
Mälardalen University Press Licentiate Theses
No. 230

BUGS AND DEBUGGING OF CONCURRENT
AND MULTICORE SOFTWARE

Sara Abbaspour Asadollah

2016

School of Innovation, Design and Engineering

Mälardalen University Press Licentiate Theses
No. 230

BUGS AND DEBUGGING OF CONCURRENT
AND MULTICORE SOFTWARE

Sara Abbaspour Asadollah

2016

School of Innovation, Design and Engineering

Copyright © Sara Abbaspour Asadollah, 2016
ISBN 978-91-7485-261-5
ISSN 1651-9256
Printed by Arkitektkopia, Västerås, Sweden

Abstract

Multicore platforms have been widely adopted in recent years and have re-
sulted in increased development of concurrent software. However, concurrent
software is still difficult to test and debug for at least three reasons. (1) concur-
rency bugs involve complex interactions among multiple threads; (2) con-
current software have a large interleaving space and (3) concurrency bugs are
hard to reproduce. Current testing techniques and solutions for concurrency
bugs typically focus on exposing concurrency bugs in the large interleaving
space, but they often do not provide debugging information for developers (or
testers) to understand the bugs.

Debugging, the process of identifying, localizing and fixing bugs, is a key
activity in software development. Debugging concurrent software is signifi-
cantly more challenging than debugging sequential software mainly due to the
issues like non-determinism and difficulties of reproducing failures.

This thesis investigates the first and third of the above mentioned problems
in concurrent software with the aim to help developers (and testers) to better
understand concurrency bugs. The thesis first identifies a number of gaps in
the body of knowledge on concurrent software bugs and debugging. Second, it
identifies that although a number of methods, models and tools for debugging
concurrent and multicore software have already been proposed, but the body
of work partially lacks a common terminology and a more recent view of the
problems to solve.

Further, this thesis proposes a classification of concurrency bugs and dis-
cusses the properties of each type of bug. The thesis maps relevant studies
with our proposed classification and explores concurrency-related bugs in real-
world software. Specifically, it analyzes real-world concurrency bugs with re-
spect to the severity of consequence and effort required to fix them. The thesis
findings indicate that it is still hard for developers and testers to distinguish
concurrency bugs from other types of software bugs. Moreover, a general con-

i

Abstract

Multicore platforms have been widely adopted in recent years and have re-
sulted in increased development of concurrent software. However, concurrent
software is still difficult to test and debug for at least three reasons. (1) concur-
rency bugs involve complex interactions among multiple threads; (2) con-
current software have a large interleaving space and (3) concurrency bugs are
hard to reproduce. Current testing techniques and solutions for concurrency
bugs typically focus on exposing concurrency bugs in the large interleaving
space, but they often do not provide debugging information for developers (or
testers) to understand the bugs.

Debugging, the process of identifying, localizing and fixing bugs, is a key
activity in software development. Debugging concurrent software is signifi-
cantly more challenging than debugging sequential software mainly due to the
issues like non-determinism and difficulties of reproducing failures.

This thesis investigates the first and third of the above mentioned problems
in concurrent software with the aim to help developers (and testers) to better
understand concurrency bugs. The thesis first identifies a number of gaps in
the body of knowledge on concurrent software bugs and debugging. Second, it
identifies that although a number of methods, models and tools for debugging
concurrent and multicore software have already been proposed, but the body
of work partially lacks a common terminology and a more recent view of the
problems to solve.

Further, this thesis proposes a classification of concurrency bugs and dis-
cusses the properties of each type of bug. The thesis maps relevant studies
with our proposed classification and explores concurrency-related bugs in real-
world software. Specifically, it analyzes real-world concurrency bugs with re-
spect to the severity of consequence and effort required to fix them. The thesis
findings indicate that it is still hard for developers and testers to distinguish
concurrency bugs from other types of software bugs. Moreover, a general con-

i

ii

clusion from the investigations reveal that even if there are quite a number of
studies on concurrent and multicore software debugging, there are still some
issues that have not been sufficiently covered including order violation, sus-
pension and starvation.

To my beloved Family

&

To whom it may read

ii

clusion from the investigations reveal that even if there are quite a number of
studies on concurrent and multicore software debugging, there are still some
issues that have not been sufficiently covered including order violation, sus-
pension and starvation.

To my beloved Family

&

To whom it may read

Acknowledgment
My most earnest acknowledgment must go to my supervisor, Prof. Hans Hans-
son, for his extraordinary guidance, caring, and patience. As an excellent su-
pervisor and researcher, he will be a great example throughout my professional
life.

This thesis would not exist without the contributions of my co-supervisors
Prof. Daniel Sundmark and Dr. Sigrid Eldh for their continuous effort to sup-
port and encourage me. Their invaluable suggestions and discussions played
an important role in improving this thesis. Thank you!

I am very grateful to my colleagues and friends, Dr. Rafia Inam, Dr. Wasif
Afzal and Eduard Paul Enoiu for their supports, discussions and feedbacks as
co-authors in my published papers. Also thanks to Prof. Elaine Weyuker and
Prof. Thomas Ostrand for useful discussions.

I would also like to thank all my friends and colleagues at Mälardalen
University providing a fruitful environment and giving support when I have
needed.

From the bottom of my heart, I would like to extend my deepest gratitude
to my parents as well as my brother and sister for their unconditional support,
love, and faith in many phases of my life. Without their support I would not
have been able to reach here.

Above all, I thank God for helping me and sending people who have been
such strong influence in my life and giving confidence at my hard moments.
Thank You for always being there to bless and guide me.

This research has been supported by Swedish Foundation for Strategic Re-
search (SSF) via the SYNOPSIS project.

Sara Abbaspour Asadollah
Västerås, March 21, 2016

v

Acknowledgment
My most earnest acknowledgment must go to my supervisor, Prof. Hans Hans-
son, for his extraordinary guidance, caring, and patience. As an excellent su-
pervisor and researcher, he will be a great example throughout my professional
life.

This thesis would not exist without the contributions of my co-supervisors
Prof. Daniel Sundmark and Dr. Sigrid Eldh for their continuous effort to sup-
port and encourage me. Their invaluable suggestions and discussions played
an important role in improving this thesis. Thank you!

I am very grateful to my colleagues and friends, Dr. Rafia Inam, Dr. Wasif
Afzal and Eduard Paul Enoiu for their supports, discussions and feedbacks as
co-authors in my published papers. Also thanks to Prof. Elaine Weyuker and
Prof. Thomas Ostrand for useful discussions.

I would also like to thank all my friends and colleagues at Mälardalen
University providing a fruitful environment and giving support when I have
needed.

From the bottom of my heart, I would like to extend my deepest gratitude
to my parents as well as my brother and sister for their unconditional support,
love, and faith in many phases of my life. Without their support I would not
have been able to reach here.

Above all, I thank God for helping me and sending people who have been
such strong influence in my life and giving confidence at my hard moments.
Thank You for always being there to bless and guide me.

This research has been supported by Swedish Foundation for Strategic Re-
search (SSF) via the SYNOPSIS project.

Sara Abbaspour Asadollah
Västerås, March 21, 2016

v

List of publications

Papers included in the licentiate thesis1

Paper A Towards Classification of Concurrency Bugs Based on Observable
Properties, Sara Abbaspour Asadollah, Hans Hansson, Daniel
Sundmark, Sigrid Eldh. In the Proceedings of the 1st International
Workshop on Complex faults and failures in large software systems
(COUFLESS), ICSE 2015 Workshop, May 2015.

Paper B 10 Years of Research on Debugging Concurrent and Multicore
Software: A Systematic Mapping Study, Sara Abbaspour Asadollah,
Daniel Sundmark, Sigrid Eldh, Hans Hansson and Wasif Afzal.
Software Quality Journal, January 2016.

Paper C A Study of Concurrency Bugs in an Open Source Software, Sara
Abbaspour Asadollah, Daniel Sundmark, Sigrid Eldh, Hans Hansson
and Eduard Paul Enoiu. In the proceedings of the 12th International
Conference on Open Source Systems (OSS), May 2016.

Additional papers, not included in the licentiate
thesis
A Survey on Testing for Cyber Physical System, Sara Abbaspour Asadollah,
Rafia Inam, Hans Hansson. In the Proceedings of the 27th International
Conference on Testing Software and Systems (ICTSS), Lecture Notes in
Computer Science series, November 2015.

1The included articles have been reformatted to comply with the licentiate thesis layout.

vii

List of publications

Papers included in the licentiate thesis1

Paper A Towards Classification of Concurrency Bugs Based on Observable
Properties, Sara Abbaspour Asadollah, Hans Hansson, Daniel
Sundmark, Sigrid Eldh. In the Proceedings of the 1st International
Workshop on Complex faults and failures in large software systems
(COUFLESS), ICSE 2015 Workshop, May 2015.

Paper B 10 Years of Research on Debugging Concurrent and Multicore
Software: A Systematic Mapping Study, Sara Abbaspour Asadollah,
Daniel Sundmark, Sigrid Eldh, Hans Hansson and Wasif Afzal.
Software Quality Journal, January 2016.

Paper C A Study of Concurrency Bugs in an Open Source Software, Sara
Abbaspour Asadollah, Daniel Sundmark, Sigrid Eldh, Hans Hansson
and Eduard Paul Enoiu. In the proceedings of the 12th International
Conference on Open Source Systems (OSS), May 2016.

Additional papers, not included in the licentiate
thesis
A Survey on Testing for Cyber Physical System, Sara Abbaspour Asadollah,
Rafia Inam, Hans Hansson. In the Proceedings of the 27th International
Conference on Testing Software and Systems (ICTSS), Lecture Notes in
Computer Science series, November 2015.

1The included articles have been reformatted to comply with the licentiate thesis layout.

vii

Contents

I Thesis 1

1 Introduction 3
1.1 Concurrent Software Challenges 4
1.2 Motivation and Goal of Thesis 5
1.3 Research Method . 5
1.4 Research Contribution . 7

1.4.1 Publications Included in the Thesis 8
1.5 Outline of the Thesis . 11

2 Background 13
2.1 System Architecture . 13
2.2 Debugging Techniques . 14
2.3 Types of Concurrency Bugs 16
2.4 Debugging Process . 19

3 Related Work 21
3.1 Empirical Studies on Concurrent Software 21
3.2 Tools for Debugging Concurrent Software 23
3.3 Literature Reviews and Classification Studies on Concurrent

Software . 24

4 Research Results 27
4.1 Research Results Related to Goal 1 27

4.1.1 Concurrent Software Bug Properties 28
4.1.2 Concurrent Software Bugs 32

4.2 Research Results Related to Goal 2 33
4.3 Research Results Related to Goal 3 36

ix

Contents

I Thesis 1

1 Introduction 3
1.1 Concurrent Software Challenges 4
1.2 Motivation and Goal of Thesis 5
1.3 Research Method . 5
1.4 Research Contribution . 7

1.4.1 Publications Included in the Thesis 8
1.5 Outline of the Thesis . 11

2 Background 13
2.1 System Architecture . 13
2.2 Debugging Techniques . 14
2.3 Types of Concurrency Bugs 16
2.4 Debugging Process . 19

3 Related Work 21
3.1 Empirical Studies on Concurrent Software 21
3.2 Tools for Debugging Concurrent Software 23
3.3 Literature Reviews and Classification Studies on Concurrent

Software . 24

4 Research Results 27
4.1 Research Results Related to Goal 1 27

4.1.1 Concurrent Software Bug Properties 28
4.1.2 Concurrent Software Bugs 32

4.2 Research Results Related to Goal 2 33
4.3 Research Results Related to Goal 3 36

ix

x Contents

5 Discussion, Conclusion and Future Work 39
5.1 Discussion and Limitation 39
5.2 Conclusions . 41
5.3 Future Work . 42

Bibliography 43

II Included Papers 51

6 Paper A:
Towards Classification of Concurrency Bugs Based on Observable
Properties 53
6.1 Introduction . 55

6.1.1 Intended Practical Use of the Classification 55
6.1.2 Contributions . 56
6.1.3 Paper Outline . 56

6.2 Research Approach . 58
6.3 Preliminaries . 58

6.3.1 System Model . 58
6.3.2 Bugs, Faults, Errors, and Failures 60

6.4 Concurrent Software Bugs 60
6.5 A Classification for Concurrent Software Bugs 63

6.5.1 System State Properties 63
6.5.2 Symptom Properties 64
6.5.3 Combination of System State and Symptom Properties 65

6.6 Mapping the Classification to the State of the Art 67
6.7 Conclusion and Future Work 68
Bibliography . 71

7 Paper B:
10 Years of Research on Debugging Concurrent and Multicore Soft-
ware: A Systematic Mapping Study 75
7.1 Introduction . 77
7.2 Research Method . 78

7.2.1 Definition of Research Questions (Step 1) 79
7.2.2 Identification of Search String and Source Selection

(Step 2) . 80
7.2.3 Study Selection Criteria (Step 3) 80

Contents xi

7.2.4 Data Mapping (Step 4) 83
7.3 Study Classification Schemes 83

7.3.1 Debugging Process Classification 84
7.3.2 Concurrency Bug Classification 86
7.3.3 Type of Research Contribution Classification 88
7.3.4 Classification of Research Types 89

7.4 Concurrent and Multicore Software Debugging:
A Map of the Field . 89

7.4.1 Publication Trends Between 2005 and 2014 90
7.4.2 Focus and Potential Gaps in Existing Work 93

7.5 Threats to the Validity of the Results 101
7.6 Discussion . 104
7.7 Conclusion and Future Work 105
Bibliography . 107

8 Paper C:
A Study of Concurrency Bugs in an Open Source Software 125
8.1 Introduction . 127
8.2 Methodology . 128

8.2.1 Bug-source Software Selection 128
8.2.2 Bug Reports Selection 129
8.2.3 Manual Exclusion of Bug Reports and Sampling of

Non-concurrency Bugs 130
8.2.4 Bug Reports Classification 131

8.3 Study Classification Schemes 131
8.3.1 Concurrency Bug Classification 131
8.3.2 Fixing Time Calculation 132
8.3.3 Bug Report Severity Classification 132

8.4 Results and Quantitative Analysis 132
8.5 Discussion . 139

8.5.1 Validity Threats . 140
8.6 Related Work . 141
8.7 Conclusion and Future Work 142
Bibliography . 145

x Contents

5 Discussion, Conclusion and Future Work 39
5.1 Discussion and Limitation 39
5.2 Conclusions . 41
5.3 Future Work . 42

Bibliography 43

II Included Papers 51

6 Paper A:
Towards Classification of Concurrency Bugs Based on Observable
Properties 53
6.1 Introduction . 55

6.1.1 Intended Practical Use of the Classification 55
6.1.2 Contributions . 56
6.1.3 Paper Outline . 56

6.2 Research Approach . 58
6.3 Preliminaries . 58

6.3.1 System Model . 58
6.3.2 Bugs, Faults, Errors, and Failures 60

6.4 Concurrent Software Bugs 60
6.5 A Classification for Concurrent Software Bugs 63

6.5.1 System State Properties 63
6.5.2 Symptom Properties 64
6.5.3 Combination of System State and Symptom Properties 65

6.6 Mapping the Classification to the State of the Art 67
6.7 Conclusion and Future Work 68
Bibliography . 71

7 Paper B:
10 Years of Research on Debugging Concurrent and Multicore Soft-
ware: A Systematic Mapping Study 75
7.1 Introduction . 77
7.2 Research Method . 78

7.2.1 Definition of Research Questions (Step 1) 79
7.2.2 Identification of Search String and Source Selection

(Step 2) . 80
7.2.3 Study Selection Criteria (Step 3) 80

Contents xi

7.2.4 Data Mapping (Step 4) 83
7.3 Study Classification Schemes 83

7.3.1 Debugging Process Classification 84
7.3.2 Concurrency Bug Classification 86
7.3.3 Type of Research Contribution Classification 88
7.3.4 Classification of Research Types 89

7.4 Concurrent and Multicore Software Debugging:
A Map of the Field . 89

7.4.1 Publication Trends Between 2005 and 2014 90
7.4.2 Focus and Potential Gaps in Existing Work 93

7.5 Threats to the Validity of the Results 101
7.6 Discussion . 104
7.7 Conclusion and Future Work 105
Bibliography . 107

8 Paper C:
A Study of Concurrency Bugs in an Open Source Software 125
8.1 Introduction . 127
8.2 Methodology . 128

8.2.1 Bug-source Software Selection 128
8.2.2 Bug Reports Selection 129
8.2.3 Manual Exclusion of Bug Reports and Sampling of

Non-concurrency Bugs 130
8.2.4 Bug Reports Classification 131

8.3 Study Classification Schemes 131
8.3.1 Concurrency Bug Classification 131
8.3.2 Fixing Time Calculation 132
8.3.3 Bug Report Severity Classification 132

8.4 Results and Quantitative Analysis 132
8.5 Discussion . 139

8.5.1 Validity Threats . 140
8.6 Related Work . 141
8.7 Conclusion and Future Work 142
Bibliography . 145

I

Thesis

1

I

Thesis

1

Chapter 1

Introduction

In the mid 1980s companies manufactured versions of some single core pro-
cessors with two cores on one chip (dual core). Later, in the early 2000s, the
manufacturing changed by Intel, AMD, IBM and other companies to devel-
opment of more pure multicore processors. There is an ongoing change in
hardware to improve systems’ performance by increasing the number of cores.
Hardware providers such as Intel and IBM, steadily increase the number of
processor cores. In the past few decades, the performance of processors has
been continuously increasing at exponential rates [1]. Due to the changes,
there are constantly new demands to adapt to the latest execution paradigm
provided by parallelism. Multicore platforms have resulted in an increase in
development of concurrent software. Today, in 2016, many types of comput-
ing systems, from desktops and mobile systems to Internet cloud systems and
cyber-physical systems, are dependent on multicore platforms.

From a software developer point of view, concurrent software introduces
the possibility of new types of software bugs, known as concurrency bugs [2].
Concurrent software may exhibit problems, like deadlocks and race conditions
that may not occur in sequential software. The errors typically appear under
very specific (nondeterministic) thread interleavings between shared memory
accesses. The effects of the bugs spread through the software until they cause
the software to hang, crash or produce incorrect output. Such nondeterministic
bugs are typically considered to be problematic errors [3, 4, 5].

Concurrency bugs in deployed systems can result in serious disasters. For
instance, in 2003, ten million people were out of power due to a race condition
in a monitoring software with multi-million lines of code (the often cited 2003

3

Chapter 1

Introduction

In the mid 1980s companies manufactured versions of some single core pro-
cessors with two cores on one chip (dual core). Later, in the early 2000s, the
manufacturing changed by Intel, AMD, IBM and other companies to devel-
opment of more pure multicore processors. There is an ongoing change in
hardware to improve systems’ performance by increasing the number of cores.
Hardware providers such as Intel and IBM, steadily increase the number of
processor cores. In the past few decades, the performance of processors has
been continuously increasing at exponential rates [1]. Due to the changes,
there are constantly new demands to adapt to the latest execution paradigm
provided by parallelism. Multicore platforms have resulted in an increase in
development of concurrent software. Today, in 2016, many types of comput-
ing systems, from desktops and mobile systems to Internet cloud systems and
cyber-physical systems, are dependent on multicore platforms.

From a software developer point of view, concurrent software introduces
the possibility of new types of software bugs, known as concurrency bugs [2].
Concurrent software may exhibit problems, like deadlocks and race conditions
that may not occur in sequential software. The errors typically appear under
very specific (nondeterministic) thread interleavings between shared memory
accesses. The effects of the bugs spread through the software until they cause
the software to hang, crash or produce incorrect output. Such nondeterministic
bugs are typically considered to be problematic errors [3, 4, 5].

