
ACTA
UNIVERSITATIS

UPSALIENSIS
UPPSALA

2016

Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 1368

Computational Ice Sheet Dynamics

Error control and efficiency

JOSEFIN AHLKRONA

ISSN 1651-6214
ISBN 978-91-554-9562-6
urn:nbn:se:uu:diva-283442



Dissertation presented at Uppsala University to be publicly examined in 2446,
Lägerhyddsvägen 2, Uppsala, Friday, 3 June 2016 at 10:00 for the degree of Doctor of
Philosophy. The examination will be conducted in English. Faculty examiner: Professor Jesse
Johnson (University of Montana).

Abstract
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Ice sheets, such as the Greenland Ice Sheet or Antarctic Ice Sheet, have a fundamental impact
on landscape formation, the global climate system, and on sea level rise. The slow, creeping
flow of ice can be represented by a non-linear version of the Stokes equations, which treat
ice as a non-Newtonian, viscous fluid. Large spatial domains combined with long time spans
and complexities such as a non-linear rheology, make ice sheet simulations computationally
challenging. The topic of this thesis is the efficiency and error control of large simulations, both
in the sense of mathematical modelling and numerical algorithms. In the first part of the thesis,
approximative models based on perturbation expansions are studied. Due to a thick boundary
layer near the ice surface, some classical assumptions are inaccurate and the higher order model
called the Second Order Shallow Ice Approximation (SOSIA) yields large errors. In the second
part of the thesis, the Ice Sheet Coupled Approximation Level (ISCAL) method is developed and
implemented into the finite element ice sheet model Elmer/Ice. The ISCAL method combines
the Shallow Ice Approximation (SIA) and Shelfy Stream Approximation (SSA) with the full
Stokes model, such that the Stokes equations are only solved in areas where both the SIA and
SSA is inaccurate. Where and when the SIA and SSA is applicable is decided automatically
and dynamically based on estimates of the modeling error. The ISCAL method provides a
significant speed-up compared to the Stokes model. The third contribution of this thesis is
the introduction of Radial Basis Function (RBF) methods in glaciology. Advantages of RBF
methods in comparison to finite element methods or finite difference methods are demonstrated.
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1. Introduction

Ice sheets are enormous ice masses covering vast land areas (by definition
at least 50 000 km2). We are currently living in a warm period - called the
Holocene - and we only have two ice sheets on earth: the Greenland Ice Sheet
and the Antarctic Ice Sheet. During the most recent ice age, about 110 000
to 12 000 years ago, there were several other ice sheets. Examples are the
Laurentide ice sheet in North America and the Weichselian ice sheet covering
Scandinavia and northern Europe.

The ice sheets of the past have formed many of the landscapes of today, for
instance the landscape upon which Uppsala University is built, see Fig. 1.1.
Ice sheets also play an important role in the global climate system, and con-
tributes to sea level rise. A recent analysis of satellite data by NASA showed
that the sea level has risen about 8 cm since the beginning of the measurements
in early 1990’s. Another study suggests that the effects of a warming climate
on the West Antarctic Ice Sheet alone have a potential to raise sea-level with
up to a meter by year 2100 [18]. These are some of the reasons why there is
an increasing interest to understand the nature and dynamics of ice sheets.

Like many other systems in nature, industry, or society, the state and evolu-
tion of ice sheets can be described mathematically by a set of Partial Differen-
tial Equations (PDEs). It is often very complicated or time-consuming - even
impossible - to solve PDEs analytically with only pen and paper. Instead, the
PDEs are usually solved approximately in a computer by discretizing space
and time. This is what scientific computing and numerical analysis is about -
techniques for solving PDEs and other mathematical problems using compu-
tational tools and discretization techniques such as the finite difference method
or finite element method. Once a PDE solver has been implemented into a
computer, it is possible to use available observational data and run a computer
simulation to obtain new information, for example to predict the future states
of our ice sheets, or to understand past ice configurations. Both the choice of
mathematical model (PDE) and numerical method are crucial to the accuracy
and efficiency of the computer simulation.

Before the computer era, mathematical techniques such as perturbation ex-
pansions were a common way of solving PDEs approximatively, and to gain a
better understanding of the problem. Later, approximations based on perturba-
tion expansions were used in numerical simulations to reduce computational
complexity. Early ice sheet models were typically based on models obtained
through perturbation expansions, and were discretized by the finite difference
(FD) method [14, 29, 38]. These models neglected some of the stress compo-
nents in the ice. Today, state-of-the-art codes are being developed all over the
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world, making use of modern supercomputers and refined algorithms. More
complex mathematical models are implemented, often discretized by the finite
element method (FEM). However, ice sheet simulations are still challenging,
because of e.g. the complexity of the PDEs, large computational areas (Green-
land or Antarctica), and time spans that can reach 100 000 years or more. Until
recently, it was not feasible to perform simulations for a whole ice sheet us-
ing a mathematical model which includes all components of the stresses in
the ice (i.e. the full Stokes model). Even today, such simulations are limited
to a couple of hundred years for Greenland, and even shorter for Antarctica
[11, 26, 48, 57, 58, 67, 75].

In my opinion, the old techniques for simplifying, solving and analysing
the PDEs describing ice should not be forgotten and fully replaced by brute
force computer power and complicated numerical algorithms. Perturbation
expansions give a valuable insight into the problem, and can be combined
with modern scientific computing. Also, as there now is - at least for small set-
ups - enough computer power to solve problems very accurately, we have the
opportunity to go back to the assumptions and derivations made in traditional
perturbation expansions and check their validity.

This thesis demonstrates how perturbation expansions can be evaluated us-
ing numerical algorithms, and how numerical algorithms can be improved us-
ing perturbation expansions. It is also presents new numerical techniques that
can benefit ice sheet simulations. The main contributions are
• Analysis of the asymptotic behaviour of approximations to the Stokes

equations using a numerical solution to the Stokes solution as a reference
(Paper I and Paper II).
• The ISCAL (Ice Sheet Coupled Approximation Level) method, coupling

the SIA, SSA and the Stokes equations based on an automatic error es-
timation (Paper III and Paper IV).
• Introduction of radial basis function methods for solving PDEs in glaciol-

ogy (Paper V).
During the work with this thesis, some insights on how the finite element
method performs in glaciological applications were also gained. The methods
in the papers were developed mainly with long term simulations in mind, and
some of the results have been used to simulate an ice sheet covering Svalbard
during the last glaciation [46]. However, some of the techniques can also be
valuable for shorter term simulations.

The structure of this thesis is as follows: Chapter 2 introduces the full
Stokes model and gives a general overview on the challenges associated to
solving these equations numerically. Chapter 3 gives an introduction to ap-
proximate models which are easier to solve. The validity of these models is
discussed in the context of perturbation theory. In Chapter 4 the specific nu-
merical methods that were used throughout this thesis are discussed, i.e. the
finite difference method, the finite element method, and the radial basis func-
tion method, focusing mainly on the last two.

13



2.1 Ice as a Fluid
Ice sheets, also called continental glaciers, rest on land but can be attached to
ice shelves that float in the ocean, see Fig. 2.1 and Fig. 2.2a. The ice-crystals
within the ice move relation to each other if forces are applied, causing a slow,
creeping flow, downwards and outwards. This flow measures a few meters per
year in the interior, but may be hundreds or even thousands of meters per year
in fast flowing ice streams or ice shelves, see Fig. 2.1 and Fig. 2.2.

