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Abstract 

Many patients with common diseases do not respond to treatment. This is a key 

challenge to modern health care, which causes both suffering and enormous costs. 

One important reason is that common diseases are associated with altered interactions 

between thousands of genes, in combinations that differ between subgroups of 

patients that do or do not respond to a given treatment. Such subgroups, or even 

distinct disease entities, have been recently described in common diseases like 

asthma, diabetes, autoimmune diseases and cancer. High-throughput techniques 

(omics) allow identification of such subgroups. This may have important clinical 

implications, such as identification of diagnostic markers for individualised 

medicine, as well as new therapeutic targets for patients who do not respond to 

existing drugs. For example, whole genome sequencing may be applied to more 

accurately guide treatment of neurodevelopmental diseases, or to identify drugs 

specifically targeting mutated genes in cancer. A study published in 2015 showed that 

28 % of hepatocellular carcinomas contained mutated genes that could potentially be 

targeted by FDA-approved drugs. Another translational study, which is described in 

detail, showed how combined omics, computational, functional and clinical studies 

could identify and validate a novel diagnostic and therapeutic candidate gene in 

allergy. Another implication is diagnostic markers and therapeutic targets for 

predictive and preventative medicine. By combing computational and experimental 

methods, early disease regulators may be identified, and potentially used to predict 

and treat disease before it becomes symptomatic. Systems medicine is an emerging 

discipline, which may contribute to such developments by combining omics with 
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computational, functional and clinical studies. The aims of this review are to give a 

brief introduction to systems medicine and how it may contribute to the clinical 

implementation of individualised treatment, as well as to give concrete examples of 

clinical relevance.  
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Introduction 

What developments can today's medical students look back on when they retire in 40 

years? If we instead look back 40 years, developments like ultrasound, computerised 

tomography and improved treatments come to mind. For example, only 30 years ago 

asthma patients were common in medical wards, while this is now rare because of 

inhaled glucocorticoids (GCs). In both cases, clinicians were and are not likely to 

consider limitations of state-of-the-art treatments, which may be substantial. For 

example, 10 to 20% of patients with asthma show limited or no response to inhaled 

GCs [1]. Because early disease manifestations generally do not differ from 

responders, variable disease courses and possible compliance problems, such patients 

might take a long time to diagnose. Variable treatment response is a general problem, 

which results not only in suffering, but also contributes to increasing costs for the 

society. The annual cost of ineffective drugs in the US alone is estimated at 350 

billion dollars [2]. Variable efficacy is also adding to the huge costs associated with 

development of new drugs, which currently are estimated at 2.6 billion dollars/drug 

[3]. Such costs are a great challenge to financing of medical care. These problems all 

point to the same simple question: Why do patients that appear to have the same 

disease respond differently to the same treatment?  

Asthma patients may give clues to answering this question. Asthma can be caused by 

infections, allergens or other environmental factors, all of which may give rise to 

different inflammatory responses, although the clinical phenotypes may be similar. 

Recent studies have led to characterisation of such responses, and potential diagnostic 

markers for individualised medicine, as well as novel drugs targeting different 

responses [1]. Although such developments are only in early clinical trial phases, they 

point to the advantages of understanding the reasons for variable treatment response. 

Returning to the initial question of what today's medical students may look back on 

when they retire in 40 years, individualised treatment of molecular subtypes of 

common diseases may be one of the major developments [4]. However, the example 

from asthma and several other diseases points toward such treatment coming much 

sooner (Table 1). Indeed, some have already reached the clinic, such as BRCA 

genotyping in breast cancer, CCR5 mutation status in HIV infection and new-born 

screening for metabolic defects [5]. Recently, optimisation of anticoagulant therapy 

based on genotyping of two genes was described [6]. However, these examples have 

one common and important limitation: they are based on only one or two variables. 
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Diseases are rarely caused by malfunction of one individual gene product, but instead 

depends on thousands of gene products that interact in a complex network [7]. Only a 

fraction of those gene products is likely to have large effects on the disease. Another 

problem is that although the remaining disease-associated genes individually have 

small effects, their combined effects may be large [8]. Thus,  combined analyses of 

multiple large and small affect genes are likely to be required for diagnostic purposes.  

