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Abstract

Multicore platforms have been widely adopted in recent years and have re-
sulted in increased development of concurrent software. However, concurrent
software is still difficult to test and debug for at least three reasons. (1) concur-
rency bugs involve complex interactions among multiple threads; (2) con-
current software have a large interleaving space and (3) concurrency bugs are
hard to reproduce. Current testing techniques and solutions for concurrency
bugs typically focus on exposing concurrency bugs in the large interleaving
space, but they often do not provide debugging information for developers (or
testers) to understand the bugs.

Debugging, the process of identifying, localizing and fixing bugs, is a key
activity in software development. Debugging concurrent software is signifi-
cantly more challenging than debugging sequential software mainly due to the
issues like non-determinism and difficulties of reproducing failures.

This thesis investigates the first and third of the above mentioned problems
in concurrent software with the aim to help developers (and testers) to better
understand concurrency bugs. The thesis first identifies a number of gaps in
the body of knowledge on concurrent software bugs and debugging. Second, it
identifies that although a number of methods, models and tools for debugging
concurrent and multicore software have already been proposed, but the body
of work partially lacks a common terminology and a more recent view of the
problems to solve.

Further, this thesis proposes a classification of concurrency bugs and dis-
cusses the properties of each type of bug. The thesis maps relevant studies
with our proposed classification and explores concurrency-related bugs in real-
world software. Specifically, it analyzes real-world concurrency bugs with re-
spect to the severity of consequence and effort required to fix them. The thesis
findings indicate that it is still hard for developers and testers to distinguish
concurrency bugs from other types of software bugs. Moreover, a general con-
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clusion from the investigations reveal that even if there are quite a number of
studies on concurrent and multicore software debugging, there are still some
issues that have not been sufficiently covered including order violation, sus-
pension and starvation.
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Chapter 1

Introduction

In the mid 1980s companies manufactured versions of some single core pro-
cessors with two cores on one chip (dual core). Later, in the early 2000s, the
manufacturing changed by Intel, AMD, IBM and other companies to devel-
opment of more pure multicore processors. There is an ongoing change in
hardware to improve systems’ performance by increasing the number of cores.
Hardware providers such as Intel and IBM, steadily increase the number of
processor cores. In the past few decades, the performance of processors has
been continuously increasing at exponential rates [1]. Due to the changes,
there are constantly new demands to adapt to the latest execution paradigm
provided by parallelism. Multicore platforms have resulted in an increase in
development of concurrent software. Today, in 2016, many types of comput-
ing systems, from desktops and mobile systems to Internet cloud systems and
cyber-physical systems, are dependent on multicore platforms.

From a software developer point of view, concurrent software introduces
the possibility of new types of software bugs, known as concurrency bugs [2].
Concurrent software may exhibit problems, like deadlocks and race conditions
that may not occur in sequential software. The errors typically appear under
very specific (nondeterministic) thread interleavings between shared memory
accesses. The effects of the bugs spread through the software until they cause
the software to hang, crash or produce incorrect output. Such nondeterministic
bugs are typically considered to be problematic errors [3, 4, 5].

Concurrency bugs in deployed systems can result in serious disasters. For
instance, in 2003, ten million people were out of power due to a race condition
in a monitoring software with multi-million lines of code (the often cited 2003
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4 Chapter 1. Introduction

Northeastern U.S. electricity blackout [6]). Facebook’s initial public offering
(IPO) was delayed by more than half an hour, leading to a loss of millions of
dollars due to a race condition in NASDAQ’s IT systems [7]. It is extremely
important for businesses to avoid these catastrophic losses. In 2007 a survey
was conducted by Microsoft researchers to assess the state of the practice of
concurrency in their products. The research indicated that over 60% of respon-
dents had to deal with concurrency issues and half of the concurrency issues
occurred at least monthly [4].

Debugging is a separate process and a key activity in software development.
It involves several steps i.e., identifying, localizing and fixing bugs. One step
in the testing and debugging process is determining a problem (bug or fault) in
software. This phase is frequently called bug or fault identification. To be able
to determine the problem, often the bug is replicated and information gathered.
At some point, the bug will reach a developer (or tester), and it is often here the
actual debugging process starts. The next step is identifying the right part of a
software component, typically a smaller part of the software, e.g. an identity
like file (or files) that are involved in the bug. This phase is frequently called
bug or fault localization. The bugs and their location must be found [8] before
the root cause can be identified. At this point we assume that the developer
have at least pinpointed the files, code sections and general location of the bug,
by utilizing e.g. minimization techniques [9] and been able to reproduce the
bug in context. The final step of the debugging process is repairing and fixing
the bug in order to remove it from the software.

Most experimental studies on concurrent and multicore software provide
information on application cost, efficiency and complementary aspects of the
testing criteria, while there is still lack of knowledge on debugging criteria
evaluation to support the prevention and detection of bugs. It is thus important
to have deepen the knowledge on evaluation of debugging criteria and fixing
concurrency bugs.

1.1 Concurrent Software Challenges
Concurrent software test and debug compared to corresponding activities for
sequential software is faced with a variety of challenges. The main challenges
are as follows:

• Concurrency bugs typically involve changes in program state due to par-
ticular interleavings of multiple threads of execution, which can make
them difficult to find and understand. Therefor, many concurrency bugs
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remain hidden in programs (or source code) until the software runs in a
real environment, and even then it may take a long time before the bug
manifests itself.

• The thread interleavings may vary widely dependent on the platform se-
lected for software execution. The platform could be a single-core or a
multicore. The different run-time thread interleavings (scenarios) need
to be thoroughly considered and handled to guarantee predictability in a
wide range of environments. Therefor, the type of run-time environment
which is selected for software execution is an important consideration.

• Repeated execution of the same concurrent source code will typically
not guarantee the same result after each execution. In other words, if
there are different interleavings of thread executions, then different out-
puts may be obtained. Consequently, developers might not be able to
systematically reproduce the bug using traditional debugging methods.
In general, reproducing the thread schedule, which led developers to the
same bug, might be very difficult. Thus, nondeterministic thread scenar-
ios make concurrent software test and debug extremely difficult.

1.2 Motivation and Goal of Thesis
This research is carried out in the context of concurrent software debugging. It
outlines the issues involved in debugging software on concurrent and multicore
architectures. Three goals are considered in this thesis:

• Goal 1: To provide a common terminology for distinguishing between
different types and classes of concurrency bugs and to identify the inter-
relation between separate elements and classes.

• Goal 2: To identify the current gaps and less-explored areas in debug-
ging of concurrency bugs.

• Goal 3: To identify the current state of concurrency related bugs in real-
world software in terms of frequency, severity and resolving time.

1.3 Research Method
The methodology that has been used in the research consists of three main
study methodologies. We started to generate a theory by presenting a classi-
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fication of bugs related to concurrent execution of application level software
threads. Then, we performed a systematic mapping study for each published
article by identifying the type of bug(s) and the addressed phase(s) in the de-
bugging process. Finally, we explored the nature and extent of concurrency
bugs in real-world software by performing a case study. Figure 1.1 shows the
research method process.

The details are summarized as follows:

• Theoretical reasoning by performing a grounded theory study. A
grounded theory study seeks to generate a theory which relates to the
particular situation forming the focus of the study [10].