Figure 2.1. Ice flow over the basal topography b. At the grounding line the ice be-
comes afloat, forming an ice shelf which breaks into icebergs at the calving front.
Inland, where the basal friction is high, the ice flows faster at the ice surface, h, than
at the base. In the fast flowing ice streams or the ice shelf, the friction is low and the
ice moves at approximately the same speed at the base and the surface. The normal
vector n points outwards from the ice body, and two tangential vectors t span a plane
parallel to the boundary. For aesthetic reasons, the ice sheet in the figure is about 100
times thicker than a real ice sheet.

Indeed, ice can in this context be described as a non-Newtonian, highly
viscous, incompressible, power-law fluid. It is this type of flow that is the focus
of this thesis. Laboratory experiments, field measurements and analysis by
Glen and Nye in the early 1950’s determined a constitutive law characterizing
the material by describing how it deforms under stress [27, 55],

T = A(T,P)−
1
n |D|1/n−1︸                  ︷︷                  ︸

2η

D. (2.1)

14



(a) G r e e n l a nd (b) A n t a r c t i c a

Figure 2.2. G r e e n l a n d i c a n d A n t a r c t i c s u r f a c e v e l o c i t y o b s e r v a t i o n s b a s e d o n I n t e r -
f e r o m e t r i c S y n t h e t i c A p e r t u r e R a d a r (I n S A R ) [ 4 2 , 6 1 , 5 4 ] . T h e fl o w v e l o c i t y i s l o w
i n t h e i n t e r i o r a n d h i g h i n t h e c o a s t a l a r e a s . T h e l a r g e r e g i o n s w i t h f a s t fl o w i n g i c e
i n t h e W e s t A n t a r c t i c I c e S h e e t a r e t h e R o s s a n d R o n n e i c e s h e l v e s . W h i t e a r e a s a r e
d u e t o m i s s i n g d a t a . N o t e t h a t t h e r e l a t i v e s i z e o f t h e t w o i c e s h e e t s a r e n o t r e a l i s t i c
(t h e a r e a o f t h e A n t a r c t i c I c e S h e e t i s m o r e t h a n s i x t i m e s t h e a r e a o f t h e G r e e n l a n d
I c e S h e e t ). T h e d a t a s e t s a r e f r e e l y a v a i l a b l e a t http://websrv.cs.umt.edu a n d
https://nsidc.org/data.

H e r e T i s t h e d e v i a t o r i c s t r e s s t e n s o r , a n d D t h e s t r a i n r a t e t e n s o r , D = 1
2 (∇u+

(∇u)T ), w h e r e u i s t h e v e l o c i t y . T h e v i s c o s i t y , η , i s d e p e n d e n t o n t h e v e l o c i t y

v i a t h e e ffe c t i v e s t r a i n r a t e |D| =
√

1
2 tr (D2 ) , a n d o n t h e t e m p e r a t u r e T a n d

p r e s s u r e P t h r o u g h t h e r a t e f a c t o r A(T,P).
T h e r e l a t i o n (2 . 1 ) i s k n o w n a s G l e n ’ s fl o w l a w i n g l a c i o l o g y , a n d t h e c h a r -

a c t e r i z i n g p a r a m e t e r n i s c a l l e d t h e G l e n p a r a m e t e r . C o n s t i t u t i v e l a w s o n t h e
s a m e p o w e r l a w f o r m a r e u s e d u n d e r d i ffe r e n t n a m e s f o r d e s c r i b i n g o t h e r m a -
t e r i a l s , s u c h a s m e t a l n e a r i t s m e l t i n g p o i n t , w a r m a s p h a l t , o r p o l y m e r s . I n
t h e s e m o r e g e n e r a l c o n t e x t s , t h e p o w e r l a w p a r a m e t e r p i s t y p i c a l l y u s e d i n -
s t e a d o f t h e G l e n p a r a m e t e r n , w h e r e p = 1 /n+ 1 . F o r p = 2 , t h e v i s c o s i t y i s
c o n s t a n t a n d t h e fl u i d i s N e w t o n i a n , s u c h a s a i r a n d w a t e r . F o r p > 2 t h e v i s -
c o s i t y i s i n c r e a s i n g f o r i n c r e a s i n g s h e a r r a t e s a n d t h e fl u i d i s n o n - N e w t o n i a n
a n d shear-thickening, s u c h a s q u i c k s a n d . F o r p < 2 t h e v i s c o s i t y i s d e c r e a s i n g
f o r i n c r e a s i n g s h e a r r a t e s a n d t h e fl u i d i s n o n - N e w t o n i a n a n d shear-thinning,
s u c h a s k e t c h u p .

G l e n a n d N y e s u g g e s t e d t h a t n = 3 f o r i c e , s o t h a t p = 4 /3 < 2 . N o t e t h a t
f o r n = 3 , t h e v i s c o s i t y i s s i n g u l a r w h e n t h e e ffe c t i v e s t r a i n r a t e , |D| i s z e r o i n
(2 . 1 ). A d d i t i o n a l l y , t h e r a t e f a c t o r A i s a n e x p o n e n t i a l f u n c t i o n i n t e m p e r a t u r e
a n d p r e s s u r e . T h e v i s c o s i t y o f i c e i s t h u s a h i g h l y v a r y i n g f u n c t i o n w h i c h m a y
d i ffe r i n o r d e r o f m a g n i t u d e s . A s m a t e r i a l l a w s o f t e n a r e , G l e n ’ s fl o w l a w i s
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however a simplification of real glacial ice. For instance, dust and impurities
may soften the ice, n is in fact not always 3, and contrary to what Glen’s
flow law describes, ice is not an isotropic material (i.e. reacting similarly to
stresses in each direction) [17, 30, 52, 66]. However, the vast majority of ice
sheet simulations today still employ Glen’s flow law with n = 3, and this is
what will be used throughout this thesis.

2.2 Governing Equations
Combining (2.1) with the fundamental physical principles of conservation of
momentum and mass we arrive at the Stokes equations, which determine the
velocity u = (ux ,uy ,uz ) and pressure P

−∇P +∇ ·
(
η(∇u + (∇u)T )

)
+ ρg = 0, (2.2a)

∇ ·u = 0. (2.2b)

The density is denoted by ρ and ρg is the force of gravity. There is an ad-
ditional equation for the temperature T . However, in this thesis the focus is
on the solution of the Stokes equations and how this solution determines the
movement of the ice surface, as this is typically the most challenging problem
in ice sheet simulations. The temperature is thus assumed to be constant, such
that also the rate factor A is constant.

As a remark, the term ’Stokes equations’ usually refers to the linear Stokes
equations. In the case of a power law fluid, (2.2) together with (2.1) are some-
times called the p-Stokes equations, p referring to the power law parameter
p = 1/n + 1. In glaciology, (2.2) are usually called the full Stokes equations,
since approximative models neglecting some stress components are so com-
mon. In this thesis the terms ’the full Stokes equations’, ’the Stokes equations’,
or ’the non-linear Stokes equations’ will be used.

