
Thesis no: MSCS-2016-04

Comparison of A*, Euclidean and Manhattan
distance using Influence Map in Ms. Pac-Man

Sudip Karki
Hari Sagar Ranjitkar

Faculty of Computing

Blekinge Institute of Technology

SE-371 79 Karlskrona Sweden

This thesis is submitted to the School of Computing at Blekinge Institute of Technology

in partial fulfillment of the requirements for the degree of Master of Science in Computer

Science. The thesis is equivalent to 20 weeks of full time studies.

Contact Information:
Author(s):
Sudip Karki
E-mail: sukc10@student.bth.se

Hari Sagar Ranjitkar
E-mail: hara10@student.bth.se

University advisor(s):
Professor Lars Lundberg
Associate Prof. Stefan Johansson
Department of Computer Science and En-
gineering

Faculty of Computing Internet : www.bth.se
Blekinge Institute of Technology Phone : +46 455 38 50 00
SE-371 79 Karlskrona, Sweden Fax : +46 455 38 50 57

Abstract

Context An influence map and potential fields are used
for finding path in domain of Robotics and Gaming in AI.
Various distance measures can be used to find influence
maps and potential fields. However, these distance mea-
sures have not been compared yet.
Objectives In this paper, we have proposed a new algo-
rithm suitable to find an optimal point in parameters space
from random parameter spaces. Finally, comparisons are
made among three popular distance measures to find the
most efficient.
Methodology For our RQ1 and RQ2, we have imple-
mented a mix of qualitative and quantitative approach and
for RQ3, we have used quantitative approach.
Results A* distance measure in influence maps is more ef-
ficient compared to Euclidean and Manhattan in potential
fields.
Conclusions Our proposed algorithm is suitable to find
optimal point and explores huge parameter space. A* dis-
tance in influence maps is highly efficient compared to Eu-
clidean and Manhattan distance in potentials fields. Eu-
clidean and Manhattan distance performed relatively sim-
ilar whereas A* distance performed better than them in
terms of score in Ms. Pac-Man (See Appendix A).

Keywords: Ms. Pac-Man, algorithm, influence maps, po-
tential fields, distance measure, A*, Euclidean, Manhattan,
optimal parameter space.

i

Acknowledgements

We would like to thank Stefan J. Johansson and Lars Lundberg for their incredible
support and guidance to fulfill the task successfully. We want to express our
gratitude towards Blekinge Institute of technology for providing all the necessary
support and resources so as to complete the thesis fruitfully.

List of Figures

1.1 A generic influence map in GO showing the black and white stones
influence in its surrounding upto 8 tiles further away. Figure with
permission from Niklas Hansson [8]. 2

1.2 The intensity map of all positions in a map in ORTS.Figure with
the permission by Hagelback and Johansson [8] 2

1.3 Manhattan Distance Representation 5
1.4 A* Search algorithm Representation 6

3.1 Decrement & Increment of single value 18
3.2 Selection of value based on score 18

5.1 Results of the highest scores using A* 24
5.2 Optimization of scores using algorithm in A* 25
5.3 Frequency of set of weights in iterations using A* 26
5.4 Set of weights between high score 10,000 and 12,000 using A* . . 27
5.5 Set of weights greater than high score 12000 using A* 27
5.6 Count of games played in algorithm to collect high score using A* 28
5.7 Random score frequency for A* 30
5.8 Optimal points of individual distance. 30
5.9 Euclidean vs A* Comparison. 33
5.10 Manhattan vs A* Comparison. 33

A.1 Ms. Pac-Man Maze. 49
A.2 Mazes. 51

iii

List of Tables

2.1 Search results of literature review 9

5.1 t-test . 31
5.2 t-test . 31
5.3 t-test . 32

iv

Contents

Abstract i

1 Introduction 1
1.1 Pac-Man . 1
1.2 Potential Field and Influence Maps 1
1.3 Euclidean, Manhattan distances and A* search algorithm 4
1.4 Difference among Euclidean, Manhattan distances and A* search

algorithm . 5
1.5 Related works . 6

2 Problem Description and Statement 8
2.1 Problem and Research gap . 8
2.2 Aims and objectives . 9
2.3 Research Questions . 9
2.4 Research Methodology . 9

2.4.1 Literature Review . 9
2.4.2 Methodology . 10
2.4.3 Outcomes . 11

3 Ms. Pac-Man Implementation 12
3.1 Influence Map description . 12
3.2 Generic Influence Map Function 12
3.3 Categorizing Influence . 13
3.4 Influence of Ms. Pac-Man . 13

3.4.1 The Fields of Power Pills 13
3.4.2 The Fields of Normal Pills 14
3.4.3 The Fields of Edible Ghosts 14
3.4.4 The Fields of Junctions . 15
3.4.5 The Fields of Ghosts . 15
3.4.6 The Total Influence . 15

3.5 Optimal Parameter Space . 16

v

4 Experiments 19
4.1 Goal of the experiment . 19
4.2 Motivation . 19
4.3 Experiment Planning . 19
4.4 Experiment Instrumentation . 21

4.4.1 Experiment Phase 1 . 22
4.4.2 Experiment Phase 2 . 22

5 Result and Analysis 24
5.1 Result of Experiment 1 . 24

5.1.1 Score optimization . 25
5.1.2 Iteration used . 26
5.1.3 Set of weights from highest score after applying algorithm 27
5.1.4 Comparison with equal sample using random set of weights 28
5.1.5 Hypothesis I Random optimized Score and A* Optimized

Score . 31
5.1.6 Hypothesis II Random optimized Score and Euclidean Op-

timized Score . 31
5.1.7 Hypothesis III Random optimized Score and Manhattan

Optimized Score . 32
5.2 Experiment 2 Results . 32

5.2.1 Euclidean and A* . 33
5.2.2 Manhattan and A* . 33

5.3 Conclusion . 34

6 Discussion and Validity Threats 35
6.1 Discussion . 35
6.2 Validity Threats . 36

6.2.1 Internal validity . 36
6.3 External validity . 36

7 Conclusion 38

8 Future Work 39

References 40

A Appendix 43
A.1 Ms. Pac-Man . 49

A.1.1 Ghosts . 49
A.1.2 Lair . 50
A.1.3 Pac-Man . 50
A.1.4 Normal Pills . 50
A.1.5 Power Pills . 50

vi

A.1.6 Fruits . 50
A.1.7 Junctions . 50
A.1.8 Teleports . 50

vii

Chapter 1

Introduction

1.1 Pac-Man

Pac-Man is a popular arcade game originally produced by Midway and developed
by Toru Iwatani for Namco Company in year 1981 [1]. The best variant of
the game is Ms. Pac-Man was released later in 1981. It introduced a female
character, new maze designs and several gameplay changes[10]. Screenshots of
the game are shown in Figure A.1 and Figure A.2 in the appendix: Ms. Pac-Man
moves around the maze, eating pills for points while trying to avoid the four
ghosts (Blinky,Pinky,Inky and Sue) who strive to eat Ms. Pac-Man[10]. The four
power-pills that appear randomly at the corners of the maze allow Ms. Pac-Man
to eat the ghosts for a specified time period to gain additional points, during this
specified time the ghosts turn blue.

1.2 Potential Field and Influence Maps

Potential field and influence maps are the techniques that address similar kinds
of problems using the similar ideas [8]. Both of them are based on attractive and
repelling forces.

In potential fields, a destination attracts its surroundings by reflecting a field
with a strength that is a function of e.g. the Euclidean distance between the
source and the destination. This facilitates the source to choose among a number
of lookahead positions to move towards destination and the choice is made in
terms of highest potential position[13].

Influence map is such a property in which the adjacent tiles are influenced
by object and the adjacent tiles are respectively influenced by the neighboring
tiles forming a propagation of influences in the source which is far away [13].
The source which is moving towards the destination then compares the influences
among the possible look ahead positions and picks the path having highest in-
fluence. This means the chosen path is such that the source is nearest to the

1

Chapter 1. Introduction 2

destination and influence is decreasing gradually with the distance.

There are some differences between potential fields and influence maps. The
propagation in potential field is not terrain sensitive i.e. the propagation is not
blocked when there is a wall between source and destination. Whereas, the prop-
agation of influence maps is terrain sensitive i.e. the propagation can be blocked
when there is a wall that hinders the motion resulting to follow the maze path.
In this case, the shortest path algorithm (A*) can be used to compute influence
since the influence follow the paths of a maze and do not propagate through walls
whereas Euclidean and Manhattan distance metrics are used to compute poten-
tial field.
Although, potential field methods and influence maps are similar techniques that
are used for obstacle avoidance applications. Potential field is rapidly used in
robots and mobile robots whereas influence map is used in gaming industry [18].

The generic influence map in GO showing black and white stones influence is
represented diagrammatically in Figure 1.1. Figure 1.2 shows the intensity map
of all positions in a map in ORTS.

Figure 1.1: A generic influence map in
GO showing the black and white stones in-
fluence in its surrounding upto 8 tiles fur-
ther away. Figure with permission from
Niklas Hansson [8].

Figure 1.2: The intensity map of all po-
sitions in a map in ORTS.Figure with the
permission by Hagelback and Johansson [8]
.

The figure 1.1 is an example of influence map whereas the figure 1.2 is an
example of potential field. Influence map is very important in Go board segmen-
tation [20]. Among the authors many analogies, board domination is the one he
is highly interested in. In this board domination, black stone is situated in the

Chapter 1. Introduction 3

upperleft influences neighboring tiles. Similarly, it influences again its adjacent
tiles. In this way, the influence is radiated upto 8 tiles further from the black stone
in this particular example. Likewise, white stone that is situated in the bottom
right influences the adjacent tiles and this in turn influences its neighbours. The
influence of black stone and white stone cancel each other in middle portion of
the board and we have a diagonal line there.

