are rewritten as

BTL = (XTŪ)∗ΛXTŪ
∣∣
xL
= (xT

+Ū)∗Λ+xT
+Ū +(xT

−Ū)∗Λ−xT
−Ū
∣∣
xL

BTR =− (XTŪ)∗ΛXTŪ
∣∣
xR

=− (xT
+Ū)∗Λ+xT

+Ū− (xT
−Ū)∗Λ−xT

−Ū
∣∣
xR
.

(6.1)

xT
+Ū represents two right-going variables (ingoing at the left boundary), and xT

−Ū
represents one left-going variable (ingoing at the right boundary). The ingoing vari-
ables are given data in terms of known functions and outgoing variables, as

x = xL : xT
+Ū +RLxT

−Ū = g̃L, x = xR : xT
−Ū +RRxT

+Ū = g̃R, (6.2)
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where the matrices RL,R must be sufficiently small. Since we want to impose the non-
reflecting boundary conditions L̄LŪ = ĝL and L̄RŪ = ĝR, given in (2.3), we relate
them to the general ones in (6.2) using scaling matrices. Denoting the scaling matrices
JL,R, we obtain

L̄L = JL(xT
++RLxT

−), L̄R = JR(xT
−+RRxT

+), (6.3)

and identify g̃L = J−1
L ĝL and g̃R = J−1

R ĝR. The matrices JL,R and RL,R can be computed
from L̄L,R, which are given in (3.8), and x±. Inserting the relations xT

+Ū = g̃L−RLxT
−Ū

and xT
−Ū = g̃R−RRxT

+Ū from (6.2), into the boundary terms BTL and BTR in (6.1),
respectively, yields

BTL =
(
xT
−Ū−C−1

L R∗LΛ+g̃L
)∗

CL
(
xT
−Ū−C−1

L R∗LΛ+g̃L
)∣∣∣

xL

+ g̃∗L
(
Λ+−Λ+RLC−1

L R∗LΛ+

)
g̃L

BTR =−
(
xT
+Ū−C−1

R R∗RΛ−g̃R
)∗

CR
(
xT
+Ū−C−1

R R∗RΛ−g̃R
)∣∣∣

xR

− g̃∗R(Λ−−Λ−RRC−1
R R∗RΛ−)g̃R

(6.4)

where CL = R∗LΛ+RL +Λ− and CR = Λ++R∗RΛ−RR. For an energy estimate of the
continuous problem CL ≤ 0 and CR ≥ 0 are necessary.

Proposition 6.1 The scalar CL in (6.4) is non-positive, and hence the non-reflecting
boundary condition (3.7) at the left boundary leads to an energy estimate.

Proof Recall that Ã = x+Λ+xT
++ x−Λ−xT

− and that L̄L = [Φ1, Φ2]
T and ΦT

j Ψi = 0
for i 6= j such that L̄LΨ3 = 0. Starting from AL in (4.4), we have

AL =Ψ
∗

3 ÃΨ3

=Ψ
∗

3
(
(J−1

L L̄L−RLxT
−)
∗
Λ+(J

−1
L L̄L−RLxT

−)+ x−Λ−xT
−
)
Ψ3

=Ψ
∗

3 x−CLxT
−Ψ3,

where we used the relation xT
+ = J−1

L L̄L−RLxT
− from (6.3) in the first step. In the last

step we used that L̄LΨ3 = 0. We thus have the relation AL = (xT
−Ψ3)

∗CLxT
−Ψ3, where

xT
−Ψ3 6= 0, and since we know from Proposition 4.2 that AL ≤ 0 we also know that

CL ≤ 0. ut

Proposition 6.2 The matrix CR in (6.4) is non-negative, and hence the non-reflecting
boundary condition (3.7) at the right boundary leads to an energy estimate.

Proof Recall that L̄R = ΦT
3 and that ΦT

j Ψi = 0 for i 6= j. This makes L̄RΨ1 = 0 and

L̄RΨ2 = 0. Denoting the components of AR in (4.5) as A ji
R , where i= 1,2 and j = 1,2,

gives

A ji
R =Ψ

∗
j ÃΨi

=Ψ
∗
j
(
x+Λ+xT

++(J−1
R L̄R−RRxT

+)
∗
Λ−(J

−1
R L̄R−RRxT

+)
)
Ψi

=Ψ
∗
j x+CRxT

+Ψi,
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where the relation xT
− = J−1