Concurrency bugs in deployed systems can result in serious disasters. For
instance, in 2003, ten million people were out of power due to a race condition
in a monitoring software with multi-million lines of code (the often cited 2003

3

4 Chapter 1. Introduction

Northeastern U.S. electricity blackout [6]). Facebook’s initial public offering
(IPO) was delayed by more than half an hour, leading to a loss of millions of
dollars due to a race condition in NASDAQ’s IT systems [7]. It is extremely
important for businesses to avoid these catastrophic losses. In 2007 a survey
was conducted by Microsoft researchers to assess the state of the practice of
concurrency in their products. The research indicated that over 60% of respon-
dents had to deal with concurrency issues and half of the concurrency issues
occurred at least monthly [4].

Debugging is a separate process and a key activity in software development.
It involves several steps i.e., identifying, localizing and fixing bugs. One step
in the testing and debugging process is determining a problem (bug or fault) in
software. This phase is frequently called bug or fault identification. To be able
to determine the problem, often the bug is replicated and information gathered.
At some point, the bug will reach a developer (or tester), and it is often here the
actual debugging process starts. The next step is identifying the right part of a
software component, typically a smaller part of the software, e.g. an identity
like file (or files) that are involved in the bug. This phase is frequently called
bug or fault localization. The bugs and their location must be found [8] before
the root cause can be identified. At this point we assume that the developer
have at least pinpointed the files, code sections and general location of the bug,
by utilizing e.g. minimization techniques [9] and been able to reproduce the
bug in context. The final step of the debugging process is repairing and fixing
the bug in order to remove it from the software.

Most experimental studies on concurrent and multicore software provide
information on application cost, efficiency and complementary aspects of the
testing criteria, while there is still lack of knowledge on debugging criteria
evaluation to support the prevention and detection of bugs. It is thus important
to have deepen the knowledge on evaluation of debugging criteria and fixing
concurrency bugs.

1.1 Concurrent Software Challenges
Concurrent software test and debug compared to corresponding activities for
sequential software is faced with a variety of challenges. The main challenges
are as follows:

• Concurrency bugs typically involve changes in program state due to par-
ticular interleavings of multiple threads of execution, which can make
them difficult to find and understand. Therefor, many concurrency bugs

1.2 Motivation and Goal of Thesis 5

remain hidden in programs (or source code) until the software runs in a
real environment, and even then it may take a long time before the bug
manifests itself.

• The thread interleavings may vary widely dependent on the platform se-
lected for software execution. The platform could be a single-core or a
multicore. The different run-time thread interleavings (scenarios) need
to be thoroughly considered and handled to guarantee predictability in a
wide range of environments. Therefor, the type of run-time environment
which is selected for software execution is an important consideration.

• Repeated execution of the same concurrent source code will typically
not guarantee the same result after each execution. In other words, if
there are different interleavings of thread executions, then different out-
puts may be obtained. Consequently, developers might not be able to
systematically reproduce the bug using traditional debugging methods.
In general, reproducing the thread schedule, which led developers to the
same bug, might be very difficult. Thus, nondeterministic thread scenar-
ios make concurrent software test and debug extremely difficult.

1.2 Motivation and Goal of Thesis
This research is carried out in the context of concurrent software debugging. It
outlines the issues involved in debugging software on concurrent and multicore
architectures. Three goals are considered in this thesis:

• Goal 1: To provide a common terminology for distinguishing between
different types and classes of concurrency bugs and to identify the inter-
relation between separate elements and classes.

• Goal 2: To identify the current gaps and less-explored areas in debug-
ging of concurrency bugs.

• Goal 3: To identify the current state of concurrency related bugs in real-
world software in terms of frequency, severity and resolving time.

1.3 Research Method
The methodology that has been used in the research consists of three main
study methodologies. We started to generate a theory by presenting a classi-

4 Chapter 1. Introduction

Northeastern U.S. electricity blackout [6]). Facebook’s initial public offering
(IPO) was delayed by more than half an hour, leading to a loss of millions of
dollars due to a race condition in NASDAQ’s IT systems [7]. It is extremely
important for businesses to avoid these catastrophic losses. In 2007 a survey
was conducted by Microsoft researchers to assess the state of the practice of
concurrency in their products. The research indicated that over 60% of respon-
dents had to deal with concurrency issues and half of the concurrency issues
occurred at least monthly [4].

Debugging is a separate process and a key activity in software development.
It involves several steps i.e., identifying, localizing and fixing bugs. One step
in the testing and debugging process is determining a problem (bug or fault) in
software. This phase is frequently called bug or fault identification. To be able
to determine the problem, often the bug is replicated and information gathered.
At some point, the bug will reach a developer (or tester), and it is often here the
actual debugging process starts. The next step is identifying the right part of a
software component, typically a smaller part of the software, e.g. an identity
like file (or files) that are involved in the bug. This phase is frequently called
bug or fault localization. The bugs and their location must be found [8] before
the root cause can be identified. At this point we assume that the developer
have at least pinpointed the files, code sections and general location of the bug,
by utilizing e.g. minimization techniques [9] and been able to reproduce the
bug in context. The final step of the debugging process is repairing and fixing
the bug in order to remove it from the software.

Most experimental studies on concurrent and multicore software provide
information on application cost, efficiency and complementary aspects of the
testing criteria, while there is still lack of knowledge on debugging criteria
evaluation to support the prevention and detection of bugs. It is thus important
to have deepen the knowledge on evaluation of debugging criteria and fixing
concurrency bugs.

1.1 Concurrent Software Challenges
Concurrent software test and debug compared to corresponding activities for
sequential software is faced with a variety of challenges. The main challenges
are as follows:

• Concurrency bugs typically involve changes in program state due to par-
ticular interleavings of multiple threads of execution, which can make
them difficult to find and understand. Therefor, many concurrency bugs

1.2 Motivation and Goal of Thesis 5

remain hidden in programs (or source code) until the software runs in a
real environment, and even then it may take a long time before the bug
manifests itself.

• The thread interleavings may vary widely dependent on the platform se-
lected for software execution. The platform could be a single-core or a
multicore. The different run-time thread interleavings (scenarios) need
to be thoroughly considered and handled to guarantee predictability in a
wide range of environments. Therefor, the type of run-time environment
which is selected for software execution is an important consideration.

• Repeated execution of the same concurrent source code will typically
not guarantee the same result after each execution. In other words, if
there are different interleavings of thread executions, then different out-
puts may be obtained. Consequently, developers might not be able to
systematically reproduce the bug using traditional debugging methods.
In general, reproducing the thread schedule, which led developers to the
same bug, might be very difficult. Thus, nondeterministic thread scenar-
ios make concurrent software test and debug extremely difficult.

1.2 Motivation and Goal of Thesis
This research is carried out in the context of concurrent software debugging. It
outlines the issues involved in debugging software on concurrent and multicore
architectures. Three goals are considered in this thesis:

• Goal 1: To provide a common terminology for distinguishing between
different types and classes of concurrency bugs and to identify the inter-
relation between separate elements and classes.

• Goal 2: To identify the current gaps and less-explored areas in debug-
ging of concurrency bugs.

• Goal 3: To identify the current state of concurrency related bugs in real-
world software in terms of frequency, severity and resolving time.

1.3 Research Method
The methodology that has been used in the research consists of three main
study methodologies. We started to generate a theory by presenting a classi-

6 Chapter 1. Introduction

Search for relevant documents

Exclude non-relevant documents

Extract concurrency bug related information

Determine observable properties

Classify bugs

 Theoretical Reasoning

Definition of research questions

Identification of search string
and source selection

Study selection criteria

Data mapping

 Systematic Mapping Study

Bug-source software selection

Bug reports selection

Manual exclusion of bug reports

Bug reports classification

 Case Study

Figure 1.1: Research method

fication of bugs related to concurrent execution of application level software
threads. Then, we performed a systematic mapping study for each published
article by identifying the type of bug(s) and the addressed phase(s) in the de-
bugging process. Finally, we explored the nature and extent of concurrency
bugs in real-world software by performing a case study. Figure 1.1 shows the
research method process.

The details are summarized as follows:

• Theoretical reasoning by performing a grounded theory study. A
grounded theory study seeks to generate a theory which relates to the
particular situation forming the focus of the study [10].

• Systematic mapping study by performing a systematic literature
review. A systematic literature review is a formalized, repeatable
process in which researchers systematically search a body of literature

1.4 Research Contribution 7

to document the state of knowledge on a particular subject.

• Case study by performing a case study on the bug reports from an open
source software project. Case study is a flexible empirical method used
for primarily exploratory investigations that attempt to understand and
explain phenomenon or construct a theory [11].

1.4 Research Contribution
The separation and identification of concurrency bugs and non-concurrency
bugs is considered in order to fulfill the research goals by studying the prop-
erties of different types of concurrency bugs. The differences between concur-
rency and non-concurrency bugs is examined in terms of frequency, severity
and fixing time. In addition, concurrency bug types are compared.

The results are disseminated in a journal article, a conference and a work-
shop paper. The following sub-sections briefly present explanations of each
paper and Table 1.1 shows the contributions of the individual papers and their
relative research goals.

To achieve Goal 1 we proposed a disjoint classification for concurrency
bugs by classifying the bugs in a common structure considering relevant ob-
servable properties.

We provided an overview of existing research on concurrent and multicore
software debugging. We applied the systematic mapping study method in order
to summarize the recent publication trends and clarify current research gaps in
the field. Based on the obtained results we summarized the publication trend in
the field during the last decade by showing distributions of publications with re-
spect to year, publication venues, representation of academia and industry, and
active research institutes. We also identified research gaps in the field based
on attributes such as types of concurrency bugs, types of debugging processes,
types of research and research contributions. The results of our mapping study
also indicate that the current body of knowledge concerning debugging con-
current and multicore software does not report studies on many of the other
types of bugs or on the debugging process. In other words, there are still quite
a number of issues and aspects that have not been sufficiently covered in the
field. By that we address Goal 2.

Moreover, we investigated the bug reports from an open source software
project (Apache Hadoop). Hadoop has changed constantly, 59 releases, over

6 Chapter 1. Introduction

Search for relevant documents

Exclude non-relevant documents

Extract concurrency bug related information

Determine observable properties

Classify bugs

 Theoretical Reasoning

Definition of research questions

Identification of search string
and source selection

Study selection criteria

Data mapping

 Systematic Mapping Study

Bug-source software selection

Bug reports selection

Manual exclusion of bug reports

Bug reports classification

 Case Study

Figure 1.1: Research method

fication of bugs related to concurrent execution of application level software
threads. Then, we performed a systematic mapping study for each published
article by identifying the type of bug(s) and the addressed phase(s) in the de-
bugging process. Finally, we explored the nature and extent of concurrency
bugs in real-world software by performing a case study. Figure 1.1 shows the
research method process.

The details are summarized as follows:

• Theoretical reasoning by performing a grounded theory study. A
grounded theory study seeks to generate a theory which relates to the
particular situation forming the focus of the study [10].

• Systematic mapping study by performing a systematic literature
review. A systematic literature review is a formalized, repeatable
process in which researchers systematically search a body of literature

1.4 Research Contribution 7

to document the state of knowledge on a particular subject.

• Case study by performing a case study on the bug reports from an open
source software project. Case study is a flexible empirical method used
for primarily exploratory investigations that attempt to understand and
explain phenomenon or construct a theory [11].

1.4 Research Contribution
The separation and identification of concurrency bugs and non-concurrency
bugs is considered in order to fulfill the research goals by studying the prop-
erties of different types of concurrency bugs. The differences between concur-
rency and non-concurrency bugs is examined in terms of frequency, severity
and fixing time. In addition, concurrency bug types are compared.

The results are disseminated in a journal article, a conference and a work-
shop paper. The following sub-sections briefly present explanations of each
paper and Table 1.1 shows the contributions of the individual papers and their
relative research goals.

To achieve Goal 1 we proposed a disjoint classification for concurrency
bugs by classifying the bugs in a common structure considering relevant ob-
servable properties.

We provided an overview of existing research on concurrent and multicore
software debugging. We applied the systematic mapping study method in order
to summarize the recent publication trends and clarify current research gaps in
the field. Based on the obtained results we summarized the publication trend in
the field during the last decade by showing distributions of publications with re-
spect to year, publication venues, representation of academia and industry, and
active research institutes. We also identified research gaps in the field based
on attributes such as types of concurrency bugs, types of debugging processes,
types of research and research contributions. The results of our mapping study
also indicate that the current body of knowledge concerning debugging con-
current and multicore software does not report studies on many of the other
types of bugs or on the debugging process. In other words, there are still quite
a number of issues and aspects that have not been sufficiently covered in the
field. By that we address Goal 2.

Moreover, we investigated the bug reports from an open source software
project (Apache Hadoop). Hadoop has changed constantly, 59 releases, over

8 Chapter 1. Introduction

six years of development. It has an issue management platform for man-
aging, configuring and testing. Our results indicate that a relatively small
share of bugs is related to concurrency issues, while the vast majority are non-
concurrency bugs. Fixing time for concurrency and non-concurrency bugs is
different but this difference is relatively small. In addition, concurrency bugs
are considered to be slightly more severe than non-concurrency bugs. By this
we address Goal 3.

More details about the research results are presented in Chapter 4.

Table 1.1: The contribution of the individual papers to the research goals

Papers Goal 1 Goal 2 Goal 3
Paper A � � �
Paper B �
Paper C �

1.4.1 Publications Included in the Thesis
Paper A

Towards Classification of Concurrency Bugs Based on Observable Prop-
erties [12]

Sara Abbaspour Asadollah, Hans Hansson, Daniel Sundmark, Sigrid Eldh
Status: Published in the Proceedings of the 1st International Workshop on
Complex faults and failures in large software systems (COUFLESS), ICSE
2015 Workshop, IEEE, May 2015.

Abstract In software engineering, classification is a way to find an
organized structure of knowledge about objects. Classification serves to
investigate the relationship between the items to be classified, and can be used
to identify the current gaps in the field. In many cases users are able to order
and relate objects by fitting them in a category. This paper presents initial
work on a taxonomy for classification of errors (bugs) related to concurrent
execution of application level software threads. By classifying concurrency
bugs based on their corresponding observable properties, this research aims
to examine and structure the state of the art in this field, as well as to provide
practitioner support for testing and debugging of concurrent software. We also
show how the proposed classification, and the different classes of bugs, relates

1.4 Research Contribution 9

to the state of the art in the field by providing a mapping of the classification
to a number of recently published papers in the software engineering field.

Personal contribution: I am the initiator, main driver and author of
all parts in this paper. All other co-authors have contributed with valuable
discussion and reviews.

Paper B

10 Years of Research on Debugging Concurrent and Multicore Software:
A Systematic Mapping Study [13]

Sara Abbaspour Asadollah, Daniel Sundmark, Sigrid Eldh, Hans Hansson
and Wasif Afzal
Status: Published in the Software Quality Journal, January 2016.

Abstract Debugging – the process of identifying, localizing and fixing
bugs – is a key activity in software development. Due to issues such as
non-determinism and difficulties of reproducing failures, debugging concur-
rent software is significantly more challenging than debugging sequential
software. A number of methods, models and tools for debugging concurrent
and multicore software have been proposed, but the body of work partially
lacks a common terminology and a more recent view of the problems to solve.
This suggests the need for a classification, and an up-to-date comprehensive
overview of the area.

This paper presents the results of a systematic mapping study in the field
of debugging of concurrent and multicore software in the last decade (2005–
2014). The study is guided by two objectives: (1) to summarize the recent
publication trends and (2) to clarify current research gaps in the field.

Through a multi-stage selection process, we identified 145 relevant papers.
Based on these, we summarize the publication trend in the field by showing dis-
tribution of publications with respect to year, publication venues, representa-
tion of academia and industry, and active research institutes. We also identify
research gaps in the field based on attributes such as types of concurrency bugs,
types of debugging processes, types of research and research contributions.

The main observations from the study are that during the years 2005–2014:
(1) there is no focal conference or venue to publish papers in this area, hence
a large variety of conferences and journal venues (90) are used to publish rele-

8 Chapter 1. Introduction

six years of development. It has an issue management platform for man-
aging, configuring and testing. Our results indicate that a relatively small
share of bugs is related to concurrency issues, while the vast majority are non-
concurrency bugs. Fixing time for concurrency and non-concurrency bugs is
different but this difference is relatively small. In addition, concurrency bugs
are considered to be slightly more severe than non-concurrency bugs. By this
we address Goal 3.

More details about the research results are presented in Chapter 4.

Table 1.1: The contribution of the individual papers to the research goals

Papers Goal 1 Goal 2 Goal 3
Paper A � � �
Paper B �
Paper C �

1.4.1 Publications Included in the Thesis
Paper A

Towards Classification of Concurrency Bugs Based on Observable Prop-
erties [12]

Sara Abbaspour Asadollah, Hans Hansson, Daniel Sundmark, Sigrid Eldh
Status: Published in the Proceedings of the 1st International Workshop on
Complex faults and failures in large software systems (COUFLESS), ICSE
2015 Workshop, IEEE, May 2015.

Abstract In software engineering, classification is a way to find an
organized structure of knowledge about objects. Classification serves to
investigate the relationship between the items to be classified, and can be used
to identify the current gaps in the field. In many cases users are able to order
and relate objects by fitting them in a category. This paper presents initial
work on a taxonomy for classification of errors (bugs) related to concurrent
execution of application level software threads. By classifying concurrency
bugs based on their corresponding observable properties, this research aims
to examine and structure the state of the art in this field, as well as to provide
practitioner support for testing and debugging of concurrent software. We also
show how the proposed classification, and the different classes of bugs, relates

1.4 Research Contribution 9

to the state of the art in the field by providing a mapping of the classification
to a number of recently published papers in the software engineering field.

Personal contribution: I am the initiator, main driver and author of
all parts in this paper. All other co-authors have contributed with valuable
discussion and reviews.

Paper B

10 Years of Research on Debugging Concurrent and Multicore Software:
A Systematic Mapping Study [13]

Sara Abbaspour Asadollah, Daniel Sundmark, Sigrid Eldh, Hans Hansson
and Wasif Afzal
Status: Published in the Software Quality Journal, January 2016.

Abstract Debugging – the process of identifying, localizing and fixing
bugs – is a key activity in software development. Due to issues such as
non-determinism and difficulties of reproducing failures, debugging concur-
rent software is significantly more challenging than debugging sequential
software. A number of methods, models and tools for debugging concurrent
and multicore software have been proposed, but the body of work partially
lacks a common terminology and a more recent view of the problems to solve.
This suggests the need for a classification, and an up-to-date comprehensive
overview of the area.

This paper presents the results of a systematic mapping study in the field
of debugging of concurrent and multicore software in the last decade (2005–
2014). The study is guided by two objectives: (1) to summarize the recent
publication trends and (2) to clarify current research gaps in the field.

Through a multi-stage selection process, we identified 145 relevant papers.
Based on these, we summarize the publication trend in the field by showing dis-
tribution of publications with respect to year, publication venues, representa-
tion of academia and industry, and active research institutes. We also identify
research gaps in the field based on attributes such as types of concurrency bugs,
types of debugging processes, types of research and research contributions.

The main observations from the study are that during the years 2005–2014:
(1) there is no focal conference or venue to publish papers in this area, hence
a large variety of conferences and journal venues (90) are used to publish rele-

10 Chapter 1. Introduction

vant papers in this area; (2) in terms of publication contribution, academia was
more active in this area than industry; (3) most publications in the field address
the data race bug; (4) bug identification is the most common stage of debug-
ging addressed by articles in the period; (5) there are six types of research ap-
proaches found, with solution proposals being the most common one; and (6)
the published papers essentially focus on four different types of contributions,
with ”methods” being the type most common one.

We can further conclude that there is still quite a number of aspects that
are not sufficiently covered in the field, most notably including (1) exploring
correction and fixing bugs in terms of debugging process; (2) order violation,
suspension and starvation in terms of concurrency bugs; (3) validation and
evaluation research in the matter of research type; (4) metric in terms of
research contribution. It is clear that the concurrent, parallel and multicore
software community needs broader studies in debugging.This systematic
mapping study can help direct such efforts.