It is assumed that a game is in progress and the board position is stored. The
position is transferred to a 19X19 integer matrix by placing 50 for each black
stone, -50 for each white stone, and 0 elsewhere. Then each point which is posi-
tive sends out +1 to each of its four neighbors, and each negative point sends out
-1 to each of its neighbors. These numbers are accumulated as this procedure is
repeated four times [20].

Other analogies of the author in influence map includes drops of oil and water
on a blotted paper and heat conduction. In heat conduction analogy, by altering
the thermal conductivity at any point on the plate, we can change the influencing
ability.It seems to be a very simple thing when we give a glance but but it is still
worthy when we gaze and think of the composite plate consisting of various things
added together representing the terrain in the map. For instance, if the certain
map section is made up of styrofoam or aluminum, the heat conduction does
not take place. So, we need to define about the influence conduction in various
terrain type. We can assume that mountainous terrain conduct like styrofoam,
plains like aluminum, roads like gold, forest like steel . Jason Kester [4].The heat
conduction is analogous to amount of influence which is spread to the neighbors.

The use of influence maps are becoming more popular in gaming industry.
An author known as Mat Buckland has referred influence maps for using simple
array of data and each element from this data array represents data about the
specific world position. Influence maps are regarded as 2D grid overlaid in the
world [5]. Influence maps are mostly used in Real time Strategy(RTS) games.
In RTS games, influence maps represent areas of various agents. For instance,
various players have positive influence over energy sources and negative influence
over kill zones. The proper and efficient decision making is possible by querying
influence maps by AI techniques [5].

There are some problems with using influence maps. The first is that cal-
culation of influences is expensive. The cost varies according to the types of
applications. For instance, some applications are required to update most of the
time whereas others require updating only some regions [5].

The advantage of influence maps is that it can be queried for required infor-
mation regarding the certain position by an AI entity for a particular constant

Chapter 1. Introduction 4

time. This is greatly important in RTS games in particular since various calcula-
tions like finding the safe way out reduces cost to very high extent. The simple
and easy visualization of influences is another advantage of influence maps.

In influence maps model various agents in the game maze like normal pills,
power pills and ghosts radiate an influence over a certain space and sum of all these
influences gives the influence map of that space. So, it is such a property in game
world that represents favorable or unfavorable region for motion by calculating
the influence maps of that region. If the value is positive, it is favorable to
move on in that region otherwise not. In terms of Ms. Pac-Man, the normal
pills, power pills, edible ghosts, junctions, teleports emit the positive influences
whereas inedible ghosts are the negative influences.

1.3 Euclidean, Manhattan distances and A* search

algorithm

Euclidean distance computes the root of square difference between co-ordinates
of pair of objects [17]. Mathematically, it can be represented as

d(x,y) =

√
n∑
i=1

(xi − yi)2

Manhattan distance computes the absolute differences between coordinates of
pair of objects [17].

Mathematically, it can be represented as

d(x,y) =
n∑
i=1

|(xi − yi)|

Euclidean and Manhattan distance measures can be graphically represented
as follows.

In the above figure the green line represents Euclidean distance whereas red,
blue and yellow lines are used to represent Manhattan distances.

A* is a computer algorithm that is widely used in path finding and graph
traversal, the process of plotting an efficiently traversable path between points,
called nodes. A* uses a best-first search and finds a least-cost path from a given
initial node to one goal node (out of one or more possible goals)

A* search algorithm is graphically represented in Fig 1.4.

Chapter 1. Introduction 5

Figure 1.3: Manhattan Distance Representation

1.4 Difference among Euclidean, Manhattan dis-

tances and A* search algorithm

Euclidean distance is the shortest path between source and destination which is
a straight line as shown in Figure 1.3. but Manhattan distance is sum of all the
real distances between source(s) and destination(d) and each distance are always
the straight lines as shown in Figure 1.4. So, there can be more than one possible
Manhattan distances in a maze and Ms. Pac-Man follows any of the path among
them in a maze.

The distance metrics itself can not be considered as terrain sensitive or not.
The use of potential field and influence map in the three different distance metrics
make them either terrain sensitive or not. Potential field is not terrain sensitive
i.e. it does not take terrain of map into account meaning it is unable to recognize
the presence of wall between the source and destination. This facilitates the
propagation possible through or over the walls. In the other hand, influence map
is terrain sensitive i.e. the presence of wall between source and destination affect
the propagation of influences [13].

Since we are comparing A* distance metric in influence map and Euclidean
and Manhattan in potential field in research question 2, this makes A* terrain
sensitive but Euclidean and Manhattan not.

It should be noted that the distance traveled by Ms. Pac-Man from source (s)

Chapter 1. Introduction 6

Figure 1.4: A* Search algorithm Representation

to destination (d) may be substantially greater than Euclidean distance between
s and d since Euclidean distance calculates the shortest path between s and d [2].

1.5 Related works

Many studies have been carried out regarding potential field in the area of spatial
navigation and obstacle avoidance. This method was really helpful to avoid sim-
ple obstacles and the ability to avoid complicated obstacles was possible when it
was used in combination with autonomous navigation approach.

Artificial potential field was introduced by Ossama Khatib in 1985 while he
was looking for real time obstacle avoidance approach for manipulators and mo-
bile robots [6]. Potential field in multi-agent system is providing good results.
Howard et. al developed the mobile sensor like robot soccer using potential field.

Computational Intelligence and Games (CIG) conference is a competition that
is held yearly since 2008. It has come up with many fruitful and increased level
research activities with various solutions in Ms. Pac-Man controller [13].

The early attempts to construct Pac-Man controllers include the work of Koza,
Gallagher and Ryan. Koza used genetic programming based approach as a rem-
edy to static ghost movement since Pac-Man shows the deterministic behaviour

Chapter 1. Introduction 7

of the movement of the ghosts. Gallagher and Ryan applied the weighted set of
rules which is dependent on the results of the previous set of games.

Robles and Lucas applied the tree-based search and got a very good result in
terms of score by reaching a depth of forty moves ahead in the search. This work
was further carried by Samothrakis et al. by using Monte Carlo tree search with
certain tree depth allowing to find the paths better than the earlier one.

In 2008, Wirth and Gallagher presented a solution stating the use of influence
maps. Their model comprised of three main parameters that have intuitional
relation with the behaviour of agents. They have used the greedy algorithm, ran-
dom, systematic and global exploration method to show the experimental results
that explores the model performance over its parameter space [18]. The model
of Wirth and Gallagher stems to three dimensional optimization problem. They
used greedy algorithm and it took steps in random directions in the parameter
space. The step size was slowly deducted in a certain period of search. They
have used the Euclidean distance measure in their proposed equation. They con-
structed the influence map model only by taking accounts of dots, ghosts and
edible ghosts but not the fruits and other attributes of maze like junctions and
lairs.

Despite Wirth and Gallagher states the use of Influence map in their paper,
Svensson in ”Influence-map based controllers for Ms. Pac-Man and the Ghosts”
claims the use of potential field in this paper. Johan Svensson and Stefan J.
Johansson have implemented influence map based controller both for the Ms.
Pac-Man and the ghosts. They have used A* distance measure algorithm for
calculating the influence [13].

Svensson claimed that Wirth Gallagher has not implemented influence map
rather it is a potential field. Moreover, they said that their implementation is
influence map. Although, there is slight difference between potential field and
influence map but both of them can be represented by same equation. The major
differences between Wirth Gallagher and Svensson are they have used different
pacman controller , different distance measures i.e. Wirth Gallagher has used
Euclidean but Svensson has used A*. They have used different algorithm to find
optimal space. These distances are not compared in the same environment with
same controller and with the same algorithm. Despite of having less differences
the same equation is used for both potential field and influence map. Moreover,
influence map is more commonly used in gaming field. In rest of our thesis ,
we will be representing both potential field and influence map as influence map.
Also, we will have single equation which will derive potential field and influence
map based on the distance measure used.

Chapter 2

Problem Description and Statement

2.1 Problem and Research gap

Wirth and Gallagher have only used Euclidean distance whereas Johan Svensson
and Stefan J. Johansson have only used A* distance measure . As discussed in
Section 1.4, the controllers used in their experiments are different and the algo-
rithm used to find optimal space are also different.

The three distance measures Euclidean, Manhattan and A* have not been
compared

1. Together.

2. With the same controller.

3. With the same algorithm.

We will be using Ms. Pac-Man vs Ghost controllers which provides interface
to calculate euclidean, manhattan and A* distance for given two points.

Ms. Pac-Man Maze has a grid structure i.e. the travel path used by ghost
and pacman is either a straight line, right angle or numerous combination of right
angle. It is relevant to compare Euclidean distance and Manhattan distance.

Moreover, Ms. Pac-Man maze has numerous routes to the destination. As A*
find the least cost path between numerous routes therefore it is worth to com-
pare three way comparison between Euclidean, Manhattan and A*. A* is costly
in terms of calculation therefore it may not be suitable in real time scenario
however Ms. Pac-Man vs Ghost controller provides pre calculated A* distance
measure which loads during the start of the game.

The three way comparison is important because distance measure is not only
the factor to improve the highest score, in addition to distance measure various
strategy can be applied in Ms. Pac man game which will result more score. i.e.