R L̄R−RRxT
+ from (6.3) was used in the first step. In the

last step we used that L̄RΨi = 0 for i = 1,2. From these coefficients we compose

AR =
(
xT
+

[
Ψ1 Ψ2

])∗
CRxT

+

[
Ψ1 Ψ2

]
,

where xT
+ [Ψ1 Ψ2] is a non-singular 2×2 matrix. Since AR ≥ 0 from Proposition 4.3,

we know that CR ≥ 0. ut

Remark 6.1 In the proofs above xT
−Ψ3 and xT

+ [Ψ1 Ψ2] must be non-singular. By com-
bining L̄LΨ3 = 0, L̄RΨ1,2 = 0 together with (6.3) it is possible to write

XT
Ψ =

[
I2 −RL
−RR 1

][
xT
+ [Ψ1 Ψ2] 02,1

01,2 xT
−Ψ3

]
and we see that they are indeed non-singular, since neither X nor Ψ is singular.

6.2 The discrete boundary terms

The continuous boundary terms in (6.1) depend on Ū = [p̂, û, ûx]
T , while the discrete

boundary terms in equation (5.7) and (5.8) depend on V̂j = [p̂ j, û j]
T and (D̄V̂ ) j =

[(Dp̂) j,(Dû) j]
T , ( j being 0 or N). The additional dependence on (Dp̂)0 and (Dp̂)N

will be removed. The penalty parameters are

τ0 =

[
τ11

0 τ12
0

τ21
0 τ22

0

]
, σ0 =

[
σ11

0 σ12
0

σ21
0 σ22

0

]
, τN =

[
τ11

N
τ21

N

]
, σN =

[
σ11

N
σ21

N

]
. (6.5)

Zeroing out the first row of σ0,N such that σ11
0 = σ12

0 = 0 and σ11
N = 0, the bound-

ary terms in (5.7) and (5.8) become independent on (Dp̂)0 and (Dp̂)N , respectively.
Denoting the remaining rows σ̃0 = [σ21

0 ,σ22
0 ] and σ̃N = [σ21

N ], the boundary terms in
(5.7) and (5.8) can be written

BT D
L = V̄ ∗0

[
Ã+

[
τ0
σ̃0

]
L̄L + L̄∗L

[
τ0
σ̃0

]∗]
V̄0−V̄ ∗0

[
τ0
σ̃0

]
ĝL− ĝ∗L

[
τ0
σ̃0

]∗
V̄0 (6.6)

BT D
R = V̄ ∗N

[
−Ã+

[
τN
σ̃N

]
L̄R + L̄∗R

[
τN
σ̃N

]∗]
V̄N−V̄ ∗N

[
τN
σ̃N

]
ĝR− ĝ∗R

[
τN
σ̃N

]∗
V̄N , (6.7)

where V̄0 = [p̂0, û0,(Dû)0]
T and V̄N = [p̂N , ûN ,(Dû)N ]

T .

Proposition 6.3 Choosing the penalty parameter elements τ
i j
0 and σ

i j
0 in (6.5) as

σ
11
0 = σ

12
0 = 0,

 τ11
0 τ12

0
τ21

0 τ22
0

σ21
0 σ22

0

=−x+Λ+J−1
L

results in a strongly stable numerical scheme.
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Proof Inserting the specific choice [τT
0 , σ̃T

0 ]
T =−x+Λ+J̄−1

L into (6.6) yields

BT D
L =

(
xT
−V̄0−C−1

L R∗LΛ+g̃L
)∗

CL
(
xT
−V̄0−C−1

L R∗LΛ+g̃L
)

+g̃∗L
(
Λ+−Λ+RLC−1

L R∗LΛ+

)
g̃L− (L̄LV̄0− ĝL)

∗J−∗L Λ+J−1
L (L̄LV̄0− ĝL)

(6.8)

where, according to Proposition 6.1, CL ≤ 0. ut

Proposition 6.4 Choosing the penalty parameter elements τ
i j
N and σ

i j
N in (6.5) as

σ
11
N = 0,

 τ11
N

τ21
N

σ21
N

= x−Λ−J−1
R

results in a strongly stable numerical scheme.