Is it at all possible to address this complexity  in clinical settings? Systems medicine 

is an emerging discipline, which is based on combining high throughput (omics) and 

computational analysis with functional and clinical studies [1, 9-11]. The basic 

research aims are to gain systems-level understanding of the molecular changes 

underlying common diseases, and how they vary between subgroups of patients that 

appear to have the same disease. The clinical aims are to use this information for 

predictive and individualised medicine. Recent studies indicate  that systems medicine 

may reach the clinic within the next five years, starting with omics-based diagnostics 

for  individualised medicine in serious diseases that require expensive  treatments [1]. 

For example, neurodevelopmental disorders (NDD) affect more than 3% of children 

and are attributable to single-gene mutations at more than 1000 loci. Traditional 

methods yield molecular diagnoses in less than one-half of children with NDD. A 

recent study showed that early whole-genome sequencing or whole-exome 

sequencing of such patients could increase the number of children, for whom 

underlying molecular mechanisms and diagnosis could be defined. This resulted 

in improved treatment and could also be cost-effective [12]. Exome sequencing of 

more than 200 liver tumours resulted the identification of several novel driver 

mutations, of which 28 % were potentially targeted by drugs approved by the 

Federal Drug Administration [13]. An expression profiling study of colorectal 

cancers linked increased signaling of an anti-inflammatory cytokine, TGF-beta, 

to poor prognosis and showed that anti-TGF treatment had therapeutic potential 

[14]. Given the severity of the diseases, and the decreasing costs of omics the 

authors speculated that this type of analysis may reach the clinic in the near 

future. Another study showed that a set of 10 lipids in peripheral blood could predict 

development of Alzheimer’s disease with great accuracy [15]. These recent examples 

suggest the clinical potential of omics methods for predictive and individualised 

treatment. Clinical implementation may be accelerated by two economic factors: 1) 

Increasing costs of, for example, biological drugs, which may exceed €20,000 per 
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patient per year, and 2) the rapid decrease in costs for omics. Such drugs include 

biologicals targeting common diseases, including IgE for asthma, TNF for 

autoimmune disorders,  and several As an example, the cost of whole genome 

sequencing has decreased 10,000 times in 13 years, and is expected to decrease 

100,000 times within the next five years [16]. 

However, clinical implementation requires addressing significant challenges, like how 

to interpret and validate complex data, as well as how to make such data accessible in 

clinical settings. A recent symposium devoted to systems medicine was organised 

by and described in this journal [10]. The aim of this review is to provide an 

introduction to systems medicine for clinicians and translational researchers. The 

focus will be on integrated network-based analysis of omics and routine clinical data 

in order to gain a predictive, systems-level understanding of disease mechanisms, and 

how they vary between patients that appear to have the same disease. Such variations 

have important implications for diagnoses, treatments and drug development. 

However, it should be emphasised that methods other than network-based analysis 

can also be applied. For example, the same principles can also be applied to construct 

high-precision, mathematical models of how different variables relate to clinical 

outcomes such as treatment response [11, 17].   

 

A brief introduction to Omics and its clinical implications 

The word omics is derived from systems-level studies of all genes or gene products. 

For example genomics refers to all genetic information for an organism, including 

gene- and non-coding sequences. Other examples are transcriptomics (all coding and 

non-coding RNAs), metabolomics, lipidomics or proteomics. There are currently 

many different technologies for omics analyses. Since this review has an introductory 

aim, readers are referred to other reviews for detailed descriptions [18]. However, 

some of the most common forms should be mentioned here. Microarray technology is 

used for many different forms of omics analysis, of which the most common may be 

genomics and transcriptomics. In both cases known nucleic acid sequences are 

attached to a glass slide, and allowed to hybridise with complementary sequences in 

the samples that are analysed. If complementary hybridisation occurs this is indicated 

by fluorescence, whose intensity correlates with the amount of nucleic acid in the 

sample. Microarray technology is commonly used to analyse genetic variants in 

Genome-Wide Association Studies (GWAS). Such studies may include analysis of 
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millions of variants. In case of mRNA microarrays, expression of 60,000 genes and 

gene variants are commonly analysed. Limitations of the technology include the 

confounding effects of background noise and cross-hybridization. Recent advances 

suggest that genome-wide sequencing technologies may replace microarrays. Instead 

of hybridisation to predefined probes, short nucleotide sequences (such as mRNA) are 