8

Chapter 2. Problem Description and Statement 9

one can implement euclidean distance measure with good gaming strategy and
yield more score than A* implementation.

2.2 Aims and objectives

The main aim of this paper is to find the efficient distance measure algorithm
in Ms. Pac-Man for influence map. To achieve the aim of the paper following
objectives have to be fulfilled.

2.3 Research Questions

1. what is the increment of score from random parameter space in Ms. Pac-
Man to optimal parameter space in Ms. Pac-Man by the algorithm ?

2. Is the algorithm able to perform better than random optimal parameter
space ?

3. Which distance measure among A*, Euclidean and Manhattan will provide
highest score when run in same algorithm, controller and environment ?

2.4 Research Methodology

2.4.1 Literature Review

Table 2.1 Search results of literature review
Keywords IEEE Inspec ACM
pacman 43 114 22
Ms. Pac-Man 50 53 54
Ms. Pac-Man and Artificial intelligence 32 31 7
Ms. Pac-Man and Potential field 2 3 0
Ms. Pac-Man and Potential field 2 1 0
Ms. Pac-Man and potential field and influence map 1 2 0

For the literature review, studies related to Ms. Pac-Man, artificial intelli-
gence and finally path finding solutions like potential field and influence maps
were considered.

We performed search in six different stages where we have used different sets
of keywords each time. The choice of keyword were initially chosen as Pacman
and this yielded many research papers. Then, the search is narrowed down by

Chapter 2. Problem Description and Statement 10

focusing on the advanced version of Pacman i.e. Ms. Pac-Man. After this, search
was performed gradually by focusing on one of the modern approaches known
as artificial intelligence. Similarly we targeted our search to potential field and
influence maps since these two terminologies are the focus areas in our research.
The table shows the results and the list of keywords used for searching the dif-
ferent databases. The databases used were IEEE, Inspec and ACM.

By the literature review that we have conducted 271 Journals and Conference
papers were obtained. These results were filtered by an exclusion criterion to
contain only full text. This resulted to only 157 results. After this, this result
was refined further so that the articles are after 1999 A.D. or last 15 years which
reduced the result to 70 results. The titles and abstract of all these 70 papers were
reviewed and only 15 papers were selected that seem to be relevant for our thesis.
Most of the papers were excluded because they focused on decision tree search
algorithm. Instead the papers that dealt with hill climbing algorithm, potential
field and influence maps were chosen from a lot of papers. Similarly, Papers im-
plementing neural networks, genetic programming are not selected since artificial
intelligence approach is selected for calculating potential fields and influence maps
in our thesis. The reference papers of the selected papers were also taken into
consideration while selecting the papers.

Inclusion and exclusion criteria

Inclusion criteria

1. Papers discussing about artificial intelligence, potential fields and influence
maps are taken into consideration.

2. The latest 15 years papers (Journals and Conference papers only) starting
from 1999 A.D. were taken into consideration.

Exclusion criteria

1. Papers that were published in language other than English are excluded.

2. To maintain the quality standard the papers other than Journals and Con-
ference papers were excluded.

3. The papers lacking full text while searching in database are excluded. This
means those papers which needs to be purchased are excluded.

2.4.2 Methodology

For our RQ1 and RQ2, we will implement a mix of qualitative and quantitative
approach. Firstly, we conduct our review through various types of literatures such

Chapter 2. Problem Description and Statement 11

as books, magazines, articles etc. Among different online databases, we choose
ACM, IEEE explorer and Engineering village for searching literatures. This will
help us to find how distance measures are used in Ms. Pac-Man using AI.

In the second step, we gather information collected in the RQ1 to design,
construct and synthesize qualitative solutions for implementations and conduct
experiment.

For RQ3, we will use quantitative approach. The design in influence model
will be used with various distance metrics algorithm and will be implemented in
Ms. Pac-Man to play with the controller. The result generated from the game
play will be used to analyze and show performance. The performance is shown
by pointing how efficient is distance measure using mean value of score from the
game.

2.4.3 Outcomes

The possible outcome we expect to achieve is a complete game that can be played
with the controller. Graphs show the performance of the algorithms used in Ms.
Pac-Man. The outcome results in list of individual graphs for each distance
measures, distribution of weights used, ghosts, edible ghosts, power pills and
normal pills, frequency graphs and density graphs. Finally, tabular results include
numeric values like scores, optimal points that can be gathered from games. These
collected values will be used for statistical analysis to analyze the results.

Chapter 3

Ms. Pac-Man Implementation

3.1 Influence Map description

In high level perspective, influences generated by object in influence map prop-
agates in map decreasing its influence in each iteration of the tiles in the map.
The influence propagates in this fashion and fades away in distance based on the
weight of the influences the object radiates. The influence map of certain region
in a maze is a sum of all the local influences. For Ms. Pac-Man, normal pills,
power pills, randomly appearing fruits and edible ghosts radiate positive influ-
ences whereas inedible ghosts emit negative influences.

A calculation for this type of radiation from many objects is resource inten-
sive where the calculation should be made in every tile. In our design, we use a
simple calculation to make it effective where we do not care all influences made
along a pathway to origin of the object. Rather, we take the influence in fading
point or instead of influences completely fading away. We calculate the influence
of objects until it reaches near the adjacent tiles of Ms. Pac-Man Lookahead
position.

Lookahead position is adjacent tiles of Ms. Pac-Man. Moreover, one stop
Lookahead position is the adjacent tiles with current position of Ms. Pac-Man.
Ms. Pac-Man has at most four one stop lookahead position. These positions can
also be referred as the directions for Ms. Pac-Man to move, ie. UP, DOWN,
LEFT, RIGHT.

3.2 Generic Influence Map Function

The generic influence map function we use is based on the following definition of
Influence maps.

IfoO(O,wo, lapi) = max
lapi∈LAP

n∑
k=1

wo
dm(lapi, Ok)

where O is the object that radiates positive or negative influence. O can be

12

Chapter 3. Ms. Pac-Man Implementation 13

power pills, normal pills, ghost , edible ghost , lairs. wo is the strength of the
influence of the object O, lapi is the lookahead position of adjacent neighbour of
Ms. Pac-Man where i >= 1 and i <= 4. dm is the distance measure between the
lapi and O where m is the various distance measure through:

m ∈M(Eu,M,A∗)

Eu, M and A* are Euclidean, Manhattan and A-Star distance measures re-
spectively. M is the collection of Distance measures where m is one of the members
of the Objects.

3.3 Categorizing Influence

To calculate the Influences of Ms. Pac-Man, we divide the Influences into 2
distinct categories based on their properties.

1. Positive Influence : Those objects which attract the agent. These objects
radiate a positive value in the maze.

2. Negative Influence : Those objects which repel the agent. These objects
radiate a negative value.

3.4 Influence of Ms. Pac-Man

From Ms. Pac-Man perspective, all the objects in a game can be placed into 2
categories. They are:

1. Positive Influence : Normal Pills, Power Pills, Junctions, Edible Ghosts

2. Negative Influence : Ghosts

We further divide these categorised objects into fields where we discuss how
the individual objects has its influences.The actual Influence map functions used
from the generic functions are:

3.4.1 The Fields of Power Pills

The field of power pill is positive when all four inedible ghosts are near to Ms.
Pac-Man with distance d. If the inedible ghosts are far away from Ms. Pac-Man,
the power pill radiates negative value. Moreover,when ghosts are at edible state,
the field of power pill is negative. So, Ms. Pac-Man will be repelled towards the
power pill and starts to chase the ghosts. Ms. Pac-Man is awarded 50 points for

Chapter 3. Ms. Pac-Man Implementation 14

eating a power pill. The field of power pill can be represented by

IfoP (P,wP , lapi) = max
lapi∈LAP

4∑
k=1

wP
dm(lapi, Pk)

where IfoP (P,wP , lapi) is field of power pills, P is power pill where the maxi-
mum number of power pill is four and wP is weight of power pill.

3.4.2 The Fields of Normal Pills

The field of normal pill is positive when pills are remained to be eaten and inedible
ghosts are far away from Ms. Pac-Man. As soon as the game starts total number
of pills is 250 and eating each pill gives four points. The condition of local optima
occurs when the positive and negative fields are equal in certain position of the
maze. In such condition, she can not move in either directions. Moreover, at the
end of game, when there are fewer number of pills, a small weight is not enough to
attract Ms. Pac-Man in long distance. Therefore, in the beginning of the game,
weight of the normal pills should be less. As the number of pills decreases, the
weight of the normal pills should increase.Here, Np in following equation is used
to prevent these conditions.

The fields of normal pills can be represented by

IfoNp(Np,wNp, lapi) = max
lapi∈LAP

250∑
k=1

wNp
dm(lapi, Npk)

where IfoNp(Np,wNp, lapi) is the field of normal pills, Np is number of normal
pills and its value ranges from 1 to 250, wNp is the weight of normal pills and dm
is the distance between the look ahead position and the normal pill.

3.4.3 The Fields of Edible Ghosts

When Ms. Pac-Man eats the power pills, field of edible ghosts come into exis-
tence. This field emits the positive value. Eating a first edible ghost gives Ms.
Pac-Man value 200 and it successively doubles if other remaining three ghosts are
also eaten by her. So, the total points she is awarded by eating all four ghosts
is 200+400+800+1600=3000. If Ms. Pac-Man eats another power pill when the
ghost are in edible state the value is reset to 200 again.The edible ghosts starts to
blink after certain time after eating power pills and it emits negative influence to
Ms. Pac-Man. The period of transforming from edible state of ghost to inedible
state decreases gradually in higher levels of game. The field of edible ghosts can
be represented by

Chapter 3. Ms. Pac-Man Implementation 15

IfoEg(Eg,wEg, lapi) = max
lapi∈LAP

4∑
k=1

wEg
dm(lapi, Egk)

where IfoEg(Eg,wEg, lapi) is field of edible ghost, Eg is the edible ghost where
maximum number of edible ghost is four and wEg is the weight of edible ghost.