Ice sheet flow is not only a non linear flow, it is also a free surface flow. The
surface position, h, of the ice mass is given by the surface evolution equation

∂h
∂t

+ux
∂h
∂x

+uy
∂h
∂y

= uz + as . (2.3)

Here, as prescribes the net accumulation of ice (snow) at the ice surface, which
depends on climate data such as precipitation and surface air temperature. The
velocity thus determines the ice surface, and the surface shape in turn influ-
ences the velocity. As the Stokes equations are stationary, the time evolution
of the (isothermal) ice sheet is only determined by the evolution of the surface.
The basal topography underneath the ice, b, may also move due to isostatic ad-
justment. In this thesis, the base is considered rigid, while underneath floating
ice shelves, an equation similar to (2.3) is solved for the basal surface.
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2.3 Boundary Conditions
At the ice surface, atmospheric pressure and wind stresses are neglected, re-
sulting in a stress free boundary condition,

(−PI + T) ·n = 0, (2.4)

where I is the identity matrix.
The boundary conditions at the base have a fundamental impact on the over-

all flow. If the ice is grounded and frozen to the base, no slip condition applies,

u = 0. (2.5)

If on the other hand the ice is floating (i. e. in an ice shelf), friction is
negligible and free slip conditions apply.

(tTi · (−PI + T) ·n) = 0, i = 1,2. (2.6)

In this case there is also an additional condition enforcing the sea pressure on
the floating ice. The slip rate in temperate grounded areas is more complicated.
It depends on topographical and hydrological conditions at the base as well as
if there are sediments or other soft materials present, and on the type of these
materials. Naturally, it is difficult to directly observe these basal conditions
underneath a thick ice sheet. Some understanding may be obtained through
e.g. radar data, inverse modelling or seismology [24, 50, 63]. In Paper III and
Paper V, a linear sliding law is used,

(u · ti ) = −(tTi · (−PI + T) ·n)/β, i = 1,2, (2.7)
(u ·n) = 0, (2.8)

where the sliding parameter β is obtained from the inverse model in [26] or
as a function of the geometry. Another common sliding law is the Weertman
sliding law applied in Paper IV, in which β is a function of the magnitude
of the basal velocity [72]. Note that processes entailing a non-zero velocity
normal to the basal surface (e.g. basal melting) is not considered in (2.8).

There is an interplay between the ice dynamics and the conditions at the
base. For instance, the ice flow may alter its underlying sediments or melt
water from the ice sheet may lubricate the base. One phenomena that have
gained increasing attention recently is Marine Ice Sheet Instability. The point
where the basal boundary condition changes from a sliding condition to free
slip (i.e. the grounding line) is dependent on the bedrock topography and
the previous state of the ice sheet. If the ice sheet is grounded below sea
level (i.e. if it is a marine ice sheet) and the grounding line is situated on
a retrograde slope, a positive feedback mechanism may thereby accelerate a
retreat [31, 41, 62, 65, 73].

Together with the above described boundary conditions and appropriate ini-
tial conditions, the system of equations (2.2)-(2.3) is on closed form. The
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well-posedness of the Stokes equations was proved in [43] for sliding basal
conditions. Initial conditions may be based on available data, but often a prior
spin-up simulation is needed to initialize all field variables in a consistent man-
ner.

2.4 Numerical Solution Procedure
This section briefly describes the numerical solution procedure independent
of the numerical method. A more detailed description of the specific numer-
ical methods are found in Chapter 4. The Stokes equations are a simplified
version of the Navier-Stokes equations, which are the standard equations in
computational fluid dynamics when simulating fluids like air or water. In the
Navier-Stokes equations, there are two additional terms in equation (2.2a),
an acceleration term ut , and a non-linear convective term u · ∇u, where this
convective term would be the most challenging to treat numerically. For flu-
ids with high viscosity such as glacial ice, these terms are negligible. How-
ever, as the viscosity is varying, singular and velocity dependent, the term
∇ ·

(
η(∇u + (∇u)T )

)
is complicated instead. The standard way of resolving

this non-linearity is to solve the Stokes equations repeatedly in a fixed point or
Newton iteration, updating the viscosity in each iteration. For each update, the
discretized systems must be solved and - in finite elements - assembled. The
finite element assembly is costly, and moreover, the singularity in the consti-
tutive law (2.1) may lead to iterative solvers converging slowly. Furthermore,
both the Navier-Stokes equations and the Stokes equations constitutes saddle
point problems, which require extra care when solving numerically.

The free surface problem (2.3) is solved only on the ice surface, and is
in itself not computationally demanding in comparison to the Stokes equa-
tions. The feedback between velocity and surface height h may however ren-
der numerical simulations unstable unless short time steps of weeks, months
or years are employed. Indeed, although (2.3) is on the form of a convection
equation, free surface height equations for very viscous flows typically suf-
fer from a parabolic time step constraint. By such a constraint, the maximum
time step allowed for stable simulations, ∆t, is related to the mesh size, ∆x,
via ∆t < C∆x2. The parameter C is independent of ∆t and ∆x [16, 34]. The
constant deformation of the ice body also requires the computational mesh up-
dated repeatedly throughout the simulation, adding to the computational cost.
A more efficient approach to this is presented in Paper V.

Regardless of discretization method, the general algorithm applied in most
ice sheet models follows Algorithm 1 to solve for the evolution of velocity
field, pressure and ice surface position. In all papers, the community ice sheet
model Elmer/Ice is either used as a reference (Paper I, II and V) or been devel-
oped (Paper III and IV). Elmer/Ice is based on the finite element multi-physics
software Elmer [25].
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Algorithm 1 General Solution Procedure. For each time step k, and non-linear
iteration n, a linear system is solved.

1: Set initial condition for velocity u0
0, pressure P0

0 , and ice surface h0.
2: for each time step k do
3: while change > tol do
4: Compute viscosity ηkn = η(uk

n )
5: Assemble Stokes model using ηkn
6: Solve for velocity uk

n+1 and pressure Pk
n+1.

7: change = function of uk
n+1−uk

n

8: n = n + 1
9: end while

10: Insert uk
n into (2.3)

11: Update the computational mesh according to the new h
12: k = k + 1
13: end for
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3. Approximations to the Stokes equations

3.1 An Overview of the SIA, SSA and Blatter-Pattyn
Model

In this section, the three most common approximations to the Stokes equations
are described, namely the Shallow Ice Approximation (SIA), Shallow Shelf or
Shelfy Stream Approximation (SSA), and the Blatter-Pattyn model. Also a
higher extension of the SIA, the Second Order SIA (SOSIA) is discussed.

The SIA is a low order model constructed for grounded ice sheet flow in
areas with high friction. The SSA is also a low order model, but constructed
for low friction areas such as ice streams or ice shelves. The Blatter-Pattyn
model is a higher order model, which is designed to be applied in both high
friction and low friction areas. To give an overview of the main characteristics
of these models, the Stokes equations (2.2) are written in component form
in (3.1)-(3.4) with the terms included in the SIA underlined red, the terms
included in the SSA underlined blue, and the terms included in the Blatter-
Pattyn model underlined in purple.