sequenced in parallel. Advantages include a greater variety of transcripts, including 

isoforms of existing genes and novel non-coding variants, as well as a wider dynamic 

range. Third generation sequencing will extend to analyse thousands of base pairs. A 

disadvantage of sequence-based technologies compared to microarrays, is that the 

down-stream signal analyses are more complicated. Increasing analytical complexity 

is a natural consequence of increasing technological complexity and resolution. An 

important concept to address this problem is targeted omics, which refers to limiting 

the analysis based on other sources of information. For example, the results of mRNA 

microarray analyses may point to sequencing a part of the transcriptome that may be 

particularly relevant. As further discussed below, combinations of targeted omics may 

have important clinical implications, for example for high precision individualisation 

of treatment in case of serious diseases and expensive treatments.  

It is also of note that the term omics is expanding to include other systems, such as all 

microbes (microbiome), environmental exposures (exposome), or even all diseases 

(diseasome). All these systems may be interrelated. Therefore an important challenge 

of systems medicine is to develop paradigms to integrate those systems. This 

challenge has already been partially addressed, using a generally applicable principle, 

namely network-based analysis. As an example, a landmark study showed that 

diseases could be organised in a network, which in turn, could be linked to another  

network of genes associated with those diseases [7] (figure 1). But how does this 

complexity relate to the clinic? 

 

Systems medicine is a natural extension of clinical thinking 

Clinicians rarely make therapeutic decisions based on individual variables. Instead 

such decisions generally involve balancing different symptoms and signs, as well as 

laboratory tests with environmental and social factors. Implicit in this decision 

process is that the variables are interdependent. Therefore, the same change in one 

variable may have different implications in two patients, because of different changes 

in other variables. For example, wheezing is a typical sign in asthma, which is 
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generally responsive to treatment with GCs. Such patients tend to have increased 

activity of inflammatory cells induced by Type 2 T-helper cells (Th2 high). By 

contrast, a subset of asthma patients that are Th2 low are less responsive to GCs, and 

may instead respond to treatment specifically targeting Th17 cells [19]. Diagnostic 

markers, such as sputum eosinophilia and exhaled Nitric Oxide are currently tried in 

clinical studies to distinguish between Th2 high and low patients [20]. However, as 

discussed above, the involvement of thousands of genes in common diseases like 

asthma, indicates that one or two biomarkers are unlikely to suffice for diagnostic 

purposes. Instead, a combination of clinical data and multiple omics-based markers 

may be needed. But can such complex combinations be organised and presented in 

such a way that clinicians can make informed diagnostic and therapeutic decisions? 

This would require some kind of clinical decision support system (CDS). Early 

examples of such systems, which are based on pharmacogenomics data, already exist 

and have been tested in the clinic [21]. In the next section, we describe how networks 

provide a template to organise clinical and omics variables in a way to understand 

disease mechanisms, as well as to compute diagnostic predictions. Network-based 

analysis of omics data plays a key role in systems medicine. As discussed below, such 

templates may be seen as a natural extension of current clinical decision-making 

processes, and have the potential to be integrated into CDS within the near future. 

 

A brief introduction to networks 

Networks provide a graphical and theoretical framework to describe and understand 

complex systems. In a landmark study in 1999, it was shown that networks depicting 

a wide range of technological, social, and biologic systems have common designs that 

are governed by simple and quantifiable organising principles [22]. Those principles 

are perhaps most obvious in social networks. Take for example a network that is 

constructed based on interactions between students in a school. Assume that each 

student is a node, which is connected to other students that she or he interacts most 

frequently with. It is unlikely that the connections, or links, will be randomly 

distributed. Instead, they are likely to form groups that correspond to the classes those 

students belong to. Moreover, groups of students belonging to similar educational 

programs are likely to be more connected than groups with unrelated programs. 

Another landmark study showed that the same organisation principles are also found 

in yeast cells [23]. Proteins with related functions formed groups, or modules. Similar 
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to school classes, a small number of proteins had very many links and formed “hubs”.  