Personal contribution: I am the main driver and author of this paper. All
other co-authors have contributed with valuable discussion useful idea and
reviews.

Paper C

A Study on Concurrency Bugs in an Open Source Software [14]

Sara Abbaspour Asadollah, Daniel Sundmark, Sigrid Eldh, Hans Hansson
and Eduard Paul Enoiu
Status: Published in the proceedings of the 12th International Conference on
Open Source Systems (OSS), May 2016.

Abstract Concurrent programming puts demands on software debugging
and testing, as concurrent software may exhibit problems not present in se-
quential software, e.g., deadlocks and race conditions. In aiming to increase
efficiency and effectiveness of debugging and bug-fixing for concurrent soft-
ware, a deep understanding of concurrency bugs, their frequency and fixing-
times would be helpful. Similarly, to design effective tools and techniques for
testing and debugging concurrent software understanding the differences be-
tween non-concurrency and concurrency bugs in real-word software would be
useful.

1.5 Outline of the Thesis 11

This paper presents an empirical study focusing on understanding the
differences and similarities between concurrency bugs and other bugs, as well
as the differences among various concurrency bug types in terms of their
severity and their fixing time. Our basis is a comprehensive analysis of bug
reports covering several generations of an open source software system. The
analysis involves a total of 4872 bug reports from the last decade, including
221 reports related to concurrency bugs. We found that concurrency bugs are
different from other bugs in terms of their fixing time and their severity. Our
findings shed light on concurrency bugs and could thereby influence future
design and development of concurrent software, their debugging and testing,
as well as related tools.

Personal contribution: I am the main driver and author of all parts in
this paper. My supervisors contributed with valuable discussion, useful idea
and review of the whole paper. Eduard Paul Enoiu contributed by valuable
discussion, reviewing and proofreading of Section 8.4.

1.5 Outline of the Thesis
This thesis is organized in 8 chapters. Chapter 2 introduces the required back-
ground of the thesis. In Chapter 3 we present a cross-section of related work
relevant to this thesis. Chapter 4 presents the results according to the respective
research goals, introduced in Section 1.2. Finally, in Chapter 5 we present a
discussion based on our obtained results, a list of conclusions from develop-
ment of this thesis as well as possible future work, followed by the included
papers in Chapter 6 to 8.

10 Chapter 1. Introduction

vant papers in this area; (2) in terms of publication contribution, academia was
more active in this area than industry; (3) most publications in the field address
the data race bug; (4) bug identification is the most common stage of debug-
ging addressed by articles in the period; (5) there are six types of research ap-
proaches found, with solution proposals being the most common one; and (6)
the published papers essentially focus on four different types of contributions,
with ”methods” being the type most common one.

We can further conclude that there is still quite a number of aspects that
are not sufficiently covered in the field, most notably including (1) exploring
correction and fixing bugs in terms of debugging process; (2) order violation,
suspension and starvation in terms of concurrency bugs; (3) validation and
evaluation research in the matter of research type; (4) metric in terms of
research contribution. It is clear that the concurrent, parallel and multicore
software community needs broader studies in debugging.This systematic
mapping study can help direct such efforts.

Personal contribution: I am the main driver and author of this paper. All
other co-authors have contributed with valuable discussion useful idea and
reviews.

Paper C

A Study on Concurrency Bugs in an Open Source Software [14]

Sara Abbaspour Asadollah, Daniel Sundmark, Sigrid Eldh, Hans Hansson
and Eduard Paul Enoiu
Status: Published in the proceedings of the 12th International Conference on
Open Source Systems (OSS), May 2016.

Abstract Concurrent programming puts demands on software debugging
and testing, as concurrent software may exhibit problems not present in se-
quential software, e.g., deadlocks and race conditions. In aiming to increase
efficiency and effectiveness of debugging and bug-fixing for concurrent soft-
ware, a deep understanding of concurrency bugs, their frequency and fixing-
times would be helpful. Similarly, to design effective tools and techniques for
testing and debugging concurrent software understanding the differences be-
tween non-concurrency and concurrency bugs in real-word software would be
useful.

1.5 Outline of the Thesis 11

This paper presents an empirical study focusing on understanding the
differences and similarities between concurrency bugs and other bugs, as well
as the differences among various concurrency bug types in terms of their
severity and their fixing time. Our basis is a comprehensive analysis of bug
reports covering several generations of an open source software system. The
analysis involves a total of 4872 bug reports from the last decade, including
221 reports related to concurrency bugs. We found that concurrency bugs are
different from other bugs in terms of their fixing time and their severity. Our
findings shed light on concurrency bugs and could thereby influence future
design and development of concurrent software, their debugging and testing,
as well as related tools.

Personal contribution: I am the main driver and author of all parts in
this paper. My supervisors contributed with valuable discussion, useful idea
and review of the whole paper. Eduard Paul Enoiu contributed by valuable
discussion, reviewing and proofreading of Section 8.4.

1.5 Outline of the Thesis
This thesis is organized in 8 chapters. Chapter 2 introduces the required back-
ground of the thesis. In Chapter 3 we present a cross-section of related work
relevant to this thesis. Chapter 4 presents the results according to the respective
research goals, introduced in Section 1.2. Finally, in Chapter 5 we present a
discussion based on our obtained results, a list of conclusions from develop-
ment of this thesis as well as possible future work, followed by the included
papers in Chapter 6 to 8.

Chapter 2

Background

In this chapter we provide background information needed for understanding
the context of the thesis and the work itself.

2.1 System Architecture
There are two main trends in multicore architecture systems: Symmetric Multi-
processing (SMP) and Asymmetric Multiprocessing (AMP). In SMP, all CPU
cores are identical. If a programmer writes a code to run on one core then
the code can run on any of the SMP cores. In AMP, different CPU cores can
have different roles with different kernels running on different cores. In this
thesis, our focus is on SMP type architectures. The reason for focusing on
SMPs is that the memory and I/O devices are shared equally among all of the
processors in the system [15]. They are more uniform and we believe that
concurrency problems appear in a more similar way among SMPs than AMPs,
which implies that articles relaying to concurrency in SMPs are straightfor-
ward to classify. Typically, SMP systems scale from one processor to as many
as 36 processors [15]. Figure 2.1 shows the architecture model of the SMP sys-
tem. In this SMP model the system have a single-chip multicore processor with
“k”’ identical cores and two levels of cache1. Each core has its private level
one cache, while the last level cache (LLC) is shared among all cores. We fur-
thermore assume a single operating system managing resources and execution
on all cores.

1Cache is “an area of memory that holds recent used data and instruction” [16].

13

Chapter 2

Background

In this chapter we provide background information needed for understanding
the context of the thesis and the work itself.

2.1 System Architecture
There are two main trends in multicore architecture systems: Symmetric Multi-
processing (SMP) and Asymmetric Multiprocessing (AMP). In SMP, all CPU
cores are identical. If a programmer writes a code to run on one core then
the code can run on any of the SMP cores. In AMP, different CPU cores can
have different roles with different kernels running on different cores. In this
thesis, our focus is on SMP type architectures. The reason for focusing on
SMPs is that the memory and I/O devices are shared equally among all of the
processors in the system [15]. They are more uniform and we believe that
concurrency problems appear in a more similar way among SMPs than AMPs,
which implies that articles relaying to concurrency in SMPs are straightfor-
ward to classify. Typically, SMP systems scale from one processor to as many
as 36 processors [15]. Figure 2.1 shows the architecture model of the SMP sys-
tem. In this SMP model the system have a single-chip multicore processor with
“k”’ identical cores and two levels of cache1. Each core has its private level
one cache, while the last level cache (LLC) is shared among all cores. We fur-
thermore assume a single operating system managing resources and execution
on all cores.

1Cache is “an area of memory that holds recent used data and instruction” [16].

13

14 Chapter 2. Background

Core 1

CPU

L1 cache

Core 2

CPU

L1 cache

Last Level Cache (LLC)

Core 3

CPU

L1 cache

Core k

CPU

L1 cache

System Bus

DRAM (System Memory)

!!!!"!

Core 1 Core 2

Figure 2.1: System hardware architecture

The scheduler is responsible for scheduling multiple threads simultane-
ously on all cores. It initiates the multi-threaded program on one core and
instructs each core to start processing. As shown in Figure 2.2 we assume
that there is a global (single) ready queue and a single waiting queue for each
(non-CPU) shared resource in the system. The queues are shared among all
cores. The scheduler uses different resource sharing protocols to synchronize
the multi-threaded program. When multiple threads attempt to access a shared
resource or a critical section (that is protected by a synchronization protocol),
only one thread at a time is allowed to access the resource. All other threads
will wait until the resource becomes free.

Migrating code from a single core environment to an SMP multicore may
give rise to the occurrence of new bugs due to the concurrent execution of tasks
(e.g. related to data races) that cannot occur when only one thread executes at a
time in a single-core environment. The traditional single-core resource sharing
protocols may not be completely helpful in eradicating these newly generated
bugs.

2.2 Debugging Techniques

Debugging is a key activity in the software development life-cycle. Debugging
is a methodical process of identifying, localizing, reducing and fixing bugs in

2.2 Debugging Techniques 15

…
…

.
…

…
.

…
…

.

Ready queue

Waiting queue (shared resource 1)

Jo
b

qu
eu

e

Waiting queue (shared resource N)

release admit

event

event

event-wait

event-wait

create

dispatch release

time out time out

event

event

Figure 2.2: Scheduling queues

a computer program. There are a number of tricks (methods) that can be used
in the daily software development activity to facilitate the hunt for software
problems (bugs). Some of these methods are as follows:

• Exploiting compiler features: programmers can obtain static analysis
of the code provided e.g. by the compiler. Static code analysis is the
analysis of software that is performed without actual executing it. Such
analysis helps programmers detect a number of basic semantic problems,
e.g. type mismatch or dead code.

• Abused cout debugging: the cout technique2 consists of adding print
statements in the code to track the control flow and data values during
code execution (also known as Print debugging or Echo Debugging).
This technique is the favorite technique of beginners and has been the
most common method for debugging [17].

• Logging: logging is another common technique for debugging. This
technique automatically record information messages or events to mon-
itor the status of the program in order to diagnose problems.

• Assertions and defensive programming: assertions are expressions,
which should evaluate to true at a specific point in the code. If an
assertion fails, a bug is found. The bug could possibly be in the

2cout technique’s name is taken from the C++ statement for printing on terminal screen (or any
standard output stream).

14 Chapter 2. Background

Core 1

CPU

L1 cache

Core 2

CPU

L1 cache

Last Level Cache (LLC)

Core 3

CPU

L1 cache

Core k

CPU

L1 cache

System Bus

DRAM (System Memory)

!!!!"!

Core 1 Core 2

Figure 2.1: System hardware architecture

The scheduler is responsible for scheduling multiple threads simultane-
ously on all cores. It initiates the multi-threaded program on one core and
instructs each core to start processing. As shown in Figure 2.2 we assume
that there is a global (single) ready queue and a single waiting queue for each
(non-CPU) shared resource in the system. The queues are shared among all
cores. The scheduler uses different resource sharing protocols to synchronize
the multi-threaded program. When multiple threads attempt to access a shared
resource or a critical section (that is protected by a synchronization protocol),
only one thread at a time is allowed to access the resource. All other threads
will wait until the resource becomes free.

Migrating code from a single core environment to an SMP multicore may
give rise to the occurrence of new bugs due to the concurrent execution of tasks
(e.g. related to data races) that cannot occur when only one thread executes at a
time in a single-core environment. The traditional single-core resource sharing
protocols may not be completely helpful in eradicating these newly generated
bugs.

2.2 Debugging Techniques

Debugging is a key activity in the software development life-cycle. Debugging
is a methodical process of identifying, localizing, reducing and fixing bugs in

2.2 Debugging Techniques 15

…
…

.
…

…
.

…
…

.

Ready queue

Waiting queue (shared resource 1)

Jo
b

qu
eu

e

Waiting queue (shared resource N)

release admit

event

event

event-wait

event-wait

create

dispatch release

time out time out

event

event

Figure 2.2: Scheduling queues

a computer program. There are a number of tricks (methods) that can be used
in the daily software development activity to facilitate the hunt for software
problems (bugs). Some of these methods are as follows:

• Exploiting compiler features: programmers can obtain static analysis
of the code provided e.g. by the compiler. Static code analysis is the
analysis of software that is performed without actual executing it. Such
analysis helps programmers detect a number of basic semantic problems,
e.g. type mismatch or dead code.

• Abused cout debugging: the cout technique2 consists of adding print
statements in the code to track the control flow and data values during
code execution (also known as Print debugging or Echo Debugging).
This technique is the favorite technique of beginners and has been the
most common method for debugging [17].

• Logging: logging is another common technique for debugging. This
technique automatically record information messages or events to mon-
itor the status of the program in order to diagnose problems.

• Assertions and defensive programming: assertions are expressions,
which should evaluate to true at a specific point in the code. If an
assertion fails, a bug is found. The bug could possibly be in the

2cout technique’s name is taken from the C++ statement for printing on terminal screen (or any
standard output stream).

16 Chapter 2. Background

assertion, but more likely it will be in the code. In this method after an
assertion fails it makes no sense to re-execute the program.

• Debugger: a debugger works through the code line-by-line in order to
make the execution visible to the developer, thereby helping to find bugs,
the location of bugs and the cause of bugs. It can work interactively by
controlling the execution of the program and stopping it at various times,
inspecting variables, changing code flow whilst running, etc. Trace de-
bugging, Omniscient debugging techniques [17] and Deterministic Re-
play Debugging (DRD) [18] can be considered as subgroups of this tech-
nique.

In addition to traditional debugging techniques, concurrent and parallel
programs have specific debugging techniques to support tracing and debugging
multithreaded software. These techniques include:

• Event-based debugging: regards the execution of parallel programs as a
series of events and records and analyzes the events in debugging when
a program is executing. Instant Replay [19] can be considered as a type
of this group.

• Control information analysis: this technique can analyze the control
information in execution and the global data.

• Data-flow-based static analysis: this technique can detect and analyze
the bugs when a program does not execute.

2.3 Types of Concurrency Bugs
Concurrent programming puts demands on software development and testing.
Concurrent software may exhibit problems that may not occur in sequential
software. There is a variety of challenges related to faults and errors in con-
current, multicore and multi-threaded applications [20, 21, 22]. One of the
well-known concurrency bugs is Data race. Data race requires that at least
two threads access the same data and at least one of them write the data [23]. It
occurs when concurrent threads perform conflicting accesses by trying to up-
date the same memory location or shared variable [20] [24]. Figure 2.3 shows
an example of a Data race.

The following sequential actions will happen in executing the indicated
code in each thread in the example:

2.3 Types of Concurrency Bugs 17

Thread A
…
counter = counter + 1;
…

Thread B
…
counter = counter + 1;
…

Figure 2.3: Data race example

1. Load the value of counter in memory.
2. Add 1 to the value.
3. Save the new value to counter.

Consider that this example is a small part of an application which is exe-
cuting on the SMP architecture explained in Section 2.1. Suppose that threads
A and B execute in parallel on Core1 and Core2 and that the value of counter
is 100 initially. After execution, the value of counter could be 101 while the
expected (correct) result is 102. Both cores execute the indicated line of code,
but due to the parallel execution the second load is in this scenario performed
before the first save. Hence, the value saved by both threads will be 101. This
scenario shows that the result of parallel execution of the example could be
incorrect. Thus a concurrency bug (Data dace) has happened.

Atomicity violation is another type of concurrency bug. It refers to the sit-
uation when the execution of two code blocks (sequences of statements) in
one thread is concurrently overlapping with the execution of one or more code
blocks of other threads in such a way that the result is not consistent with
any execution where the blocks of the first thread are executed without being
overlapping with any other code block. Figure 2.4 shows an example of sin-
gle variable atomicity, and Table 2.1 displays the values of shared and local
variables after each interleaving execution.

Suppose Thread A is executing on Core1 and Thread B on Core2. Both
of them use a shared variable counter and each has its local variable (tempA
and tempB). The initial value of counter is 0. Since both threads are using
the lock mechanism to protect from data corruption, only one core at a time
can access the counter. If Core1 reaches line 5 before Core2 reaches line 17
then the counter will be fetched from DRAM to LLC and L1 Cache of Core1.
tempA will be fetched similarly. The value of tempA will be 0 after executing
line 6 and 7. Meanwhile if Core2 reaches line 17 then Thread B will wait in
the waiting queue. By releasing the lock by Core1 Thread B will wait in ready
queue. Since Core2 is free and no more threads is waiting in ready queue then

16 Chapter 2. Background

assertion, but more likely it will be in the code. In this method after an
assertion fails it makes no sense to re-execute the program.

• Debugger: a debugger works through the code line-by-line in order to
make the execution visible to the developer, thereby helping to find bugs,
the location of bugs and the cause of bugs. It can work interactively by
controlling the execution of the program and stopping it at various times,
inspecting variables, changing code flow whilst running, etc. Trace de-
bugging, Omniscient debugging techniques [17] and Deterministic Re-
play Debugging (DRD) [18] can be considered as subgroups of this tech-
nique.

In addition to traditional debugging techniques, concurrent and parallel
programs have specific debugging techniques to support tracing and debugging
multithreaded software. These techniques include:

• Event-based debugging: regards the execution of parallel programs as a
series of events and records and analyzes the events in debugging when
a program is executing. Instant Replay [19] can be considered as a type
of this group.

• Control information analysis: this technique can analyze the control
information in execution and the global data.

• Data-flow-based static analysis: this technique can detect and analyze
the bugs when a program does not execute.

2.3 Types of Concurrency Bugs
Concurrent programming puts demands on software development and testing.
Concurrent software may exhibit problems that may not occur in sequential
software. There is a variety of challenges related to faults and errors in con-
current, multicore and multi-threaded applications [20, 21, 22]. One of the
well-known concurrency bugs is Data race. Data race requires that at least
two threads access the same data and at least one of them write the data [23]. It
occurs when concurrent threads perform conflicting accesses by trying to up-
date the same memory location or shared variable [20] [24]. Figure 2.3 shows
an example of a Data race.

The following sequential actions will happen in executing the indicated
code in each thread in the example:

2.3 Types of Concurrency Bugs 17

Thread A
…
counter = counter + 1;
…

Thread B
…
counter = counter + 1;
…

Figure 2.3: Data race example

1. Load the value of counter in memory.
2. Add 1 to the value.
3. Save the new value to counter.

Consider that this example is a small part of an application which is exe-
cuting on the SMP architecture explained in Section 2.1. Suppose that threads
A and B execute in parallel on Core1 and Core2 and that the value of counter
is 100 initially. After execution, the value of counter could be 101 while the
expected (correct) result is 102. Both cores execute the indicated line of code,
but due to the parallel execution the second load is in this scenario performed
before the first save. Hence, the value saved by both threads will be 101. This
scenario shows that the result of parallel execution of the example could be
incorrect. Thus a concurrency bug (Data dace) has happened.

Atomicity violation is another type of concurrency bug. It refers to the sit-
uation when the execution of two code blocks (sequences of statements) in
one thread is concurrently overlapping with the execution of one or more code
blocks of other threads in such a way that the result is not consistent with
any execution where the blocks of the first thread are executed without being
overlapping with any other code block. Figure 2.4 shows an example of sin-
gle variable atomicity, and Table 2.1 displays the values of shared and local
variables after each interleaving execution.