−
∂p
∂x

+
∂

∂x

(
2η
∂ux
∂x

)
+
∂

∂y

(
η
∂ux
∂y

+η
∂uy
∂x

)
+
∂

∂z

(
η
∂ux
∂z

+η
∂uz
∂x

)
= 0 (3.1)

−
∂p
∂y

+
∂

∂x

(
η
∂uy
∂x

+η
∂ux
∂y

)
+
∂

∂y

(
2η
∂uy
∂y

)
+
∂

∂z

(
η
∂uy
∂z

+η
∂uz
∂y

)
= 0 (3.2)

−
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+
∂

∂x

(
η
∂uz
∂x

+η
∂ux
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)
+
∂

∂y

(
η
∂uz
∂y

+η
∂uy
∂z

)
+
∂

∂z

(
2η
∂uz
∂z

)
= ρg (3.3)

∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

= 0 (3.4)

The viscosity η is approximated neglecting similar terms in the effective
strain rate. It should be mentioned that the above illustration is a simplifica-
tion, as also other aspects may be approximated in these approximations, such
as the boundary conditions and the temperature equation. Further rearrange-
ment is needed before the SIA, SSA and Blatter-Pattyn model are reached in
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their final form. The presentation in equations (3.1)-(3.4) is however sufficient
for discussing accuracy and efficiency.

The terms neglected in the Blatter-Pattyn model allows for decoupling (3.3)
from the other components of the balance of momentum. The Stokes equations
are thereby reduced from a system of equations in four variables (ux ,uy ,uz ,p)
in three dimensions (x,y,z), to a system of equations in two variables (ux ,uy )
in three dimensions. The vertical velocity uz and p are obtained through (3.4)
and (3.3) after this system of equations has been solved. Obviously, this is less
computationally costly than solving the Stokes equations. In addition to reduc-
ing the size of the systems of equations, any issues related to the saddle point
nature of the problem is eliminated. The Blatter-Pattyn model was derived by
Blatter in the 1990’s [8] and later refined by Pattyn in [56]. It was shown the-
oretically to be second order accurate in the aspect ratio ε = [H]/[L] in [64].
It was also compared to the exact Stokes equations in numerical experiments
on the Greenland Ice Sheet in [48], proving it to be highly accurate.

As the SSA neglects also the vertical derivatives in (3.1) and (3.2), it reduces
the problem to a pure two dimensional problem which is solved for ux (x,y)
and uy (x,y). Indeed, all quantities are assumed to be constant in the vertical
direction. The viscosity is integrated over the ice column, so that singularities
close to the ice surface are avoided. The SSA was derived in the end of the
1980’s [51].

The SIA model is the most simplistic model but historically maybe also the
most widely used model, not only for simulations but also to gain a more intu-
itive understanding of the behaviour of ice sheets. Once all but the red terms
are removed, it is possible to integrate the remaining equations vertically, and
obtain four algebraic formulas for velocity and pressure. Hence no equation
system is solved, and no non-linear iteration is needed. The SIA was derived
in the end of the 1970s by Fowler and Larson [22], Hutter [37] and Morland
[53]. In the 1990’s, the SIA made it possible to simulate continental scale ice
sheets during entire glacial cycles by finite difference models as for instance
in SICOPOLIS (SImulation COde for POLythermal Ice Sheets) [28]. Due to
its computational efficiency and high accuracy in many parts of continental ice
sheets, the SIA is still widely applied in the glaciological community.

During the 1990’s, also a higher order extension of the SIA was developed,
the SOSIA, and an extensive theoretical analysis of the errors of the SIA was
performed [5, 6]. The SOSIA was believed to significantly reduce the errors in
the SIA and provide a sound link to the SSA equations, while being almost as
cheap as the SIA [5, 6, 47]. It was implemented by the author into SICOPOLIS
in [2]. An integrated, more elaborate version based on the SOSIA, the iSOSIA,
was developed in 2011 [20].

So-called hybrid models, that couple SIA to the SSA in various ways, have
grown increasingly popular in recent years. Two of the most successful conti-
nental scale paleo ice sheet models, the PISM (Parallel Ice Sheet Model) and
the Pollard & Deconto model, rely on such an approach [13, 59]. In PISM,

21



the SSA is simply set as a basal sliding condition for the SIA, so that the SSA
accounts for sliding effects, and the SIA for shearing effects.

The theory behind the SIA, SSA and the SOSIA relies on perturbation ex-
pansions. Also the Blatter-Pattyn equations and SSA equations can be derived
and analysed in terms of perturbation theory. The accuracy and validity of the
perturbation expansions leading to the SIA and SOSIA are the subject of Pa-
per I and Paper II, and the following sections therefore describes perturbation
theory and its application in glaciology.

3.2 Perturbation Expansions
3.2.1 Regular Perturbation Theory and Asymptotic Expansions
In perturbation theory, the solution, f , to a given problem is described as a
superposition of several components with varying character. The relative sig-
nificance of each component is dependent on a small parameter inherent to the
problem, ε .

f (x) =

N∑
i=0

ε (i) f (x)(i) + εN+1 f (x,ε )(N+1) . (3.5)

The smaller ε is, the less important the terms multiplied by high powers in
ε are, such that limε→0 f = f (0) in the asymptotic limit. Taylor series are an
example of a perturbation series. In Taylor series, ε is the distance from some
point in which the expansion is exact, and the components f (i) can be calcu-
lated by differentiating the function f .

Perturbation theory is useful both in order to understand what the main be-
haviour of a system is, and in order to construct approximations. To construct
approximations, each variable is expanded into a sum, inserted into the origi-
nal equation, and equal powers of ε are collected, see the example in Section
3.2.3. This results in a series of problems that are easier to solve individually
than the original problem. Higher order terms are neglected by truncating the
expansions. Such approximations are exact in the asymptotic limit ε→ 0 [36].

3.2.2 Singular expansions, boundary layers, and matched
asymptotics

The above section described a type of perturbation expansion called a regu-
lar perturbation expansion. Another, more complex, type of expansion is the
singular perturbation expansion. Contrary to a regular expansion, a singular
expansion typically requires the problem to be transformed before variables
are be expanded. This transformation changes the nature of the problem in a
way that is only valid for certain regions or cases, e.g. by linearising a non-
linear problem. As a consequence, for certain situations, some higher order
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terms may grow instead of decrease as ε → 0, such that limε→0 f = f (0) is not
uniformly valid [36].

Boundary layer problems are examples where regular expansions are not
valid, and singular expansions must be used instead. A boundary layer is a
region close to some boundary of the domain, in which the solution, or inner
solution ,exhibits different properties than in the bulk of the domain, where
the outer solution is valid. The inner solution can be expanded in a singular
perturbation expansion that is valid inside the boundary layer, and the outer
solution can be expanded in another singular expansion valid in the bulk of
the domain. In order to regain a solution valid in the entire domain, these two
solutions are matched by a technique called matched asymptotics. The bound-
ary layer thickness typically depends on the small expansion parameter ε , such
that the boundary layer becomes thinner as ε decreases. As a consequence, the
accuracy of the matched solution increases as ε → 0 [36].

3.2.3 Perturbation Expansions in Glaciology
Perturbation expansions have been widely applied in glaciology since the 1980’s
[22, 37]. The small parameter ε is the aspect ratio of the ice sheet, ε = [H]/[L],
where [H] is the some typical vertical length scale of an ice sheet, and [L] is
some typical horizontal length scale. These typical scales are often taken as the
approximate thickness and horizontal extent of an entire ice sheet or glacier.
The Greenland Ice Sheet is more than 2 km thick in most places, and is 1000-
2000 km wide, corresponding to an aspect ratio ε ≈ 0.001. The Antarctic Ice
Sheet is larger, but the aspect ratio is of the same order of magnitude. The
aspect ratio of a glacier is usually 0.01-0.1. However, it is important to re-
alize that the typical length scales are dependent on how input data such as
geometry varies. In this way the frequency of e.g. the bedrock topography
underneath the ice sheet increases ε locally, see Fig. 3.1. It also means that
there is an upper limit to the resolution of the computational grids possible
when using the SIA. If too rapid variations in data are resolved, the SIA will
yield high errors.