• Systematic mapping study by performing a systematic literature
review. A systematic literature review is a formalized, repeatable
process in which researchers systematically search a body of literature

1.4 Research Contribution 7

to document the state of knowledge on a particular subject.

• Case study by performing a case study on the bug reports from an open
source software project. Case study is a flexible empirical method used
for primarily exploratory investigations that attempt to understand and
explain phenomenon or construct a theory [11].

1.4 Research Contribution
The separation and identification of concurrency bugs and non-concurrency
bugs is considered in order to fulfill the research goals by studying the prop-
erties of different types of concurrency bugs. The differences between concur-
rency and non-concurrency bugs is examined in terms of frequency, severity
and fixing time. In addition, concurrency bug types are compared.

The results are disseminated in a journal article, a conference and a work-
shop paper. The following sub-sections briefly present explanations of each
paper and Table 1.1 shows the contributions of the individual papers and their
relative research goals.

To achieve Goal 1 we proposed a disjoint classification for concurrency
bugs by classifying the bugs in a common structure considering relevant ob-
servable properties.

We provided an overview of existing research on concurrent and multicore
software debugging. We applied the systematic mapping study method in order
to summarize the recent publication trends and clarify current research gaps in
the field. Based on the obtained results we summarized the publication trend in
the field during the last decade by showing distributions of publications with re-
spect to year, publication venues, representation of academia and industry, and
active research institutes. We also identified research gaps in the field based
on attributes such as types of concurrency bugs, types of debugging processes,
types of research and research contributions. The results of our mapping study
also indicate that the current body of knowledge concerning debugging con-
current and multicore software does not report studies on many of the other
types of bugs or on the debugging process. In other words, there are still quite
a number of issues and aspects that have not been sufficiently covered in the
field. By that we address Goal 2.

Moreover, we investigated the bug reports from an open source software
project (Apache Hadoop). Hadoop has changed constantly, 59 releases, over
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The results are disseminated in a journal article, a conference and a work-
shop paper. The following sub-sections briefly present explanations of each
paper and Table 1.1 shows the contributions of the individual papers and their
relative research goals.

To achieve Goal 1 we proposed a disjoint classification for concurrency
bugs by classifying the bugs in a common structure considering relevant ob-
servable properties.

We provided an overview of existing research on concurrent and multicore
software debugging. We applied the systematic mapping study method in order
to summarize the recent publication trends and clarify current research gaps in
the field. Based on the obtained results we summarized the publication trend in
the field during the last decade by showing distributions of publications with re-
spect to year, publication venues, representation of academia and industry, and
active research institutes. We also identified research gaps in the field based
on attributes such as types of concurrency bugs, types of debugging processes,
types of research and research contributions. The results of our mapping study
also indicate that the current body of knowledge concerning debugging con-
current and multicore software does not report studies on many of the other
types of bugs or on the debugging process. In other words, there are still quite
a number of issues and aspects that have not been sufficiently covered in the
field. By that we address Goal 2.

Moreover, we investigated the bug reports from an open source software
project (Apache Hadoop). Hadoop has changed constantly, 59 releases, over
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six years of development. It has an issue management platform for man-
aging, configuring and testing. Our results indicate that a relatively small
share of bugs is related to concurrency issues, while the vast majority are non-
concurrency bugs. Fixing time for concurrency and non-concurrency bugs is
different but this difference is relatively small. In addition, concurrency bugs
are considered to be slightly more severe than non-concurrency bugs. By this
we address Goal 3.

More details about the research results are presented in Chapter 4.

Table 1.1: The contribution of the individual papers to the research goals

Papers Goal 1 Goal 2 Goal 3
Paper A � � �
Paper B �
Paper C �

1.4.1 Publications Included in the Thesis
Paper A

Towards Classification of Concurrency Bugs Based on Observable Prop-
erties [12]

Sara Abbaspour Asadollah, Hans Hansson, Daniel Sundmark, Sigrid Eldh
Status: Published in the Proceedings of the 1st International Workshop on
Complex faults and failures in large software systems (COUFLESS), ICSE
2015 Workshop, IEEE, May 2015.

Abstract In software engineering, classification is a way to find an
organized structure of knowledge about objects. Classification serves to
investigate the relationship between the items to be classified, and can be used
to identify the current gaps in the field. In many cases users are able to order
and relate objects by fitting them in a category. This paper presents initial
work on a taxonomy for classification of errors (bugs) related to concurrent
execution of application level software threads. By classifying concurrency
bugs based on their corresponding observable properties, this research aims
to examine and structure the state of the art in this field, as well as to provide
practitioner support for testing and debugging of concurrent software. We also
show how the proposed classification, and the different classes of bugs, relates

1.4 Research Contribution 9

to the state of the art in the field by providing a mapping of the classification
to a number of recently published papers in the software engineering field.

Personal contribution: I am the initiator, main driver and author of
all parts in this paper. All other co-authors have contributed with valuable
discussion and reviews.

Paper B

10 Years of Research on Debugging Concurrent and Multicore Software:
A Systematic Mapping Study [13]

Sara Abbaspour Asadollah, Daniel Sundmark, Sigrid Eldh, Hans Hansson
and Wasif Afzal
Status: Published in the Software Quality Journal, January 2016.

Abstract Debugging – the process of identifying, localizing and fixing
bugs – is a key activity in software development. Due to issues such as
non-determinism and difficulties of reproducing failures, debugging concur-
rent software is significantly more challenging than debugging sequential
software. A number of methods, models and tools for debugging concurrent
and multicore software have been proposed, but the body of work partially
lacks a common terminology and a more recent view of the problems to solve.
This suggests the need for a classification, and an up-to-date comprehensive
overview of the area.

This paper presents the results of a systematic mapping study in the field
of debugging of concurrent and multicore software in the last decade (2005–
2014). The study is guided by two objectives: (1) to summarize the recent
publication trends and (2) to clarify current research gaps in the field.

Through a multi-stage selection process, we identified 145 relevant papers.
Based on these, we summarize the publication trend in the field by showing dis-
tribution of publications with respect to year, publication venues, representa-
tion of academia and industry, and active research institutes. We also identify
research gaps in the field based on attributes such as types of concurrency bugs,
types of debugging processes, types of research and research contributions.

The main observations from the study are that during the years 2005–2014:
(1) there is no focal conference or venue to publish papers in this area, hence
a large variety of conferences and journal venues (90) are used to publish rele-
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vant papers in this area; (2) in terms of publication contribution, academia was
more active in this area than industry; (3) most publications in the field address
the data race bug; (4) bug identification is the most common stage of debug-
ging addressed by articles in the period; (5) there are six types of research ap-
proaches found, with solution proposals being the most common one; and (6)
the published papers essentially focus on four different types of contributions,
with ”methods” being the type most common one.

We can further conclude that there is still quite a number of aspects that
are not sufficiently covered in the field, most notably including (1) exploring
correction and fixing bugs in terms of debugging process; (2) order violation,
suspension and starvation in terms of concurrency bugs; (3) validation and
evaluation research in the matter of research type; (4) metric in terms of
research contribution. It is clear that the concurrent, parallel and multicore
software community needs broader studies in debugging.This systematic
mapping study can help direct such efforts.

Personal contribution: I am the main driver and author of this paper. All
other co-authors have contributed with valuable discussion useful idea and
reviews.