Proof Inserting the penalty parameters [τT
N , σ̃T

N ]
T = x−Λ−J̄−1

R into (6.7), yields

BT D
R =−

(
xT
+V̄N−C−1

R R∗RΛ−g̃R
)∗

CR
(
xT
+V̄N−C−1

R R∗RΛ−g̃R
)

−g̃∗R
(
Λ−−Λ−RRC−1

R R∗RΛ−
)

g̃R +(L̄RV̄N − ĝR)
∗J−∗R Λ−J−1

R (L̄RV̄N− ĝR)
(6.9)

where CR ≥ 0 according to Proposition 6.2. ut

Remark 6.2 Note that when using the penalty parameters as specified in Proposi-
tion 6.3 and 6.4, the discrete boundary terms BT D

L,R in (6.8) and (6.9) correspond
exactly to the continuous boundary terms BTL,R in (6.4), except for a small damping
term. The damping term is a function of the deviation from the boundary data, and
goes to zero as the mesh is refined.

7 Minor numerical details

As an example, we consider imposing the Dirichlet boundary conditions at the left
boundary, and using the exact NRBC at the right boundary. Hence the term (Σ0 ∗
V )(t) = L −1{Σ̂0(s)V̂ (s)} in (5.1) will be replaced by

(P−1e0⊗ τ
Dir.
0 +P−1DT e0⊗σ

Dir.
0 )(LLV0−gL). (7.1)

Giving Dirichlet boundary conditions such that U = gL at the left boundary, implies
that LL = I2. The penalty matrices in (7.1) are given in [10].

7.1 The convolution

At the right boundary we impose the non-reflecting boundary conditions. We follow
the work in [33,34], and approximate the convolution (ΣN ∗V )(t)=L −1{Σ̂N(s)V̂ (s)}
in (5.1) at time tn = nh by the convolution quadrature

(ΣN ∗V )(tn) =
∫ tn

0
ΣN(τ)V (tn− τ)dτ ≈

n

∑
j=0

ω j(h)V (tn− j), (7.2)
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where h is the time step, and where ω j(h) ≈ hΣN(t j) for jh away from zero. The
coefficients ω j(h) in (7.2) are approximated by

ω̂ j(h) = ρ
− j 1

L

L−1

∑
l=0

Σ̂N

(
δ (ρeiτl )

h

)
e−i jτl , τl = 2πl/L. (7.3)

The constants ρ and L and the function δ must be suitably chosen. We use ρ =
0.975, L = T/h, where T is the end time of the computation, and δ (ζ ) = ∑

3
i=1

1
i (1−

ζ )i. These values of ρ , L and δ gave good results in our simulations but are not an
optimized choice. However, the numerical convolution is not the main point of this
paper and this choice suffices for our purpose. See [34] for more details on how these
parameters affects the accuracy. Note that there exist more elaborate versions of this
method, see e.g. [35] and [41], which are faster and less memory consuming. These
and other approaches for approximating the convolution are discussed in [2].

7.2 The time discretization

We let the boundary data ĝR be zero such that Γ̂N = 0 in (5.3) and ΓN = 0 in (5.1).
The semi-discrete scheme (5.1) is expressed as

Vt = F(t,V ) = AV +G(t)+
∫ t

0
ΣN(τ)V (t− τ)dτ, (7.4)

where, including the Dirichlet boundary condition in (7.1),

A =−(D⊗A)+(D2⊗B)+(P−1e0⊗ τ
Dir.
0 +P−1DT e0⊗σ

Dir.
0 )(eT

0 ⊗LL)

G(t) = F− (P−1e0⊗ τ
Dir.
0 +P−1DT e0⊗σ

Dir.
0 )gL(t).

Equation (7.4) is discretized in time using the trapezoidal rule,

Vn+1 =Vn +
h
2
(F(tn,Vn)+F(tn+1,Vn+1)) . (7.5)

We insert (7.4) into (7.5), and use the approximation∫ t

0
ΣN(τ)V (t− τ)dτ ≈

n

∑
j=0

ω̂ j(h)V (tn− j).

After moving all terms containing Vn+1 to the left-hand side, we obtain the scheme(
I− h

2
(A+ ω̂0)

)
Vn+1 =

(
I +

h
2

A
)

Vn +
h
2

n

∑
j=0

(
ω̂ j + ω̂ j+1

)
Vn− j

+
h
2
(G(tn)+G(tn+1)) .

(7.6)

When computing ω̂ j in (7.6), using (7.3), we need Σ̂N . We rewrite the parts of Σ̂NV̂
in (5.6) such that we can identify

Σ̂N = P̄−1(EN⊗ τNHR +DT EN⊗σNHR +END⊗ τNGR +DT END⊗σNGR), (7.7)
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where EN = eNeT
N . That is, Σ̂N is a 2(N +1)×2(N +1) matrix, and consequently so

are ω̂ j. Fortunately Σ̂N is sparse since EN mainly consist of zeroes, and it suffices to
compute the lower right corner of ω̂ j.