3.2.4 The SIA and SOSIA Revisited
The shallowness of ice sheets influences the magnitude of different stress com-
ponents and velocity components. This is exploited together with perturbation
expansions in order to construct the SIA. In this section follows summary of a
classical derivation of the SIA, described in e.g. [5].

Each field variable is non-dimensionalized in terms of the aspect ratio ε ,
typical thickness [H], typical length [L], density ρ and constant of gravity g,
in order to assess their relative importance. The non-dimensionalised variables
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Figure 3.1. B e d r o c k e l e v a t i o n u n d e r a n d a r o u n d t h e G r e e n l a n d I c e S h e e t , i n m e t e r s
a b o v e s e a l e v e l [ 4 , 3 9 , 4 9 ] . T h e f r e q u e n c y o f s u r f a c e v a r i a t i o n s i s e s p e c i a l l y h i g h a t t h e
m a r g i n s , w h i c h l o w e r s t h e l o c a l a s p e c t r a t i o ε t h e r e . T h e d a t a - s e t i s f r e e l y a v a i l a b l e a t
http://websrv.cs.umt.edu.

a r e d e n o t e d b y ∼.

(x,y) = [ L ] ( x̃, ỹ), P = ρg [ H ] P̃,

z = [ H ] z̃, (tDxz ,tDyz ,σ) = ε ρg [ H ] (t̃Exz ,t̃
D
yz ,σ̃),

(ux ,uy ) = [ VL ] (ũx ,ũy ), (tDxx ,tDyy ,tDxy ,tDzz ) = ε 2 ρg [ H ] (t̃Dxx ,t̃
D
yy ,t̃

D
xy ,t̃

D
zz ),

uz = [ VH ] ũz , t = ([ L ] /[ VL ] )t̃,

ε = [ H ] /[ L ] = [ VH ] /[ VL ] , F = [ VL ] 2 /g [ L ] ,
(3 . 6 )

T h e c o m p o n e n t s o f t h e d e v i a t o r i c s t r e s s t e n s o r T a r e d e n o t e d b y ti j (i, j =
x,y,z). E q u a t i o n (3 . 6 ), e x p r e s s e s t h a t v e r t i c a l s h e a r s t r e s s , txz a n d tyz a r e t h e
d o m i n a n t s t r e s s e s i n g r o u n d e d i c e s h e e t fl o w . T h i s i s b e c a u s e t h e i c e i s f r o z e n
t o t h e b e d r o c k , w h i l e t h e s u r f a c e fl o w i s n o n - z e r o , c a u s i n g a s h e a r i n g m o t i o n .
N o t e a l s o t h a t t h e m a g n i t u d e o f t h e v e r t i c a l v e l o c i t y , [ VH ] , i s m u c h s m a l l e r
t h a n t h e m a g n i t u d e o f t h e h o r i z o n t a l v e l o c i t y , [ VL ] , r e fl e c t i n g t h e s h a l l o w n e s s
o f t h e i c e s h e e t . T h e n o n - d i m e n s i o n a l i z e d v a r i a b l e s a r e n o w e x p a n d e d i n a
p o w e r s e r i e s l i k e (3 . 5 ), a n d i n s e r t e d i n t h e o r i g i n a l e q u a t i o n (2 . 2 ). I f o n l y t h e
l o w e s t o r d e r t e r m s (p r e - m u l t i p l i e d w i t h ε 0 ) a r e c o l l e c t e d , t h e S I A e q u a t i o n s
a r e o b t a i n e d , w h i c h a r e t h e e q u a t i o n s c o r r e s p o n d i n g t o t h e h i g h l i g h t e d t e r m s i n
(3 . 1 )- (3 . 4 ). A s a l r e a d y m e n t i o n e d , t h e s e e q u a t i o n s c a n b e s o l v e d a n a l y t i c a l l y
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by rearranging and integrating in the z-direction, so that

ux (0) = ub,x (0) −2(ρg)n
∂h(0)

∂x
| |∇x,yh(0) | |

n−1
2

∫ z

b

A(T ′)(h(0) − z′)ndz′,

(3.7a)

uy (0) = ub,y (0) −2(ρg)n
∂h(0)

∂y
| |∇x,yh(0) | |

n−1
2

∫ z

b

A(T ′)(h(0) − z′)ndz′,

(3.7b)

uz, (0) = ub,z (0) −

∫ z

b

(
∂vx (0)

∂x
+
∂vy (0)

∂y

)
dz′, (3.7c)

p(0) = ρg(h(0) − z) , (3.7d)

where ub denotes the velocity at the ice base. If not only the zeroth order
terms (·)0 are kept in the expansions, but also the first order and second order
terms, the SOSIA equations are obtained. The solution to the SOSIA can also
be obtained analytically, if the zeroth SIA and the first order SIA are solved
first.

This regular perturbation expansion is limited, not only because ε is not
always sufficiently small, but because the expansions break down in certain
regions, namely at domes, at the ice margins, and in some areas near the ice
surface. Due to the non-linear rheology, a boundary layer develops near the
surface, such that a regular expansion is not appropriate. The boundary layer
was predicted by theory in [40] and [64] along with recommendations for sin-
gular perturbation expansions. Since exact Stokes models are available today,
it is possible to numerically test the validity of the scaling relations (3.6) and
other proposed scalings in literature, such as the ones in [64], and to observe
the asymptotic behaviour of the SIA and SOSIA as ε → 0. This is the topic
of Paper I and Paper II. These papers show that indeed the presence of a sur-
face boundary layer is inconsistent with the classical scalings in (3.6) and the
associated error estimates of the SIA and SOSIA. It should be mentioned that
the boundary layer was recognized even in the classical derivation of both
the SIA and the SOSIA [5, 6], but it was believed that the introduction of a
regularization parameter in Glens flow law could circumvent the need for sin-
gular expansions. As shown in Paper II, this does however render the SOSIA
so sensitive to the introduced regularization parameters that it is impractical.
The scalings introduced in [64], together with a recommendation for singu-
lar expansions are in agreement with the numerical scaling relations found in
Paper I. These predict a slightly lower order or accuracy of the SIA, which is
confirmed in Paper II. It is however unclear whether singular expansions and
matched asymptotics are recommendable since - despite the term ’boundary
layer’ suggesting a very thin layer - the near surface layer is found in Paper I
to be thick and diffuse.
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3.3 Coupling Approximations - the ISCAL method
The relative error in the SIA compared to the Stokes equations is shown in
Fig. 3.2a. The error is high in areas where the regular perturbation expan-
sions break down, especially in high sliding areas, at steep margins, and at the
domes. However, the high accuracy in the interior of the ice sheet and the low

(a) SIA error, Greenland (b) Stokes and SIA areas, Greenland

computational cost are clear advantages. In Paper III, the ISCAL (Ice Sheet
Coupled Approximation Levels) method is introduced. The ISCAL method
automatically and dynamically couples the Stokes equations to the SIA equa-
tions. It is implemented in Elmer/Ice and is based on automatic error estimates
of the SIA error. This allows for the SIA to be applied in areas where it is suf-
ficiently accurate, while the computationally expensive Stokes equations are
only solved in areas where needed, such as in the high sliding areas, see Fig.
3.2b. The number of degrees of freedom in the finite element stiffness matrix
is thus reduced, and the assembly and solution phase is accelerated in each
non-linear iteration. The error estimation is constructed by assembling the
stiffness matrix for the entire domain in the last iteration, providing a refer-
ence solution. The error may be estimated in terms of 1) the solution itself, 2)
the residual of the Stokes equations, or 3) in a functional of the solution, e.g.
flux over a line.