Paper C

A Study on Concurrency Bugs in an Open Source Software [14]

Sara Abbaspour Asadollah, Daniel Sundmark, Sigrid Eldh, Hans Hansson
and Eduard Paul Enoiu
Status: Published in the proceedings of the 12th International Conference on
Open Source Systems (OSS), May 2016.

Abstract Concurrent programming puts demands on software debugging
and testing, as concurrent software may exhibit problems not present in se-
quential software, e.g., deadlocks and race conditions. In aiming to increase
efficiency and effectiveness of debugging and bug-fixing for concurrent soft-
ware, a deep understanding of concurrency bugs, their frequency and fixing-
times would be helpful. Similarly, to design effective tools and techniques for
testing and debugging concurrent software understanding the differences be-
tween non-concurrency and concurrency bugs in real-word software would be
useful.

1.5 Outline of the Thesis 11

This paper presents an empirical study focusing on understanding the
differences and similarities between concurrency bugs and other bugs, as well
as the differences among various concurrency bug types in terms of their
severity and their fixing time. Our basis is a comprehensive analysis of bug
reports covering several generations of an open source software system. The
analysis involves a total of 4872 bug reports from the last decade, including
221 reports related to concurrency bugs. We found that concurrency bugs are
different from other bugs in terms of their fixing time and their severity. Our
findings shed light on concurrency bugs and could thereby influence future
design and development of concurrent software, their debugging and testing,
as well as related tools.

Personal contribution: I am the main driver and author of all parts in
this paper. My supervisors contributed with valuable discussion, useful idea
and review of the whole paper. Eduard Paul Enoiu contributed by valuable
discussion, reviewing and proofreading of Section 8.4.

1.5 Outline of the Thesis
This thesis is organized in 8 chapters. Chapter 2 introduces the required back-
ground of the thesis. In Chapter 3 we present a cross-section of related work
relevant to this thesis. Chapter 4 presents the results according to the respective
research goals, introduced in Section 1.2. Finally, in Chapter 5 we present a
discussion based on our obtained results, a list of conclusions from develop-
ment of this thesis as well as possible future work, followed by the included
papers in Chapter 6 to 8.
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Chapter 2

Background

In this chapter we provide background information needed for understanding
the context of the thesis and the work itself.

2.1 System Architecture
There are two main trends in multicore architecture systems: Symmetric Multi-
processing (SMP) and Asymmetric Multiprocessing (AMP). In SMP, all CPU
cores are identical. If a programmer writes a code to run on one core then
the code can run on any of the SMP cores. In AMP, different CPU cores can
have different roles with different kernels running on different cores. In this
thesis, our focus is on SMP type architectures. The reason for focusing on
SMPs is that the memory and I/O devices are shared equally among all of the
processors in the system [15]. They are more uniform and we believe that
concurrency problems appear in a more similar way among SMPs than AMPs,
which implies that articles relaying to concurrency in SMPs are straightfor-
ward to classify. Typically, SMP systems scale from one processor to as many
as 36 processors [15]. Figure 2.1 shows the architecture model of the SMP sys-
tem. In this SMP model the system have a single-chip multicore processor with
“k”’ identical cores and two levels of cache1. Each core has its private level
one cache, while the last level cache (LLC) is shared among all cores. We fur-
thermore assume a single operating system managing resources and execution
on all cores.

1Cache is “an area of memory that holds recent used data and instruction” [16].
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Figure 2.1: System hardware architecture

The scheduler is responsible for scheduling multiple threads simultane-
ously on all cores. It initiates the multi-threaded program on one core and
instructs each core to start processing. As shown in Figure 2.2 we assume
that there is a global (single) ready queue and a single waiting queue for each
(non-CPU) shared resource in the system. The queues are shared among all
cores. The scheduler uses different resource sharing protocols to synchronize
the multi-threaded program. When multiple threads attempt to access a shared
resource or a critical section (that is protected by a synchronization protocol),
only one thread at a time is allowed to access the resource. All other threads
will wait until the resource becomes free.

Migrating code from a single core environment to an SMP multicore may
give rise to the occurrence of new bugs due to the concurrent execution of tasks
(e.g. related to data races) that cannot occur when only one thread executes at a
time in a single-core environment. The traditional single-core resource sharing
protocols may not be completely helpful in eradicating these newly generated
bugs.

2.2 Debugging Techniques

Debugging is a key activity in the software development life-cycle. Debugging
is a methodical process of identifying, localizing, reducing and fixing bugs in
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a computer program. There are a number of tricks (methods) that can be used
in the daily software development activity to facilitate the hunt for software
problems (bugs). Some of these methods are as follows:

• Exploiting compiler features: programmers can obtain static analysis
of the code provided e.g. by the compiler. Static code analysis is the
analysis of software that is performed without actual executing it. Such
analysis helps programmers detect a number of basic semantic problems,
e.g. type mismatch or dead code.

• Abused cout debugging: the cout technique2 consists of adding print
statements in the code to track the control flow and data values during
code execution (also known as Print debugging or Echo Debugging).
This technique is the favorite technique of beginners and has been the
most common method for debugging [17].

• Logging: logging is another common technique for debugging. This
technique automatically record information messages or events to mon-
itor the status of the program in order to diagnose problems.

• Assertions and defensive programming: assertions are expressions,
which should evaluate to true at a specific point in the code. If an
assertion fails, a bug is found. The bug could possibly be in the

2cout technique’s name is taken from the C++ statement for printing on terminal screen (or any
standard output stream).



14 Chapter 2. Background

Core 1 

CPU 

L1 cache 

Core 2 

CPU 

L1 cache 

Last Level Cache (LLC) 

Core 3 

CPU 

L1 cache 

Core k 

CPU 

L1 cache 

System Bus 

DRAM  (System Memory) 

!!!!"!

Core 1 Core 2

Figure 2.1: System hardware architecture

The scheduler is responsible for scheduling multiple threads simultane-
ously on all cores. It initiates the multi-threaded program on one core and
instructs each core to start processing. As shown in Figure 2.2 we assume
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Migrating code from a single core environment to an SMP multicore may
give rise to the occurrence of new bugs due to the concurrent execution of tasks
(e.g. related to data races) that cannot occur when only one thread executes at a
time in a single-core environment. The traditional single-core resource sharing
protocols may not be completely helpful in eradicating these newly generated
bugs.
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Debugging is a key activity in the software development life-cycle. Debugging
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assertion, but more likely it will be in the code. In this method after an
assertion fails it makes no sense to re-execute the program.

• Debugger: a debugger works through the code line-by-line in order to
make the execution visible to the developer, thereby helping to find bugs,
the location of bugs and the cause of bugs. It can work interactively by
controlling the execution of the program and stopping it at various times,
inspecting variables, changing code flow whilst running, etc. Trace de-
bugging, Omniscient debugging techniques [17] and Deterministic Re-
play Debugging (DRD) [18] can be considered as subgroups of this tech-
nique.

In addition to traditional debugging techniques, concurrent and parallel
programs have specific debugging techniques to support tracing and debugging
multithreaded software. These techniques include:

• Event-based debugging: regards the execution of parallel programs as a
series of events and records and analyzes the events in debugging when
a program is executing. Instant Replay [19] can be considered as a type
of this group.