Those hubs had direct functional implications: systematic knockdown studies showed 

that silencing of hub proteins was more likely to affect cell survival than less 

connected proteins.  One reason was that the hubs contributed to the small world 

property of the networks:  even in very large networks, all nodes are generally 

connected by a limited number of links [7, 23].  Therefore, silencing of hub proteins 

is more likely to affect cell communications and survival. In the context of disease, 

the small world property increases the risk that a drug targeting a specific disease 

gene may have unexpected off-target effects [24]. Another important implication for 

medical research is that disease-associated genes identified by ‘omics studies can be 

computationally mapped on models of the human protein-protein interaction (PPI) 

network, as described in figure 1. In other words, each disease-associated gene is 

mapped on its matching protein product. Generally, such mapping results in a portion 

of the genes co-localising in one or more modules, forming disease modules, while 

the remaining genes are dispersed in the network (Figure 2). As discussed below, 

disease modules are likely to contain the most disease-relevant genes [25]. Therefore, 

an important advantage of such modules is that they help to prioritise between the 

many disease-associated genes identified by high-throughput analyses. 

 

The basic, clinical and pharmacological implications of disease modules  

The general properties of modules described above support that genes in disease 

modules are more relevant for the disease than other genes. The two main reasons are 

that genes in a disease module have related functions and are highly interconnected. 

In other words, these two reasons imply that such genes can operate as an effective 

team, in contrast to other genes that are more dispersed in the network. 

Several studies show that disease modules have important implications for basic and 

clinical research. Such modules may help to get an overview of disease-mechanisms 

by performing pathway analyses, as well as to identify novel disease genes, 

biomarkers or therapeutic targets.  One of the first clinically oriented module-based 

studies showed how a disease-module derived from a mRNA microarray study of skin 

from allergic patients could be exploited to infer diagnostic protein markers that were 

validated by independent clinical studies [26]. Another,  landmark  study described a 

module relevant to breast cancer, and identified a novel candidate gene that was 

validated by functional and genetic studies [25]. Several module-based studies have 
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been performed in other diseases, including cancer [27-30], neurological [31-33], 

cardiovascular [34], and inflammatory diseases [35-37]. One of the studies showed 

how protein interaction modules could be used to predict outcome in breast cancer 

[25]. In a study of autoimmune diseases, mRNA modules were used to predict disease 

progression based on functional studies of underlying mechanisms [34]. In 2014, a 

module-based approach for drug discovery was described in rheumatoid arthritis 

based on a meta-analysis of GWAS of 100,000 subjects [35]. An mRNA microarray 

study of 1600  post-mortem brain samples from patients with  Alzheimer's disease  

identified  a disease  module and a potential upstream regulator which was validated 

by functional studies  [38]. General principles of networks may be exploited to 

analyse properties of genes in the disease modules. For example, the products of hub 

genes are likely to have larger effects than other genes in a disease module. This 

property may be helpful when prioritising between multiple genes in a disease module 

for functional and clinical studies, as well as when selecting genes as potential drug 

targets. Interestingly, genes targeted by drugs are more likely to be hubs [39, 40]. The 

network property that highly interconnected nodes are likely to be functionally related 

can be exploited to find novel diagnostic markers and therapeutic targets among the 

interactors of known disease genes [41, 42]. Taken together, the studies described 

above support that network-based analysis of omics data how many potential basic 

and clinical implications. It is, however, clear that the complexity of the analysis 

raises concerns about the feasibility of clinical translation. Recent studies may address 

such concerns. The translational feasibility of module-based analysis was shown in a 

study of seasonal allergic rhinitis [42]. The study spanned from a genome-wide 

analysis of gene expression to high-throughput knockdowns of candidate genes, 

computational, functional and clinical studies. This resulted in the identification 

of a novel candidate gene in allergy, S100A4, which was validated by a knock-out 

mouse model of allergy, treatment of the mouse model and patient cells with an 

anti-S100A4 antibody, as well as diagnostic studies of patients (figure 3). 

However, it was clear from this and many other studies mentioned above that 

individual genes are unlikely to suffice for diagnostic and therapeutic purposes. 

Although this complexity may seem daunting, preliminary studies of patients with 

seasonal allergic rhinitis and multiple sclerosis indicate that module subtypes may be 

exploited for individualised medicine [43]. An important limitation of the study was 

that it was based only on mRNA and protein expression.  Studies of allergy and other 
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diseases have shown the importance of other genomic layers, such as genetic variants, 

DNA methylation and non-coding RNAs [44, 45].  