3.4.4 The Fields of Junctions

The junctions in a maze emit a little positive influence.The junctions are used
to escape from ghosts and they are very good escaping points for Ms. Pac-Man
if two ghosts are coming from opposite directions. The ghosts travel in slightly
lower speed in the junctions as compared to the other positions of maze. The
number of junctions is different in different levels of game. When Ms. Pac-Man
is trapped by two or more ghosts, the nearest junction between Ms. Pac-Man
and ghosts is calculated. The field of junction can be represented by

IfoJ(J, wJ , lapi) = max
lapi∈LAP

n∑
k=1

wJ
dm(lapi, Jk)

where IfoJ(J, wJ , lapi) is the field of junction, n is the number of junctions
and its value ranges from 1 to n and n is the highest number of junctions of the
different mazes, wJ is the weight of the junction which has fixed value of two.

3.4.5 The Fields of Ghosts

The ghosts emit the negative influence to Ms. Pac-Man. The field of ghost is
very important because the ghosts are the ones that cause Ms. Pac-Man to die.
The field of ghost can be represented by

IfoG(G,wG, lapi) = max
lapi∈LAP

4∑
k=1

wG
dm(lapi, Gk)

where IfoG(G,wG, lapi) is the field of ghost, wG is the weight of ghost, dm is
the distance between the ghost and Ms. Pac-Man in a maze.

3.4.6 The Total Influence

The total calculation of all Influences made in the lookahead positions is sum of
all the Influences generated in the fields.

Im(lap) = Im(Np, 250,WNp, lap) + Im(Eg, 4,WEg, lap) + Im(G, 4,WG, lap) +
Im(P, 4,WP , lap) + Im(J, n,WJ , lap)
The Im(lap) is calculated for all the look ahead positions. Finally, among all

Chapter 3. Ms. Pac-Man Implementation 16

the Im(lap) the one with the highest value will be chosen as a direction for Ms.
Pac-Man.

3.5 Optimal Parameter Space

The algorithm is relatively close to hill climbing algorithm, which is designed to
find the optimal space for five parameters. These five parameters are Power pills,
Normal pills, Ghosts, Edible ghosts and Junctions.

The algorithm starts by initializing random values for all five parameters. The
range for random values for Ghosts, Edible ghosts and Power pills are between
1 and 400. The range of random values of Normal pills are between 1 to 40. A
random value of Normal pills is not more than 40 because high value for normal
pills leads to local minimum problem. The value of Junction is fixed and set to
2.

The proposed algorithm starts with one of the random values by decrementing
the value as long as the score is improved. Once the score is no longer improved
the algorithm starts incrementing the random value as long as the score is im-
proved. when the value is both incremented and decremented the algorithm makes
selection between incremented and decremented value based on the highest score.

This process is repeated with rest of the random values and selection is made.
The final result will be selection of five optimized values that yielded the high-
est score. This whole process is referred as single iteration. The algorithm then
moves to second iteration but instead of random values optimized values of pre-
vious iteration are used.

The algorithm completes each iteration when all the five values are both incre-
mented and decremented. The first iteration starts with random values whereas
the consecutive iteration starts with optimized values from previous iteration.
The iteration stops when the score can be no longer be improved. The result will
be final optimized values that yielded the highest score among all the iterations.

The pseudo code of algorithm is as follows.

INITIALIZE decrementWeight[5] WITH 4 random number AND 1 constant number 1
SET incrementWeight[5] TO decrementWeight[5] 2
currentIterationAvgScore 3
 4
SET decrementScore TO ZERO 5
SET incrementScore TO ZERO 6
SET highestAverageScore TO ZERO 7
SET currentIterationAvgScore TO ZERO 8
 9
DO 10

IF highestAverageScore <= currentIterationAvgScore THEN 11
SET highestAverageScore to currentIterationAvgScore 12
SET decrementWeight[5] TO decrementWeight[5] 13

ENDIF 14
 15

SET averageScore TO ZERO 16
SET Counter TO ZERO 17
DO 18

DO 19
IF currentIterationAvgScore <= averageScore THEN 20

SET currentIterationAvgScore to averageScore 21
ENDIF 22

 23
 IF Counter MOD 2 == 0 THEN 24

 SUBTRACT 1 FROM decrementWeight[Counter/2] 25
SET decrementScore to currentIterationAvgScore 26

ELSE 27
ADD 1 TO incrementWeight[Counter/2] 28
SET incrementScore to currentIterationAvgScore 29

ENDIF 30
 31

FOR i = 0 to 9 32
ADD RETURN gameScore() to Score 33

ENDFOR 34
 35

SET averageScore to Score/10; 36
WRITE decrementWeight[5],incrementWeight[5],averageScore 37

WHILE currentIterationAvgScore <= averageScore 38
 39

INCREMENT Counter 40
 41

IF Counter MOD 2 == 0 AND Counter > 0 THEN 42
IF decrementScore > incrementScore THEN 43

SET decrementWeight[(Counter/2)-1] to (decrementWeight[(Counter/2)-1]) + 1; 44
SET incrementWeight[(Counter/2)-1] to decrementWeight[(Counter/2)-1]; 45

 46
ELSE 47

SET incrementWeight[(Counter/2)-1] to (incrementWeight[(Counter/2)-1]) - 1 ; 48
SET decrementWeight[(Counter/2)-1] to incrementWeight[(Counter/2)-1] ; 49

ENDIF 50
ENDIF 51

 52
WHILE Counter < 10 53
INCREMENT iteration 54

WHILE highestAverageScore < currentIterationAvgScore 55

Chapter 3. Ms. Pac-Man Implementation 18

Figure 3.1: Decrement & Increment of single value

Figure 3.2: Selection of value based on score

The Figure 3.1 is an example which shows decrementing and incrementing of
single value. A random value 24 is decremented to 23 and 22 as long as the
score is increased i.e. highest score 18000. When the score is no more improved
the value 24 is incremented to 25, 26 and 27 as long as the score is increased i.e.
highest score 19000.

The figure 3.2 is an example which shows selection of optimal value based on the
highest score. In the example, 27 is selected as an optimal value based on the
highest score. This process is repeated for all the set of values.

2000 random set of weights will be processed through the algorithm which will
yield 2000 final optimized values.

Example is provided in appendix where single set of random weights is processed
by algorithm through consecutive iterations and the end result is a set of final
optimized values.

A running Java source code is provided in appendix.

Chapter 4

Experiments

4.1 Goal of the experiment

The goal of experiment is to compare various distance measures and study behav-
ior when different distance measure algorithms are implemented with influence
map in Ms. Pac-Man. To verify whether the algorithm applied to find the optimal
weight is effective or not and which distance measure algorithm is efficient.

4.2 Motivation

Quantitative approach is known for fetching quantitative data from controlled
experiments which promotes comparison and statistical analysis [19].

Previously, the distance measures were used independently under different
scenarios and environment within influence map. We don’t have a comparison of
various distance measures under similar experiment. Our implementation will be
used to compare and study the behavior, performance and impact of these dis-
tance measure algorithm in Ms. Pac-Man maze. To carry out a comparison using
statistical analysis among the distance measures, we used quantitative analysis
to show our final comparisons.

4.3 Experiment Planning

1. Context Selection: We selected random values for five different parame-
ters such as normal pills, power pills, ghosts, edible ghosts and junctions
and optimized the parameter space by our algorithm. To represent huge
population we choose 2,000 random points for the experiment [19].

19

Chapter 4. Experiments 20

2. Hypothesis Formulation

To be sure our proposed algorithm works better than random parameters
used to find optimal value we have constructed hypothesis
”Random parameters is efficient in finding optimal values than proposed
algorithm to find optimal values”

(a) Hypothesis I
The hypothesis test is related to comparison of score obtained from op-
timized algorithms with score obtained from random parameter space
in Ms. Pac-Man. Our sample size is equal whereas the variance is
assumed to be unequal. Therefore, we choose Welch’s t-test which is
intended for use with two sample of equal or unequal size with possibly
unequal variances.

Null Hypothesis Ho:
µRandom ≥ µOptimized

Alternate Hypothesis Ha:
µRandom <µOptimized

where the t value can be calculated as

t = XR−XO√
S2
R

NR
+

S2
O

NO

Degrees of freedom (f) =
(
S2
R

NO
+

S2
O

NO
)2

S4
R

N2
R

(NR−1)
+

S4
O

N2
O

(NO−1)

where X is mean, S is standard deviation and N is number of samples
in the experiment.

The decision outcomes of hypothesis testing
Type-I-Error: Ho will be correctly accepted with a significance (or con-
fidence) level (1-α) and falsely rejected with a type I error probability
α.

Type-II-Error: If the null hypothesis is false, it will be correctly re-
jected with a power of the test (1-β) and will be falsely accepted with
a type II error probability β.

3. Variable Selection: we selected different dependent and independent vari-
ables that are needed to carry out experiments.

Chapter 4. Experiments 21

Dependent variables: Values for normal pills, power pills, ghosts, edible
ghosts.

Independent variable: Junction value which is fixed for iteration.