• Control information analysis: this technique can analyze the control
information in execution and the global data.

• Data-flow-based static analysis: this technique can detect and analyze
the bugs when a program does not execute.

2.3 Types of Concurrency Bugs
Concurrent programming puts demands on software development and testing.
Concurrent software may exhibit problems that may not occur in sequential
software. There is a variety of challenges related to faults and errors in con-
current, multicore and multi-threaded applications [20, 21, 22]. One of the
well-known concurrency bugs is Data race. Data race requires that at least
two threads access the same data and at least one of them write the data [23]. It
occurs when concurrent threads perform conflicting accesses by trying to up-
date the same memory location or shared variable [20] [24]. Figure 2.3 shows
an example of a Data race.

The following sequential actions will happen in executing the indicated
code in each thread in the example:
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Thread A 
… 
counter = counter + 1; 
… 

Thread B 
… 
counter = counter + 1; 
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Figure 2.3: Data race example

1. Load the value of counter in memory.
2. Add 1 to the value.
3. Save the new value to counter.

Consider that this example is a small part of an application which is exe-
cuting on the SMP architecture explained in Section 2.1. Suppose that threads
A and B execute in parallel on Core1 and Core2 and that the value of counter
is 100 initially. After execution, the value of counter could be 101 while the
expected (correct) result is 102. Both cores execute the indicated line of code,
but due to the parallel execution the second load is in this scenario performed
before the first save. Hence, the value saved by both threads will be 101. This
scenario shows that the result of parallel execution of the example could be
incorrect. Thus a concurrency bug (Data dace) has happened.

Atomicity violation is another type of concurrency bug. It refers to the sit-
uation when the execution of two code blocks (sequences of statements) in
one thread is concurrently overlapping with the execution of one or more code
blocks of other threads in such a way that the result is not consistent with
any execution where the blocks of the first thread are executed without being
overlapping with any other code block. Figure 2.4 shows an example of sin-
gle variable atomicity, and Table 2.1 displays the values of shared and local
variables after each interleaving execution.

Suppose Thread A is executing on Core1 and Thread B on Core2. Both
of them use a shared variable counter and each has its local variable (tempA
and tempB). The initial value of counter is 0. Since both threads are using
the lock mechanism to protect from data corruption, only one core at a time
can access the counter. If Core1 reaches line 5 before Core2 reaches line 17
then the counter will be fetched from DRAM to LLC and L1 Cache of Core1.
tempA will be fetched similarly. The value of tempA will be 0 after executing
line 6 and 7. Meanwhile if Core2 reaches line 17 then Thread B will wait in
the waiting queue. By releasing the lock by Core1 Thread B will wait in ready
queue. Since Core2 is free and no more threads is waiting in ready queue then
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Thread A 
… 
5: lock(counter) 
6: tempA = counter 
7: unlock(counter) 
… 
10: tempA = 100 + tempA 
… 
14: lock(counter) 
15: counter = tempA 
16: unlock(counter) 
… 

Thread B 
… 
17: lock(counter) 
18: tempB = counter 
19: unlock(counter) 
… 
27: tempB = 200 + tempB  
… 
30: lock(counter) 
31: counter = tempB 
32: unlock(counter) 
… 

Figure 2.4: Atomicity violation example
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Table 2.1: Shared and local variables’ value after interleaving execution

Core2 will continue to execute Thread B from line 17, 18 and 19. The value of
counter will be fetched to L1 Cache of Core2 and the tempB value of Thread
B will be 0. During Core2 execution Core1 is executing Thread A. The tempA
value of Thread A will be 100 while the tempB value of Thread B becomes
200. If we suppose Core1 reaches line 14 before Core2 reaches line 30 then
100 will be stored in LLC and DRAM as counter value, and then Core2 will
continue (line 30, 31 and 32) and store 200 in LLC and DRAM. This scenario
shows that a concurrency bug (Single variable atomicity violation) occurred
because the updated counter by Core1 is corrupted by Core2. From the above
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examples it should be clear that concurrent executions of threads may lead to
bugs that are not possible when executing the same threads on a single core
architecture. Investigating and understanding such bugs is the main motivation
and focus of this thesis.

2.4 Debugging Process
In this section, we present the concepts of the different phases in the debugging
process. We discuss the stages that follow after a software failure has been
observed, when its root cause is determined and corrected.

From an industrial perspective, a simple life cycle of a software problem
is defined by Zeller [9] to include the following phases: (1) A user reports
a problem to the software provider; (2) A developer at the software provider
reproduces the problem; (3) The developer isolates the circumstances of the
problem; (4) The developer fixes the problem locally; (5) The developer deliv-
ers the fix(es) to the user.

The debugging process is handled differently in different types of organi-
zations and teams. In a small team with few developers, it is normally clear
what part of the code is in question when a program executes unsuccessfully
or a test case fails. Here, typically, the developer has to find the bug [25]. In
larger organizations, usually the first sign of any bug is the failure of the soft-
ware or system. The bug fixing process then starts with the submission of an
anomaly report. The following list discusses the stages that follow after a soft-
ware failure has been observed, and its root cause should be determined and
corrected.

• Bug identification is the process of finding the approximate location of
a bug (in terms of source code unit, sub-system or even organizational
unit), such that the remainder of the debugging process can be assigned
to the appropriate stakeholder. It is to be noted that the scope of our
definition of bug identification covers terms such as bug localization and
bug detection.

In case the failure was detected during testing, bug identification is usu-
ally performed by the testing team and followed by a team review to
prioritize fixes [26].

• Type of bug identification is a process to help developers in finding
the real cause of a bug by understanding the type of bug. In [12] we
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extended the common debugging process by adding a sub-process that
suggests that before the type of bug is identified, developers could check
the properties of identified bug(s) and compare them with the properties
given for each class of concurrency bugs. Thus, developer(s) can thereby
identify the potential type of the bug at hand.

• In cause identification, the root cause of a bug is identified. Since the
root cause refers to the most basic reason(s) for the occurrence of a bug,
during this process a bug can reasonably be identified by a developer or
the debugger (e.g., unexpected value of variable A was the root cause of
a bug related to variable B or an erroneous lock was the root cause of
bug number 5).

• The process of exploring corrections can be applicable when we have
more than one possible solution for fixing the bug. Typically the poten-
tial solutions are compared and the best solution for the current bug is
selected.

• Finally, fixing bug is the process for repairing and fixing the current
bugs. It is the last stage of the debugging process in order to remove the
bug.

Note that, after debugging is competed the fixed system needs to be tested
to endure that the fix did not introduce new bugs in the system.

Chapter 3

Related Work

This chapter presents a cross-section of related work relevant to this thesis.