Remark 7.1 The scheme (7.6) exemplifies the special case when having the Dirichlet
boundary conditions at the left boundary and the exact NRBC at the right boundary.
Other scenarios, for example when having the exact NRBC’s at the left boundary and
the Dirichlet boundary condition at the right boundary, are derived in a similar way.

7.3 The penalty parameters for the NRBC’s

When computing Σ̂N in (7.7), we need the penalty parameters τN and σN . First, the
rotation Ã = XΛXT can be chosen in numerous ways, and the choice of rotation will
influence the penalty parameters slightly. (To compute the eigenvalues and eigenvec-
tors numerically is one option.) We have used the rotation

Λ+=

[
1

2(v+c)
−v

v2−c2

]
, Λ−=

[
1

2(v−c)

]
, x+=

 v+ c 0
v+ c 0
−ε ε

 , x−=

 v− c
c− v

ε

 ,
where Λ = diag(Λ+,Λ−) and X = [x+,x−], which yields

X−T =


1

2(v+c)
−c

v2−c2
1

2(v−c)
1

2(v+c)
v

v2−c2
−1

2(v−c)
0 1

ε
0


and is valid for 0 < v < c. Next, we rewrite L̄R in (6.3) as L̄R = [JRRR JR]XT . The
matrix JR is then obtained from L̄RX−T , where L̄R are given in (3.8), as

L̄RX−T =
[

α3+β3
2(v+c)

vβ3−cα3
v2−c2 +1 α3−β3

2(v−c)

]
︸ ︷︷ ︸

JR

.

Thereafter the penalty parameters are computed as specified in Proposition 6.3 and
Proposition 6.4, such that we obtain

τN =

[
v− c
c− v

]
Λ−J−1

R , σN =

[
0
ε

]
Λ−J−1

R . (7.8)

Remark 7.2 In the numerical experiments we will compare the exact NRBC’s to a
low order approximation of the NRBC’s. The approximative NRBC’s are derived by
inserting s = 0 into the exact non-reflecting boundary operators, which yields time-
local, low-reflecting boundary conditions. The penalty parameters are obtained sim-
ilarly, by inserting s = 0 into τ0,N and σ0,N . The resulting operators are given in
[10].
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7.4 The penalty parameters in the hyperbolic limit

In the numerical scheme the boundary operators (3.10) are multiplied by the penalty
parameters τ0,N and σ0,N . With the rotation of our choice, given in Section 7.3, we
will for ε = 0 (and 0 < v < c) have

JL =

[
0 1
−1 0

]
, JR = 1,

which yields

τ0 =

[
0 1/2
0 1/2

]
σ0 =

[
0 0
0 0

]
τN =

[
1/2
−1/2

]
σN =

[
0
0

]
.

This shows that the method behaves well also in the ε → 0 limit.

8 Numerical results

We let the computational domain be [xL,xR] = [0,1], and as reference solution we use
the solution from a five times larger domain. The errors are defined as the difference
between the solution and the reference solution, as ∆ p = p− pre f and ∆u = u−ure f .
The SBP matrix P is used for computing norms of the errors, as Error(p) = ‖∆ p‖P
and Error(u) = ‖∆u‖P, where the norm of a vector v is defined as ‖v‖2

P = vT Pv.
See [26] for details on the accuracy and interpretations of SBP norms. For the space
discretization we use a third order accurate SBP scheme, and as mentioned earlier,
the trapezoidal rule is used for the time discretization. In all simulations, if not stated
otherwise, we use the physical parameter values c = 1, v = 0.5 and ε = 0.1. The time
step is h = 0.001 and the end time T = 0.4. The number of grid point varies, but in
the figures we have used N = 64. The time step is sufficiently small, such that the
errors from the space discretization are dominating. To reduce the number of figures
we only show the solution for the variable u, but the results for the variable p are
similar and presented in the tables.

8.1 Non-reflecting boundary conditions at the right boundary

First, simulations are performed using the scheme (7.6) with the penalty parameters
given in (7.8). As initial condition we use

p(x,0) = u(x,0) =


0 0.05≥ x

cos3(2.5π(x−0.25)) 0.05 < x < 0.45
0 0.45≤ x.