Suppose Thread A is executing on Core1 and Thread B on Core2. Both
of them use a shared variable counter and each has its local variable (tempA
and tempB). The initial value of counter is 0. Since both threads are using
the lock mechanism to protect from data corruption, only one core at a time
can access the counter. If Core1 reaches line 5 before Core2 reaches line 17
then the counter will be fetched from DRAM to LLC and L1 Cache of Core1.
tempA will be fetched similarly. The value of tempA will be 0 after executing
line 6 and 7. Meanwhile if Core2 reaches line 17 then Thread B will wait in
the waiting queue. By releasing the lock by Core1 Thread B will wait in ready
queue. Since Core2 is free and no more threads is waiting in ready queue then

18 Chapter 2. Background

Thread A
…
5: lock(counter)
6: tempA = counter
7: unlock(counter)
…
10: tempA = 100 + tempA
…
14: lock(counter)
15: counter = tempA
16: unlock(counter)
…

Thread B
…
17: lock(counter)
18: tempB = counter
19: unlock(counter)
…
27: tempB = 200 + tempB
…
30: lock(counter)
31: counter = tempB
32: unlock(counter)
…

Figure 2.4: Atomicity violation example

L1 cache of
Core1

L1 cache of
Core2 LLC DRAM

counter tempA counter tempB counter Core1
tempA

Core2
tempB counter Core1

tempA
Core2
tempB

1 0 0

0 0 0 0 0 0

2

0 0 0 0 0 0 0
3 0 100 0 200 0 100 200 0 100 200

4 100 100

100 100 1000 100 100 1000
5

200 200 200 100 200 200 100 200

Table 2.1: Shared and local variables’ value after interleaving execution

Core2 will continue to execute Thread B from line 17, 18 and 19. The value of
counter will be fetched to L1 Cache of Core2 and the tempB value of Thread
B will be 0. During Core2 execution Core1 is executing Thread A. The tempA
value of Thread A will be 100 while the tempB value of Thread B becomes
200. If we suppose Core1 reaches line 14 before Core2 reaches line 30 then
100 will be stored in LLC and DRAM as counter value, and then Core2 will
continue (line 30, 31 and 32) and store 200 in LLC and DRAM. This scenario
shows that a concurrency bug (Single variable atomicity violation) occurred
because the updated counter by Core1 is corrupted by Core2. From the above

2.4 Debugging Process 19

examples it should be clear that concurrent executions of threads may lead to
bugs that are not possible when executing the same threads on a single core
architecture. Investigating and understanding such bugs is the main motivation
and focus of this thesis.

2.4 Debugging Process
In this section, we present the concepts of the different phases in the debugging
process. We discuss the stages that follow after a software failure has been
observed, when its root cause is determined and corrected.

From an industrial perspective, a simple life cycle of a software problem
is defined by Zeller [9] to include the following phases: (1) A user reports
a problem to the software provider; (2) A developer at the software provider
reproduces the problem; (3) The developer isolates the circumstances of the
problem; (4) The developer fixes the problem locally; (5) The developer deliv-
ers the fix(es) to the user.

The debugging process is handled differently in different types of organi-
zations and teams. In a small team with few developers, it is normally clear
what part of the code is in question when a program executes unsuccessfully
or a test case fails. Here, typically, the developer has to find the bug [25]. In
larger organizations, usually the first sign of any bug is the failure of the soft-
ware or system. The bug fixing process then starts with the submission of an
anomaly report. The following list discusses the stages that follow after a soft-
ware failure has been observed, and its root cause should be determined and
corrected.

• Bug identification is the process of finding the approximate location of
a bug (in terms of source code unit, sub-system or even organizational
unit), such that the remainder of the debugging process can be assigned
to the appropriate stakeholder. It is to be noted that the scope of our
definition of bug identification covers terms such as bug localization and
bug detection.

In case the failure was detected during testing, bug identification is usu-
ally performed by the testing team and followed by a team review to
prioritize fixes [26].

• Type of bug identification is a process to help developers in finding
the real cause of a bug by understanding the type of bug. In [12] we

18 Chapter 2. Background

Thread A
…
5: lock(counter)
6: tempA = counter
7: unlock(counter)
…
10: tempA = 100 + tempA
…
14: lock(counter)
15: counter = tempA
16: unlock(counter)
…

Thread B
…
17: lock(counter)
18: tempB = counter
19: unlock(counter)
…
27: tempB = 200 + tempB
…
30: lock(counter)
31: counter = tempB
32: unlock(counter)
…

Figure 2.4: Atomicity violation example

L1 cache of
Core1

L1 cache of
Core2 LLC DRAM

counter tempA counter tempB counter Core1
tempA

Core2
tempB counter Core1

tempA
Core2
tempB

1 0 0

0 0 0 0 0 0

2

0 0 0 0 0 0 0
3 0 100 0 200 0 100 200 0 100 200

4 100 100

100 100 1000 100 100 1000
5

200 200 200 100 200 200 100 200

Table 2.1: Shared and local variables’ value after interleaving execution

Core2 will continue to execute Thread B from line 17, 18 and 19. The value of
counter will be fetched to L1 Cache of Core2 and the tempB value of Thread
B will be 0. During Core2 execution Core1 is executing Thread A. The tempA
value of Thread A will be 100 while the tempB value of Thread B becomes
200. If we suppose Core1 reaches line 14 before Core2 reaches line 30 then
100 will be stored in LLC and DRAM as counter value, and then Core2 will
continue (line 30, 31 and 32) and store 200 in LLC and DRAM. This scenario
shows that a concurrency bug (Single variable atomicity violation) occurred
because the updated counter by Core1 is corrupted by Core2. From the above

2.4 Debugging Process 19

examples it should be clear that concurrent executions of threads may lead to
bugs that are not possible when executing the same threads on a single core
architecture. Investigating and understanding such bugs is the main motivation
and focus of this thesis.

2.4 Debugging Process
In this section, we present the concepts of the different phases in the debugging
process. We discuss the stages that follow after a software failure has been
observed, when its root cause is determined and corrected.

From an industrial perspective, a simple life cycle of a software problem
is defined by Zeller [9] to include the following phases: (1) A user reports
a problem to the software provider; (2) A developer at the software provider
reproduces the problem; (3) The developer isolates the circumstances of the
problem; (4) The developer fixes the problem locally; (5) The developer deliv-
ers the fix(es) to the user.

The debugging process is handled differently in different types of organi-
zations and teams. In a small team with few developers, it is normally clear
what part of the code is in question when a program executes unsuccessfully
or a test case fails. Here, typically, the developer has to find the bug [25]. In
larger organizations, usually the first sign of any bug is the failure of the soft-
ware or system. The bug fixing process then starts with the submission of an
anomaly report. The following list discusses the stages that follow after a soft-
ware failure has been observed, and its root cause should be determined and
corrected.

• Bug identification is the process of finding the approximate location of
a bug (in terms of source code unit, sub-system or even organizational
unit), such that the remainder of the debugging process can be assigned
to the appropriate stakeholder. It is to be noted that the scope of our
definition of bug identification covers terms such as bug localization and
bug detection.

In case the failure was detected during testing, bug identification is usu-
ally performed by the testing team and followed by a team review to
prioritize fixes [26].

• Type of bug identification is a process to help developers in finding
the real cause of a bug by understanding the type of bug. In [12] we

20 Chapter 2. Background

extended the common debugging process by adding a sub-process that
suggests that before the type of bug is identified, developers could check
the properties of identified bug(s) and compare them with the properties
given for each class of concurrency bugs. Thus, developer(s) can thereby
identify the potential type of the bug at hand.

• In cause identification, the root cause of a bug is identified. Since the
root cause refers to the most basic reason(s) for the occurrence of a bug,
during this process a bug can reasonably be identified by a developer or
the debugger (e.g., unexpected value of variable A was the root cause of
a bug related to variable B or an erroneous lock was the root cause of
bug number 5).

• The process of exploring corrections can be applicable when we have
more than one possible solution for fixing the bug. Typically the poten-
tial solutions are compared and the best solution for the current bug is
selected.

• Finally, fixing bug is the process for repairing and fixing the current
bugs. It is the last stage of the debugging process in order to remove the
bug.

Note that, after debugging is competed the fixed system needs to be tested
to endure that the fix did not introduce new bugs in the system.

Chapter 3

Related Work

This chapter presents a cross-section of related work relevant to this thesis.

3.1 Empirical Studies on Concurrent Software

There are some empirical studies investigating how programmers develop con-
current software [27, 28, 29, 30, 31, 32]. These studies evaluate several aspects
of the work of beginners and experienced developers, such as how they design
programs, how much speedup they achieve by their design, how concisely they
write programs. However, the studies do not evaluate how much time develop-
ers need to fix a concurrency bug or how developers debug concurrency bugs.
We, on the other hand, investigate these issues as a part of our study. To our
knowledge, there are only two related studies on debugging concurrent pro-
grams. The first of these is done by Lönnberg et al. to investigate how students
understand concurrency bugs [33]. The authors performed an empirical study
on students, by providing an assignment to students (to write concurrent pro-
grams). They suggested several ways to help students debug their assignments.
For instance, they guided students to use software visualization tools. Further,
the authors interviewed the students and analyzed their responses. The authors
claim that since students usually have different understanding of concurrent
programs from teachers, software visualization tools will help both teachers
and students to get the same view of the programs and bugs. The second study
is done by Sadowski and Yi to show how developers use a new concurrency
notation called cooperability [34]. They posted three concurrency bugs on an

21

20 Chapter 2. Background

extended the common debugging process by adding a sub-process that
suggests that before the type of bug is identified, developers could check
the properties of identified bug(s) and compare them with the properties
given for each class of concurrency bugs. Thus, developer(s) can thereby
identify the potential type of the bug at hand.

• In cause identification, the root cause of a bug is identified. Since the
root cause refers to the most basic reason(s) for the occurrence of a bug,
during this process a bug can reasonably be identified by a developer or
the debugger (e.g., unexpected value of variable A was the root cause of
a bug related to variable B or an erroneous lock was the root cause of
bug number 5).

• The process of exploring corrections can be applicable when we have
more than one possible solution for fixing the bug. Typically the poten-
tial solutions are compared and the best solution for the current bug is
selected.

• Finally, fixing bug is the process for repairing and fixing the current
bugs. It is the last stage of the debugging process in order to remove the
bug.

Note that, after debugging is competed the fixed system needs to be tested
to endure that the fix did not introduce new bugs in the system.

Chapter 3

Related Work

This chapter presents a cross-section of related work relevant to this thesis.

3.1 Empirical Studies on Concurrent Software

There are some empirical studies investigating how programmers develop con-
current software [27, 28, 29, 30, 31, 32]. These studies evaluate several aspects
of the work of beginners and experienced developers, such as how they design
programs, how much speedup they achieve by their design, how concisely they
write programs. However, the studies do not evaluate how much time develop-
ers need to fix a concurrency bug or how developers debug concurrency bugs.
We, on the other hand, investigate these issues as a part of our study. To our
knowledge, there are only two related studies on debugging concurrent pro-
grams. The first of these is done by Lönnberg et al. to investigate how students
understand concurrency bugs [33]. The authors performed an empirical study
on students, by providing an assignment to students (to write concurrent pro-
grams). They suggested several ways to help students debug their assignments.
For instance, they guided students to use software visualization tools. Further,
the authors interviewed the students and analyzed their responses. The authors
claim that since students usually have different understanding of concurrent
programs from teachers, software visualization tools will help both teachers
and students to get the same view of the programs and bugs. The second study
is done by Sadowski and Yi to show how developers use a new concurrency
notation called cooperability [34]. They posted three concurrency bugs on an

21

22 Chapter 3. Related Work

internet-based survey form, divided participants into two groups, where one
group of people have the aid of cooperability and the others do not. In evalu-
ating the responses they scored the correctness of the responses with a ranking
scheme and statistically showed that developers can understand concurrency
bugs better with the aid of cooperability.

There are also related studies on concurrency bug types, detecting a type of
concurrency bugs and reproducibility of bugs. Lu et al. examined concurrency
bug patterns, manifestation, and fix strategies of 105 randomly selected real-
world concurrency bugs from four open-source application (MySQL, Apache,
Mozilla and OpenOffice) bug databases [35]. Their study focused on several
aspects of the causes of concurrency bugs, and the study of their effects was
limited to determining whether they caused deadlocks or not. We use a similar
study methodology in our case study to find relevant bug reports for our anal-
ysis, but we provide a complementary angle by studying the effects of recent
concurrency bugs with a more fine-grained classification than mapping bugs in
to deadlock and non-deadlock bug classes.

The study by Gu et al. [36] look at the change history for thread syn-
chronization. The authors investigate code repositories of open-source multi-
threaded software projects to understand synchronization challenges encoun-
tered by real-world developers. They reviewed over 250,000 revisions of four
representative open source software projects to distinguish how developers
handle synchronizations. Further, the authors conduct case studies to better
understand how concurrency bugs are introduced by code changes and how
developers handle synchronization problems. Gu et al. conclude that it is
necessary to have tool support to help developers who tackle synchronization
problems.

Schimmel et al. [37] present an empirical evaluation of bug detection capa-
bilities of two data race bug detection tools on real-world concurrent software.
The authors tracked 25 data races in bug repositories, created parallel unit tests
and executed 4 different data race detectors. They conclude that with a combi-
nation of all detectors 92% of the contained data races can be found, whereas
the best data race detector only finds about 50%.

The reproducibility of bugs is analyzed in [38]. The authors distinguish
concurrency bugs from non-concurrency bugs when trying to characterize their
reproducibility. The study analyzes some applications focusing on the proper-
ties of the inputs that are required to trigger bugs. The main focus is not on
concurrency bugs.

3.2 Tools for Debugging Concurrent Software 23

3.2 Tools for Debugging Concurrent Software

In order to help developers to debug concurrent software and trace the thread
interactions some visualization tools such as CHESS [39], JPF [40], TIE [41],
JIVE [42, 43], JOVE [42, 43], FALCON [44], UNICORN [45], GRIFFIN [46]
and Concurrency Explorer [39] are proposed. Most of these tools are evaluated
with toy programs and not with real concurrent software, except the Concur-
rency Explorer, which is used internally at Microsoft.

In addition, there are some tools proposed by researchers for detecting con-
currency bugs, including data race detectors, serializability violation detectors,
atomicity violation detectors and other bug detectors. Data race detectors can
typically be of three different types based on the algorithms that are used. The
first type relies on the lockset algorithm [47] to check whether the software
developer protected all accesses to a specific shared variable with a common
lock. The second type relies on the happens-before algorithm [48, 49] and the
third type relies on sampling and the use of breakpoints [50] instead of relying
on any of these algorithms. Typically, race detectors operate at the lower-level
of individual memory accesses. However, Artho et al. [51] investigate data
races on a higher abstraction layer. The authors developed a runtime analysis
algorithm to detect high-level data races. They introduce a concept of view
consistency and utilize it to detect high-level data races. A view is the entire
set of shared variables accessed in a synchronized block. According to the au-
thors, by their algorithms they can detect inconsistent uses of shared variables,
even if no classical race condition occurs.

Xu et al. [52] propose a serializability violation detector to detect erroneous
executions of shared-memory programs without requiring a priori program an-
notations. Their tool can report some dynamic false positives, which makes
it particularly suitable to be used in avoiding erroneous executions caused by
unknown bugs. The authors validate their proposed method by conducting
an empirical case study and claim that the experimental results show that the
method is effective on real server programs.

Lu et al. propose a tool that detects atomicity violation at the level of in-
dividual memory accesses (low-level) [53]. It relies on training and can detect
atomicity violation bugs by learning from a large set of runs of valid memory
access patterns.

A bug detector tool is proposed by Huang et al. [54]. Their tool relies on
detecting whether critical sections are commutative. The authors achieve this
by identifying pairs of critical sections that non-deterministically change the
contents of shared memory due to execution order.

22 Chapter 3. Related Work

internet-based survey form, divided participants into two groups, where one
group of people have the aid of cooperability and the others do not. In evalu-
ating the responses they scored the correctness of the responses with a ranking
scheme and statistically showed that developers can understand concurrency
bugs better with the aid of cooperability.

There are also related studies on concurrency bug types, detecting a type of
concurrency bugs and reproducibility of bugs. Lu et al. examined concurrency
bug patterns, manifestation, and fix strategies of 105 randomly selected real-
world concurrency bugs from four open-source application (MySQL, Apache,
Mozilla and OpenOffice) bug databases [35]. Their study focused on several
aspects of the causes of concurrency bugs, and the study of their effects was
limited to determining whether they caused deadlocks or not. We use a similar
study methodology in our case study to find relevant bug reports for our anal-
ysis, but we provide a complementary angle by studying the effects of recent
concurrency bugs with a more fine-grained classification than mapping bugs in
to deadlock and non-deadlock bug classes.

The study by Gu et al. [36] look at the change history for thread syn-
chronization. The authors investigate code repositories of open-source multi-
threaded software projects to understand synchronization challenges encoun-
tered by real-world developers. They reviewed over 250,000 revisions of four
representative open source software projects to distinguish how developers
handle synchronizations. Further, the authors conduct case studies to better
understand how concurrency bugs are introduced by code changes and how
developers handle synchronization problems. Gu et al. conclude that it is
necessary to have tool support to help developers who tackle synchronization
problems.

Schimmel et al. [37] present an empirical evaluation of bug detection capa-
bilities of two data race bug detection tools on real-world concurrent software.
The authors tracked 25 data races in bug repositories, created parallel unit tests
and executed 4 different data race detectors. They conclude that with a combi-
nation of all detectors 92% of the contained data races can be found, whereas
the best data race detector only finds about 50%.

The reproducibility of bugs is analyzed in [38]. The authors distinguish
concurrency bugs from non-concurrency bugs when trying to characterize their
reproducibility. The study analyzes some applications focusing on the proper-
ties of the inputs that are required to trigger bugs. The main focus is not on
concurrency bugs.

3.2 Tools for Debugging Concurrent Software 23

3.2 Tools for Debugging Concurrent Software

In order to help developers to debug concurrent software and trace the thread
interactions some visualization tools such as CHESS [39], JPF [40], TIE [41],
JIVE [42, 43], JOVE [42, 43], FALCON [44], UNICORN [45], GRIFFIN [46]
and Concurrency Explorer [39] are proposed. Most of these tools are evaluated
with toy programs and not with real concurrent software, except the Concur-
rency Explorer, which is used internally at Microsoft.

In addition, there are some tools proposed by researchers for detecting con-
currency bugs, including data race detectors, serializability violation detectors,
atomicity violation detectors and other bug detectors. Data race detectors can
typically be of three different types based on the algorithms that are used. The
first type relies on the lockset algorithm [47] to check whether the software
developer protected all accesses to a specific shared variable with a common
lock. The second type relies on the happens-before algorithm [48, 49] and the
third type relies on sampling and the use of breakpoints [50] instead of relying
on any of these algorithms. Typically, race detectors operate at the lower-level
of individual memory accesses. However, Artho et al. [51] investigate data
races on a higher abstraction layer. The authors developed a runtime analysis
algorithm to detect high-level data races. They introduce a concept of view
consistency and utilize it to detect high-level data races. A view is the entire
set of shared variables accessed in a synchronized block. According to the au-
thors, by their algorithms they can detect inconsistent uses of shared variables,
even if no classical race condition occurs.

Xu et al. [52] propose a serializability violation detector to detect erroneous
executions of shared-memory programs without requiring a priori program an-
notations. Their tool can report some dynamic false positives, which makes
it particularly suitable to be used in avoiding erroneous executions caused by
unknown bugs. The authors validate their proposed method by conducting
an empirical case study and claim that the experimental results show that the
method is effective on real server programs.

Lu et al. propose a tool that detects atomicity violation at the level of in-
dividual memory accesses (low-level) [53]. It relies on training and can detect
atomicity violation bugs by learning from a large set of runs of valid memory
access patterns.

A bug detector tool is proposed by Huang et al. [54]. Their tool relies on
detecting whether critical sections are commutative. The authors achieve this
by identifying pairs of critical sections that non-deterministically change the
contents of shared memory due to execution order.