3.1 Empirical Studies on Concurrent Software

There are some empirical studies investigating how programmers develop con-
current software [27, 28, 29, 30, 31, 32]. These studies evaluate several aspects
of the work of beginners and experienced developers, such as how they design
programs, how much speedup they achieve by their design, how concisely they
write programs. However, the studies do not evaluate how much time develop-
ers need to fix a concurrency bug or how developers debug concurrency bugs.
We, on the other hand, investigate these issues as a part of our study. To our
knowledge, there are only two related studies on debugging concurrent pro-
grams. The first of these is done by Lönnberg et al. to investigate how students
understand concurrency bugs [33]. The authors performed an empirical study
on students, by providing an assignment to students (to write concurrent pro-
grams). They suggested several ways to help students debug their assignments.
For instance, they guided students to use software visualization tools. Further,
the authors interviewed the students and analyzed their responses. The authors
claim that since students usually have different understanding of concurrent
programs from teachers, software visualization tools will help both teachers
and students to get the same view of the programs and bugs. The second study
is done by Sadowski and Yi to show how developers use a new concurrency
notation called cooperability [34]. They posted three concurrency bugs on an

21
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internet-based survey form, divided participants into two groups, where one
group of people have the aid of cooperability and the others do not. In evalu-
ating the responses they scored the correctness of the responses with a ranking
scheme and statistically showed that developers can understand concurrency
bugs better with the aid of cooperability.

There are also related studies on concurrency bug types, detecting a type of
concurrency bugs and reproducibility of bugs. Lu et al. examined concurrency
bug patterns, manifestation, and fix strategies of 105 randomly selected real-
world concurrency bugs from four open-source application (MySQL, Apache,
Mozilla and OpenOffice) bug databases [35]. Their study focused on several
aspects of the causes of concurrency bugs, and the study of their effects was
limited to determining whether they caused deadlocks or not. We use a similar
study methodology in our case study to find relevant bug reports for our anal-
ysis, but we provide a complementary angle by studying the effects of recent
concurrency bugs with a more fine-grained classification than mapping bugs in
to deadlock and non-deadlock bug classes.

The study by Gu et al. [36] look at the change history for thread syn-
chronization. The authors investigate code repositories of open-source multi-
threaded software projects to understand synchronization challenges encoun-
tered by real-world developers. They reviewed over 250,000 revisions of four
representative open source software projects to distinguish how developers
handle synchronizations. Further, the authors conduct case studies to better
understand how concurrency bugs are introduced by code changes and how
developers handle synchronization problems. Gu et al. conclude that it is
necessary to have tool support to help developers who tackle synchronization
problems.

Schimmel et al. [37] present an empirical evaluation of bug detection capa-
bilities of two data race bug detection tools on real-world concurrent software.
The authors tracked 25 data races in bug repositories, created parallel unit tests
and executed 4 different data race detectors. They conclude that with a combi-
nation of all detectors 92% of the contained data races can be found, whereas
the best data race detector only finds about 50%.

The reproducibility of bugs is analyzed in [38]. The authors distinguish
concurrency bugs from non-concurrency bugs when trying to characterize their
reproducibility. The study analyzes some applications focusing on the proper-
ties of the inputs that are required to trigger bugs. The main focus is not on
concurrency bugs.
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3.2 Tools for Debugging Concurrent Software

In order to help developers to debug concurrent software and trace the thread
interactions some visualization tools such as CHESS [39], JPF [40], TIE [41],
JIVE [42, 43], JOVE [42, 43], FALCON [44], UNICORN [45], GRIFFIN [46]
and Concurrency Explorer [39] are proposed. Most of these tools are evaluated
with toy programs and not with real concurrent software, except the Concur-
rency Explorer, which is used internally at Microsoft.

In addition, there are some tools proposed by researchers for detecting con-
currency bugs, including data race detectors, serializability violation detectors,
atomicity violation detectors and other bug detectors. Data race detectors can
typically be of three different types based on the algorithms that are used. The
first type relies on the lockset algorithm [47] to check whether the software
developer protected all accesses to a specific shared variable with a common
lock. The second type relies on the happens-before algorithm [48, 49] and the
third type relies on sampling and the use of breakpoints [50] instead of relying
on any of these algorithms. Typically, race detectors operate at the lower-level
of individual memory accesses. However, Artho et al. [51] investigate data
races on a higher abstraction layer. The authors developed a runtime analysis
algorithm to detect high-level data races. They introduce a concept of view
consistency and utilize it to detect high-level data races. A view is the entire
set of shared variables accessed in a synchronized block. According to the au-
thors, by their algorithms they can detect inconsistent uses of shared variables,
even if no classical race condition occurs.

Xu et al. [52] propose a serializability violation detector to detect erroneous
executions of shared-memory programs without requiring a priori program an-
notations. Their tool can report some dynamic false positives, which makes
it particularly suitable to be used in avoiding erroneous executions caused by
unknown bugs. The authors validate their proposed method by conducting
an empirical case study and claim that the experimental results show that the
method is effective on real server programs.

Lu et al. propose a tool that detects atomicity violation at the level of in-
dividual memory accesses (low-level) [53]. It relies on training and can detect
atomicity violation bugs by learning from a large set of runs of valid memory
access patterns.

A bug detector tool is proposed by Huang et al. [54]. Their tool relies on
detecting whether critical sections are commutative. The authors achieve this
by identifying pairs of critical sections that non-deterministically change the
contents of shared memory due to execution order.
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algorithm to detect high-level data races. They introduce a concept of view
consistency and utilize it to detect high-level data races. A view is the entire
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Other researchers have addressed the problem of detecting concurrency
bugs in different types of event-based frameworks [55, 56, 57]. In our study
we present and classify relevant papers that propose concurrency debugging
tool(s).

3.3 Literature Reviews and Classification Studies
on Concurrent Software

There are some SLR, surveys and state of art review studies related to concur-
rent software testing and debugging. These studies provide a list of relevant
studies in the area. A systematic review on concurrent software testing was
published by Brito et al. [58] in 2010. Their main goal was to obtain evidence
of current state-of-the-art related to testing criteria, testing tools and to find bug
taxonomies for concurrent and parallel programs. They further provided a list
of relevant studies as a foundation for new research in the area. The authors
concluded that there is a lack of testing criteria and tools for concurrent pro-
grams. They notice that most experimental studies are providing information
on application cost, efficiency and complementary aspects, while there is lack
of knowledge on bug taxonomy and on evaluating testing criteria. We use a
similar study methodology (Systematic Mapping Study) with focus on current
state of research related to debugging criteria rather than testing. However, our
study is based on different classifications compared to Brito et al.’s study.

A state of the art review on deterministic replay debugging in multithread
programming was performed by Wang et al. [59] in 2012. They categorize
replay-based debugging techniques for parallel and multithread programs and
divided them into three types: hardware-based, software-based and hybrid
methods. Furthermore, software-based methods are classified into two groups:
virtual machine based methods and pure software-based methods. Further, they
present some classical software-based systems for multithread deterministic
replay debugging. Related to this, we provide a state of the art overview with
focus on the processes that may occur during concurrent software debugging.

Hong and Kim present a survey of race bug detection techniques for multi-
threaded software [60]. They classify 43 race bug and corresponding race bug
detection techniques. In addition, they describe and compare the mechanisms
of race bug detection techniques. Further, the authors present some examples
of race bugs, with the aim to help software developers to avoid race bugs in
their code.

Moreover, related to this thesis there are some other studies that propose

3.3 Literature Reviews and Classification Studies on Concurrent
Software 25

taxonomies covering concurrency bug types. Long et al. [61] present a classifi-
cation of Java concurrency bugs by using a Petri-net model diagram. The tran-
sitions in the model represent changes in the concurrent state of a thread. The
classification is used to justify the construction of concurrency flow graphs for
each method in a concurrent component. The authors believe that the concur-
rency flow graphs can be used in the construction of test sequences for testing
concurrent components to ensure coverage of concurrency primitives.