(8.1)

At the left boundary the Dirichlet boundary conditions are imposed and at the right
boundary the solution is supposed to propagate out without reflections. This is the
same problem setup as in the introducing examples in Figure 1.1 and Table 1.1. In
comparison the exact NRBC outperforms those examples by far, see Figure 8.1. More
importantly, the exact NRBC solution converges to the reference solution as the mesh
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(b) Error at t = 0.4

Fig. 8.1 The solution to (2.1) with initial condition given by (8.1). At the right boundary the Dirichlet
boundary condition, the approximate NRBC or the exact NRBC is used.

is refined, see Table 8.1. It might be expected that the error should be almost at ma-
chine precision for the exact boundary conditions. However, the boundary conditions
derived here are exact for the continuous problem – not for the discrete one – and
still have to be approximated using a numerical scheme. For the reference solution
the boundary closure is at x = 5 instead of at x = 1, which implies that the numerical
stencils differ and consequently produce different solutions even with exact data.

Table 8.1 Results obtained using the exact NRBC at the right boundary.

N Error(p) ratio conv. rate Error(u) ratio conv. rate
16 0.00091109 0.00121302
32 0.00010158 8.9690 3.1649 0.00014664 8.2722 3.0483
64 0.00001152 8.8217 3.1411 0.00001872 7.8317 2.9693

128 0.00000139 8.2978 3.0527 0.00000241 7.7753 2.9589

In the simulations done here, the computational cost when using the exact NRBC’s
are the same as when using any of the other boundary conditions. However, for longer
simulation times it would probably be better to use a more advanced version of the
method, as already discussed in Section 7.1.

8.2 Non-reflecting boundary conditions at the left boundary

Next we consider the NRBC’s at the left boundary (and impose Dirichlet boundary
conditions at the right boundary). For this case we use the initial condition

p(x,0) =−u(x,0) =


0 0.3≥ x

−cos3(2.5π(x−0.5)) 0.3 < x < 0.7
0 0.7≤ x,

(8.2)
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such that the main content of the initial solution travels in the left direction. The re-
sulting solution at time t = 0.4 is shown in Figure 8.2, and as can be seen in Table 8.2
the solution converges to the reference solution as the mesh is refined.
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(a) Solution at t = 0.4
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Fig. 8.2 The solution to (2.1) with initial condition given by (8.2). At the left boundary the Dirichlet
boundary condition, the approximate NRBC or the exact NRBC is imposed.

Table 8.2 Results obtained using the exact NRBC at the left boundary.

N Error(p) ratio conv. rate Error(u) ratio conv. rate
16 0.00026816 0.00036867
32 0.00003824 7.0134 2.8101 0.00005167 7.1355 2.8350
64 0.00000414 9.2323 3.2067 0.00000522 9.9028 3.3078

128 0.00000051 8.0689 3.0124 0.00000064 8.1321 3.0236

8.3 Initial condition without compact support

In the boundary conditions (3.7) the possibility of perturbed data, due to an unknown
particular solution, is indicated. To investigate what impact that lack of knowledge
has on the result we consider an initial condition that does not have compact support
in x ∈ [0,1],

p(x,0) = u(x,0) =


0 0.7≥ x

cos3(2.5π(x−0.9)) 0.7 < x < 1.1
0 1.1≤ x,

(8.3)

where p(1,0) = u(1,0) ≈ 0.35. We thus know that g′R in (3.7) is non-zero for this
problem. Even so, we again impose zero boundary data to the non-reflecting bound-
ary condition with the purpose of testing the robustness of the method. The results for
the exact NRBC’s are still superior compared to the ones obtained with the Dirich-
let or the approximate NRBC’s, see Figure 8.3. This example shows that the exact
NRBC’s derived perform well even under non-optimal conditions.
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Fig. 8.3 The solution to (2.1) with initial condition given by (8.3) (initial condition without compact
support). At the right boundary the Dirichlet boundary condition, the approximate NRBC or the exact
NRBC is imposed.

8.4 Numerical results in the hyperbolic limit

We test the behaviour of the boundary conditions in the hyperbolic limit by varying
ε , while keeping the other parameters identical to those in Sect 8.1. The result for
ε = 0.01 is shown in Figure 8.4.
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(a) Solution at t = 0.4, ε = 0.01
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Fig. 8.4 The solution to (2.1) with initial condition given by (8.1), now with ε = 0.01 instead of the earlier
ε = 0.1. At the right boundary the Dirichlet boundary condition, the approximate NRBC or the exact
NRBC is used.

As ε decreases, the solution converges to the hyperbolic solution, see Figure 8.5.
This holds also for the approximative NRBC’s (which are in fact exact for ε = 0). The
fact that the boundary conditions transition smoothly to the hyperbolic ones without
need of modifying the numerical boundary procedure is an advantageous property of
the SAT technique, see [45,1,8].
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Fig. 8.5 At the right boundary the approximate NRBC or the exact NRBC is used. The incompletely
parabolic solutions converge to the hyperbolic solution as ε → 0.