24 Chapter 3. Related Work

Other researchers have addressed the problem of detecting concurrency
bugs in different types of event-based frameworks [55, 56, 57]. In our study
we present and classify relevant papers that propose concurrency debugging
tool(s).

3.3 Literature Reviews and Classification Studies
on Concurrent Software

There are some SLR, surveys and state of art review studies related to concur-
rent software testing and debugging. These studies provide a list of relevant
studies in the area. A systematic review on concurrent software testing was
published by Brito et al. [58] in 2010. Their main goal was to obtain evidence
of current state-of-the-art related to testing criteria, testing tools and to find bug
taxonomies for concurrent and parallel programs. They further provided a list
of relevant studies as a foundation for new research in the area. The authors
concluded that there is a lack of testing criteria and tools for concurrent pro-
grams. They notice that most experimental studies are providing information
on application cost, efficiency and complementary aspects, while there is lack
of knowledge on bug taxonomy and on evaluating testing criteria. We use a
similar study methodology (Systematic Mapping Study) with focus on current
state of research related to debugging criteria rather than testing. However, our
study is based on different classifications compared to Brito et al.’s study.

A state of the art review on deterministic replay debugging in multithread
programming was performed by Wang et al. [59] in 2012. They categorize
replay-based debugging techniques for parallel and multithread programs and
divided them into three types: hardware-based, software-based and hybrid
methods. Furthermore, software-based methods are classified into two groups:
virtual machine based methods and pure software-based methods. Further, they
present some classical software-based systems for multithread deterministic
replay debugging. Related to this, we provide a state of the art overview with
focus on the processes that may occur during concurrent software debugging.

Hong and Kim present a survey of race bug detection techniques for multi-
threaded software [60]. They classify 43 race bug and corresponding race bug
detection techniques. In addition, they describe and compare the mechanisms
of race bug detection techniques. Further, the authors present some examples
of race bugs, with the aim to help software developers to avoid race bugs in
their code.

Moreover, related to this thesis there are some other studies that propose

3.3 Literature Reviews and Classification Studies on Concurrent
Software 25

taxonomies covering concurrency bug types. Long et al. [61] present a classifi-
cation of Java concurrency bugs by using a Petri-net model diagram. The tran-
sitions in the model represent changes in the concurrent state of a thread. The
classification is used to justify the construction of concurrency flow graphs for
each method in a concurrent component. The authors believe that the concur-
rency flow graphs can be used in the construction of test sequences for testing
concurrent components to ensure coverage of concurrency primitives.

Tchamgoue et al. [62] classify event-driven program models into low and
high level based on event types. They categorize concurrency bug patterns
in event-driven programs. In addition to the taxonomy they survey tools for
detecting concurrency bugs in these programs. In contrast, our classification of
concurrency bugs is based on symptom and system state bug properties.

Helmboldet et al. [63] summarize the concepts of race bug detection tech-
niques for parallel software, and present a taxonomy with respect to the char-
acteristics of the target program structure. Their race taxonomy separates races
into categories based on the error types that cause that kind of race (e.g. loop,
synchronization operations).

24 Chapter 3. Related Work

Other researchers have addressed the problem of detecting concurrency
bugs in different types of event-based frameworks [55, 56, 57]. In our study
we present and classify relevant papers that propose concurrency debugging
tool(s).

3.3 Literature Reviews and Classification Studies
on Concurrent Software

There are some SLR, surveys and state of art review studies related to concur-
rent software testing and debugging. These studies provide a list of relevant
studies in the area. A systematic review on concurrent software testing was
published by Brito et al. [58] in 2010. Their main goal was to obtain evidence
of current state-of-the-art related to testing criteria, testing tools and to find bug
taxonomies for concurrent and parallel programs. They further provided a list
of relevant studies as a foundation for new research in the area. The authors
concluded that there is a lack of testing criteria and tools for concurrent pro-
grams. They notice that most experimental studies are providing information
on application cost, efficiency and complementary aspects, while there is lack
of knowledge on bug taxonomy and on evaluating testing criteria. We use a
similar study methodology (Systematic Mapping Study) with focus on current
state of research related to debugging criteria rather than testing. However, our
study is based on different classifications compared to Brito et al.’s study.

A state of the art review on deterministic replay debugging in multithread
programming was performed by Wang et al. [59] in 2012. They categorize
replay-based debugging techniques for parallel and multithread programs and
divided them into three types: hardware-based, software-based and hybrid
methods. Furthermore, software-based methods are classified into two groups:
virtual machine based methods and pure software-based methods. Further, they
present some classical software-based systems for multithread deterministic
replay debugging. Related to this, we provide a state of the art overview with
focus on the processes that may occur during concurrent software debugging.

Hong and Kim present a survey of race bug detection techniques for multi-
threaded software [60]. They classify 43 race bug and corresponding race bug
detection techniques. In addition, they describe and compare the mechanisms
of race bug detection techniques. Further, the authors present some examples
of race bugs, with the aim to help software developers to avoid race bugs in
their code.

Moreover, related to this thesis there are some other studies that propose

3.3 Literature Reviews and Classification Studies on Concurrent
Software 25

taxonomies covering concurrency bug types. Long et al. [61] present a classifi-
cation of Java concurrency bugs by using a Petri-net model diagram. The tran-
sitions in the model represent changes in the concurrent state of a thread. The
classification is used to justify the construction of concurrency flow graphs for
each method in a concurrent component. The authors believe that the concur-
rency flow graphs can be used in the construction of test sequences for testing
concurrent components to ensure coverage of concurrency primitives.

Tchamgoue et al. [62] classify event-driven program models into low and
high level based on event types. They categorize concurrency bug patterns
in event-driven programs. In addition to the taxonomy they survey tools for
detecting concurrency bugs in these programs. In contrast, our classification of
concurrency bugs is based on symptom and system state bug properties.

Helmboldet et al. [63] summarize the concepts of race bug detection tech-
niques for parallel software, and present a taxonomy with respect to the char-
acteristics of the target program structure. Their race taxonomy separates races
into categories based on the error types that cause that kind of race (e.g. loop,
synchronization operations).

Chapter 4

Research Results

This chapter presents the results of our research in relation to the respective
following research goals:

Goal 1: To provide a common terminology for distinguishing between dif-
ferent types and classes of concurrency bugs and to identify the interrelation
between separate elements and classes.

Goal 2: To identify the current gaps and less-explored areas in debugging
of concurrency bugs.

Goal 3: To identify the current state of concurrency related bugs in real-
world software in terms of frequency, severity and resolving time.

4.1 Research Results Related to Goal 1

In order to achieve the first goal of this thesis (To provide a common terminol-
ogy for distinguishing between different types and classes of concurrency bugs
and to identify the interrelation between separate elements and classes) we
propose a disjoint classification for concurrency bugs by classifying the bugs
in a common structure considering the observable properties in paper A [12].
We make use of two types of properties: System state properties and Symptom
properties. Using these properties, we propose a concurrency bug classifica-
tion. More details about the properties and classification are presented in the
following sections.

27

Chapter 4

Research Results

This chapter presents the results of our research in relation to the respective
following research goals:

Goal 1: To provide a common terminology for distinguishing between dif-
ferent types and classes of concurrency bugs and to identify the interrelation
between separate elements and classes.

Goal 2: To identify the current gaps and less-explored areas in debugging
of concurrency bugs.

Goal 3: To identify the current state of concurrency related bugs in real-
world software in terms of frequency, severity and resolving time.

4.1 Research Results Related to Goal 1

In order to achieve the first goal of this thesis (To provide a common terminol-
ogy for distinguishing between different types and classes of concurrency bugs
and to identify the interrelation between separate elements and classes) we
propose a disjoint classification for concurrency bugs by classifying the bugs
in a common structure considering the observable properties in paper A [12].
We make use of two types of properties: System state properties and Symptom
properties. Using these properties, we propose a concurrency bug classifica-
tion. More details about the properties and classification are presented in the
following sections.

27

28 Chapter 4. Research Results

4.1.1 Concurrent Software Bug Properties
In order to propose this classification, we first gathered the common system
states and symptoms properties of bugs based on a literature review. We divide
the observable properties in properties related to the system state, and prop-
erties related to the symptoms of the concurrent program under test. In the
following lists, when we refer to threads t, we are referring to the threads in
the set Tb ⊆ T , where among all threads T, Tb is the set of threads directly
involved in the bug. Similarly, when we refer to a shared resource r, we are
referring to a resource in the set Rb ⊆ R, where among all resources R, Rb is
the set of resources directly involved in the bug.

System State Properties

The below list collects the properties related to the system state at the time of
the bug. We refer to the thread execution states (shown in Figure 6.2) in the
properties list to present the state of threads when the respective bug occurs.
Most of these properties are related to operations of the operating system and
they can be observable via available data structures in the operating system
kernel, such as Thread Control Block (TCB), or using suitable method(s) in
source code to observe these properties during debugging or tracing of the
software.

1. At least one thread t ∈ Tb is in the Waiting state.

2. At least one thread t ∈ Tb is in the Executing state.

3. At least one thread t ∈ Tb is in the Ready state.

4. All threads in Tb have read and written to a spinlock variable 1.

5. All threads in Tb are waiting for a lock held by another involved thread.

6. At least one thread t ∈ Tb is in the ready queue for an unacceptably long
time.

7. At least one thread t ∈ Tb is in Waiting state for an unacceptably long
time.

8. All threads in Tb are in Executing state.
1spinlock is ”mutual execution mechanism in which a process executes in an infinite loop wait-

ing for the value of lock variable to indicate availability” [64]

4.1 Research Results Related to Goal 1 29

Symptom Properties

The below list collects the properties related to the observable output at the
time of the bug. Based on the bug’s symptoms one may recognize the cause of
the problem and the nature of the bugs. The following list thus shows some of
the typical symptoms that can be used to categorize bugs.

1. No thread t ∈ Tb is able to proceed and progress.

2. The number of threads in Tb is larger than the number of free processor
cores.

3. There are incorrect or unexpected results (e.g., unexpected outputs).

4. The number of requests to a resource r is larger than the number of
available resources of that type.

5. All threads in Tb hold a lock.

6. At least one of the threads t ∈ Tb holds a lock.

7. Accesses to shared memory were made from different threads in Tb.

8. At least one of the accesses to the shared memory was a Write.

9. Accesses to shared memory targeted the same memory location.

10. Accesses to shared memory were NOT protected by a synchronization
mechanism.

11. Accesses to shared memory targeted just one memory location.

12. Accesses to shared memory targeted more than one memory location.

13. There were at least two accesses to the same shared memory location, a
Write and a Read, where the Read occurred too early.

14. There were at least two Write accesses to shared memory, and they oc-
curred without any Read in-between.

15. There is at least one correct execution ordering between the accesses to
shared memory which the program failed to enforce.

16. An atomic execution of statements was required.

28 Chapter 4. Research Results

4.1.1 Concurrent Software Bug Properties
In order to propose this classification, we first gathered the common system
states and symptoms properties of bugs based on a literature review. We divide
the observable properties in properties related to the system state, and prop-
erties related to the symptoms of the concurrent program under test. In the
following lists, when we refer to threads t, we are referring to the threads in
the set Tb ⊆ T , where among all threads T, Tb is the set of threads directly
involved in the bug. Similarly, when we refer to a shared resource r, we are
referring to a resource in the set Rb ⊆ R, where among all resources R, Rb is
the set of resources directly involved in the bug.

System State Properties

The below list collects the properties related to the system state at the time of
the bug. We refer to the thread execution states (shown in Figure 6.2) in the
properties list to present the state of threads when the respective bug occurs.
Most of these properties are related to operations of the operating system and
they can be observable via available data structures in the operating system
kernel, such as Thread Control Block (TCB), or using suitable method(s) in
source code to observe these properties during debugging or tracing of the
software.

1. At least one thread t ∈ Tb is in the Waiting state.

2. At least one thread t ∈ Tb is in the Executing state.

3. At least one thread t ∈ Tb is in the Ready state.

4. All threads in Tb have read and written to a spinlock variable 1.

5. All threads in Tb are waiting for a lock held by another involved thread.

6. At least one thread t ∈ Tb is in the ready queue for an unacceptably long
time.

7. At least one thread t ∈ Tb is in Waiting state for an unacceptably long
time.

8. All threads in Tb are in Executing state.
1spinlock is ”mutual execution mechanism in which a process executes in an infinite loop wait-

ing for the value of lock variable to indicate availability” [64]

4.1 Research Results Related to Goal 1 29

Symptom Properties

The below list collects the properties related to the observable output at the
time of the bug. Based on the bug’s symptoms one may recognize the cause of
the problem and the nature of the bugs. The following list thus shows some of
the typical symptoms that can be used to categorize bugs.

1. No thread t ∈ Tb is able to proceed and progress.

2. The number of threads in Tb is larger than the number of free processor
cores.

3. There are incorrect or unexpected results (e.g., unexpected outputs).

4. The number of requests to a resource r is larger than the number of
available resources of that type.

5. All threads in Tb hold a lock.

6. At least one of the threads t ∈ Tb holds a lock.

7. Accesses to shared memory were made from different threads in Tb.

8. At least one of the accesses to the shared memory was a Write.

9. Accesses to shared memory targeted the same memory location.

10. Accesses to shared memory were NOT protected by a synchronization
mechanism.

11. Accesses to shared memory targeted just one memory location.

12. Accesses to shared memory targeted more than one memory location.

13. There were at least two accesses to the same shared memory location, a
Write and a Read, where the Read occurred too early.

14. There were at least two Write accesses to shared memory, and they oc-
curred without any Read in-between.

15. There is at least one correct execution ordering between the accesses to
shared memory which the program failed to enforce.

16. An atomic execution of statements was required.

30 Chapter 4. Research Results

Combination of System State and Symptom Properties

Based on the above lists of observable properties, we have derived a clas-
sification of concurrency bugs. The resulting classification is shown in Ta-
ble 4.1. As shown in the table, the first column illustrates the observable
properties while the first row displays the different types of concurrency bugs.
The mapping between bugs and observable properties should be interpreted as
Bug → property . Thus, an ”�” in the column of bug B and the row of prop-
erty p would mean that if you have come across bug B, then property p will
invariably hold. Note that the reverse implication (i.e., property → Bug) does
not necessarily hold.

4.1 Research Results Related to Goal 1 31

Table 4.1: Concurrent software bugs classes and the properties for each class to achieve
Goal 1 (from paper A)

Property

D
ea

dl
oc

k

L
iv

el
oc

k

St
ar

va
tio

n

Su
sp

en
si

on

Data race Order violation Atomicity violation
Single variable Multi variable

M
em

or
y

in
co

ns
is

te
nc

y

W
ri

te
-W

ri
te

ra
ce

O
rd

er
vi

ol
at

io
n

1

O
rd

er
vi

ol
at

io
n

2

O
rd

er
vi

ol
at

io
n

3

Si
ng

le
va

ri
ab

le
-A

V
1

Si
ng

le
va

ri
ab

le
-A

V
2

M
ul

ti
va

ri
ab

le
-A

V
1

M
ul

ti
va

ri
ab

le
-A

V
2

At least one thread t ∈ Tb is in the Waiting
state � � � � �

At least one thread t ∈ Tb is the Executing
state � � � � � � � � � � �

At least one thread t ∈ Tb is in the Ready state � � � �
All threads in Tb have read and written to a
spinlock variable �

All threads in Tb are waiting for a lock held
by another involved thread �

At least one thread t ∈ Tb is in the ready
queue for an unacceptably long time �

At least one thread t ∈ Tb is in Waiting state
for an unacceptably long time � �

All threads in Tb are in Executing state � � �
No thread t ∈ Tb is able to proceed and
progress � �

There are incorrect or unexpected results � � � � � � � � �
The number of threads in Tb is larger than the
number of free processor cores � � � �

Potential request to a resource is larger than
the number of available resources of that type �

All threads in Tb hold a lock �
At least one of the threads t ∈ Tb holds a lock � � � � � � � �
Accesses to shared memory were made from
different threads in Tb

� � � � � � � � �

At least one of the memory accesses was
Write � � � � � � � � �

Accesses to shared memory targeted the same
memory location � � � � � � � � �

The memory accesses were NOT protected by
a synchronization mechanism � �

Accesses to shared memory targeted just one
memory location � �

Accesses to shared memory targeted more
than one memory location � �

There were at least two accesses to the same
shared memory location, a Write and a Read,
where the Read occured too early

�

There were at least two Write accesses to
shared memory, and they occurred without
any Read in-between

�

There is at least one correct execution
ordering between the memory accesses which
the program failed to enforce

� � �

An atomic execution of statements was
required � � � �

30 Chapter 4. Research Results

Combination of System State and Symptom Properties

Based on the above lists of observable properties, we have derived a clas-
sification of concurrency bugs. The resulting classification is shown in Ta-
ble 4.1. As shown in the table, the first column illustrates the observable
properties while the first row displays the different types of concurrency bugs.
The mapping between bugs and observable properties should be interpreted as
Bug → property . Thus, an ”�” in the column of bug B and the row of prop-
erty p would mean that if you have come across bug B, then property p will
invariably hold. Note that the reverse implication (i.e., property → Bug) does
not necessarily hold.

4.1 Research Results Related to Goal 1 31

Table 4.1: Concurrent software bugs classes and the properties for each class to achieve
Goal 1 (from paper A)

Property
D

ea
dl

oc
k

L
iv

el
oc

k

St
ar

va
tio

n

Su
sp

en
si

on

Data race Order violation Atomicity violation
Single variable Multi variable

M
em

or
y

in
co

ns
is

te
nc

y

W
ri

te
-W

ri
te

ra
ce

O
rd

er
vi

ol
at

io
n

1

O
rd

er
vi

ol
at

io
n

2

O
rd

er
vi

ol
at

io
n

3

Si
ng

le
va

ri
ab

le
-A

V
1

Si
ng

le
va

ri
ab

le
-A

V
2

M
ul

ti
va

ri
ab

le
-A

V
1

M
ul

ti
va

ri
ab

le
-A

V
2

At least one thread t ∈ Tb is in the Waiting
state � � � � �

At least one thread t ∈ Tb is the Executing
state � � � � � � � � � � �

At least one thread t ∈ Tb is in the Ready state � � � �
All threads in Tb have read and written to a
spinlock variable �

All threads in Tb are waiting for a lock held
by another involved thread �

At least one thread t ∈ Tb is in the ready
queue for an unacceptably long time �

At least one thread t ∈ Tb is in Waiting state
for an unacceptably long time � �

All threads in Tb are in Executing state � � �
No thread t ∈ Tb is able to proceed and
progress � �

There are incorrect or unexpected results � � � � � � � � �
The number of threads in Tb is larger than the
number of free processor cores � � � �

Potential request to a resource is larger than
the number of available resources of that type �

All threads in Tb hold a lock �
At least one of the threads t ∈ Tb holds a lock � � � � � � � �
Accesses to shared memory were made from
different threads in Tb

� � � � � � � � �

At least one of the memory accesses was
Write � � � � � � � � �

Accesses to shared memory targeted the same
memory location � � � � � � � � �

The memory accesses were NOT protected by
a synchronization mechanism � �

Accesses to shared memory targeted just one
memory location � �

Accesses to shared memory targeted more
than one memory location � �

There were at least two accesses to the same
shared memory location, a Write and a Read,
where the Read occured too early

�

There were at least two Write accesses to
shared memory, and they occurred without
any Read in-between

�

There is at least one correct execution
ordering between the memory accesses which
the program failed to enforce

� � �

An atomic execution of statements was
required � � � �

32 Chapter 4. Research Results

4.1.2 Concurrent Software Bugs
In order to avoid omission of relevant bugs, we conducted a literature review
to identify faults, errors and bugs relevant to parallel, concurrent and multicore
software testing and debugging. The common properties of bugs presented
below are primarily extracted from relevant references based on the literature
review.