Tchamgoue et al. [62] classify event-driven program models into low and
high level based on event types. They categorize concurrency bug patterns
in event-driven programs. In addition to the taxonomy they survey tools for
detecting concurrency bugs in these programs. In contrast, our classification of
concurrency bugs is based on symptom and system state bug properties.

Helmboldet et al. [63] summarize the concepts of race bug detection tech-
niques for parallel software, and present a taxonomy with respect to the char-
acteristics of the target program structure. Their race taxonomy separates races
into categories based on the error types that cause that kind of race (e.g. loop,
synchronization operations).
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Chapter 4

Research Results

This chapter presents the results of our research in relation to the respective
following research goals:

Goal 1: To provide a common terminology for distinguishing between dif-
ferent types and classes of concurrency bugs and to identify the interrelation
between separate elements and classes.

Goal 2: To identify the current gaps and less-explored areas in debugging
of concurrency bugs.

Goal 3: To identify the current state of concurrency related bugs in real-
world software in terms of frequency, severity and resolving time.

4.1 Research Results Related to Goal 1

In order to achieve the first goal of this thesis (To provide a common terminol-
ogy for distinguishing between different types and classes of concurrency bugs
and to identify the interrelation between separate elements and classes) we
propose a disjoint classification for concurrency bugs by classifying the bugs
in a common structure considering the observable properties in paper A [12].
We make use of two types of properties: System state properties and Symptom
properties. Using these properties, we propose a concurrency bug classifica-
tion. More details about the properties and classification are presented in the
following sections.
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4.1.1 Concurrent Software Bug Properties
In order to propose this classification, we first gathered the common system
states and symptoms properties of bugs based on a literature review. We divide
the observable properties in properties related to the system state, and prop-
erties related to the symptoms of the concurrent program under test. In the
following lists, when we refer to threads t, we are referring to the threads in
the set Tb ⊆ T , where among all threads T, Tb is the set of threads directly
involved in the bug. Similarly, when we refer to a shared resource r, we are
referring to a resource in the set Rb ⊆ R, where among all resources R, Rb is
the set of resources directly involved in the bug.

System State Properties

The below list collects the properties related to the system state at the time of
the bug. We refer to the thread execution states (shown in Figure 6.2) in the
properties list to present the state of threads when the respective bug occurs.
Most of these properties are related to operations of the operating system and
they can be observable via available data structures in the operating system
kernel, such as Thread Control Block (TCB), or using suitable method(s) in
source code to observe these properties during debugging or tracing of the
software.

1. At least one thread t ∈ Tb is in the Waiting state.

2. At least one thread t ∈ Tb is in the Executing state.

3. At least one thread t ∈ Tb is in the Ready state.

4. All threads in Tb have read and written to a spinlock variable 1.

5. All threads in Tb are waiting for a lock held by another involved thread.

6. At least one thread t ∈ Tb is in the ready queue for an unacceptably long
time.

7. At least one thread t ∈ Tb is in Waiting state for an unacceptably long
time.

8. All threads in Tb are in Executing state.
1spinlock is ”mutual execution mechanism in which a process executes in an infinite loop wait-

ing for the value of lock variable to indicate availability” [64]
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Symptom Properties

The below list collects the properties related to the observable output at the
time of the bug. Based on the bug’s symptoms one may recognize the cause of
the problem and the nature of the bugs. The following list thus shows some of
the typical symptoms that can be used to categorize bugs.

1. No thread t ∈ Tb is able to proceed and progress.

2. The number of threads in Tb is larger than the number of free processor
cores.

3. There are incorrect or unexpected results (e.g., unexpected outputs).

4. The number of requests to a resource r is larger than the number of
available resources of that type.

5. All threads in Tb hold a lock.

6. At least one of the threads t ∈ Tb holds a lock.

7. Accesses to shared memory were made from different threads in Tb.

8. At least one of the accesses to the shared memory was a Write.

9. Accesses to shared memory targeted the same memory location.

10. Accesses to shared memory were NOT protected by a synchronization
mechanism.

11. Accesses to shared memory targeted just one memory location.

12. Accesses to shared memory targeted more than one memory location.

13. There were at least two accesses to the same shared memory location, a
Write and a Read, where the Read occurred too early.

14. There were at least two Write accesses to shared memory, and they oc-
curred without any Read in-between.

15. There is at least one correct execution ordering between the accesses to
shared memory which the program failed to enforce.

16. An atomic execution of statements was required.
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Combination of System State and Symptom Properties

Based on the above lists of observable properties, we have derived a clas-
sification of concurrency bugs. The resulting classification is shown in Ta-
ble 4.1. As shown in the table, the first column illustrates the observable
properties while the first row displays the different types of concurrency bugs.
The mapping between bugs and observable properties should be interpreted as
Bug → property . Thus, an ”�” in the column of bug B and the row of prop-
erty p would mean that if you have come across bug B, then property p will
invariably hold. Note that the reverse implication (i.e., property → Bug) does
not necessarily hold.
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Table 4.1: Concurrent software bugs classes and the properties for each class to achieve
Goal 1 (from paper A)

Property

D
ea

dl
oc

k

L
iv

el
oc

k

St
ar

va
tio

n

Su
sp

en
si

on

Data race Order violation Atomicity violation
Single variable Multi variable

M
em

or
y

in
co

ns
is

te
nc

y

W
ri

te
-W

ri
te

ra
ce

O
rd

er
vi

ol
at

io
n

1

O
rd

er
vi

ol
at

io
n

2

O
rd

er
vi

ol
at

io
n

3

Si
ng

le
va

ri
ab

le
-A

V
1

Si
ng

le
va

ri
ab

le
-A

V
2

M
ul

ti
va

ri
ab

le
-A

V
1

M
ul

ti
va

ri
ab

le
-A

V
2

At least one thread t ∈ Tb is in the Waiting
state � � � � �

At least one thread t ∈ Tb is the Executing
state � � � � � � � � � � �

At least one thread t ∈ Tb is in the Ready state � � � �
All threads in Tb have read and written to a
spinlock variable �

All threads in Tb are waiting for a lock held
by another involved thread �

At least one thread t ∈ Tb is in the ready
queue for an unacceptably long time �

At least one thread t ∈ Tb is in Waiting state
for an unacceptably long time � �

All threads in Tb are in Executing state � � �
No thread t ∈ Tb is able to proceed and
progress � �

There are incorrect or unexpected results � � � � � � � � �
The number of threads in Tb is larger than the
number of free processor cores � � � �

Potential request to a resource is larger than
the number of available resources of that type �

All threads in Tb hold a lock �
At least one of the threads t ∈ Tb holds a lock � � � � � � � �
Accesses to shared memory were made from
different threads in Tb
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At least one of the memory accesses was
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Accesses to shared memory targeted the same
memory location � � � � � � � � �

The memory accesses were NOT protected by
a synchronization mechanism � �

Accesses to shared memory targeted just one
memory location � �

Accesses to shared memory targeted more
than one memory location � �

There were at least two accesses to the same
shared memory location, a Write and a Read,
where the Read occured too early

�

There were at least two Write accesses to
shared memory, and they occurred without
any Read in-between

�

There is at least one correct execution
ordering between the memory accesses which
the program failed to enforce

� � �

An atomic execution of statements was
required � � � �
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4.1.2 Concurrent Software Bugs
In order to avoid omission of relevant bugs, we conducted a literature review
to identify faults, errors and bugs relevant to parallel, concurrent and multicore
software testing and debugging. The common properties of bugs presented
below are primarily extracted from relevant references based on the literature
review.