The ISCAL method provides a significant speed-up compared to solving
the Stokes equations. In Paper IV, the ISCAL method is extended such that it
couples a hybrid SIA+SSA model with the Stokes equations. The hybrid is
constructed following the approach in PISM [13], i.e. the SSA is solved as a
basal boundary condition for the SIA. Initial tests are made on a coupled ice
sheet/ice shelf system with a moving grounding line.
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The ISCAL method has been applied for paleo-simulations of the Svalbard
Barents Sea Ice Sheet. First results are found in [46].
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4. Numerical Methods

Three different discretizations techniques have been used in this thesis. The
SIA and SOSIA equations in Paper I and Paper II are implemented using the
finite difference method following the methods of SICOPOLIS. The Stokes so-
lution used as a reference in Paper I and Paper II is computed using Elmer/Ice,
i.e. by the finite element method. The ISCAL method in Paper III and Paper
IV is implemented using finite elements in Elmer/Ice, and Paper V introduces
the radial basis function method for glaciological applications. In this chapter
the finite element method and radial basis function is briefly described. Infor-
mation about the finite difference implementation of SIA and SOSIA can be
found in [2].

4.1 The Finite Element Method
4.1.1 Variational Formulation and Discretization
The following description of the finite element method follows the procedure
in Elmer/Ice. For brevity of presentation, no-slip conditions are assumed at
the ice base here.

In variational form, the Stokes problem reads: find u ∈ V and p ∈ Q such
that

A(u,v) + B(v,p) = F (v) ∀v ∈ V, (4.1)
B(u,q) = 0 ∀q ∈ Q. (4.2)

Here,

A(u,v) =

∫
Ω

η(∇u + (∇u)T ) : ∇vdΩ,

B(v,p) =

∫
Ω

p∇ ·vdΩ,

F (v) =

∫
Ω

f ·vdΩ,

where V :=
{
v ∈ [H1(Ω)]3 : vΓd = 0

}
and Q :=

{
q ∈ L2(Ω)

}
. The domain is

denotedΩ and the basal boundary is denoted Γd . Next, the infinite-dimensional
spaces V and Q are restricted to the finite-dimensional subspaces Vh and Qh ,
consisting of piecewise linear polynomial functions. These functions are uniquely
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defined by their values in the nodes of the finite element mesh described in
Section 4.1.2. The discretized Galerkin mixed problem reads: find (uh ,ph ) ∈
Vh ×Qh such that

A(uh ,vh ) + B(vh ,ph ) = F (vh ) ∀vh ∈ Vh , (4.3)
B(uh ,qh ) = 0 ∀qh ∈ Qh , (4.4)

which can be written as a (non-)linear system(
A BT

B 0

) (
u
p

)
=

(
f
0

)
. (4.5)

Note that the stiffness matrix in (4.5) depends on the viscosity η. As already
mentioned in previous chapters, the assembly of the stiffness matrix may be
expensive. Since the equations are stated in weak form and the viscosity en-
ters inside the integral (4.3), it is not possible pre-assemble the main part of the
equation and only reassemble the viscosity in each non-linear iteration. The
solution phase may on the other hand be accelerated in non linear problems,
since the solution from the previous non linear iteration can be used as a good
initial guess for an iterative solver. In Paper III the assembly phase is mea-
sured to occupy about 85 % of the total simulation time, while the solution
phase on only require 12 %. In Paper VI, an alternative discretization tech-
nique for glaciology applications is presented which is on strong form such
that the assembly may be accelerated by pre-assembly, while still allowing for
complex geometries.

The free suface equation (2.3) is discretized in space by linear elements
on the surface of the domain, and in time by semi-implicit methods. Since
the equation is on convection from it is standard to apply a Stream-line Up-
wind/ Petrov-Galerkin stabilization [12]. However, this seem to be unnec-
essary in many cases as the non-linear components of the free surface prob-
lem introduces strong diffusion. Once a new surface position is computed the
mesh is moved in the vertical position. In reality, also the margins of the ice
sheet moves when it advances or retreats, requiring remeshing of the domain,
which is computationally expensive. Consequently, moving margins are usu-
ally omitted for short simulations.

4.1.2 Mesh Generation
Finite element meshes for glaciological applications are usually constructed
from a two dimensional footprint mesh consisting of triangles. The footprint
mesh is extruded in the z-direction such that it aligns with the bedrock topog-
raphy and surface elevation. The resulting three dimensional grid consists of
prismatic elements, see Fig. 4.1. This type of mesh is favourable for ice sheet
modelling as it allows for moving mesh points vertically when the free surface
moves, and since it facilitates approximations that are vertically integrated,
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Figure 4.1. A cross section of an extruded mesh on the Greenland Ice Sheet consisting
of 162 000 prismatic elements, created by extruding a triangular footprint mesh into
15 layers. The vertical component is scaled by a factor 100 in the figure. In reality the
element aspect ratio is small.

such as the SIA. The ice has a positive height at the margin, thus avoiding
degenerated elements. As ice sheets are thin, the elements will have a high
aspect ratio. The number of vertical layers is usually 15-20 and the ice is a
couple of kilometres thick, so that a typical vertical edge size is about 200
meters. The resolution in the horizontal plane can vary from 50 km down to
500 m if static mesh adaptation is used, [26, 48, 67]. This renders an element
aspect ratio of about 2 - 200.

4.1.3 Stabilization Techniques
The stokes problem (4.3) is of saddle point nature. Only certain choices of
Vh ×Qh , that that fulfil the inf-sup condition, will lead to stable solutions [10].
The equal order linear elements described in Section 4.1.1, do not fulfil the
inf-sup condition, but are commonly used in glaciology since they are easy to
implement and provide a sufficiently high order of accuracy. To avoid pressure
oscillations, stabilization techniques that allow for circumventing the inf-sup
condition are necessary. Common stabilization techniques used in Elmer/Ice
and many other codes are Galerkin Least Squares (GLS), Pressure Stabilized
Petrov Galerkin (PSPG) or MINI elements [3, 23, 71]. In this thesis, PSPG or
GLS stabilization is used. These techniques adds element-wise stabilization
terms pre-multiplied by a stabilization parameter τ ∼ h2/η to the equations,
as in [23]. The cell size h is a measure of the size of an element. Because
of the high aspect ratio elements in ice sheets, it is often preferable to de-
fine the cell-size h as the minimum edge length for accuracy, but the choice
is problem dependent. Several stabilization techniques for anisotropic ele-
ments exists [7, 9] but they do not seem to significantly increase accuracy or
efficiency for ice sheet simulations. The stabilization parameter and the sta-
bilization terms were developed with the Newtonian Navier-Stokes equations
in mind and are not optimized for ice sheet modelling [23]. MINI elements
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are often more robust for ice sheet simulations [25], but introduce extra de-
grees of freedom which significantly increases simulation time. There exist
specialized stabilization techniques for the p-Stokes equations in the frame-
work of localized projection stabilization [1], but these were not yet tested
in ice sheet modelling. Localized projection stabilization techniques, also in
the standard form, may be beneficial in ice sheet simulations as they are less
sensitive to the stabilization parameter τ and avoid artificial boundary condi-
tions. For glaciological applications, it is possible to construct simplified local
projection stabilizations that avoid a wide discretization stencil, by integrating
the computations in the non-linear iteration of Algorithm 1, and initializing
the pressure projection with the SIA equations.