The explanation of each concurrent bug with their observable properties
are listed as follows:

• A Data race occurs when at least two threads access the same data and at
least one of them write the data [23]. It occurs when concurrent threads
perform conflicting accesses by trying to update the same memory loca-
tion or shared variable [20] [24].

– Memory inconsistency is when different threads have inconsistent
views of shared variables [22]. In this case the results of a write
operation by one thread are not guaranteed to be visible to a read
operation by another thread.

– Write-Write race is a data corruption caused by accessing a
shared variable via at least two threads, in which one of them
overwrites the data before any reads.

• Deadlock is ”a condition in a system where a process cannot proceed
because it needs to obtain a resource held by another process but it itself
is holding a resource that the other process needs” [65]. More generally,
it occurs when two or more threads attempts to access shared resources
held by other threads, and none of the threads can give them up [20] [16].

• Livelock is ”a situation where a thread is waiting for a resource that will
never become available. It is similar to deadlock except that the state of
the process involved in the livelock constantly changes with regards to
each other, non progressing” [66].

• Starvation is ”a condition in which a process indefinitely delayed be-
cause other processes are always given preference” [64]. Starvation typ-
ically occurs when high priority threads are monopolising the CPU re-
sources.

• A Suspension-based locking or Blocking suspension occurs when a
calling thread waits for an unacceptably long time in a queue to acquire
a lock for accessing a shared resource [67].

4.2 Research Results Related to Goal 2 33

• Order violation is defined as the violation of the desired order between
at least two memory accesses [68]. It occurs when the expected order
of interleavings does not appear [44]. If a program fails to enforce the
programmer’s intended order of execution then an order violation bug
could happen [35].

• Atomicity violation refers to the situation when the execution of two
code blocks (sequences of statements) in one thread is concurrently over-
lapping with the execution of one or more code blocks of other threads
in such a way that the result is inconsistent with any execution where the
blocks of the first thread are executed without being overlapping with
any other code block. Atomicity violation can be further subcategorized
into single variable atomicity violation and multi-variable atomicity vi-
olation, where:

– Single variable atomicity violation is when there is a sequence of
concurrent memory access to a single variable, which yields differ-
ent result from the state of sequential memory accesses [69].

– Multi-variable atomicity violation occurs when multiple vari-
ables are involved in an unserializable interleaving pattern [69].

4.2 Research Results Related to Goal 2
In order to achieve the second goal of this thesis (To identify the current gaps
and less-explored areas in debugging of concurrency bugs) we present the re-
sults of a systematic mapping study in the field of concurrent and multicore
software debugging in the last decade (2005–2014) in paper B [13].

In terms of publication trends on debugging of concurrent and multicore
software during the last decade, we found that the topic has increasingly gained
interest since 2005, with the highest number of published papers in 2013. Our
investigation indicates that the number of publications in the field increase from
4 in 2005 to 24 in 2013. Figure 4.1 presents the results of our investigation.

In order to investigate the current gaps in debugging concurrency bugs we
explored the addressed concurrency bugs, different type of debugging pro-
cesses, types of research and research contributions.

In term of concurrency bugs we found that six specific types of concurrency
bugs (viz., Deadlock, Livelock, Starvation, Data race, Order violation, and
Atomicity violation) were addressed by articles in last decade. Among these, a

32 Chapter 4. Research Results

4.1.2 Concurrent Software Bugs
In order to avoid omission of relevant bugs, we conducted a literature review
to identify faults, errors and bugs relevant to parallel, concurrent and multicore
software testing and debugging. The common properties of bugs presented
below are primarily extracted from relevant references based on the literature
review.

The explanation of each concurrent bug with their observable properties
are listed as follows:

• A Data race occurs when at least two threads access the same data and at
least one of them write the data [23]. It occurs when concurrent threads
perform conflicting accesses by trying to update the same memory loca-
tion or shared variable [20] [24].

– Memory inconsistency is when different threads have inconsistent
views of shared variables [22]. In this case the results of a write
operation by one thread are not guaranteed to be visible to a read
operation by another thread.

– Write-Write race is a data corruption caused by accessing a
shared variable via at least two threads, in which one of them
overwrites the data before any reads.

• Deadlock is ”a condition in a system where a process cannot proceed
because it needs to obtain a resource held by another process but it itself
is holding a resource that the other process needs” [65]. More generally,
it occurs when two or more threads attempts to access shared resources
held by other threads, and none of the threads can give them up [20] [16].

• Livelock is ”a situation where a thread is waiting for a resource that will
never become available. It is similar to deadlock except that the state of
the process involved in the livelock constantly changes with regards to
each other, non progressing” [66].

• Starvation is ”a condition in which a process indefinitely delayed be-
cause other processes are always given preference” [64]. Starvation typ-
ically occurs when high priority threads are monopolising the CPU re-
sources.

• A Suspension-based locking or Blocking suspension occurs when a
calling thread waits for an unacceptably long time in a queue to acquire
a lock for accessing a shared resource [67].

4.2 Research Results Related to Goal 2 33

• Order violation is defined as the violation of the desired order between
at least two memory accesses [68]. It occurs when the expected order
of interleavings does not appear [44]. If a program fails to enforce the
programmer’s intended order of execution then an order violation bug
could happen [35].

• Atomicity violation refers to the situation when the execution of two
code blocks (sequences of statements) in one thread is concurrently over-
lapping with the execution of one or more code blocks of other threads
in such a way that the result is inconsistent with any execution where the
blocks of the first thread are executed without being overlapping with
any other code block. Atomicity violation can be further subcategorized
into single variable atomicity violation and multi-variable atomicity vi-
olation, where:

– Single variable atomicity violation is when there is a sequence of
concurrent memory access to a single variable, which yields differ-
ent result from the state of sequential memory accesses [69].

– Multi-variable atomicity violation occurs when multiple vari-
ables are involved in an unserializable interleaving pattern [69].

4.2 Research Results Related to Goal 2
In order to achieve the second goal of this thesis (To identify the current gaps
and less-explored areas in debugging of concurrency bugs) we present the re-
sults of a systematic mapping study in the field of concurrent and multicore
software debugging in the last decade (2005–2014) in paper B [13].

In terms of publication trends on debugging of concurrent and multicore
software during the last decade, we found that the topic has increasingly gained
interest since 2005, with the highest number of published papers in 2013. Our
investigation indicates that the number of publications in the field increase from
4 in 2005 to 24 in 2013. Figure 4.1 presents the results of our investigation.

In order to investigate the current gaps in debugging concurrency bugs we
explored the addressed concurrency bugs, different type of debugging pro-
cesses, types of research and research contributions.

In term of concurrency bugs we found that six specific types of concurrency
bugs (viz., Deadlock, Livelock, Starvation, Data race, Order violation, and
Atomicity violation) were addressed by articles in last decade. Among these, a

34 Chapter 4. Research Results

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
Total 4 9 12 14 17 15 14 21 24 15
Academia 3 6 7 10 8 8 7 14 15 13
Industry 1 2 1 1 5 1 2 2 1 0
Both 0 1 4 3 4 6 5 5 8 2

2014 2005

4

9

12
14

17
15

14

21
24

15

0

5

10

15

20

25

of

 A
rt

ic
le

Figure 4.1: Distribution of primary study by publication year (from paper B).

large fraction of publications addressed data race. More details are presented
in Figure 4.2.

Considering different type of debugging procgoal 1esses, we found that
five types of debugging process were considered in articles in the period (viz.,
bug identification, type of bug identification, cause identification, exploring
corrections, and fixing bug). Among these, the bug identification process as the
most common one considered. Figure 4.3 shows the frequency of contributions
focusing on different type of the debugging process.

34.48%

10.34%

43.45%

1.38%

13.10%

0.69%

0.69%

0.00%

6.90%

0 10 20 30 40 50 60 70

General

Deadlock

Data race

Order Violation

Atomicity violation

Livelock

Starvation

Suspension

Others

Ty
pe

 o
f C

on
cu

rr
en

cy
 B

ug
s

General Deadlock Data race Order
Violation

Atomicity
violation Livelock Starvation Suspension Others

of addressed bugs 50 15 63 2 19 1 1 0 10

Figure 4.2: Concurrency bugs distribution (from paper B).

4.2 Research Results Related to Goal 2 35

Besides, we found that six types of research (viz., validation research, eval-
uation research, solution proposal, conceptual proposal, opinion paper, and ex-
perience paper) in the selected publications, with solution proposals being the
most common type. The obtained results are illustrated in Figure 4.4.

57.93%

3.45%

8.28%

1.38%

6.90%

22.07%

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Bug identification

Type of bug identification

Cause identification

Exploring corrections

Fixing bug

Others

D
eb

ug
gi

ng
 P

ro
ce

ss

Bug identification Type of bug
identification

Cause
identification

Exploring
corrections Fixing bug Others

84 5 12 2 10 32

Figure 4.3: Debugging process distribution (from paper B).

12.41%

10.34%

69.66%

2.76%

3.45%

1.38%

0 20 40 60 80 100 120

Validation research

Evaluation research

Solution proposal

Conceptual proposal

Opinion papers

Experience papers

Ty
pe

 o
f R

es
ea

rc
h

Validation
research

Evaluation
research

Solution
proposal

Conceptual
proposal

Opinion
papers

Experience
papers

of papers 18 15 101 4 5 2

Figure 4.4: Distribution of types of research.

34 Chapter 4. Research Results

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
Total 4 9 12 14 17 15 14 21 24 15
Academia 3 6 7 10 8 8 7 14 15 13
Industry 1 2 1 1 5 1 2 2 1 0
Both 0 1 4 3 4 6 5 5 8 2

2014 2005

4

9

12
14

17
15

14

21
24

15

0

5

10

15

20

25

of

 A
rt

ic
le

Figure 4.1: Distribution of primary study by publication year (from paper B).

large fraction of publications addressed data race. More details are presented
in Figure 4.2.

Considering different type of debugging procgoal 1esses, we found that
five types of debugging process were considered in articles in the period (viz.,
bug identification, type of bug identification, cause identification, exploring
corrections, and fixing bug). Among these, the bug identification process as the
most common one considered. Figure 4.3 shows the frequency of contributions
focusing on different type of the debugging process.

34.48%

10.34%

43.45%

1.38%

13.10%

0.69%

0.69%

0.00%

6.90%

0 10 20 30 40 50 60 70

General

Deadlock

Data race

Order Violation

Atomicity violation

Livelock

Starvation

Suspension

Others

Ty
pe

 o
f C

on
cu

rr
en

cy
 B

ug
s

General Deadlock Data race Order
Violation

Atomicity
violation Livelock Starvation Suspension Others

of addressed bugs 50 15 63 2 19 1 1 0 10

Figure 4.2: Concurrency bugs distribution (from paper B).

4.2 Research Results Related to Goal 2 35

Besides, we found that six types of research (viz., validation research, eval-
uation research, solution proposal, conceptual proposal, opinion paper, and ex-
perience paper) in the selected publications, with solution proposals being the
most common type. The obtained results are illustrated in Figure 4.4.

57.93%

3.45%

8.28%

1.38%

6.90%

22.07%

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Bug identification

Type of bug identification

Cause identification

Exploring corrections

Fixing bug

Others

D
eb

ug
gi

ng
 P

ro
ce

ss

Bug identification Type of bug
identification

Cause
identification

Exploring
corrections Fixing bug Others

84 5 12 2 10 32

Figure 4.3: Debugging process distribution (from paper B).

12.41%

10.34%

69.66%

2.76%

3.45%

1.38%

0 20 40 60 80 100 120

Validation research

Evaluation research

Solution proposal

Conceptual proposal

Opinion papers

Experience papers

Ty
pe

 o
f R

es
ea

rc
h

Validation
research

Evaluation
research

Solution
proposal

Conceptual
proposal

Opinion
papers

Experience
papers

of papers 18 15 101 4 5 2

Figure 4.4: Distribution of types of research.

36 Chapter 4. Research Results

Finally, Figure 4.5 illustrates that the published papers essentially focus
on four types of contributions (viz., methods, models, metrics and tools) with
methods being the most common type.

49.08%

13.50%

4.91%

28.22%

4.29%

0 10 20 30 40 50 60 70 80 90

Method

Model

Metric

Tools

Open items

Ty
pe

 o
f R

es
ea

rc
h

C
on

tr
ib

ut
io

n

Method Model Metric Tools Open items
80 22 8 46 7

Figure 4.5: Research contribution distribution.

4.3 Research Results Related to Goal 3
In order to achieve the third goal of this thesis (To identify the current state of
concurrency related bugs in real-world software in terms of frequency, sever-
ity and resolving time) we provide a comprehensive study of 4872 fixed bug
reports from a widely used open source storage designed for big-data applica-
tions (Hadoop 2). Reported in paper C [14]. The study covers the fixed bug
reports from the last decade (2006-2015).

Our comparative study of concurrency bugs and non-concurrency bugs re-
vealed that only 6% of the total set of bugs are related to concurrency issues,
while the majority of bugs (i.e., 94%) are of non-concurrency type. The distri-
bution of non-concurrency and concurrency bug types is shown in Figure 4.6.

We also compared the time required to fix concurrency bugs and non-
concurrency bugs. Our results show that concurrency bugs do require longer
fixing time than non-concurrency bugs, but the difference is not very large.

2https://issues.apache.org/jira/browse/hadoop

4.3 Research Results Related to Goal 3 37

Figure 4.6: Distribution of non-concurrency and concurrency bug types (from paper C).

Figure 4.7 shows the results of comparing the fixing time for concurrency and
non-concurrency bugs in the form of box-plots. Boxes span from 1st to 3rd

quartile, black middle lines are marking the median and the whiskers extend
up to 1.5x the inter-quartile range while the circles represent the outliers.

C
 b

ug
s

N
on
−C

 b
ug

s

0.1

1.0

10.0

100.0

1000.0

Fi
xi

ng
 ti

m
e

(d
ay

s)

Figure 4.7: Fixing time comparison for concurrency (C) and non-concurrency (Non-C)
bugs (from paper C).

36 Chapter 4. Research Results

Finally, Figure 4.5 illustrates that the published papers essentially focus
on four types of contributions (viz., methods, models, metrics and tools) with
methods being the most common type.

49.08%

13.50%

4.91%

28.22%

4.29%

0 10 20 30 40 50 60 70 80 90

Method

Model

Metric

Tools

Open items

Ty
pe

 o
f R

es
ea

rc
h

C
on

tr
ib

ut
io

n

Method Model Metric Tools Open items
80 22 8 46 7

Figure 4.5: Research contribution distribution.

4.3 Research Results Related to Goal 3
In order to achieve the third goal of this thesis (To identify the current state of
concurrency related bugs in real-world software in terms of frequency, sever-
ity and resolving time) we provide a comprehensive study of 4872 fixed bug
reports from a widely used open source storage designed for big-data applica-
tions (Hadoop 2). Reported in paper C [14]. The study covers the fixed bug
reports from the last decade (2006-2015).

Our comparative study of concurrency bugs and non-concurrency bugs re-
vealed that only 6% of the total set of bugs are related to concurrency issues,
while the majority of bugs (i.e., 94%) are of non-concurrency type. The distri-
bution of non-concurrency and concurrency bug types is shown in Figure 4.6.

We also compared the time required to fix concurrency bugs and non-
concurrency bugs. Our results show that concurrency bugs do require longer
fixing time than non-concurrency bugs, but the difference is not very large.

2https://issues.apache.org/jira/browse/hadoop

4.3 Research Results Related to Goal 3 37

Figure 4.6: Distribution of non-concurrency and concurrency bug types (from paper C).

Figure 4.7 shows the results of comparing the fixing time for concurrency and
non-concurrency bugs in the form of box-plots. Boxes span from 1st to 3rd

quartile, black middle lines are marking the median and the whiskers extend
up to 1.5x the inter-quartile range while the circles represent the outliers.

C
 b

ug
s

N
on
−C

 b
ug

s

0.1

1.0

10.0

100.0

1000.0

Fi
xi

ng
 ti

m
e

(d
ay

s)

Figure 4.7: Fixing time comparison for concurrency (C) and non-concurrency (Non-C)
bugs (from paper C).

38 Chapter 4. Research Results

Further, our study on severity of concurrency bugs and non-concurrency
bugs indicates that concurrency bugs are considered to be more severe than
non-concurrency bugs, but the difference is not that large. Figure 4.8 shows
the severity distributions.

Blocker Critical Major Minor Trivial
Non-concurrency bugs 41 18 118 29 15

Concurrency bugs 66 20 120 15 0

!"#$

%#$

&'#$

!'#$
(#$

')#$

"#$

&*#$

(#$

0

20

40

60

80

100

120

Fr
eq

ue
nc

y

Non-concurrency
bugs

Concurrency
bugs

Figure 4.8: Concurrency and non-concurrency bug severity (from paper C).

Chapter 5

Discussion, Conclusion and
Future Work

In this chapter, we present a discussion based on our results, a list of conclu-
sions, as well as a set of potential directions for future work.

5.1 Discussion and Limitation
Based on our literature review, we found that existing taxonomies for con-
current and multicore software debugging properties are lacking coverage of
some aspects, specifically the ones related to the debugging process. The exist-
ing knowledge gaps in different types of bugs may be due to the fact that some
specific types of bugs are not well-known yet, or recognizing them is not an
easy task.

The results of our systematic mapping study also indicate that researchers
from industry have paid less attention to the final steps of the debugging pro-
cess, i.e., exploring correction and fixing the bugs. It is possible that the initial
steps of the debugging process (i.e., bug identification) is considered as the
caveat of the process, and once understood and identified, the solutions might
be both difficult and involve a lot of work, thus the final steps of the debugging
process are not considered novel enough to be worthy of a research publication.
Another possibility might be that industry simply cannot involve too detailed
aspects of the software and architecture involved in the solution, for public
scrutiny thus most refrains from publicly announcing particular solutions.

39

38 Chapter 4. Research Results

Further, our study on severity of concurrency bugs and non-concurrency
bugs indicates that concurrency bugs are considered to be more severe than
non-concurrency bugs, but the difference is not that large. Figure 4.8 shows
the severity distributions.

Blocker Critical Major Minor Trivial
Non-concurrency bugs 41 18 118 29 15

Concurrency bugs 66 20 120 15 0

!"#$

%#$

&'#$

!'#$
(#$

')#$

"#$

&*#$

(#$

0

20

40

60

80

100

120

Fr
eq

ue
nc

y

Non-concurrency
bugs

Concurrency
bugs

Figure 4.8: Concurrency and non-concurrency bug severity (from paper C).

Chapter 5

Discussion, Conclusion and
Future Work

In this chapter, we present a discussion based on our results, a list of conclu-
sions, as well as a set of potential directions for future work.

5.1 Discussion and Limitation
Based on our literature review, we found that existing taxonomies for con-
current and multicore software debugging properties are lacking coverage of
some aspects, specifically the ones related to the debugging process. The exist-
ing knowledge gaps in different types of bugs may be due to the fact that some
specific types of bugs are not well-known yet, or recognizing them is not an
easy task.

The results of our systematic mapping study also indicate that researchers
from industry have paid less attention to the final steps of the debugging pro-
cess, i.e., exploring correction and fixing the bugs. It is possible that the initial
steps of the debugging process (i.e., bug identification) is considered as the
caveat of the process, and once understood and identified, the solutions might
be both difficult and involve a lot of work, thus the final steps of the debugging
process are not considered novel enough to be worthy of a research publication.
Another possibility might be that industry simply cannot involve too detailed
aspects of the software and architecture involved in the solution, for public
scrutiny thus most refrains from publicly announcing particular solutions.

39

40 Chapter 5. Discussion, Conclusion and Future Work

Some other reasons of these gaps could be that the processes might not be
well defined, not applicable in all software development projects, or the process
is not easy to apply.