The explanation of each concurrent bug with their observable properties
are listed as follows:

• A Data race occurs when at least two threads access the same data and at
least one of them write the data [23]. It occurs when concurrent threads
perform conflicting accesses by trying to update the same memory loca-
tion or shared variable [20] [24].

– Memory inconsistency is when different threads have inconsistent
views of shared variables [22]. In this case the results of a write
operation by one thread are not guaranteed to be visible to a read
operation by another thread.

– Write-Write race is a data corruption caused by accessing a
shared variable via at least two threads, in which one of them
overwrites the data before any reads.

• Deadlock is ”a condition in a system where a process cannot proceed
because it needs to obtain a resource held by another process but it itself
is holding a resource that the other process needs” [65]. More generally,
it occurs when two or more threads attempts to access shared resources
held by other threads, and none of the threads can give them up [20] [16].

• Livelock is ”a situation where a thread is waiting for a resource that will
never become available. It is similar to deadlock except that the state of
the process involved in the livelock constantly changes with regards to
each other, non progressing” [66].

• Starvation is ”a condition in which a process indefinitely delayed be-
cause other processes are always given preference” [64]. Starvation typ-
ically occurs when high priority threads are monopolising the CPU re-
sources.

• A Suspension-based locking or Blocking suspension occurs when a
calling thread waits for an unacceptably long time in a queue to acquire
a lock for accessing a shared resource [67].
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• Order violation is defined as the violation of the desired order between
at least two memory accesses [68]. It occurs when the expected order
of interleavings does not appear [44]. If a program fails to enforce the
programmer’s intended order of execution then an order violation bug
could happen [35].

• Atomicity violation refers to the situation when the execution of two
code blocks (sequences of statements) in one thread is concurrently over-
lapping with the execution of one or more code blocks of other threads
in such a way that the result is inconsistent with any execution where the
blocks of the first thread are executed without being overlapping with
any other code block. Atomicity violation can be further subcategorized
into single variable atomicity violation and multi-variable atomicity vi-
olation, where:

– Single variable atomicity violation is when there is a sequence of
concurrent memory access to a single variable, which yields differ-
ent result from the state of sequential memory accesses [69].

– Multi-variable atomicity violation occurs when multiple vari-
ables are involved in an unserializable interleaving pattern [69].

4.2 Research Results Related to Goal 2
In order to achieve the second goal of this thesis (To identify the current gaps
and less-explored areas in debugging of concurrency bugs) we present the re-
sults of a systematic mapping study in the field of concurrent and multicore
software debugging in the last decade (2005–2014) in paper B [13].

In terms of publication trends on debugging of concurrent and multicore
software during the last decade, we found that the topic has increasingly gained
interest since 2005, with the highest number of published papers in 2013. Our
investigation indicates that the number of publications in the field increase from
4 in 2005 to 24 in 2013. Figure 4.1 presents the results of our investigation.

In order to investigate the current gaps in debugging concurrency bugs we
explored the addressed concurrency bugs, different type of debugging pro-
cesses, types of research and research contributions.

In term of concurrency bugs we found that six specific types of concurrency
bugs (viz., Deadlock, Livelock, Starvation, Data race, Order violation, and
Atomicity violation) were addressed by articles in last decade. Among these, a



32 Chapter 4. Research Results
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Figure 4.1: Distribution of primary study by publication year (from paper B).

large fraction of publications addressed data race. More details are presented
in Figure 4.2.

Considering different type of debugging procgoal 1esses, we found that
five types of debugging process were considered in articles in the period (viz.,
bug identification, type of bug identification, cause identification, exploring
corrections, and fixing bug). Among these, the bug identification process as the
most common one considered. Figure 4.3 shows the frequency of contributions
focusing on different type of the debugging process.
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Besides, we found that six types of research (viz., validation research, eval-
uation research, solution proposal, conceptual proposal, opinion paper, and ex-
perience paper) in the selected publications, with solution proposals being the
most common type. The obtained results are illustrated in Figure 4.4.
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Finally, Figure 4.5 illustrates that the published papers essentially focus
on four types of contributions (viz., methods, models, metrics and tools) with
methods being the most common type.

49.08% 

13.50% 

4.91% 

28.22% 

4.29% 

0 10 20 30 40 50 60 70 80 90 

Method 

Model 

Metric 

Tools 

Open items 

Ty
pe

 o
f R

es
ea

rc
h 

C
on

tr
ib

ut
io

n 

Method Model Metric Tools Open items 
# 80 22 8 46 7 

Figure 4.5: Research contribution distribution.

4.3 Research Results Related to Goal 3
In order to achieve the third goal of this thesis (To identify the current state of
concurrency related bugs in real-world software in terms of frequency, sever-
ity and resolving time) we provide a comprehensive study of 4872 fixed bug
reports from a widely used open source storage designed for big-data applica-
tions (Hadoop 2). Reported in paper C [14]. The study covers the fixed bug
reports from the last decade (2006-2015).

Our comparative study of concurrency bugs and non-concurrency bugs re-
vealed that only 6% of the total set of bugs are related to concurrency issues,
while the majority of bugs (i.e., 94%) are of non-concurrency type. The distri-
bution of non-concurrency and concurrency bug types is shown in Figure 4.6.

We also compared the time required to fix concurrency bugs and non-
concurrency bugs. Our results show that concurrency bugs do require longer
fixing time than non-concurrency bugs, but the difference is not very large.

2https://issues.apache.org/jira/browse/hadoop
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Figure 4.6: Distribution of non-concurrency and concurrency bug types (from paper C).

Figure 4.7 shows the results of comparing the fixing time for concurrency and
non-concurrency bugs in the form of box-plots. Boxes span from 1st to 3rd

quartile, black middle lines are marking the median and the whiskers extend
up to 1.5x the inter-quartile range while the circles represent the outliers.
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Figure 4.7: Fixing time comparison for concurrency (C) and non-concurrency (Non-C)
bugs (from paper C).
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Further, our study on severity of concurrency bugs and non-concurrency
bugs indicates that concurrency bugs are considered to be more severe than
non-concurrency bugs, but the difference is not that large. Figure 4.8 shows
the severity distributions.
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Figure 4.8: Concurrency and non-concurrency bug severity (from paper C).

Chapter 5

Discussion, Conclusion and
Future Work

In this chapter, we present a discussion based on our results, a list of conclu-
sions, as well as a set of potential directions for future work.

5.1 Discussion and Limitation
Based on our literature review, we found that existing taxonomies for con-
current and multicore software debugging properties are lacking coverage of
some aspects, specifically the ones related to the debugging process. The exist-
ing knowledge gaps in different types of bugs may be due to the fact that some
specific types of bugs are not well-known yet, or recognizing them is not an
easy task.