These layers only partially correlate, and given the complexity of common diseases, it 

is likely that combinations of targeted omics analyses from different layers may be 

needed for diagnostic purposes, like individualised medicine. Indeed, some layers, 

like DNA methylation may be particularly suitable. A recent study showed that DNA 

methylation almost completely separated allergic patients from controls, and was 

highly correlated with disease severity [45]. However, can such complexity be 

addressed and translated for clinical purposes? This question will be discussed below, 

starting with a network-based strategy to integrate different sources of information of 

potential clinical relevance. After that, practical aspects of clinical implementation 

will be discussed.  

 

Multilayer disease modules (MLDMs) to integrate multiple sources of omics and 

clinical data 

Omics technologies allow systems-level analyses of different layers ranging from 

DNA to proteins, as well as metabolites and lipids [46, 47].  The human PPI  network 

can be used to organise these layers into MLDMs. For example, one disease module 

can be formed by mapping disease-associated mRNAs on the human protein 

interaction network. Next, that module can be used to search for single nucleotide 

polymorphisms (SNPs) in GWAS of the same disease. If the SNPs map to proteins in 

the same module map, the two modules can be linked. This principle can be applied to 

all layers identified by omics,  using statistical methods to test if the links are stronger 

than expected by chance. Another example is modules formed by genes and their 

regulators, such as a microRNA. The genes can be linked if they are regulated by the 

same microRNAs. A double-layer module can be formed by linking microRNAs that 

regulate the same gene  [48] (figure 4).  

An important implication of MLDMs is to study how genes, gene products and 

regulators interact with each other. Such studies can result in rejectable hypotheses. 

This is illustrated by the two examples above: Does a disease-associated SNP in a 

promoter region of a module gene change the expression of of that gene? Does a 

microRNA regulate its predicted target genes in a module? Such associations may 

explain disease mechanisms as well as how they vary between patients that appear to 

have the same disease. For example, the same gene may change differently between 
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two subgroups because its promoter region harbours a SNP or is differentially 

methylated. Such changes may have direct clinical implications. Both SNPs and 

methylation can be readily analysed in clinincal samples. Thus, MLDMs may provide 

a framework to identify optimal combinations of diagnostic markers from different 

layers, based on functional understanding of the pathogenic roles of those markers. 

Promising examples have already been reported in gliomas, where microRNAs and 

genetic variants may cause disease-associated variations in mRNA expression, which 

in turn can have relevance for predicting disease outcome [48, 49]. In allergy, mRNA 

modules were showen to be co-regulated by microRNAs. Functional and clinical 

studies showed that some of those microRNAS were hubs with potential diagnostic 

relevance. The same principles were shown to be applicable to other, highly diverse 

diseases [50].  

The principle of linking molecular modules to MLDMs, can be extended to modules 

formed by other forms of clinical data, which can also be organised into networks. 

For example, diseases that show comorbidity can be linked and form disease 

networks. Similarly, disease modules that partially share the same genes can be linked 

and form disease module networks. Such multi-layer networks can be used to form 

rejectable hypotheses on diseasome- and genomewide scales: Do diseases that show 

comorbidity partially share disease modules? If not, is comorbidity due to 

socioeconomic or environmental causes? Moreover, the networks can be used to form 

hypotheses of increasing detail: Do genes in overlapping disease modules explain 

comorbidity? Can variations in expression or function of those genes explain why 

some patients only get one disease?  

Such a change of scale highlights an old principle: To interactively switch between 

systems-level and detailed studies. It is perhaps best illustrated by a microscopic 

examination. You start in low magnification to get an overview and identify 

potentially important details, which can be analysed in further detail using higher 

magnification. The detailed analysis, may in turn lead to new questions for new 

analysis in low magnification. Multilayer networks provide a framework to extend 

that principle from  diseasome/genome-wide scales  to  detailed functional or clinical 

studies.  