If the problem is over-stabilized, for instance by an unfortunate choice of
h, or by not updating the viscosity η in the stabilization parameter τ in a con-
sistent manner, it influences the vertical velocity uz more than the horizontal
velocity. This is more due to the body forces being directed in the vertical
direction and the physical domain being thin, than due to the flat elements.
Despite the vertical velocity being, in general, a factor ε smaller than the hori-
zontal velocity, it is important to consider any errors introduced in this velocity
component as it has as an important impact on the solution of the free surface
equation (2.3) as the horizontal velocity does. This is because the larger hori-
zontal velocity is pre-multiplied with the gradient of the ice surface position,
which is proportional to ε . In fact, when surface gradients are small, the verti-
cal velocity has a great impact on the stability of the free surface equations.

4.2 The Radial Basis Function Method
Radial basis functions (RBFs) were first used in the 1970’s to interpolate scat-
tered data points in cartography and digital terrain models [32, 33]. In glaciol-
ogy radial basis functions have been used to interpolate e.g. radar data and
surface elevation data [35, 70]. The interpolant J of data
u = [u(x1),u(x2),. . . ,u(xN )] observed in N scattered nodes x = [x1,x2,. . . ,xN ]
in a domain Ω, is given by

u(x) ≈ J (x) =

N∑
j=1

α jφ(‖x−x j ‖), x ∈ Ω. (4.6)

Here α j are unknown coefficients, φ is a real-valued radial basis function
whose value depends only on the distance from its center, and ‖ · ‖ is the Eu-
clidean norm. The coefficients α j are determined by enforcing interpolation
conditions

J (x j ) = u(x j ), j = 1,2,. . .N. (4.7)

in the nodes x. This can be expressed as a linear system

Aα = u, (4.8)

31



(a) Gaussian radial basis functions (b) Linear finite element basis functions

Figure 4.2. Gaussian RBFs and linear finite element basis functions. Note that, con-
trary to the finite element basis functions, the RBFs have support in the entire domain.

with Ai j = φ(‖xi −x j ‖).
Common choices of radial basis functions are Gaussian functions, multi-

quadric, inverse multiquadric, and inverse quadratic functions, see Table 4.1.

Table 4.1. Commonly used radial basis functions.

RBF φ(r)

Multiquadric (MQ) (1 + (εr)2)1/2

Inverse Multiquadric (IMQ) (1 + (εr)2)−1/2

Inverse Quadratic (IQ) (1 + (εr)2)−1

Gaussian (GS) e−(εr )2

In Table 4.1, r is the distance from a node, and ε is the shape parameter,
determining how flat (small ε) or narrow (large ε) the RBF is. Fig. 4.2 shows
the Gaussian radial basis functions in magenta and linear finite element basis
functions in blue. The radial basis functions have support in the entire domain.

In the 1990’s, a method for discretizing and solving PDEs by RBFs was
developed [45]. Compared with the finite difference and the finite element
method, it thus has a shorter history. However RBF methods of various forms
have been used to solve problems in e.g. finance [21, 68], fluid dynamics
[45, 74] and quantum mechanics [19]. Let us consider a PDE, where L is a
differential operator, u is the solution and f is the right hand side,

Lu = f . (4.9)

Collocating (4.9) based on the interpolant J and combining with (4.8) leads to
the following system of equations, which determines and approximate solution
to the PDE (4.9).

L A−1u = f , (4.10)
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(a) Global RBF (b) RBF–PUM

Figure 4.3. The left panel show N scattered nodes x in a general domain Ω. The right
panel illustrates a partition of the domain into M = 17 disks.

where Li j = Lφ(‖xi−x j ‖). This is the global RBF method
Global RBF methods exhibit exponential convergence for smooth problems

[44, 60]. However, since the RBF φ has support in the entire domain Ω, the
discretized matrix L is dense, which is of course computationally inefficient.
To sparsify the matrix the RBF partition of unity method (RBF–PUM) can be
used instead of the above described global RBF method [15, 68].

In the RBF–PUM setting, the domain Ω is partitioned into M overlapping
patches

Ω ⊂

M⋃
i=1

Ω
i , (4.11)

see Fig. 4.3b. In each patch a local interpolant is defined

J i
u (x) =

N i∑
j=1

αi
jφ(‖x−xij ‖), x ∈ Ω, (4.12)

where N i is the number of node points, which fall inside the i-th patch. The
local interpolants are combined into a global interpolant

Ju (x) =

M∑
i=1

wi (x)J i
u (x), x ∈ Ω, (4.13)
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where the partition of unity weights wi (x) can be constructed using Shep-
ard’s method [69]. The RBF–PUM is significantly faster than the global RBF
method, while a high accuracy is still maintained.

In Paper V, both the global RBF method and RBF–PUM is used to simulate
free surface glacier flow described by the Blatter-Pattyn model. Multiquadric
RBFs are chosen,

φ(r) = (1 + (εr)2)1/2. (4.14)

The accuracy of RBF methods is sensitive to the value of the shape parameter
ε. Flat basis functions yields high accuracy but ill-conditioned systems, while
narrow basis functions yields lower accuracy but better conditioned systems.
In Paper VI a residual based approach is used to determine an appropriate
shape parameter.

Except for a high accuracy, advantages typically associated with RBF meth-
ods are their meshfree nature. When working with RBF methods for glacier
dynamics, another advantage became apparent – the strong formulation of
equations allows for efficient handling of assembly in non-linear problems.
In contrast to the finite element methods where the equations are stated in
weak form, the viscosity is not intertwined with the divergence and symmetric
gradient operator through integration, as in (4.3). Parts of the linear system as-
sembly can therefore be moved outsite the non-linear iteration in Algorithm 1.
This would of course also be the case for finite difference methods which are
also stated on strong form, but then again finite difference methods do not
allow for unstructured meshes in any practical way. In Paper VI part of the
assembly is not only moved out from the non-linear iteration, but also outside
the time integration loop in Algorithm 1. Also the advantage of a meshfree
approach is demonstrated. Instead of repeated remeshing when the ice do-
main evolves, computational nodes are simply included or excluded from the
domain as its boundaries moves. In this way the boundary conditions can be
imposed directly at the boundary nodes, while the majority of the nodes are
stationary so that most matrix elements Li j keeps their previous value. The
underlying model in Paper V is the Blatter-Pattyn model. In order to extend
the approach to the Stokes model, an appropriate treatment of the saddle point
problem for non-linear steady problems must be found within the framework
of RBFs.
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5. Summary of Papers

5.1 Paper I
This paper evaluates scaling relations and assumptions used in perturbation
expansions in glaciology. Elmer/Ice is employed to solve the Stokes equations
for a two-dimensional ice sheet flowing down an inclined plane with sinusoidal
bumps. The wavelength of the sinusoidal defines a typical length scale L and
thereby the aspect ratio ε. By solving repeatedly for varying L we find how
stresses, velocity and pressure depend on ε, i.e. we find the scaling relations.
The results show that there is a layer near the ice surface in which the field
variables have a different relation to ε than in the bulk of the ice, such that a
regular perturbation technique is not appropriate and the uniform scaling rela-
tions often used to derive the SIA and SOSIA are inaccurate. The numerical
scaling relations agree well with [64]. However, the near surface layer is found
to be thick and diffuse such that singular perturbation expansions suggested in
literature may be problematic.