4. Subject Selection: we used random sampling technique for subject selection
since we choose values for the five different parameters from programming
functions. We used this sampling technique since only the random values
for various parameters will search huge parameter space to find optimal
point in space. The generalization error is supposed to be very less because
we check for other possible better optimal space nearby the chosen random
value to check if there are more optimal space. 2000 sample points and 4
parameters ensure that sample is representative of whole population.

4.4 Experiment Instrumentation

1. Object: Object needed for conducting experiment is a computer with Java
installed to run the software. Ms. Pac-Man controllers apply AI logic on
top of it. We use 8 core processor computer to conduct the experiment so
that different distance measures can be run in parallel.

2. Guidelines: As the controller plays the game itself, we only need to verify
and check if the software gets aborted abnormally. Data is collected and
appended in every run.

3. Measurement Instruments: The data collected is post processed for mea-
surements. Scripted tools in conjunction with R programming is used for
post measurements of the collected data.

4. Data Collection: The implementation code of Ms. Pac-Man is written to
collect the numeric variables (Score, Level, Number of Normal pills eaten,
Number of Ghosts Eaten) provided by Ms. Pac-man controller interface.
Furthermore, few values like the position where Ms. Pac-Man dies are
added in core level of the program to record the event. Data are gathered
in multiple files with column wise format for further interpretation.

5. Experimental Environment: Similar experiments are executed in parallel to
minimize the whole execution time. Second experiment is conducted with
interval to analyze the first experiment results.

The experiments are conducted using Ms. Pac-Man game controller. Ms.
Pac-Man game controller is written purely in Java for the ”Ms Pac-Man vs
Ghosts Competition”. Ms. Pac-Man controller allows to develop AI con-
trollers on top. This controller also provides read facility of most of the
state of the game. Moreover, distance measures like A*, Euclidean and

Chapter 4. Experiments 22

Manhattan are already implemented in the controller.

The influence map calculation and Algorithm discussed in implementation
phases are used to develop the AI controller and tested further on.

The experiment is run against starter ghost program, which is default ghost
program provided. The starter ghost is one of the aggressive ghost program.
The major behaviors of these ghosts are: -if edible or Ms. Pac-Man is close
to power pill, run away from Ms. Pac-Man. -If non-edible, attack Ms.
Pac-Man with certain probability, - else choose random direction.

Based on the implementation, a series of experiments are performed. The
experiment is conducted in two phases i.e phase 1 and phase 2. Phase 1 of the
experiment is to find the optimized parameter of objects. This helps to further
move towards the phase 2 of the experiment. The phase 2 of the experiment is
processed using the results from the experiment conducted in phase 1.

4.4.1 Experiment Phase 1

We have 5 different objects as parameters, which radiates influences. The objects
are Ghosts, Edible Ghosts, Power pills, Normal pills and Junctions. These objects
radiate positive and negative influence based on the description in Section 3.4 of
Implementation. Our first task is to find the optimized weight of these objects.
The experiment is conducted to find the optimized value of parameters that yields
maximum score. This experiment is performed for all distance measures because
weight will vary depending on the type of distance measure used. Thus three
individual experiments are performed.

The Algorithm described in Section 3.5 is implemented in this experiment to
find optimal parameter space. The random values between 1 to 400 are chosen for
objects i.e. Power pill, Ghosts and Edible Ghosts whereas random values between
1 to 40 is chosen for Normal Pills and Junctions has fixed value of 2.

Each score is obtained from average of 10 games. Number of Iterations are
run for every random weights. 2,000 optimized weights are collected for each
distance measures. The log parameters recorded during this experiments are the
weights of the objects and the scores earned using the parameters.

4.4.2 Experiment Phase 2

The optimal parameter space from the result of the experiments in phase 1 is
used to conduct the phase 2 of the experiments. In phase 2 of the experiment,
optimal parameters are set for the objects and a series of games are run to collect

Chapter 4. Experiments 23

data for analysis.

Altogether three different experiments are conducted for A*, Euclidean and
Manhattan distance measure. 10,000 game trials are run for each individual ex-
periment.

The log parameters recorded during this experiments are the score, number of
normal pills eaten, number of ghosts eaten, number of power pills eaten. These
recorded parameters belong to each individual game.

Chapter 5

Result and Analysis

5.1 Result of Experiment 1

(a) Unsorted high score (b) Highest score frequency

Figure 5.1: Results of the highest scores using A*

The Figure 5.1 (a) and 5.1 (b) are obtained using A* distance measure. The
Figure 5.1 (a) shows the unsorted highest score obtained when implementing al-
gorithm for every random weights in search space. X axis is number of games
whereas y axis is final high score obtain after applying algorithm. The maxi-
mum score in the graph is 16,934 whereas the minimum score obtained is 2071.
The Figure 5.1 (b) shows highest average score frequency, the frequency score is
grouped with 1000 interval.

The suitability of the algorithm is measured in four factors. They are score
optimization, number of iterations used, distribution of weights used and com-
parison with equal sample using random set of values. These four factors are
described in detail below.

24

Chapter 5. Result and Analysis 25

5.1.1 Score optimization

(a) Score optimization (b) Frequency of score optimized

Figure 5.2: Optimization of scores using algorithm in A*

The Figure 5.2 (a) shows optimization of scores when algorithm is applied. Opti-
mization of score is difference of first score obtained from set of random weights
and final highest score obtained using the proposed algorithm. The collected
optimized score consist result from both increment and decrement weight. The
algorithm is able to optimize score maximum upto 8000.

Figure 5.2 (b) shows frequency of optimized score, the frequency is grouped
with 500 interval. The average score the algorithm is able to optimize is between
2000 to 4000. The score 0 means algorithm is not able to optimize initial score
obtain from random weight. The number of inital score that the algorithm is not
able to increase is 129 out of 2000 random set of weights, in percentage number
of 0 obtained is 6.45%.

Chapter 5. Result and Analysis 26

5.1.2 Iteration used

Figure 5.3: Frequency of set of weights in iterations using A*

The Figure 5.3 shows the number of sets of values used in every iterations.Chapter
3.5 describes the iteration in detail. The algorithm starts with random sets of
values and will move to further iterations if there is possibility to optimize more.
The algorithm will always go to iteration 2 from iteration 1.

The histogram shows 1300 random set of values are able to reach iteration 2nd
but were unable to move to iteration 3 (The iteration 1 will always proceed to
iteration 2). 336 random sets of values are able to reach iteration 3, 289 random
sets of values are able to reach iteration 4, 58 random sets of values are able to
reach iteration 5, 12 random sets of values are able to reach iteration 6, 2 random
sets of values are able to reach iteration 7 and 3 random sets of values are able
to reach iteration 3.

In every iteration the set of values which are able to score better than previous
iteration are used in next iteration. Figure 5.3 shows 35% of random set of values
are able to pass through iteration 2. The maximum number of iteration the
algorithm has reached is 8.

Chapter 5. Result and Analysis 27

5.1.3 Set of weights from highest score after applying al-
gorithm

Figure 5.4: Set of weights between high score 10,000 and 12,000 using A*

From Figure 5.1 (b) it is clear that high frequency of score after implementation of
algorithm is between 10,000 and 12,000. Therefore, the weights that yielded score
between 10,000 and 12,000 are used to plot Figure 5.5 for finding the distribution
of weights. The Figure 5.4 shows the weights are randomly distributed within
the range of 0 to 400. This shows that the algorithm is able to explore randomly
in all the parameter space.

Figure 5.5: Set of weights greater than high score 12000 using A*

From Figure 5.5 the weights are found randomly distributed from which it is
unable to find optimal space in clustered area. The Figure 5.5 is plotted with
weights that yielded score greater than 12,000. The result was similar to above

Chapter 5. Result and Analysis 28

distribution where the weights were randomly distributed.

5.1.4 Comparison with equal sample using random set of
weights

The proposed algorithm is compared without optimizing weights and running
equal number of games using only random set of weights to obtain individual
high score.

Figure 5.6: Count of games played in algorithm to collect high score using A*

2000 random set of values are used to get 2000 final optimized set of values.
These 2000 final optimized set of values are the result of the highest score ob-
tained from different number of games.

The algorithm starts with 4 random weights where one of the weights for lair
i.e. junction is fixed. Although, the junction is fixed meaning it was not given
any random weight like other four parameters but the value is incremented and
decremented for the junction as well. So, initial game is played with the ran-
dom weights then the weights are increased and decreased in Iteration 1 and 2.

Chapter 5. Result and Analysis 29

In iteration 1 all the 5 weights are at least incremented and decremented once.
i.e. 10 games are played when 5 weights are incremented and decremented once.
Therefore, in iteration 2 also at least 10 games are played when 5 weights are
incremented and decremented once. The algorithm will proceed to iteration 2
even if the random weights in iteration 1 yields highest score.

Thus, 21 games are at least played (Initial game plus 10 games in iteration 1
plus 10 games in iteration 2).

In Figure 5.6 , X axis shows the number of games played and Y axis shows
the number of optimized score. example: X axis = 21 and Y axis = 129, i.e.
129 optimized scores are collected where each optimized score is highest from 21
games. X axis = 22 and Y axis = 382, i.e. 382 optimized scores are collected
where each optimized score is highest from 22 games.

In algorithm the initial weights are increased and decreased with 1 every
time, what about instead of increasing and decreasing weights random sets are
used every time ? To compare algorithm with only random set of weights data
from Figure 5.6 is used.