The results of our systematic mapping study also indicate that researchers
from industry have paid less attention to the final steps of the debugging pro-
cess, i.e., exploring correction and fixing the bugs. It is possible that the initial
steps of the debugging process (i.e., bug identification) is considered as the
caveat of the process, and once understood and identified, the solutions might
be both difficult and involve a lot of work, thus the final steps of the debugging
process are not considered novel enough to be worthy of a research publication.
Another possibility might be that industry simply cannot involve too detailed
aspects of the software and architecture involved in the solution, for public
scrutiny thus most refrains from publicly announcing particular solutions.

39
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Some other reasons of these gaps could be that the processes might not be
well defined, not applicable in all software development projects, or the process
is not easy to apply.

On the other hand, according to our case study results, the distribution of
concurrency bugs presented in the bug repository (Hadoop bug report database)
is not big. This is not very surprising, since it has long been believed that
concurrency bugs are hard to observe and reproduce. There are three main
possible reasons for this belief: (1) when users are faced with the bug a single
time they may not even be sure that it is a problem with the software and might
not report it; (2) it might not be possible to reproduce the bug in the developer’s
environment due to small differences in the environments even when users are
able to reproduce bugs on their machines; (3) software developers might not be
able to systematically reproduce the bug using traditional debugging methods
since some debugging tools and methods might affect the reproducibility of the
bug.

In our case study, we found a much smaller share of concurrency bugs
than the one found by other similar studies. This could possibly be due to the
one of the three mentioned reason or due to different time span of our study
and that of other similar studies. Based on our investigation, 70% of the bugs
that we observed were reported in the five-year interval of 2006-2010, and the
remaining 30% were reported in the five-year interval of 2011-2015.

Similarly, the fixing time found by other studies is much larger for con-
currency bugs than for non-concurrency bugs. We find a difference, but it is
relatively small. In our case study we found surprisingly few reports stating
difficulties in reproducing the bug. While other studies (e.g., [35]) found that a
large portion of fixing time relates to reproducing the bugs and this deference
could effect on fixing time calculation.

Moreover, our investigation in the case study shows that about half of the
concurrency bugs are of Data race type. The reason could be that Data race is
more severe than other type of bugs and it is quite understandable that it takes
longer time to fix.

In the design and execution of this thesis, there are several considerations
that need to be taken into account as they can potentially limit the validity of the
obtained results. We limited the search for studies and bugs in the systematic
study and the case study within the time span of 2005–2014 and 2006–2015,
respectively. This was done for two reasons: (1) to limit the volume of search
results for practical reasons; (2) to present more recent trends (i.e., in the last
decade). This limitation of years obviously excludes papers published before
the year 2005 and excludes bug reported before the year 2006, including highly
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cited papers and important bugs. Thus our systematic mapping study and our
case study are not complete with respect to all research papers and reported
bugs on the topic, but instead presents the more recent development in the
field.

Another threat is related to the classification schema for mapping included
papers in our systematic mapping study and included bug reports in our case
study. Since authors and bug reporters cannot be expected to follow any stan-
dard concurrency bug terminology, partially based on the classification from
our grounded theory study we categorized the papers and bug reports. We
believe that the process of classification would have been more reliable if con-
sistent terminologies would have been used in the primary studies and bug
reports. However, some papers and bug reports were difficult to categorize due
to unclear boundaries between some classification scheme categories.

It is possible that the search string and search query may have failed to
identify some relevant paper or actual concurrency bugs. It should however be
noted that we used more keywords and applied other methods (i.e., backward
snowballing and additional secondary search in the systematic research study)
compared to previous similar studies.

5.2 Conclusions

We present a grounded theory study. Our study on different types of concur-
rency bugs proposed a classification of concurrency bugs by classifying the
bugs considering their observable properties.

In addition, we provide an overview of existing research on concurrent and
multicore software debugging. We also pinpoint current gaps in the research
area that may represent opportunities for further research on debugging con-
current and multicore software.

In particular, we provide a case study on concurrency bugs. This study an-
alyzed bugs reported in the Haddop project and provided some evidence of the
existence of two classes of bugs: non-concurrency and concurrency bugs. The
case study also helped us to recognize the most common types of concurrency
bugs in terms of severity and fixing time.

In general, despite all the mentioned limitations, this thesis improves our
understanding of the different types of concurrency bugs, the current gaps (or
less-explored areas) in debugging concurrency bugs and the current state of
concurrency related bugs in real-world software.
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bugs considering their observable properties.
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area that may represent opportunities for further research on debugging con-
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In particular, we provide a case study on concurrency bugs. This study an-
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less-explored areas) in debugging concurrency bugs and the current state of
concurrency related bugs in real-world software.
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5.3 Future Work
This thesis raises a number of questions, which we strongly believe can form
the basis of future work, as outlined below.

An interesting agenda for future work would be to combine the evidence
identified in the systematic mapping study with evidence from the case study
to define hypotheses and theories which will form the basis for proposing new
methods, process and tools for concurrent and multicore software debugging.
We think a possible future research is to propose solutions to bridge the identi-
fied gaps between the paradigms.

Our classification is focusing on shared memory concurrency. There are
additional types of concurrency bugs that are specific for message passing sys-
tems (e.g., messages race). As a future study we could categorize the primary
studies (from our systematic mapping study) and reported bugs (from our case
study) based on additional types of concurrency bugs (e.g., those related to
message passing).

Moreover, the case study in Chapter 4 provides basis for many research
directions. One noticeable research direction is to apply other case studies with
other projects (e.g., implemented in other programming languages) in order to
generalize the results to other projects.

Another topic for future work, based on this study, could be to conduct
a systematic literature review of the field to analyze the existing evidence for
concurrent and multicore testing. Also, an interesting additional classification
could be related to the domain of different concurrent software testing tech-
niques.

There are still quite a number of issues and aspects that have not been suf-
ficiently covered in the field. It is clear that ensuring the reliability of software,
particularly with regard to concurrent and multicore software, will remain a
hard problem. Therefore, we believe that software developers and testers will
greatly benefit from additional improvements within this field of research.
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5.3 Future Work
This thesis raises a number of questions, which we strongly believe can form
the basis of future work, as outlined below.

An interesting agenda for future work would be to combine the evidence
identified in the systematic mapping study with evidence from the case study
to define hypotheses and theories which will form the basis for proposing new
methods, process and tools for concurrent and multicore software debugging.
We think a possible future research is to propose solutions to bridge the identi-
fied gaps between the paradigms.

Our classification is focusing on shared memory concurrency. There are
additional types of concurrency bugs that are specific for message passing sys-
tems (e.g., messages race). As a future study we could categorize the primary
studies (from our systematic mapping study) and reported bugs (from our case
study) based on additional types of concurrency bugs (e.g., those related to
message passing).

Moreover, the case study in Chapter 4 provides basis for many research
directions. One noticeable research direction is to apply other case studies with
other projects (e.g., implemented in other programming languages) in order to
generalize the results to other projects.

Another topic for future work, based on this study, could be to conduct
a systematic literature review of the field to analyze the existing evidence for
concurrent and multicore testing. Also, an interesting additional classification
could be related to the domain of different concurrent software testing tech-
niques.

There are still quite a number of issues and aspects that have not been suf-
ficiently covered in the field. It is clear that ensuring the reliability of software,
particularly with regard to concurrent and multicore software, will remain a
hard problem. Therefore, we believe that software developers and testers will
greatly benefit from additional improvements within this field of research.
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