9 Summary and conclusions

We have investigated exact non-reflecting boundary conditions (NRBC) with focus
on the theoretical aspects, well-posedness and stability. We considered an incom-
pletely parabolic system of partial differential equations, as a model of the com-
pressible Navier-Stokes equations. The exact NRBC’s were derived in Laplace trans-
formed space.

We expressed the transformed solution as a superposition of ingoing and outgoing
waves, and eliminated the ingoing waves at each boundary. Both inflow and outflow
NRBC’s were derived. It was shown that the exact non-reflecting boundary conditions
lead to well-posedness, both in the sense of Kreiss and in the energy sense.

The system was discretized in space using a high order accurate finite differ-
ence scheme on summation by parts form (SBP), and the boundary conditions were
imposed weakly using a penalty formulation (SAT). With the continuous energy es-
timate as a guideline, a SAT formulation was derived, which led to a discrete energy
estimate very similar to the continuous one. Hence, by the combined use of the SBP
operators and the SAT implementation, stability followed directly from the result of
well-posedness for the continuous problem.

Both the fact that non-reflecting boundary conditions lead to well-posedness, and
that this automatically leads to stability using the SBP-SAT technique, are new re-
sults.

We have compared the exact NRBC’s to the Dirichlet boundary conditions and
to approximate NRBC’s. The exact NRBC’s outperformed the other conditions, and
led to lower reflections both for exact and erroneous boundary data. In contrast to the
approximative non-reflecting boundary conditions and the Dirichlet boundary condi-
tions, convergence to the correct solution was obtained for the exact conditions when
the mesh was refined (and exact boundary data was available). With decreased vis-
cosity both the exact and the approximative NRBC’s converge smoothly to the char-
acteristic boundary conditions of the purely hyperbolic problem, without any need of
changes in the numerical procedure.
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The superior accuracy, both on the boundary and in the interior (owing to the
exact NRBC’s and the high order scheme, respectively), in combination with the
guaranteed stability, resulted in a competitive numerical method for computations on
unbounded domains.

A Multiple roots

We show that the polynomial q(κ,s) in (2.4) has no multiple roots κ for Re(s)≥ 0, unless s = 0. We start
by writing q̃(κ,s) =−q(κ,s)/(εv) as

q̃(κ,s) = κ
3− r2κ

2 + r1κ− r0

where the coefficients r0, r1 and r2 are given in (3.2). The derivative q̃′(κ,s)= ∂

∂κ
q̃(κ,s)= 3κ2−2r2κ+r1

has roots κ4,5 = r2/3±
√

((r2/3)2− r1/3. If the polynomial q̃(κ,s) has a multiple root κ j , then that root
κ j will be a solution to the derivative q̃′(κ,s) as well. To check whether q̃(κ,s) and q̃′(κ,s) have any roots
in common, we insert κ4,5 into q̃(κ,s). This yields

q̃(κ4,5,s) =
−1
27

(
r2
(
2r2

2−9r1
)
±2
√

r2
2−3r1

(
r2

2−3r1
)
+27r0

)
.

Requiring q̃(κ4,5,s) = 0 leads to r2
(
2r2

2−9r1
)
+ 27r0 = ∓2

√
r2

2−3r1
(
r2

2−3r1
)
, which we square on

both sides to obtain

(r2
(
2r2

2−9r1
)
+27r0)

2 = 4
(
r2

2−3r1
)3

. (A.1)

If the relation (A.1) is fulfilled q(κ,s) has a multiple root. We check if this can occur by defining ϒ =

(r2
(
2r2

2−9r1
)
+27r0)

2−4
(
r2

2−3r1
)3, and see whether it is possible to find ϒ = 0. Inserting the values

r0 = s2/(εv), r1 =−2s/ε and r2 = (v2− c2− sε)/(εv) from (3.2) gives

ϒ =−27
s2

ε4v4

(
4c2(v2− c2)2 +4c2(3c2 +5v2)sε +(v2 +12c2)(sε)2 +4(sε)3) .

Let sε = η̃ + ξ̃ i to split ϒ into one real and one imaginary part, as

ϒ =−27
s2

ε4v4

(
4c2(v2− c2)2 +4c2(3c2 +5v2)η̃ +(v2 +12c2)(η̃2− ξ̃ 2)+4(η̃3−3η̃ ξ̃ 2)

)
−27

s2

ε4v4

(
4c2(3c2 +5v2)+2(v2 +12c2)η̃ +4(3η̃2− ξ̃ 2)

)
ξ̃ i.