Result shown in Figure 5.6 is used to collect same amount of high score with
equal number of games only using random set of weights. example X axis = 21
and Y axis = 129., i.e. 21 games are played with 21 random sets and the highest
score is recorded, this process is repeated until 129 highest scores are collected.
X axis = 22 and Y axis = 382 i.e. 22 games are played with 22 random sets and
the highest score is recorded, this process is repeated until 382 games are collected.

In this way to compare with random sets similar distribution of games are
played only with random sets as described in above paragraph. The result of this
comparison is shown in Figure 5.7

Chapter 5. Result and Analysis 30

Figure 5.7: Random score frequency for A*

Figure 5.7 is the high score obtained with only random set of weights for A*.

Figure 5.7 is obtained only with random sets with similar distribution of games
based on Figure 5.6. In Figure 5.7, X axis shows the score obtained and Y axis
shows the frequency. While comparing Figure 5.7 (Highest score obtain with
random sets) with Figure 5.1 (b) (Highest score obtain applying algorithm) it
shows the algorithm is performing better compare to only using random sets.

In conclusion of experiment 1 result, the algorithm is able to score maximum
value of 16934, 10426 and 8923 for A*, Euclidean and Manhattan respectively.
This shows that the algorithm is able to explore space that results high value.
Figure 5.4 and Figure 5.5 shows the algorithm is able to search through huge
parameter space. Thus we take the global maxima, as the optimal point in
parameter space because the highest score obtained is result of number of games
with average of 10 games. Finally, we move to second experiment with the optimal
point yielded in first experiment. Figure 5.8 below shows the optimal point used
in second experiment.

Figure 5.8: Optimal points of individual distance.

Chapter 5. Result and Analysis 31

Table 5.2 t-test

5.1.5 Hypothesis I Random optimized Score and A* Op-
timized Score

Input Two independent samples of score : x1,x2,x3..Xn where
n=2000 and y1,y2,y3..Ym where m=2000

Ho µR ≥ µO i.e. the expected mean values of R is greater
than O

t = XR−XO√
S2
R

NR
+

S2
O

NO

t0 = 7594.925−10889.76√
2809.32

2000
+ 1300.42

2000

= −47.5985

Criteria Two sided (H1 : µR ≤ µO) : reject H0if |t0| > tα, df

Degrees of freedom (f) =
(
S2
R

NR
+

S2
O

NO
)2

S4
R

N2
R

(NR−1)
+

S4
O

N2
O

(NO−1)

=
(2809.3

2

2000
+ 1300.42

2000
)2

2809.34

20002(2000−1)
+ 1300.44

20002(2000−1)

=

2818.041
tα, df t=1.960
| − 47.5985| > 1.960 and hence H0 is rejected

5.1.6 Hypothesis II Random optimized Score and
Euclidean Optimized Score

Input Two independent samples of score : x1,x2,x3..Xn where
n=2000 and y1,y2,y3..Ym where m=2000

Ho µR ≥ µO i.e. the expected mean values of R is greater
than O

t = XR−XO√
S2
R

NR
+

S2
O

NO

t0 = 5473.14−7182.854√
2047.12

2000
+ 1193.22

2000

= −32.26925

Criteria Two sided (H1 : µR ≤ µO) : reject H0if |t0| > tα, df

Degrees of freedom (f) =
(
S2
R

NR
+

S2
O

NO
)2

S4
R

N2
R

(NR−1)
+

S4
O

N2
O

(NO−1)

=
(2047.1

2

2000
+ 1193.22

2000
)2

2047.14

20002(2000−1)
+ 1193.24

20002(2000−1)

=

3216.73
tα, df t=1.960
| − 32.26925| > 1.960 and hence H0 is rejected

Chapter 5. Result and Analysis 32

Table 5.3 t-test
5.1.7 Hypothesis III Random optimized Score and Man-

hattan Optimized Score

Input Two independent samples of score : x1,x2,x3..Xn where
n=2000 and y1,y2,y3..Ym where m=2000

Ho µR ≥ µO i.e. the expected mean values of R is greater
than O

t = XR−XO√
S2
R

NR
+

S2
O

NO

t0 = 3972.84−5666.367√
3052.32

2000
+ 1724.12

2000

= −21.60468

Criteria Two sided (H1 : µR ≤ µO) : reject H0if |t0| > tα, df

Degrees of freedom (f) =
(
S2
R

NR
+

S2
O

NO
)2

S4
R

N2
R

(NR−1)
+

S4
O

N2
O

(NO−1)

=
(3052.3

2

2000
+ 1724.12

2000
)2

3052.34

20002(2000−1)
+ 1724.14

20002(2000−1)

=

3156.74
tα, df t=1.960
| − 21.60468| > 1.960 and hence H0 is rejected

t critical value 1.960 is chosen for distribution of freedom (df) larger than 2000
with significance level 0.05 from t distribution table.

The Bonferroni correction sets the significance cut-off at α/n where α is the
significance level and n is number of tests. In the above 3 tests with significance
level 0.05, the Bonferroni correction of p value is 0.05/3 = 0.01666666666667. The
p value of each individual hypothesis is less than .00001 i.e the p value of each
individual hypothesis is lower than 0.01666666666667 therefore null hypothesis is
rejected.

5.2 Experiment 2 Results

The result shows null hypothesis is rejected that means the alternative hypoth-
esis is accepted which means random parameter does not perform better than
proposed algorithm.

The optimal weights from Figure 5.8 are used to conduct experiment 2. In ex-
periment 2, 10,000 game trials are run for each of the three experiments (A*,Euclidean
and Manhattan) where for each distance measure with optimal weights fixed for
all the 10,000 games. The experiment 2 has been carried out to compare mean
score of A* with Euclidean and Manhattan. We have presented frequency and

Chapter 5. Result and Analysis 33

density of score from A*, Euclidean and Manhattan.

5.2.1 Euclidean and A*

Figure 5.9: Euclidean vs A* Comparison.

5.2.2 Manhattan and A*

Figure 5.10: Manhattan vs A* Comparison.

After collecting the experimental data, the descriptive statistics are used to
describe and present the data graphically. The Figures 5.9 and 5.10 depict that
the average score of A* is more efficient compared to Euclidean and Manhattan
distance. The densities of average score of Euclidean and Manhattan tend to be
quite similar whereas the density of average score of A* is twice efficient. The
mean score from the experiment are 10790, 7469 and 6108 for A*, Euclidean
and Manhattan respectively. The highest score obtained from the experiment are
30930 , 22480 and 20260 for A*, Euclidean and Manhattan respectively.

Chapter 5. Result and Analysis 34

5.3 Conclusion

For RQ1, Section 5.1.1 Figure 5.2 (a) and (b) shows increment of score where
the highest score incremented is 8000. Moreover algorithm was able to increment
93.55% of random parameter space and only 6.45% was not able to increase.

For RQ2, Section 5.1.4 and welch t test proves that algorithm was able to
perform better than random optimal parameter space.

For RQ3, Experiment 2 clearly shows A* was able to provide highest score
30,930 compared to Euclidean and Manhattan. Moreover, the mean score of A*
is 10790 which is greater than mean score 7469 and 6108 of Euclidean and Man-
hattan. We conclude that A* provides highest score when run in same algorithm,
controller and environment.

Chapter 6

Discussion and Validity Threats

6.1 Discussion

There are a lot of algorithms, which we could have chosen for Experiment 1 such
as hill climbing, greedy algorithm, weighted algorithm e.t.c. Our requirement
was an algorithm, which could explore a huge search space with time constraints.
So we made an effort to introduce this algorithm, which could explore a huge
parameter space with time constraints.

The results of experiment number 1 show that the proposed algorithm is suit-
able to find optimal points. From Figure 5.2 raise in score clearly shows the
algorithm was able to optimize the random points however we were not satisfied
because the samples for random point in space and optimize points in space are
from different distribution. To make a comparison we collected random points
in space with same distribution, which is based on games played in each iteration.

In Figure 5.6, we can see the score collected from games with parameter space
visited i.e. 400 games are run where each individual games have visited at least
21 different parameter space and out of 21 parameter space the highest score is
taken. The parameters space visited are from 21 to 62. Using this frequency table
the random games are run to obtain data from similar distribution. The output
of the result Figure 5.7 shows on using same distribution of sample still the algo-
rithm is able to perform better than random parameters. If we look deeper into
the result the algorithm has optimized score greater than 12,000.

The reason for nominal optimization might be of incrementing and decre-
menting with value 1. There exist local optima, Figure 5.3 shows 65% of random
values were unable to pass through second iteration. This may be due to ran-
dom probability sampling we have used for the value. e.g. low positive value for
power pills, low negative value for ghosts, the game ends quickly without moving
forward.

This has been noted and suggested for future research to implement superior

35

Chapter 6. Discussion and Validity Threats 36

version of the algorithm and make comparison with the recent results. Moreover,
future research also includes incrementing based on percentage and using float
values.

Every random value will go through iteration 2 and the game shows only 35%
of the value has crossed iteration 2. 7594 and 10889 are average score obtain from
random and optimize algorithm where average increment of score in terms of per-
centage is 30.25%. To prove further we have run Welch t-tests which disprove
our null hypothesis and approve our alternate hypothesis. This strongly suggest
no doubt the optimization algorithm is better than random parameter space. We
have performed three different t tests for A*, Manhattan and Euclidean distance
measures and all of them disprove our null hypothesis and approve our alternate
hypothesis.

In the experiment No.2, 10790, 7469 and 6108 are the mean score values of
A*, Euclidean and Manhattan from 10,000 runs. The mean value suggest that
Euclidean and Manhattan performance is close enough. A* in the other hand has
performed far more better than Euclidean and Manhattan. The density graph
clearly show without no doubt A* is the most effective among three of them.