On the other hand, according to our case study results, the distribution of
concurrency bugs presented in the bug repository (Hadoop bug report database)
is not big. This is not very surprising, since it has long been believed that
concurrency bugs are hard to observe and reproduce. There are three main
possible reasons for this belief: (1) when users are faced with the bug a single
time they may not even be sure that it is a problem with the software and might
not report it; (2) it might not be possible to reproduce the bug in the developer’s
environment due to small differences in the environments even when users are
able to reproduce bugs on their machines; (3) software developers might not be
able to systematically reproduce the bug using traditional debugging methods
since some debugging tools and methods might affect the reproducibility of the
bug.

In our case study, we found a much smaller share of concurrency bugs
than the one found by other similar studies. This could possibly be due to the
one of the three mentioned reason or due to different time span of our study
and that of other similar studies. Based on our investigation, 70% of the bugs
that we observed were reported in the five-year interval of 2006-2010, and the
remaining 30% were reported in the five-year interval of 2011-2015.

Similarly, the fixing time found by other studies is much larger for con-
currency bugs than for non-concurrency bugs. We find a difference, but it is
relatively small. In our case study we found surprisingly few reports stating
difficulties in reproducing the bug. While other studies (e.g., [35]) found that a
large portion of fixing time relates to reproducing the bugs and this deference
could effect on fixing time calculation.

Moreover, our investigation in the case study shows that about half of the
concurrency bugs are of Data race type. The reason could be that Data race is
more severe than other type of bugs and it is quite understandable that it takes
longer time to fix.

In the design and execution of this thesis, there are several considerations
that need to be taken into account as they can potentially limit the validity of the
obtained results. We limited the search for studies and bugs in the systematic
study and the case study within the time span of 2005–2014 and 2006–2015,
respectively. This was done for two reasons: (1) to limit the volume of search
results for practical reasons; (2) to present more recent trends (i.e., in the last
decade). This limitation of years obviously excludes papers published before
the year 2005 and excludes bug reported before the year 2006, including highly

5.2 Conclusions 41

cited papers and important bugs. Thus our systematic mapping study and our
case study are not complete with respect to all research papers and reported
bugs on the topic, but instead presents the more recent development in the
field.

Another threat is related to the classification schema for mapping included
papers in our systematic mapping study and included bug reports in our case
study. Since authors and bug reporters cannot be expected to follow any stan-
dard concurrency bug terminology, partially based on the classification from
our grounded theory study we categorized the papers and bug reports. We
believe that the process of classification would have been more reliable if con-
sistent terminologies would have been used in the primary studies and bug
reports. However, some papers and bug reports were difficult to categorize due
to unclear boundaries between some classification scheme categories.

It is possible that the search string and search query may have failed to
identify some relevant paper or actual concurrency bugs. It should however be
noted that we used more keywords and applied other methods (i.e., backward
snowballing and additional secondary search in the systematic research study)
compared to previous similar studies.

5.2 Conclusions

We present a grounded theory study. Our study on different types of concur-
rency bugs proposed a classification of concurrency bugs by classifying the
bugs considering their observable properties.

In addition, we provide an overview of existing research on concurrent and
multicore software debugging. We also pinpoint current gaps in the research
area that may represent opportunities for further research on debugging con-
current and multicore software.

In particular, we provide a case study on concurrency bugs. This study an-
alyzed bugs reported in the Haddop project and provided some evidence of the
existence of two classes of bugs: non-concurrency and concurrency bugs. The
case study also helped us to recognize the most common types of concurrency
bugs in terms of severity and fixing time.

In general, despite all the mentioned limitations, this thesis improves our
understanding of the different types of concurrency bugs, the current gaps (or
less-explored areas) in debugging concurrency bugs and the current state of
concurrency related bugs in real-world software.

40 Chapter 5. Discussion, Conclusion and Future Work

Some other reasons of these gaps could be that the processes might not be
well defined, not applicable in all software development projects, or the process
is not easy to apply.

On the other hand, according to our case study results, the distribution of
concurrency bugs presented in the bug repository (Hadoop bug report database)
is not big. This is not very surprising, since it has long been believed that
concurrency bugs are hard to observe and reproduce. There are three main
possible reasons for this belief: (1) when users are faced with the bug a single
time they may not even be sure that it is a problem with the software and might
not report it; (2) it might not be possible to reproduce the bug in the developer’s
environment due to small differences in the environments even when users are
able to reproduce bugs on their machines; (3) software developers might not be
able to systematically reproduce the bug using traditional debugging methods
since some debugging tools and methods might affect the reproducibility of the
bug.

In our case study, we found a much smaller share of concurrency bugs
than the one found by other similar studies. This could possibly be due to the
one of the three mentioned reason or due to different time span of our study
and that of other similar studies. Based on our investigation, 70% of the bugs
that we observed were reported in the five-year interval of 2006-2010, and the
remaining 30% were reported in the five-year interval of 2011-2015.

Similarly, the fixing time found by other studies is much larger for con-
currency bugs than for non-concurrency bugs. We find a difference, but it is
relatively small. In our case study we found surprisingly few reports stating
difficulties in reproducing the bug. While other studies (e.g., [35]) found that a
large portion of fixing time relates to reproducing the bugs and this deference
could effect on fixing time calculation.

Moreover, our investigation in the case study shows that about half of the
concurrency bugs are of Data race type. The reason could be that Data race is
more severe than other type of bugs and it is quite understandable that it takes
longer time to fix.

In the design and execution of this thesis, there are several considerations
that need to be taken into account as they can potentially limit the validity of the
obtained results. We limited the search for studies and bugs in the systematic
study and the case study within the time span of 2005–2014 and 2006–2015,
respectively. This was done for two reasons: (1) to limit the volume of search
results for practical reasons; (2) to present more recent trends (i.e., in the last
decade). This limitation of years obviously excludes papers published before
the year 2005 and excludes bug reported before the year 2006, including highly

5.2 Conclusions 41

cited papers and important bugs. Thus our systematic mapping study and our
case study are not complete with respect to all research papers and reported
bugs on the topic, but instead presents the more recent development in the
field.

Another threat is related to the classification schema for mapping included
papers in our systematic mapping study and included bug reports in our case
study. Since authors and bug reporters cannot be expected to follow any stan-
dard concurrency bug terminology, partially based on the classification from
our grounded theory study we categorized the papers and bug reports. We
believe that the process of classification would have been more reliable if con-
sistent terminologies would have been used in the primary studies and bug
reports. However, some papers and bug reports were difficult to categorize due
to unclear boundaries between some classification scheme categories.

It is possible that the search string and search query may have failed to
identify some relevant paper or actual concurrency bugs. It should however be
noted that we used more keywords and applied other methods (i.e., backward
snowballing and additional secondary search in the systematic research study)
compared to previous similar studies.

5.2 Conclusions

We present a grounded theory study. Our study on different types of concur-
rency bugs proposed a classification of concurrency bugs by classifying the
bugs considering their observable properties.

In addition, we provide an overview of existing research on concurrent and
multicore software debugging. We also pinpoint current gaps in the research
area that may represent opportunities for further research on debugging con-
current and multicore software.

In particular, we provide a case study on concurrency bugs. This study an-
alyzed bugs reported in the Haddop project and provided some evidence of the
existence of two classes of bugs: non-concurrency and concurrency bugs. The
case study also helped us to recognize the most common types of concurrency
bugs in terms of severity and fixing time.

In general, despite all the mentioned limitations, this thesis improves our
understanding of the different types of concurrency bugs, the current gaps (or
less-explored areas) in debugging concurrency bugs and the current state of
concurrency related bugs in real-world software.

42 Chapter 5. Discussion, Conclusion and Future Work

5.3 Future Work
This thesis raises a number of questions, which we strongly believe can form
the basis of future work, as outlined below.

An interesting agenda for future work would be to combine the evidence
identified in the systematic mapping study with evidence from the case study
to define hypotheses and theories which will form the basis for proposing new
methods, process and tools for concurrent and multicore software debugging.
We think a possible future research is to propose solutions to bridge the identi-
fied gaps between the paradigms.

Our classification is focusing on shared memory concurrency. There are
additional types of concurrency bugs that are specific for message passing sys-
tems (e.g., messages race). As a future study we could categorize the primary
studies (from our systematic mapping study) and reported bugs (from our case
study) based on additional types of concurrency bugs (e.g., those related to
message passing).

Moreover, the case study in Chapter 4 provides basis for many research
directions. One noticeable research direction is to apply other case studies with
other projects (e.g., implemented in other programming languages) in order to
generalize the results to other projects.

Another topic for future work, based on this study, could be to conduct
a systematic literature review of the field to analyze the existing evidence for
concurrent and multicore testing. Also, an interesting additional classification
could be related to the domain of different concurrent software testing tech-
niques.

There are still quite a number of issues and aspects that have not been suf-
ficiently covered in the field. It is clear that ensuring the reliability of software,
particularly with regard to concurrent and multicore software, will remain a
hard problem. Therefore, we believe that software developers and testers will
greatly benefit from additional improvements within this field of research.

Bibliography

[1] Hadi Esmaeilzadeh, Emily Blem, Rene St Amant, Karthikeyan Sankar-
alingam, and Doug Burger. Power challenges may end the multicore era.
Communications of the ACM, 56(2):93–102, 2013.

[2] David A. Weiser. Hybrid Analysis of Multi-threaded Java Programs. Pro-
Quest, 2007.

[3] Jayant Desouza, Bob Kuhn, Bronis R. De Supinski, Victor Samofalov,
Sergey Zheltov, and Stanislav Bratanov. Automated, scalable debugging
of MPI programs with Intel Message Checker. In Proceedings of the
second international workshop on Software engineering for high perfor-
mance computing system applications, pages 78–82. ACM, 2005.

[4] Patrice Godefroid and Nachiappan Nagappan. Concurrency at Microsoft:
An exploratory survey. In CAV Workshop on Exploiting Concurrency
Efficiently and Correctly, 2008.

[5] Michael Süß and Claudia Leopold. Common mistakes in OpenMP and
how to avoid them. In OpenMP Shared Memory Parallel Programming,
pages 312–323. Springer, 2008.

[6] Sangmin Park, Richard W. Vuduc, and Mary Jean Harrold. Falcon:
fault localization in concurrent programs. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering-Volume 1,
pages 245–254. ACM, 2010.

[7] Joab Jackson. Nasdaq’s Facebook Glitch Came From Race
Conditions, May 2012. preprint (2011), available at http:
//www.pcworld.com/article/255911/nasdaqs_
facebook_glitch_came_from_race_conditions.html.

43

42 Chapter 5. Discussion, Conclusion and Future Work

5.3 Future Work
This thesis raises a number of questions, which we strongly believe can form
the basis of future work, as outlined below.

An interesting agenda for future work would be to combine the evidence
identified in the systematic mapping study with evidence from the case study
to define hypotheses and theories which will form the basis for proposing new
methods, process and tools for concurrent and multicore software debugging.
We think a possible future research is to propose solutions to bridge the identi-
fied gaps between the paradigms.

Our classification is focusing on shared memory concurrency. There are
additional types of concurrency bugs that are specific for message passing sys-
tems (e.g., messages race). As a future study we could categorize the primary
studies (from our systematic mapping study) and reported bugs (from our case
study) based on additional types of concurrency bugs (e.g., those related to
message passing).

Moreover, the case study in Chapter 4 provides basis for many research
directions. One noticeable research direction is to apply other case studies with
other projects (e.g., implemented in other programming languages) in order to
generalize the results to other projects.

Another topic for future work, based on this study, could be to conduct
a systematic literature review of the field to analyze the existing evidence for
concurrent and multicore testing. Also, an interesting additional classification
could be related to the domain of different concurrent software testing tech-
niques.

There are still quite a number of issues and aspects that have not been suf-
ficiently covered in the field. It is clear that ensuring the reliability of software,
particularly with regard to concurrent and multicore software, will remain a
hard problem. Therefore, we believe that software developers and testers will
greatly benefit from additional improvements within this field of research.

Bibliography

[1] Hadi Esmaeilzadeh, Emily Blem, Rene St Amant, Karthikeyan Sankar-
alingam, and Doug Burger. Power challenges may end the multicore era.
Communications of the ACM, 56(2):93–102, 2013.

[2] David A. Weiser. Hybrid Analysis of Multi-threaded Java Programs. Pro-
Quest, 2007.

[3] Jayant Desouza, Bob Kuhn, Bronis R. De Supinski, Victor Samofalov,
Sergey Zheltov, and Stanislav Bratanov. Automated, scalable debugging
of MPI programs with Intel Message Checker. In Proceedings of the
second international workshop on Software engineering for high perfor-
mance computing system applications, pages 78–82. ACM, 2005.

[4] Patrice Godefroid and Nachiappan Nagappan. Concurrency at Microsoft:
An exploratory survey. In CAV Workshop on Exploiting Concurrency
Efficiently and Correctly, 2008.

[5] Michael Süß and Claudia Leopold. Common mistakes in OpenMP and
how to avoid them. In OpenMP Shared Memory Parallel Programming,
pages 312–323. Springer, 2008.

[6] Sangmin Park, Richard W. Vuduc, and Mary Jean Harrold. Falcon:
fault localization in concurrent programs. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering-Volume 1,
pages 245–254. ACM, 2010.

[7] Joab Jackson. Nasdaq’s Facebook Glitch Came From Race
Conditions, May 2012. preprint (2011), available at http:
//www.pcworld.com/article/255911/nasdaqs_
facebook_glitch_came_from_race_conditions.html.

43

44 Bibliography

[8] Johanna Schneider. Tracking down root causes of defects in simulink
models. In Proceedings of the 29th ACM/IEEE International Conference
on Automated Software Engineering, page 1. ACM, 2014.

[9] Andreas Zeller. Why programs fail: a guide to systematic debugging.
Elsevier, 2009.

[10] Colin Robson. Real world research: A resource for social scientists and
practitioner-researchers, volume 2. Blackwell Oxford, 2002.

[11] D.E. Perry, S.E. Sim, and S.M. Easterbrook. Case studies for software
engineers. In 26th International Conference on Software Engineering,
ICSE 2004, pages 736–738, May 2004.

[12] Sara Abbaspour A, Hans Hansson, Daniel Sundmark, and Sigrid Eldh.
Towards Classification of Concurrency Bugs Based on Observable Prop-
erties. In Workshop on Complex faUlts and Failures in LargE Software
Systems (COUFLESS), 2015.

[13] Sara Abbaspour Asadollah, Daniel Sundmark, Sigrid Eldh, Hans Hans-
son, and Wasif Afzal. 10 years of research on debugging concurrent and
multicore software: a systematic mapping study. Software Quality Jour-
nal, pages 1–34, 2016.

[14] Sara Abbaspour Asadollah, Daniel Sundmark, Sigrid Eldh, Hans Hans-
son, and Eduard Paul Enoiu. A study of concurrency bugs in an open
source software. In Proceedings of the 12th International Conference on
Open Source Systems (OSS), 2016.

[15] R.W. Brown. Method and apparatus for processing requests for video
presentations of interactive applications in which vod functionality is pro-
vided during nvod presentations, June 23 1998. US Patent 5,771,435.

[16] Darryl Gove. Multicore Application Programming: For Windows, Linux,
and Oracle Solaris. Addison-Wesley Professional, 2010.

[17] Juan Gonzalez, David Insa, and Josep Silva. A new hybrid debugging
architecture for eclipse. In Proceedings of the 23rd International Sympo-
sium on Logic-Based Program Synthesis and Transformation(LOPSTR),
pages 183–201. Springer International Publishing, 2014.

Bibliography 45

[18] Satish Narayanasamy, Gilles Pokam, and Brad Calder. Bugnet: Continu-
ously recording program execution for deterministic replay debugging. In
Proceedings of the 32Nd Annual International Symposium on Computer
Architecture, ISCA ’05, pages 284–295. IEEE Computer Society, 2005.

[19] T. J. Leblanc and J. M. Mellor-Crummey. Debugging parallel programs
with instant replay. IEEE Transactions on Computers, C-36(4):471–482,
April 1987.

[20] K. Henningsson and C. Wohlin. Assuring fault classification agreement
- an empirical evaluation. In 2004 International Symposium on Empiri-
cal Software Engineering, 2004. ISESE ’04. Proceedings, pages 95–104,
August 2004.

[21] Chang-Seo Park and Koushik Sen. Randomized active atomicity violation
detection in concurrent programs. In Proceedings of the 16th ACM SIG-
SOFT International Symposium on Foundations of software engineering,
pages 135–145. ACM, 2008.

[22] Leon Li Wu and Gail E. Kaiser. Constructing subtle concurrency bugs us-
ing synchronization-centric second-order mutation operators. Technical
report, Columbia University, 2011.

[23] Noriaki Yoshiura and Wei Wei. Static data race detection for java pro-
grams with dynamic class loading. In Internet and Distributed Comput-
ing Systems, pages 161–173. Springer, 2014.

[24] Shameen Akhter and Jason Roberts. Multi-core programming, vol-
ume 33. Intel press Hillsboro, 2006.

[25] Wenwen Wang, Zhenjiang Wang, Chenggang Wu, Pen-Chung Yew,
Xipeng Shen, Xiang Yuan, Jianjun Li, Xiaobing Feng, and Yong Guan.
Localization of concurrency bugs using shared memory access pairs. In
Proceedings of the 29th ACM/IEEE international conference on Auto-
mated software engineering, pages 611–622. ACM, 2014.

[26] Ghazia Zaineb and Irfan Anjum Manarvi. Identification And Analysis
Of Causes For Software Bug Rejection With Their Impact Over Testing
Efficiency. International Journal of Software Engineering & Applications
(IJSEA), 2(4), 2011.

44 Bibliography

[8] Johanna Schneider. Tracking down root causes of defects in simulink
models. In Proceedings of the 29th ACM/IEEE International Conference
on Automated Software Engineering, page 1. ACM, 2014.

[9] Andreas Zeller. Why programs fail: a guide to systematic debugging.
Elsevier, 2009.

[10] Colin Robson. Real world research: A resource for social scientists and
practitioner-researchers, volume 2. Blackwell Oxford, 2002.

[11] D.E. Perry, S.E. Sim, and S.M. Easterbrook. Case studies for software
engineers. In 26th International Conference on Software Engineering,
ICSE 2004, pages 736–738, May 2004.

[12] Sara Abbaspour A, Hans Hansson, Daniel Sundmark, and Sigrid Eldh.
Towards Classification of Concurrency Bugs Based on Observable Prop-
erties. In Workshop on Complex faUlts and Failures in LargE Software
Systems (COUFLESS), 2015.

[13] Sara Abbaspour Asadollah, Daniel Sundmark, Sigrid Eldh, Hans Hans-
son, and Wasif Afzal. 10 years of research on debugging concurrent and
multicore software: a systematic mapping study. Software Quality Jour-
nal, pages 1–34, 2016.

[14] Sara Abbaspour Asadollah, Daniel Sundmark, Sigrid Eldh, Hans Hans-
son, and Eduard Paul Enoiu. A study of concurrency bugs in an open
source software. In Proceedings of the 12th International Conference on
Open Source Systems (OSS), 2016.

[15] R.W. Brown. Method and apparatus for processing requests for video
presentations of interactive applications in which vod functionality is pro-
vided during nvod presentations, June 23 1998. US Patent 5,771,435.

[16] Darryl Gove. Multicore Application Programming: For Windows, Linux,
and Oracle Solaris. Addison-Wesley Professional, 2010.

[17] Juan Gonzalez, David Insa, and Josep Silva. A new hybrid debugging
architecture for eclipse. In Proceedings of the 23rd International Sympo-
sium on Logic-Based Program Synthesis and Transformation(LOPSTR),
pages 183–201. Springer International Publishing, 2014.

Bibliography 45

[18] Satish Narayanasamy, Gilles Pokam, and Brad Calder. Bugnet: Continu-
ously recording program execution for deterministic replay debugging. In
Proceedings of the 32Nd Annual International Symposium on Computer
Architecture, ISCA ’05, pages 284–295. IEEE Computer Society, 2005.