It is also possible to expand the MLDM to include other sources of clinical 

information such as routine laboratory tests or medical imaging. For example, in a 

study of liver cancer, specific imaging traits could be linked to prognostic gene 
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expression changes [51]. Similarly, obesity traits could be linked to molecular 

changes [43, 52]. The principle of linking networks formed can also be extended to 

other types of variables that are relevant to disease. For example, social and 

environmental factors may each be modular and potentially possible to link to each 

other as well as molecular MLDMs. Thus, MLDMs could serve as templates to 

integrate and analyse multiple layers of disease-relevant information. As  discussed in 

future implications below, user-friendly computational tools to describe MLDMs as 

graphical models already exist. Such models can potentially be used by researchers 

and clinicians alike. In principle, MLDMs, may not differ from how clinicians 

construct their own conceptual models of diseases based on different sources of 

information. In both cases, functional understanding plays a key role, but MLDMs 

allow integration of much more data and the option for computational predictions.  

 

Problems and limitations 

All systems medical studies involve significant methodological problems. In 

principle, these are either technical or related to the complexity of the underlying 

biomedical problem. Technical problems include accurate detection of signals when 

tens of thousands or more variables are measured, as well as methods to filter out the 

most relevant signals. Such problems are currently the focus of rapidly advancing 

research efforts, which have recently been discussed elsewhere, and led to strict 

guidelines for  the use of high throughput studies in clinical contexts [53]. 

Another problem of a more principal nature is how to validate changes in thousands 

of genes, which individually may be small but in combination large. One important 

validation step is to search for genomic concordance. For example, is a transcriptional  

disease module enriched for polymorphisms identified by GWAS? MLDMs have 

already been shown to provide useful templates for such validation studies. Another 

principle is to combine silencing  or up-regulation of individual genes with high 

throughput studies to study the network effects of the individual genes (figure 5). 

If such genome-scale analyses support the findings, detailed functional and clinical 

studies can be performed, including disease models in mice [42]. 

 

Clinical implementation 

To translate systems medicine into the clinic would require addressing the following 

challenges: 1) Clinical studies to determine which combinations of omics data are 
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needed for diagnostic purposes. Recent studies of asthma and seasonal allergic rhinitis 

support the feasibility of targeted transcriptomics to stratify patients for treatment 

response [54, 55]. However, given the complexity of common diseases it's likely that 

larger studies including other omics analyses are needed. 2) Development of 

laboratory technology for targeted omics that can be used in clinical settings. One 

currently available solution is that commercial providers of diagnostic omics kits 

perform and interpret the analysis. This is already possible in the diagnosis of breast 

cancer, where a targeted microarray measures expression of less than 100 genes in 

order to stratify patients. 3) Development of software for diagnostic classification 

based on the omics data. In the simplest case, patients may be stratified into high- and 

low risk groups, as in the breast cancer example. However, user-friendly software that 

may allow clinicians to make diagnostic classifications based on functional 

understanding of underlying mechanisms is already available. Such software can also 

include routine clinical data in the classification [56]. 4) Large-scale training of 

medical students and health professionals. Recommendations for such training are 

currently addressed by a multidisciplinary consortium initiated by the European 

Commission (https://www.casym.eu). 5) Analysis of the cost-effectiveness of targeted 

omics for individualized medicine should be initiated. Such analyses should balance 

the rising costs for drugs, drug development as well as ineffective medication vs. the 

costs of implementing omics-based diagnostics. A recent study indicated that targeted 

omics in breast cancer could be cost-effective at a treatment threshold of €20,000 

[57]. This threshold is close to the costs of biological drugs, representing a significant 

challenge to modern health care. 6) Finally, clinical implementation would require 

multidisciplinary collaborations that include clinicians, representatives from patient 

organizations, experts in genomics and bioinformatics, participants from 

pharmaceutical and biotechnological industries, as well as healthcare and academic 

leaders.  If successful, such collaborations could result in clinical implementation of 

stratification for treatment with, for example, biological drugs in specialized centres, 

within a five-year period. This could pave the way for similar projects for less costly 

drugs. Eventually, this could lead to a more general implementation, including in 

primary care. The likelihood of clinical implementations reaching the clinic within 

the next five years is compounded by recent initiatives, such as president 

Obama’s precision medicine initiative [58, 59], and large-scale funding from the 

European Commission.  
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Summary 

The enormous complexity of common diseases, and the resulting problems, such as 

many patients not responding to treatment, increasing costs of drugs and drug 

development are strong motivations for new and complementary strategies for 

research and clinical practice. It is possible that omics and systems medicine will 

contribute to such strategies in the near future. 
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Figure 1. Linking disease and gene networks to provide an overview of how diseases 

disease genes relate to each other. Disease-associated genes are mapped on the 

protein-interaction network. In general, genes belonging to the same or 

phenotypically similar diseases will co-localise in the network. Thus, the network can 

be used to identify or infer disease-associated genes.  