The imaginary part of ϒ can be cancelled either by choosing ξ̃ = 0 or by choosing ξ̃ 2 = c2(3c2 +5v2)+
(v2 + 12c2)η̃/2+ 3η̃2. In both these cases the real part of ϒ can only be cancelled if η̃ < 0. The only
exception is if s = 0, then a multiple root is possible. This case is considered next.

A.1 Multiple roots in the s = 0 case

For s = 0 the polynomial in (2.4) becomes q(κ,0) = (v2− c2)κ2− εvκ3, and has roots

0 < v < c : κ1 =
v2− c2

εv
, κ2 = 0, κ3 = 0

v = c : κ1 = 0, κ2 = 0, κ3 = 0

v > c : κ1 = 0, κ2 = 0, κ3 =
v2− c2

εv
.
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If v 6= c, we can find two linearly independent eigenvectors corresponding to the double root κ = 0, so in
that case the single root ansatz Ūh = eκxΨ still holds. When v = c, κ = 0 is a triple root, but we can only
find two linearly independent eigenvectors and hence the single root ansatz is no longer valid.

This can also be seen from the s→ 0 limit of ΦT
i Ψi (the diagonal entries of E(s) in Proposition 4.1).

Under the assumption |s| << 1 the approximate values of κ j and ΦT
i Ψi can be computed. For 0 < v < c

we get

κ1 =
v2− c2

εv
+O(s), κ2 =

−s
v+ c

+O(s2), κ3 =
−s

v− c
+O(s2)

Φ
T
1 Ψ1 = v2− c2 +O(s), Φ

T
2 Ψ2 = 2c(v+ c)+O(s), Φ

T
3 Ψ3 =−2c(v− c)+O(s),

and for v> c we have the same relations, except that the expression for κ1 has become κ3, and vice versa. In
both these cases we see that ΦT

i Ψi 6= 0 and hence E(0) is non-singular. However, the above approximations
only hold for v 6= c. For v = c the κ j’s and ΦT

i Ψi’s are

κ1 =−
√

2s
ε
+O(s), κ2 =

−s
2c

+O(s2), κ3 =

√
2s
ε
+O(s)

Φ
T
1 Ψ1 =−2c

√
2sε +O(s), Φ

T
2 Ψ2 = 4c2 +O(s), Φ

T
3 Ψ3 = 2c

√
2sε +O(s).

We see that both ΦT
1 Ψ1 and ΦT

3 Ψ3 become zero for s = 0, and consequently the matrix E(s) in Proposi-
tion 4.1 is in fact singular for s = 0 and v = c. In this case the ansatz Ūh = eκxΨ and the general homo-
geneous solution (2.5) must be replaced by a double root ansatz. In this paper we will simply avoid the
special case v 6= c.

B The signs of Re(κ/s)

Consider the roots κ j of the polynomial q(κ,s) in (2.4). We show that Re(κ j/s) has the same sign as
Re(κ j) for j = 1,2,3. Start by denoting κ̃ = κ/s, such that q(κ,s) becomes

q(sκ̃,s) = s2 (1+2vκ̃ +(v2− c2− εs)κ̃2− sεvκ̃
3)= 0.

Let s = η + ξ i and assume that κ̃ passes the imaginary axis, i.e. κ̃ = β̃ i. Inserting this into q(sκ̃,s) and
dividing by s2 (assuming s 6= 0) yields

1− (v2− c2− εη + vεξ β̃ )β̃ 2 +(2v+ εξ β̃ + vεηβ̃
2)β̃ i = 0. (B.1)

There are two options that make the imaginary part of (B.1) zero. Either we let β̃ = 0 or we let 2v+εξ β̃ +
vεηβ̃ 2 = 0. For η ≥ 0, both these choices results in a non-zero real part of (B.1). We know already that
the signs of Re(κ j/s) are equal to the signs of Re(κ j) when s is real and positive, and thus Re(κ1/s)< 0,
Re(κ2/s)< 0 and Re(κ3/s)> 0 for all Re(s)> 0.