6.2 Validity Threats

Validity threats are very important to consider while performing any kind of
experiments. These threats deviate the result from being accurate and precise.
They are discussed by categorizing into four main different types. They are as
follows.

6.2.1 Internal validity

This threat is caused due to confounding variables that change the value of de-
pendent variables. This can be a threat in our experiment since we lock one
parameter (e.g junction) and see the result in terms of other parameters like
power pills, normal pills, ghosts and edible ghosts. However, in most of the cases
it gives good result and junctions have minor influence as compared to other pa-
rameters. There may be such situation in the maze in which influence of junction
is more significant.

6.3 External validity

External validity are those conditions which limit the possibility to generalize the
experimental results and techniques to other games. In our results A* performs
better than other distance measure however computational cost of A* is high

Chapter 6. Discussion and Validity Threats 37

compared to Euclidean and Manhattan. In our experiment A* cost, path is
pre calculated and cached moreover Ms. Pac Man maze is smaller compared
to other huge terrain based games and real world application. There may be
situation where due to real time cost computation and size of map, Euclidean
and Manhattan may perform better than A*.

Chapter 7

Conclusion

We conclude that the algorithm is suitable to find optimal point in parameter
space and the algorithm is able to optimize the random parameter space. How-
ever, using suggestion presented in discussions there is space of improvement in
optimization of optimal space. We also conclude that there is space of improve-
ment to increase the iteration and find more optimal parameters. The algorithm
was able to increase score obtained from random parameter space by 30.25%.

Finally, distance measure is vital element to consider while implementing path
finding based on attractive and repelling solutions. To address our second research
question, we propose using A* distance measure in influence maps is more efficient
compared to Euclidean and Manhattan in potential fields.

38

Chapter 8

Future Work

Since the efficiency of distance measure used in influence maps and potential fields
have been identified in this effort, proposed future work deals with improvement
of algorithm used. The algorithm can be improved by using other non probability
sampling techniques, using percentage instead of fixed increment of 1 during opti-
mization. Future research can be comparison of algorithm with other algorithms
such as advanced hill climbing algorithm in Ms. Pac-Man. The algorithm can be
used in other environment to verify how good it is able to evolve optimal param-
eters. Similar experiment can be run with implementation of Influence map in
ghosts. Solutions that have been proposed in discussions against the issues can
be worked on for further improvement of algorithm.

39

References

[1] N. Bell, Xinghong Fang, R. Hughes, G. Kendall, E. O’Reilly, and Shenghui
Qiu. Ghost direction detection and other innovations for Ms. Pac-Man. In
2010 IEEE Symposium on Computational Intelligence and Games (CIG),
pages 465 –472, August 2010. 00006.

[2] Avrim Blum, Prabhakar Raghavan, and Baruch Schieber. Navigating in
Unfamiliar Geometric Terrain. In Proceedings of the Twenty-third Annual
ACM Symposium on Theory of Computing, STOC ’91, pages 494–504, New
York, NY, USA, 1991. ACM. 00142.

[3] L.L. DeLooze and W.R. Viner. Fuzzy Q-learning in a nondeterministic envi-
ronment: developing an intelligent Ms. Pac-Man agent. In IEEE Symposium
on Computational Intelligence and Games, 2009. CIG 2009, pages 162 –169,
September 2009. 00013.

[4] P.K. Egbert and S.H. Winkler. Collision-free object movement using vector
fields. IEEE Computer Graphics and Applications, 16(4):18 –24, July 1996.

[5] Jonas Flensbak. Flock behavior based on influence maps. Department of
Computer Science, University of Copenhagen (DIKU), Denmark, Bachelor
thesis, 2007. 00005.

[6] Johan Hagelbck and Stefan J. Johansson. Using multi-agent potential fields
in real-time strategy games. In Proceedings of the 7th international joint
conference on Autonomous agents and multiagent systems - Volume 2, AA-
MAS ’08, pages 631–638, Richland, SC, 2008. International Foundation for
Autonomous Agents and Multiagent Systems. 00059.

[7] I.D. Horswill. Lightweight Procedural Animation With Believable Physical
Interactions. IEEE Transactions on Computational Intelligence and AI in
Games, 1(1):39–49, March 2009. 00018.

[8] Stefan J. Johansson. A survey of the use of artificial potential fields and
influence maps in game ai research. 2013.

40

References 41

[9] Simon M. Lucas. Ms Pac-Man versus ghost-team competition. In IEEE Sym-
posium on Computational Intelligence and Games, 2009. CIG 2009, page 1,
September 2009.

[10] P. Rohlfshagen and S.M. Lucas. Ms Pac-Man versus Ghost Team CEC 2011
competition. In 2011 IEEE Congress on Evolutionary Computation (CEC),
pages 70 –77, June 2011.

[11] S. Samothrakis, D. Robles, and S. Lucas. Fast Approximate Max-n Monte
Carlo Tree Search for Ms Pac-Man. IEEE Transactions on Computational
Intelligence and AI in Games, 3(2):142 –154, June 2011.

[12] N. Shaker, J. Togelius, G.N. Yannakakis, L. Poovanna, V.S. Ethiraj, S.J.
Johansson, R.G. Reynolds, L.K. Heether, T. Schumann, and M. Gallagher.
The turing test track of the 2012 Mario AI Championship: Entries and eval-
uation. In 2013 IEEE Conference on Computational Intelligence in Games
(CIG), pages 1–8, August 2013. 00009.

[13] J. Svensson and S.J. Johansson. Influence Map-based controllers for Ms.
PacMan and the ghosts. In 2012 IEEE Conference on Computational Intel-
ligence and Games (CIG), pages 257 –264, September 2012.

[14] G. Synnaeve and P. Bessiere. A Bayesian model for RTS units control applied
to StarCraft. In 2011 IEEE Conference on Computational Intelligence and
Games (CIG), pages 190 –196, September 2011.

[15] Tse Guan Tan, J. Teo, and P. Anthony. Uniform versus Gaussian mutators in
automatic generation of game AI in Ms. Pac-man using hill-climbing. In 2010
International Conference on Information Retrieval Knowledge Management,
(CAMP), pages 282 –286, March 2010.

[16] T. Uusitalo and S.J. Johansson. A reactive mutli-agent approach to car
driving using artificial potential fields. In 2011 IEEE Conference on Com-
putational Intelligence and Games (CIG), pages 203 –210, September 2011.

[17] Dr. S.Karthikeyan V.V.Gomathi. Performance analysis of distance measures
for computer tomography image segmentation, 2014.

[18] N. Wirth and M. Gallagher. An influence map model for playing Ms. Pac-
Man. In Computational Intelligence and Games, 2008. CIG ’08. IEEE Sym-
posium On, pages 228 –233, December 2008.

[19] Claes Wohlin, Per Runeson, Martin Hst, Magnus C. Ohlsson, Bjrn Regnell,
and Anders Wessln. Experiment Process. In Experimentation in Software
Engineering, number 6 in The Kluwer International Series in Software Engi-
neering, pages 31–39. Springer US, January 2000.

References 42

[20] Albert L. Zobrist. A model of visual organization for the game of GO. In
Proceedings of the May 14-16, 1969, spring joint computer conference, AFIPS
’69 (Spring), pages 103–112, New York, NY, USA, 1969. ACM. 00080.

Appendix A

Appendix

43

Iteration: 1

52 111 88 2 2 ------------------Random set

6586 52 111 88 2 2

8737 51 111 88 2 2 --------------------- Highest

(optimized value)

8597 50 111 88 2 2

5391 53 111 88 2 2

7535 51 110 88 2 2

6375 51 112 88 2 2

7700 51 111 87 2 2

7515 51 111 89 2 2

6070 51 111 88 1 2

7639 51 111 88 3 2

Iteration: 2

51 111 88 2 2 ---------------------

Optimized value from Iteration 1

8247 50 111 88 2 2

8634 49 111 88 2 2

8125 48 111 88 2 2

9137 52 111 88 2 2

6281 53 111 88 2 2

7658 52 110 88 2 2

7172 52 112 88 2 2

8820 52 111 87 2 2

6111 52 111 89 2 2

6372 52 111 88 1 2

9634 52 111 88 3 2 ------------------- Highest

(optimized value)

7841 52 111 88 4 2

Iteration: 3

52 111 88 3 2 ---------------------

Optimized value from Iteration 2

6763 51 111 88 3 2

9087 53 111 88 3 2

6097 54 111 88 3 2

9574 53 110 88 3 2

8580 53 109 88 3 2

8562 53 112 88 3 2

6772 53 110 87 3 2

6657 53 110 89 3 2

7438 53 110 88 2 2

7837 53 110 88 4 2

final optimized : : 52 111 88 3 2

Score from Random set : 6586

Score from final optimized sert : 9634

Game game; 1
Pacman objPacman = new Pacman(); 2
Random random = new Random(0); 3
 4
/** Temporary array to hold value in both +ve and –ve direction **/ 5
 6
int[] decrementWeight = new int[4]; 7
 8
decrementWeight[0] = (int) (Math.random() * 399) + 3; 9
decrementWeight[1] = (int) (Math.random() * 399) + 3; 10
decrementWeight[2] = (int) (Math.random() * 399) + 3; 11
decrementWeight[3] = (int) (Math.random() * 39) + 1; 12
 13
int[] incrementWeight = new int[4]; 14
incrementWeight = decrementWeight; 15
 16
/** This 2 array holds the score yielded from above temporary value to make highest 17
comparison and selection */ 18
 19
int decrementScore = 0; 20
int incrementScore = 0; 21
 22
/** Array used for logging score and value **/ 23
 24
int highestAverageScore = 0; 25
int currentIterationAvgScore = 0; 26
 27
do { 28
 29
 int Counter=0; 30
 int iteration = 0; 31
 int averageScore = 0; 32
 33
 highestAverageScore=currentIterationAvgScore; 34
 35
 do { 36
 do{ 37
 currentIterationAvgScore=averageScore; 38
 39
 /*** This block will increase and decrease value of the array decrementWeight 40
 and incrementWeight 41
 * Stores the score in array decrementScore and incrementScore. 42
 * Array size is 4 and counter 0 to 7. 43
 * This block will decrease weight if counter is 0,2,4,6 (Even) 44
 * and will increase weight if counter is 1,3,5,7 (Odd) 45
 * 46
 */ 47
 48
 if(Counter%2==0) 49
 { 50

decrementWeight[Counter/2] = 51
decrementWeight[Counter/2]-1; // Decrement Value 52
objPacman.setWeight(decrementWeight); 53
// Set value in game 54