 

Figure 2. A disease module. Conceptual model of how disease-associated genes (blue 

nodes) identified by high-throughput analysis tend to co-localize in the human 

protein-protein interaction network (white nodes), forming a module (blue oval). The 

genes in the module are assumed to be more important for the disease than extra-

modular genes. 

 

Figure 3. A strategy to identify and validate disease modules A) Identification of a 

disease module in allergy. We hypothesised that a known key gene in this disease, 

IL13, would be part of the module, and therefore co-regulated by the same 

transcription factors (TFs). Converging sources of biological information identified 

25 putative regulators of IL13. B) siRNA knockdowns of the 25 TFs in Th2 polarised 

T lymphocytes from healthy controls showed that seven TFs had an effect on IL13. 

Repeated knockdowns of those seven, followed by microarrays, led to the 

identification of multiple putatively co-regulated genes. Those genes were 

computationally mapped on a network model of human protein interactions. A subset 

of the genes were highly interconnected and formed a module. The relevance of this 

module was validated by showing a significant overlap with a module derived from 

expression profiling of allergen challenged T lymphocytes from allergic patients, 

which was significantly enriched for biomarkers and therapeutic targets. This is an 

example of genome-scale validation. Another way is to search for concordance 

between different genomic layers, for example between disease associated changes in 

gene expression and enrichment of SNPs, as described by us [42] [38] 

C and D) Extensive functional and clinical studies showed the diagnostic and 

therapeutic relevance of one of the genes in the module, S100A4. These studies 

included a mouse model of asthma and treating patient cells as well as a wild type 

mouse model with an S100A4 blocking antibody. 
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Figure 4. miRNA–mRNA regulatory networks in different human diseases. (A) Type 

2 diabetes miRNA–mRNA network. (B) Chronic obstructive pulmonary disease 

miRNA–mRNA network. (C) Acute lymphoblastic leukaemia (B-lineage) miRNA–

mRNA network. (D) Pancreatic cancer miRNA–mRNA network. (E) Renal cell 

carcinoma miRNA–mRNA network. (F) miRNA–mRNA regulatory networks in 

seasonal allergic rhinitis (allergomiR-target network). miRNAs are represented as red 

nodes, while their predicted mRNA targets are represented in blue. The links between 

the nodes represent regulation of the mRNAs by miRNAs. 

 

Figure 5. Functional analysis of a candidate gene; a) the gene is knocked down using 

siRNA, b) the genes regulated by the candidate gene are identified by combined 

mRNA microarray- and pathway analysis after knockdown.  
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Table 1. Examples of potential or existing diagnostic or therapeutic options that 

are based on systems medical principles 

Diseases Method Clinical potential Clinical stage Ref 

Neurodevelopmental 

Disorders 

Whole 

genome or 

exome 

sequencing 

Earlier and 

improved treatment 

Tried in the 

clinic 

12 

 

Breast cancer  expression 

profiling of 

less than 100 

genes 

Early classification 

of prognosis, 

Stratification for 

treatment 

Available in 

the clinic 

57 

 

Hepatocellular 

carcinoma 

exome 

sequencing 

Identification of 

candidate genes 

that can potentially 

be targeted by 

FDA-approved 

drugs 

Not tried in the 

clinic 

13 

Colorectal cancer expression 

profiling 

identified 

increased 

TGFB 

signalling in 

patients with 

poor 

prognosis 

Potential for early 

prediction and 

treatment targeting 

TGFB 

Not tried in the 

clinic 

14 

Glioma Expression 

profiling 

Potential for early 

prediction of 

prognosis, and  

individualised 

medicine 

Not tried in the 

clinic 

48,49 
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Alzheimer’s disease Metabolomics Potential for early 

prediction, 

Potential for 

preventative 

treatment 

Clinical study 13 

[15] 

 

Allergy Expression 

profiling 

identified 

several novel 

candidate 

genes, in 

particular 

S100A4 

Potential biomarker 

for allergy

 Potential 

therapeutic 

candidate 

Not tried in the 

clinic 

40 

[42] 
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