C Proofs of Proposition 4.2 and Proposition 4.3

When computing AL and AR in (4.4) and (4.5) we need Ψ ∗j ÃΨi, where Ã and Ψi are given in (4.3) and
(3.3), respectively. First, we compute

ÃΨi =

 v c 0
c v −ε

0 −ε 0

 −c
(s+ vκi)/κi

s+ vκi

=

 −vc+ c(s+ vκi)/κi
−c2 + v(s+ vκi)/κi− ε(s+ vκi)

−ε(s+ vκi)/κi


=

 cs/κi
((v2− c2− εs)κ2

i − εvκ3
i )/κ2

i + vs/κi
−ε(s+ vκi)/κi

=

 cs/κi
−s(s+ vκi)/κ2

i
−ε(s+ vκi)/κi

 .
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In the last step we have used that (v2− c2− sε)κ2− εvκ3 =−(s2 +2svκ) from (2.4). Next we compute

Ψ
∗
j ÃΨi =

 −c
(s+ vκ j)/κ j

s+ vκ j

∗ cs/κi
−s(s+ vκi)/κ2

i
−ε(s+ vκi)/κi


=− s

κi

(
c2 +

(
s+ vκ j

κ j

)∗( s+ vκi

κi

))
− ε

κi
(s+ vκ j)

∗(s+ vκi), (C.1)

and since Ã is symmetric it is also possible to compute Ψ ∗j ÃΨi as

Ψ
∗
j ÃΨi = (ÃΨj)

∗
Ψi =−

s∗

κ∗j

(
c2 +

(
s+ vκ j

κ j

)∗( s+ vκi

κi

))
− ε

κ∗j
(s+ vκ j)

∗(s+ vκi). (C.2)

By simply taking the average of (C.1) and (C.2) we obtain

Ψ
∗
j ÃΨi =−

1
2

(
s
κi

+
s∗

κ∗j

)(
c2 +

(
s+ vκ j

κ j

)∗( s+ vκi

κi

))
− ε

2
(
κi +κ

∗
j
)( s+ vκ j

κ j

)∗( s+ vκi

κi

)
. (C.3)

Inserting i = j = 3 into (C.3) yields AL =Ψ ∗3 ÃΨ3 and the result stated in (4.4).

C.1 Proof of Proposition 4.3

Proof The right boundary condition in (3.5) yields the solution Ūh = σ1eκ1xΨ1 +σ2eκ2xΨ2. Inserting this
into BTR in (4.3) we obtain

BTR =−
[

σ1eκ1xR

σ2eκ2xR

]∗
AR

[
σ1eκ1xR

σ2eκ2xR

]
, AR =

[
Ψ ∗1 ÃΨ1 Ψ ∗1 ÃΨ2

Ψ ∗2 ÃΨ1 Ψ ∗2 ÃΨ2

]
,

where AR is a Hermitian matrix. To show that AR ≥ 0 we first note that the diagonal elements of AR,
Ψ ∗1 ÃΨ1 and Ψ ∗2 ÃΨ2, are both positive for Re(s)> 0. This can be seen by inserting j = i into (C.3) as

Ψ
∗

i ÃΨi =−Re
(

s
κi

)(
c2 +

∣∣∣∣ s+ vκi

κi

∣∣∣∣2
)
− εRe(κi)

∣∣∣∣ s+ vκi

κi

∣∣∣∣2 ≥ 0, for i = 1,2,

where we have used that Re(κi/s) < 0 and Re(κi) < 0 for i = 1,2. Moreover, the off-diagonal elements
Ψ ∗j ÃΨi must be sufficiently small, which they are if the quantity γ =(Ψ ∗1 ÃΨ1)(Ψ

∗
2 ÃΨ2)−(Ψ ∗1 ÃΨ2)(Ψ

∗
2 ÃΨ1)

is positive. By using (C.1) or (C.2) (followed by the argument that γ is real) it is possible to write

γ=

(
Re
(

sε

κ1κ2

)(
c2v2 +

∣∣∣∣ s+ vκ1

κ1

∣∣∣∣2 ∣∣∣∣ s+ vκ2

κ2

∣∣∣∣2
)
+Re

(
s2

κ1κ2

)
c2|s|2

|κ1κ2|2

)
|κ1−κ2|2

where the terms sε/(κ1κ2) and s2/(κ1κ2) have positive real parts. This is realized by using the relation
κ1κ2κ3 = s2/(εv) in (3.2), which leads to

sε

κ1κ2
= ε

2v
κ3

s
,

s2

κ1κ2
= εvκ3

where Re(κ3/s) ≥ 0 and Re(κ3) ≥ 0 according to Proposition 3.1 and Proposition 3.2. Hence γ ≥ 0 and
consequently AR is positive definite and BTR ≤ 0.

ut
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