[19] T. J. Leblanc and J. M. Mellor-Crummey. Debugging parallel programs
with instant replay. IEEE Transactions on Computers, C-36(4):471–482,
April 1987.

[20] K. Henningsson and C. Wohlin. Assuring fault classification agreement
- an empirical evaluation. In 2004 International Symposium on Empiri-
cal Software Engineering, 2004. ISESE ’04. Proceedings, pages 95–104,
August 2004.

[21] Chang-Seo Park and Koushik Sen. Randomized active atomicity violation
detection in concurrent programs. In Proceedings of the 16th ACM SIG-
SOFT International Symposium on Foundations of software engineering,
pages 135–145. ACM, 2008.

[22] Leon Li Wu and Gail E. Kaiser. Constructing subtle concurrency bugs us-
ing synchronization-centric second-order mutation operators. Technical
report, Columbia University, 2011.

[23] Noriaki Yoshiura and Wei Wei. Static data race detection for java pro-
grams with dynamic class loading. In Internet and Distributed Comput-
ing Systems, pages 161–173. Springer, 2014.

[24] Shameen Akhter and Jason Roberts. Multi-core programming, vol-
ume 33. Intel press Hillsboro, 2006.

[25] Wenwen Wang, Zhenjiang Wang, Chenggang Wu, Pen-Chung Yew,
Xipeng Shen, Xiang Yuan, Jianjun Li, Xiaobing Feng, and Yong Guan.
Localization of concurrency bugs using shared memory access pairs. In
Proceedings of the 29th ACM/IEEE international conference on Auto-
mated software engineering, pages 611–622. ACM, 2014.

[26] Ghazia Zaineb and Irfan Anjum Manarvi. Identification And Analysis
Of Causes For Software Bug Rejection With Their Impact Over Testing
Efficiency. International Journal of Software Engineering & Applications
(IJSEA), 2(4), 2011.

46 Bibliography

[27] Ryan Eccles, Blair Nonneck, Deborah Stacey, and others. Exploring par-
allel programming knowledge in the novice. In High Performance Com-
puting Systems and Applications, 2005. HPCS 2005. 19th International
Symposium on, pages 97–102. IEEE, 2005.

[28] Ryan Eccles, Deborah Stacey, and others. Understanding the parallel
programmer. In High-Performance Computing in an Advanced Collab-
orative Environment, 2006. HPCS 2006. 20th International Symposium
on, page 12. IEEE, 2006.

[29] Lorin Hochstein, Jeffrey Carver, Forrest Shull, Shadnaz Asgari, Victor
Basili, Jeffrey K. Hollingsworth, and Marvin V. Zelkowitz. Parallel pro-
grammer productivity: A case study of novice parallel programmers. In
Supercomputing, 2005. Proceedings of the ACM/IEEE SC 2005 confer-
ence, pages 35–35. IEEE, 2005.

[30] Jan Lönnberg and Anders Berglund. Students’ understandings of concur-
rent programming. In Proceedings of the Seventh Baltic Sea Conference
on Computing Education Research-Volume 88, pages 77–86. Australian
Computer Society, Inc., 2007.

[31] Jan Lönnberg, Lauri Malmi, and Mordechai Ben-Ari. Evaluating a vi-
sualisation of the execution of a concurrent program. In Proceedings of
the 11th Koli Calling International Conference on Computing Education
Research, pages 39–48. ACM, 2011.

[32] Sebastian Nanz, Scott West, and Kaue Soares Da Silveira. Examining the
expert gap in parallel programming. In Euro-Par 2013 Parallel Process-
ing, pages 434–445. Springer, 2013.

[33] Jan Lönnberg, Lauri Malmi, and Anders Berglund. Helping Students
Debug Concurrent Programs. In Proceedings of the 8th International
Conference on Computing Education Research, Koli ’08, pages 76–79,
New York, NY, USA, 2008. ACM.

[34] Caitlin Sadowski and Jaeheon Yi. User Evaluation of Correctness Con-
ditions: A Case Study of Cooperability. In Evaluation and Usability of
Programming Languages and Tools, PLATEAU ’10, pages 2:1–2:6, New
York, NY, USA, 2010. ACM.

Bibliography 47

[35] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from
mistakes: a comprehensive study on real world concurrency bug char-
acteristics. In ACM Sigplan Notices, volume 43, pages 329–339. ACM,
2008.

[36] Rui Gu, Guoliang Jin, Linhai Song, Linjie Zhu, and Shan Lu. What
change history tells us about thread synchronization. In Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, pages 426–438. ACM, 2015.

[37] J. Schimmel, K. Molitorisz, and W.F. Tichy. An evaluation of data race
detectors using bug repositories. In Computer Science and Information
Systems (FedCSIS), 2013 Federated Conference on, pages 1361–1364,
Sept 2013.

[38] Swarup Kumar Sahoo, John Criswell, and Vikram Adve. An empirical
study of reported bugs in server software with implications for automated
bug diagnosis. In Proceedings of the 32Nd ACM/IEEE International Con-
ference on Software Engineering, volume 1 of ICSE ’10, pages 485–494,
May 2010.

[39] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Madanlal Musuvathi,
Shaz Qadeer, and Thomas Ball. Chess: A systematic testing tool for
concurrent software. Microsoft Research, 38:39, 2007.

[40] Klaus Havelund and Thomas Pressburger. Model checking java programs
using java pathfinder. International Journal on Software Tools for Tech-
nology Transfer, 2(4):366–381, 2000.

[41] Gowritharan Maheswara, Jeremy S. Bradbury, and Christopher Collins.
Tie: An interactive visualization of thread interleavings. In Proceedings
of the 5th international symposium on Software visualization, pages 215–
216. ACM, 2010.

[42] Steven P. Reiss and Manos Renieris. Demonstration of JIVE and JOVE:
Java as it happens. In Software Engineering, 2005. ICSE 2005. Proceed-
ings. 27th International Conference on, pages 662–663. IEEE, 2005.

[43] Steven P. Reiss and Suman Karumuri. Visualizing threads, transactions
and tasks. In Proceedings of the 9th ACM SIGPLAN-SIGSOFT work-
shop on Program analysis for software tools and engineering, pages 9–
16. ACM, 2010.

46 Bibliography

[27] Ryan Eccles, Blair Nonneck, Deborah Stacey, and others. Exploring par-
allel programming knowledge in the novice. In High Performance Com-
puting Systems and Applications, 2005. HPCS 2005. 19th International
Symposium on, pages 97–102. IEEE, 2005.

[28] Ryan Eccles, Deborah Stacey, and others. Understanding the parallel
programmer. In High-Performance Computing in an Advanced Collab-
orative Environment, 2006. HPCS 2006. 20th International Symposium
on, page 12. IEEE, 2006.

[29] Lorin Hochstein, Jeffrey Carver, Forrest Shull, Shadnaz Asgari, Victor
Basili, Jeffrey K. Hollingsworth, and Marvin V. Zelkowitz. Parallel pro-
grammer productivity: A case study of novice parallel programmers. In
Supercomputing, 2005. Proceedings of the ACM/IEEE SC 2005 confer-
ence, pages 35–35. IEEE, 2005.

[30] Jan Lönnberg and Anders Berglund. Students’ understandings of concur-
rent programming. In Proceedings of the Seventh Baltic Sea Conference
on Computing Education Research-Volume 88, pages 77–86. Australian
Computer Society, Inc., 2007.

[31] Jan Lönnberg, Lauri Malmi, and Mordechai Ben-Ari. Evaluating a vi-
sualisation of the execution of a concurrent program. In Proceedings of
the 11th Koli Calling International Conference on Computing Education
Research, pages 39–48. ACM, 2011.

[32] Sebastian Nanz, Scott West, and Kaue Soares Da Silveira. Examining the
expert gap in parallel programming. In Euro-Par 2013 Parallel Process-
ing, pages 434–445. Springer, 2013.

[33] Jan Lönnberg, Lauri Malmi, and Anders Berglund. Helping Students
Debug Concurrent Programs. In Proceedings of the 8th International
Conference on Computing Education Research, Koli ’08, pages 76–79,
New York, NY, USA, 2008. ACM.

[34] Caitlin Sadowski and Jaeheon Yi. User Evaluation of Correctness Con-
ditions: A Case Study of Cooperability. In Evaluation and Usability of
Programming Languages and Tools, PLATEAU ’10, pages 2:1–2:6, New
York, NY, USA, 2010. ACM.

Bibliography 47

[35] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from
mistakes: a comprehensive study on real world concurrency bug char-
acteristics. In ACM Sigplan Notices, volume 43, pages 329–339. ACM,
2008.

[36] Rui Gu, Guoliang Jin, Linhai Song, Linjie Zhu, and Shan Lu. What
change history tells us about thread synchronization. In Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, pages 426–438. ACM, 2015.

[37] J. Schimmel, K. Molitorisz, and W.F. Tichy. An evaluation of data race
detectors using bug repositories. In Computer Science and Information
Systems (FedCSIS), 2013 Federated Conference on, pages 1361–1364,
Sept 2013.

[38] Swarup Kumar Sahoo, John Criswell, and Vikram Adve. An empirical
study of reported bugs in server software with implications for automated
bug diagnosis. In Proceedings of the 32Nd ACM/IEEE International Con-
ference on Software Engineering, volume 1 of ICSE ’10, pages 485–494,
May 2010.

[39] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Madanlal Musuvathi,
Shaz Qadeer, and Thomas Ball. Chess: A systematic testing tool for
concurrent software. Microsoft Research, 38:39, 2007.

[40] Klaus Havelund and Thomas Pressburger. Model checking java programs
using java pathfinder. International Journal on Software Tools for Tech-
nology Transfer, 2(4):366–381, 2000.

[41] Gowritharan Maheswara, Jeremy S. Bradbury, and Christopher Collins.
Tie: An interactive visualization of thread interleavings. In Proceedings
of the 5th international symposium on Software visualization, pages 215–
216. ACM, 2010.

[42] Steven P. Reiss and Manos Renieris. Demonstration of JIVE and JOVE:
Java as it happens. In Software Engineering, 2005. ICSE 2005. Proceed-
ings. 27th International Conference on, pages 662–663. IEEE, 2005.

[43] Steven P. Reiss and Suman Karumuri. Visualizing threads, transactions
and tasks. In Proceedings of the 9th ACM SIGPLAN-SIGSOFT work-
shop on Program analysis for software tools and engineering, pages 9–
16. ACM, 2010.

48 Bibliography

[44] Sangmin Park, Richard W. Vuduc, and Mary Jean Harrold. Falcon:
Fault Localization in Concurrent Programs. In Proceedings of the 32Nd
ACM/IEEE International Conference on Software Engineering - Volume
1, ICSE ’10, pages 245–254, New York, NY, USA, 2010. ACM.

[45] Sangmin Park, Richard Vuduc, and Mary Jean Harrold. UNICORN: a
unified approach for localizing non-deadlock concurrency bugs. Software
Testing, Verification and Reliability, 25(3):167–190, 2015.

[46] Sangmin Park, Mary Jean Harrold, and Richard Vuduc. Griffin: group-
ing suspicious memory-access patterns to improve understanding of con-
currency bugs. In Proceedings of the 2013 International Symposium on
Software Testing and Analysis, pages 134–144. ACM, 2013.

[47] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and
Thomas Anderson. Eraser: A dynamic data race detector for multi-
threaded programs. ACM Trans. Comput. Syst., 15(4):391–411, Novem-
ber 1997.

[48] Cormac Flanagan and Stephen N. Freund. Fasttrack: Efficient and precise
dynamic race detection. In Proceedings of the 30th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI
’09, pages 121–133, New York, NY, USA, 2009. ACM.

[49] Daniel Marino, Madanlal Musuvathi, and Satish Narayanasamy. Literace:
Effective sampling for lightweight data-race detection. In Proceedings of
the 30th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’09, pages 134–143, New York, NY, USA,
2009. ACM.

[50] John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, and Kirk
Olynyk. Effective data-race detection for the kernel. In OSDI, volume 10,
pages 1–16, 2010.

[51] Armin Biere Cyrille Artho, Klaus Havelund. High-level data races. In
journal on software testing, verification and reliability (STVR), pages 1–
12, 2003.

[52] Min Xu, Rastislav Bodı́k, and Mark D. Hill. A serializability violation
detector for shared-memory server programs. In Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, PLDI ’05, pages 1–14, 2005.

Bibliography 49

[53] Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. Avio: Detect-
ing atomicity violations via access interleaving invariants. In Proceed-
ings of the 12th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS XII, pages
37–48. ACM, 2006.

[54] Ruirui Huang, Erik Halberg, and G. Edward Suh. Non-race concurrency
bug detection through order-sensitive critical sections. In Proceedings
of the 40th Annual International Symposium on Computer Architecture,
ISCA ’13, pages 655–666, New York, NY, USA, 2013. ACM.

[55] Chun-Hung Hsiao, Jie Yu, Satish Narayanasamy, Ziyun Kong, Cris-
tiano L. Pereira, Gilles A. Pokam, Peter M. Chen, and Jason Flinn. Race
detection for event-driven mobile applications. In Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, PLDI ’14, pages 326–336. ACM, 2014.

[56] Boris Petrov, Martin Vechev, Manu Sridharan, and Julian Dolby. Race
detection for web applications. In Proceedings of the 33rd ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion, PLDI ’12, pages 251–262. ACM, 2012.

[57] Veselin Raychev, Martin Vechev, and Manu Sridharan. Effective race
detection for event-driven programs. In Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming
Systems Languages; Applications, OOPSLA ’13, pages 151–166, New
York, NY, USA, 2013. ACM.

[58] Maria Brito, Katia R. Felizardo, Paulo Souza, and Simone Souza. Con-
current Software Testing: A Systematic Review. on Testing Software and
Systems: Short Papers, page 79, 2010.

[59] Peng Wang, Xiaofang Qi, Xiaoyu Zhou, and Xiang Zhang. Multithread
Deterministic Replay Debugging: The State of The Art. International
Journal of Advancements in Computing Technology, 4(23), 2012.

[60] Shin Hong and Moonzoo Kim. A survey of race bug detection techniques
for multithreaded programmes. Software Testing, Verification and Relia-
bility, 25(3):191–217, 2015.

[61] B. Long and P. Strooper. A classification of concurrency failures in java
components. In Parallel and Distributed Processing Symposium, 2003.
Proceedings. International, pages 8 pp.–, April 2003.

48 Bibliography

[44] Sangmin Park, Richard W. Vuduc, and Mary Jean Harrold. Falcon:
Fault Localization in Concurrent Programs. In Proceedings of the 32Nd
ACM/IEEE International Conference on Software Engineering - Volume
1, ICSE ’10, pages 245–254, New York, NY, USA, 2010. ACM.

[45] Sangmin Park, Richard Vuduc, and Mary Jean Harrold. UNICORN: a
unified approach for localizing non-deadlock concurrency bugs. Software
Testing, Verification and Reliability, 25(3):167–190, 2015.

[46] Sangmin Park, Mary Jean Harrold, and Richard Vuduc. Griffin: group-
ing suspicious memory-access patterns to improve understanding of con-
currency bugs. In Proceedings of the 2013 International Symposium on
Software Testing and Analysis, pages 134–144. ACM, 2013.

[47] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and
Thomas Anderson. Eraser: A dynamic data race detector for multi-
threaded programs. ACM Trans. Comput. Syst., 15(4):391–411, Novem-
ber 1997.

[48] Cormac Flanagan and Stephen N. Freund. Fasttrack: Efficient and precise
dynamic race detection. In Proceedings of the 30th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI
’09, pages 121–133, New York, NY, USA, 2009. ACM.

[49] Daniel Marino, Madanlal Musuvathi, and Satish Narayanasamy. Literace:
Effective sampling for lightweight data-race detection. In Proceedings of
the 30th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’09, pages 134–143, New York, NY, USA,
2009. ACM.

[50] John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, and Kirk
Olynyk. Effective data-race detection for the kernel. In OSDI, volume 10,
pages 1–16, 2010.

[51] Armin Biere Cyrille Artho, Klaus Havelund. High-level data races. In
journal on software testing, verification and reliability (STVR), pages 1–
12, 2003.

[52] Min Xu, Rastislav Bodı́k, and Mark D. Hill. A serializability violation
detector for shared-memory server programs. In Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, PLDI ’05, pages 1–14, 2005.

Bibliography 49

[53] Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. Avio: Detect-
ing atomicity violations via access interleaving invariants. In Proceed-
ings of the 12th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS XII, pages
37–48. ACM, 2006.

[54] Ruirui Huang, Erik Halberg, and G. Edward Suh. Non-race concurrency
bug detection through order-sensitive critical sections. In Proceedings
of the 40th Annual International Symposium on Computer Architecture,
ISCA ’13, pages 655–666, New York, NY, USA, 2013. ACM.

[55] Chun-Hung Hsiao, Jie Yu, Satish Narayanasamy, Ziyun Kong, Cris-
tiano L. Pereira, Gilles A. Pokam, Peter M. Chen, and Jason Flinn. Race
detection for event-driven mobile applications. In Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, PLDI ’14, pages 326–336. ACM, 2014.

[56] Boris Petrov, Martin Vechev, Manu Sridharan, and Julian Dolby. Race
detection for web applications. In Proceedings of the 33rd ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion, PLDI ’12, pages 251–262. ACM, 2012.

[57] Veselin Raychev, Martin Vechev, and Manu Sridharan. Effective race
detection for event-driven programs. In Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming
Systems Languages; Applications, OOPSLA ’13, pages 151–166, New
York, NY, USA, 2013. ACM.

[58] Maria Brito, Katia R. Felizardo, Paulo Souza, and Simone Souza. Con-
current Software Testing: A Systematic Review. on Testing Software and
Systems: Short Papers, page 79, 2010.

[59] Peng Wang, Xiaofang Qi, Xiaoyu Zhou, and Xiang Zhang. Multithread
Deterministic Replay Debugging: The State of The Art. International
Journal of Advancements in Computing Technology, 4(23), 2012.

[60] Shin Hong and Moonzoo Kim. A survey of race bug detection techniques
for multithreaded programmes. Software Testing, Verification and Relia-
bility, 25(3):191–217, 2015.

[61] B. Long and P. Strooper. A classification of concurrency failures in java
components. In Parallel and Distributed Processing Symposium, 2003.
Proceedings. International, pages 8 pp.–, April 2003.

[62] G.M. Tchamgoue, O.-K. Ha, K.-H. Kim, and Y.-K. Jun. A taxonomy
of concurrency bugs in event-driven programs. In Communications in
Computer and Information Science, volume 257 CCIS, pages 437–450,
2011.

[63] D.P. Helmbold and C.E. McDowell. A taxonomy of race conditions. J.
Parallel Distrib. Comput., 33(2):159–164, March 1996.

[64] William Stallings. Operating Systems- internals and design principles,
volume 7th. Prentice Hall Englewood Cliffs, 2012.

[65] Yogesh Bhatia and Sanjeev Verma. Deadlocks in distributed systems.
International Journal of Research, 1(9):1249–1252, 2014.

[66] Barbara Chapman, Gabriele Jost, and Ruud Van Der Pas. Using OpenMP:
portable shared memory parallel programming, volume 10. MIT press,
2008.

[67] Shiyao Lin, Andy Wellings, and Alan Burns. Supporting lock-based
multiprocessor resource sharing protocols in real-time programming lan-
guages. Concurrency and Computation: Practice and Experience,
25(16):2227–2251, 2013.

[68] Deepal Jayasinghe and Pengcheng Xiong. CORE: Visualization tool for
fault localization in concurrent programs. 2010.

[69] Sangmin Park, Richard Vuduc, and Mary Jean Harrold. A unified ap-
proach for localizing non-deadlock concurrency bugs. In Software Test-
ing, Verification and Validation (ICST), 2012 IEEE Fifth International
Conference on, pages 51–60. IEEE, 2012.

II

Included Papers

51