Contribution: The author of this thesis developed the ideas in discussion
with the last author, did the implementation and numerical experiments. The
manuscript was written by the author of this thesis, in discussion with the other
authors.

5.2 Paper II
The results in Paper I suggests that the very assumptions behind the SOSIA are
inappropriate. This was recognized when SOSIA was developed, but it was
believed that the introduction of a regularization parameter, σres , would be
sufficient to remedy the problem . In this paper, we show that the SOSIA is in-
accurate for most choices or σres , does not converge with ε as predicted, and
is very sensitive to σres . We also show that the accuracy of SIA is predicted
by singular expansions rather than the regular expansions, which slightly over-
estimated the order of accuracy. The results in this paper are shown both by
comparing a numerical solution to the Stokes model with a numerical solution
to the SIA and SOSIA for varying ε , and by solving SOSIA (and SIA) analyt-
ically. The Stokes equations are solved by Elmer/Ice. The numerical SOSIA
(and SIA) solution is computed by a MATLAB version of the SICOPOLIS
code implemented in [2].
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Contribution: The author of this thesis developed the ideas in discussion
with the last author, did the implementation, and numerical experiments. The
manuscript was written by the author of this thesis, in discussion with the other
authors.

5.3 Paper III
This paper presents the ISCAL method and demonstrates its efficiency and ac-
curacy on conceptual model problems and on the Greenland Ice Sheet. The
ISCAL method couples the SIA with the Stokes equations, such that the full
Stokes equations are only solved where the SIA error is higher than a user
defined tolerance. Three different automatic error estimations are developed
to assess the SIA error. The ISCAL is capable of detecting and adjusting to
rapid changes in the flow, and provides a significant speed-up compared to the
Stokes equations for quasi-uniform meshes. The method is implemented in
Elmer/Ice.

Contribution: The author of this thesis developed the ideas in discussion
with the last author. The implementation was done by the first author with ad-
vise from the last author. Numerical experiments and the main part of writing
the manuscript was done by the author of this thesis.

5.4 Paper IV
The ISCAL method is developed further such that the Stokes equations are
coupled with a SSA+SIA hybrid model. In this way, the Stokes equations
are not only avoided in high friction areas, but also in fast flowing regions.
The method is demonstrated on the MISMIP set-up, i.e. on a grounded ice
sheet connected to a floating ice shelf, with a moving grounding line. The
ISCAL method adjusts such that the Stokes equations are solved around the
grounding line. Efficient load balancing for parallel simulations using ISCAL
is discussed.

Contribution: The author of this thesis is the sole author of this paper.

5.5 Paper V
This paper introduces a radial basis function (RBF) method for computing ice
sheet flow and moving ice surface position. The method is meshfree, which is
an advantage over traditional methods such as the finite element method and
finite difference method when dealing with an evolving domain. Compared to
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the finite element method, which most state of the art ice sheet models employ
today, the assembly of a linear system (inside a non-linear solver) is acceler-
ated. The results can be generalized to other non-Newtonian free surface flows
on complex domains.

Contribution: This paper was made in close collaboration between the
authors.
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7. Summary in Swedish

Inlandsisar har format landskap, interagerar med det globala klimatet, och är
en av de största källorna till global havsnivåhöjning. Liksom många andra
system eller fenomen, kan inlandsiar beskrivas av partiella differential ekva-
tioner. Partiella differentialekvationer är ofta för komplicerade för att lösas
analytiskt med penna och papper, och därför diskretiserar man istället ekva-
tionerna och implementerar dem i datorer for att hitta numeriska lösningar.
Innan kraftfulla datorer fanns tillhanda, användes approximativa tekniker så-
som perturbationsexpansioner. Dessa tekniker är fortfarande populära inom
glaciologi, eftersom de styrande partiella differential ekvationerna är mycket
komplicerade och kräver mycket datorkraft. I denna avhandling används ap-
proximativa lösningar i kombination med med sofistikerade modeller för att
accelerera datorsimuleringar. Numeriska lösningar används ocksa för att anal-
ysera noggrannheten och validiteteten hos perturbations expansioner. Slutli-
gen introduceras ett nytt sätt att diskretisera ekvationerna som beskriver in-
landsisar.

Is kan beskrivas som en icke-Newtonsk, inkompressibel fluid. Rörelsen
av denna fluid bestäms av lösningen till p-Stokes ekvationer, där p indikerar
olinjäriteten i materialet. Isytan deformeras enligt detta flöde av is, och dess
position bestäms av ytterligare en ekvation. Anledningen till att problemet är
mycket krävande att lösa är främst de stora beräkningsdomänerna (Grönland
eller Antarktis), långa tidsintervallen som kan sträcka sig över 100 000 år,
olinjäriteten i materialet och att ekvationen som styr deformationen av isytan
är känslig for perturbationer.

Två vanliga approximationer som bygger på perturbationsexpansioner och
reducerar den beräkningsmässiga komplexiteten är SIA (Shallow Ice Approx-
imation) och SSA (Shelfy Stream Equation). Det finns även en högre ordnin-
gens utvidgning av SIA, den så kallade SOSIA (Second Order Shallow Ice
Approximation). I Artikel I visar vi med hjälp av numeriska lösningar att an-
tagandena bakom den traditionella härledningen av SIA och SOSIA inte på
ett tillfredsställande sätt tar i beaktande närvaron av ett gränsskikt nära isytan.
Detta gränsskikt visar sig vara relativt tjockt och diffust. Artikel II visar att
gränsskiktet gör SOSIA obrukbar och att SIA konvergerar enligt en teori som
inkluderar detta gränsskikt, snarare an den klassiska teorin som beskriver SIA.

I Artikel III och Artikel IV introduceras metoden ISCAL (Ice Sheet Cou-
pled Approximation Levels). ISCAL kopplar p-Stokes ekvationerna med SIA
och SSA, så att de approximativa modellerna endast används i områden där
de är tillräckligt noggranna. De beräkningstunga p-Stokes ekvationer löses
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därmed endast i mindre områden, vilket väsentligen accelererar simuleringstider.
ISCAL är implementerad i finita element koden Elmer/Ice.

I Artikel V används en ny diskretiseringsmetod baserad på radiella bas-
funktioner, for att beräkna isflöde och ytdeformation. Metoden har fördelar
jämfört med finita element metoden och finita differenser, i och med att den
inte kräver ett beräkningsnät och således underlättar beräkningen av isdefor-
mationen. Den öppnar också upp för effektivseringar av konstruktionen av
systemmatrisen, som inte är möjliga med finita element.
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