 55
 decrementScore = currentIterationAvgScore; 56
 // Store score from 57

 printArray = decrementWeight; 58
// Array for logging 59
 60
 } 61
 else 62
 { 63

incrementWeight[Counter/2] = 64
incrementWeight[Counter/2]+1; 65

 // Increment Value 66
 67

objPacman.setWeight(incrementWeight); 68
// Set value in game 69

 70
 incrementScore = currentIterationAvgScore; 71
 // Store score from 72
 73
 printArray = incrementWeight 74
 // Array for logging 75
 } 76
 77
 /*** Main section to run game. Game run 10 times due to stochastic behavior.**/ 78
 79
 int score=0; 80
 int trials = 10; 81
 82
 for(int i=0;i < trials;i++) 83
 { 84
 score+=game.getScore(); 85

 //Run the game as we have already set weight with object objPaman 86
 } 87
 88
 averageScore = score/trials; 89
 90
 /** Executed only once in the beginning 91
 * This block is needed for logging the CurrentIteration 92
 **/ 93
 if(currentIterationAvgScore==0) 94
 { 95
 currentIterationAvgScore = averageScore; 96
 } 97
 98
 functionToLog(printArray,currentIterationAvgScore); 99
//Function to log for data collection 100
 /** End of section to run game **/ 101
 102
 /** If we find improvement in score do not increase counter and continue the 103
loop 104
 * If the score is not improved while loop will exit and counter will be increased 105
 **/ 106
 107
 }while(currentIterationAvgScore<=averageScore); 108
 109
 Counter++; 110
 111
/*** Selection of Array Value between decrementValue[index] and 112
incrementValue[index] 113
 ** Selection is done based on value of decrementScore[index] and 114

incrementScore[index] 115
 ** When the counter is 116
 ** 117
 ** Counter to index calculation is done by formula 118
 ** e.g Counter = X , Index = (X/2) - 1 119
 ** 2 , (2/2) - 1 = 0 120
 ** 4 , (4/2) - 1 = 1 121
 ** 6 , (6/2) - 1 = 2 122
 ** 8 , (8/2) - 1 = 3 123
 ** 124
 ** Counter 2 = Selection between decrementValue[0] and incrementValue[0] 125
 ** Counter 4 = Selection between decrementValue[1] and incrementValue[1] 126
 ** Counter 6 = Selection between decrementValue[2] and incrementValue[3] 127
 ** Counter 8 = Selection between decrementValue[3] and incrementValue[3] 128
 **/ 129
 130
 131
/** This loop will only execute when counter value is 2,4,6,8 **/ 132
 133
 if(Counter%2==0) 134
 { 135
 136
 if(decrementScore > incrementScore) 137
 { 138
 /** Selected value is assign to both decrementWeight and 139
incrementWeight because we want the array to be synced all the time 140
 ** When index value is synced we have to sync it so that it 141
will be same when we work in other array index. 142
 ** i.e. index 0 needs to be sync when we work in index 1 , 143
1 needs to be sync when we work in index 2, 2 needs to be sync when we work in 144
index 3 145
 **/ 146
 decrementWeight[(Counter/2)-1] = 147
(decrementWeight[(Counter/2)-1]) + 1; // Added +1 to value because the value 148
was decremented above 149
 150
// and that did not yield highest socre that is the value before that 151
 152
// value yielded highest score 153
 154
 155
 156
 incrementWeight[(Counter/2)-1] = 157
decrementWeight[(Counter/2)-1]; // Sync incrementWeight with 158
decrementWeight 159
 } 160
 else 161
 { 162
 incrementWeight[(Counter/2)-1] = 163
(incrementWeight[(Counter/2)-1]) - 1 ; // Subtracted -1 to value because the 164
value was incremented above 165
 166
// and that did not yield highest socre that is the value before that 167
 168
// value yielded highest score 169
 170
 decrementWeight[(Counter/2)-1] = 171

incrementWeight[(Counter/2)-1] ; // Sync incrementWeight with 172
decrementWeight 173
 } 174
 } 175
 176
 /** Run the loop from 0 to 7 where **/ 177
 178
 }while(Counter<8); 179
 180

 /** In the next iteration instead of using random value we are selecting 181
value that 182

 * yielded highest score and repeating the process 183
 */ 184
 iteration++; 185
 186
}while(highestAverageScore<currentIterationAvgScore); 187

Appendix A. Appendix 49

A.1 Ms. Pac-Man

Pac-Man is a popular arcade game originally produced by Midway and developed
by Toru Iwatani for Namco Company in year 1981 [1]. Pac-Man is a point based
game where points are collected by eating pills. The player aims to guide Pac-
Man around the maze to collect all the pills without getting trapped by the ghosts.

Maze is a layout of the game which consist of ghosts, lairs, Pac-Man, normal
pills, power pills, fruits, junctions and teleports [11]. All these components are
described below in detail.

Figure A.1: Ms. Pac-Man Maze.

A.1.1 Ghosts

Ghosts hinder Pac-Man to eat the normal pills, power pills and fruits. When all
the normal pills are eaten, the level of the game advances forward with different
types of maze. As soon as Pac-Man eats a power pill, ghosts become edible for
a short period of time and successive eating of those ghosts accumulates points
in exponential manner. Pac-Man achieves the extra points by eating randomly
appeared fruits in the maze. Pac-Man loses one of the three lives as soon as she
collides with an inedible ghost. When all the three lives are lost by Pac-Man, the
game ends. Ms. Pac-Man is the advanced version of Pac-Man. There are four
different types of ghosts in Ms. Pac-Man. They are Blinky (red), Pinky (pink),
Inky (cyna) and Sue (orange) [11].

Appendix A. Appendix 50

A.1.2 Lair

In the start of each level in the game, ghosts are situated in the middle of maze,
called lair. The idle time to get outside of lair and chasing Pac-Man decreases
with increasing levels.

A.1.3 Pac-Man

Pac-Man is a main agent in maze which can move right, left and up to eat normal
pills, power pills fruits and edible ghosts to score points. Pac-Man has three lives
and game ends when all the three lives are lost. When Pac-Man scores 10000
points she gets an extra life.

A.1.4 Normal Pills

The small dots in a maze which Pac-Man needs to eat to move forward to another
level are called normal pills. Once all the normal pills are eaten by Pac-Man, next
level is reached. There are 250 normal pills in a maze.

A.1.5 Power Pills

Power pills are bigger pills in size compared to normal pills which are randomly
situated. When Pac-Man eats power pills, ghost changes to edible state for a
short period of time. In the edible state, colour of all the ghosts changes to blue
and the ghosts start to blink indicating they are becoming active. There are four
power pills in a maze. These power pills are situated in different positions in
different mazes.

A.1.6 Fruits

Fruits appear randomly in a maze during a game and Pac-Man receives extra
points by eating these fruits.

A.1.7 Junctions

Junctions are the places in a maze which have three or four directions to choose.
They are the places in the maze where Pac-Man and Ghosts can change the
directions (left, right and up).

A.1.8 Teleports

Teleports of a maze are special junctions which are connected to the opposite side
of the maze.

Appendix A. Appendix 51

There are four different types of mazes which are shown in Fig 1.2. Game
starts with maze A and successively moves to B, C and D when level of the game
increases.

Figure A.2: Mazes.

Ms. Pac-Man is successor to Pac-Man. These two games are very similar, still
they have a number of minor differences. In particular, the ghosts in Pac-Man
behave deterministically whereas in Ms. Pac-Man the ghosts movement has an
element of pseudo-randomness, making it impossible to learn paths and leading
to a more challenging game. Ms. Pac-Man also features additional maze layouts
compared to Pac-Man [18].

Ms. Pac-Man scores 50 points as soon as she eats any of the power pills.
Successive eating of the ghosts after eating a power pill doubles the score each
time. So, the optimal score that can be achieved after eating power pills is 3050
(= 50+ 200 + 400 + 800 + 1600). If another power pill is eaten during the edible
stage of ghost, the point is reset to 200 again [11].

The game starts in maze A with three lives of Ms. Pac-Man and ghosts ready
to come out from lair. Ms. Pac-Man starts to eat normal pills, power pills and

Appendix A. Appendix 52

randomly located fruits and ghost starts to chase her. Once any of the power
pills are eaten, ghosts become edible for a short period of time.

Ms. Pac-Man is one of the competitions included in yearly competitions track
like CIG [9]. The competitions since 2007 are being held every year for imple-
menting Ms. Pac-Man controllers [9, 16].

