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Analysis and Design of Real-Time Servers

for Control Applications
Amir Aminifar, Enrico Bini, Petru Eles, Zebo Peng

Abstract—Today, a considerable portion of embedded systems, e.g., automotive and avionic, comprise several control
applications. Guaranteeing the stability of these control applications in embedded systems, or cyber-physical systems, is perhaps
the most fundamental requirement while implementing such applications. This is different from the classical hard real-time
systems where often the acceptance criterion is meeting the deadline. In other words, in the case of control applications,
guaranteeing stability is considered to be a main design goal, which is linked to the amount of delay and jitter a control application
can tolerate before instability. This advocates the need for new design and analysis techniques for embedded real-time systems
running control applications.
In this paper, the analysis and design of such systems considering a server-based resource reservation mechanism are
addressed. The benefits of employing servers are manifold: providing a compositional and scalable framework, protection against
other tasks’ misbehaviors, and systematic bandwidth assignment and co-design. We propose a methodology for designing
bandwidth-optimal servers to stabilize control tasks. The pessimism involved in the proposed methodology is both discussed
theoretically and evaluated experimentally.

Index Terms—Embedded Systems, Real-Time Systems, Real-Time Control Co-Design, Control Server, Stability, Bandwidth
Minimization

F

1 INTRODUCTION

IN embedded systems, controllers are usually imple-
mented by software tasks, which read some input

data, perform some computation, and then apply the
computed signal to the plant to be controlled. When
other tasks execute on the same computing unit, then
the schedule of the control task is also affected by
the other tasks sharing the same processing unit.
As a result, the control algorithm may experience
considerable amount of delay and jitter, which affect
the control performance and stability of the plant.

Today, the literature does provide some results that
account for the effect of the controller schedule on
the system dynamics. For example, the effect on the
control performance of the delay from the sensing to
the actuation [1] or the effect of the jitter in the task
completion are well understood [2].

Once the effect of the scheduling on the control
performance is established, it is possible to perform
the, so called, real-time control co-design: designing a
controller so that the required control performance
is guaranteed (stability, LQR cost minimization, etc.)
and the control tasks are schedulable on the available
processing unit.

In typical approaches [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12], the control tasks are all designed
together in a way that some global cost (function of
the control cost of the individual tasks) is minimized.

The research leading to these results was supported by the ELLIIT
Excellence Center, the Linneaus Center LCCC, the Marie Curie Intra
European Fellowship within the 7th European Community Framework
Programme, and the Swedish Research Council.

server serverserver

processing unit

plantplant

applications
other

task
control

task
control

Fig. 1. Overview of the proposed approach.

By following this approach, however, the design of
each control task is affected by the other control tasks,
hence breaking the key engineering design principle
of separation of concerns. In this paper, we propose
instead to run each controller within its own server,
which then isolates each control task in the execution
environment (see Figure 1).

The usage of servers for control tasks presents the
following advantages:

• it provides compositionality that is essential for
systematic system design methodologies;

• the complexity of the design scales linearly with
the number of applications;

• it protects each controller from possible misbe-
haviors, which may occur within other tasks and
then possibly jeopardize the entire system;

• the bandwidth assignment, rather than the prior-
ity assignment, may constitute a more accurate
instrument to allocate the available computing
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resources;
• the simple interface provided by the resource

reservation mechanism facilitates the controller–
server co-design process [13], [14];

• running the controller over a dedicated server,
may reduce significantly the jitter of the con-
troller, especially if the server period is smaller
than the period of the controller. In short, this
is due to the fact that the server guarantees the
control task a certain resource bandwidth. This is
important since it is often possible to compensate
for the constant part of delay, while the process
of coping with the jitter is more involved.

1.1 Related work

Over the past decade, the analysis and design of real-
time servers have widely developed. Feng and Mok
[15] introduced the bounded delay resource model to
facilitate hierarchical resource sharing. The schedula-
bility analysis and server design problems for real-
time applications under the periodic resource model
have been addressed by [16], [17], [18], [19]. Easwaran
et. al. [20] extended the periodic resource model to the
explicit deadline periodic model (EDP) and developed
an algorithm to compute a bandwidth optimal EDP
model based abstraction. Similar to what we do in
this paper, Fisher and Dewan [21] described a method
to minimize the bandwidth of a server. They devel-
oped a fully-polynomial-time approximation scheme
(FPTAS) to solve the problem. However, as the ma-
jority of the work in this area, they consider the task
deadlines as constraints rather than the stability of the
controllers.

More relevant to this work, Cervin and Eker [13]
proposed the control server approach which provides
a simple interface used for control-scheduling co-
design of real-time systems. Fontanelli et. al. [22] ad-
dressed the problem of optimal bandwidth allocation
for a set of control tasks under the time-triggered
model. While exploiting this model can simplify the
analysis and design problems to a great extent, by
removing the element of jitter, such methods are
restricted solely to the very particular time-triggered
design and implementation approach that can poten-
tially lead to under-utilization of resources or poor
control performance [23]. Recently, Fontanelli et. al.
propose a new model for real-time control applica-
tions [24] to investigate stochastic stability, but ignor-
ing the dependencies among stochastic variables. In
our previous work [25], we have considered the anal-
ysis and design of bandwidth-efficient control servers
while guaranteeing stability. In this work, we extend
our previous work [25], provide theoretical founda-
tion and broaden the experimental evaluation. The
theoretical results quantify the amount of pessimism,
in the worst-case, in our proposed approach, while
the experimental results quantify this pessimism in

practice. In [14], we extend [25] towards a different
direction presenting a controller–server co-design ap-
proach where the controller is determined in a unified
process along with the server parameters.

1.2 Contributions of the paper

While the analysis and design problems of real-time
servers have been discussed to a considerable degree,
the server-based approach has gained less attention
in the case of control applications which are funda-
mentally different from real-time applications with
hard deadlines. In particular, as opposed to hard real-
time applications, the notion of deadline is considered
to be artificial for control applications. In contrast to
hard real-time systems, control stability is the main
property to be guaranteed for control applications.
Therefore, in the case of control applications, worst-
case control performance and stability should be
considered instead of worst-case response time and
deadline.

To approach the problem of designing stabilizing
servers, the first step is to capture the stability of the
controllers in terms of real-time parameters, which is
facilitated by the Jitter Margin toolbox [26], [5], [2].
The stability of control applications, hence, depends
not only on the amount of delay, but also on the
amount of jitter the application experiences [27]. The
second step is to derive analysis methods for the
servers to compute the discussed real-time metrics,
i.e., delay and jitter. To this end, we consider the
explicit deadline periodic model and develop the
worst-case and best-case response times for tasks with
arbitrary deadlines within explicit deadline periodic
servers with arbitrary deadlines. Having the worst-
case and best-case response times, it is, then, possible
to compute the delay and jitter and investigate if a
control application within a given server is guaran-
teed to be stable.

In addition to the analysis, we also provide an-
alytic results that can drive the design of a server
towards solutions which can guarantee the stability
of the controller. The aim of such a design procedure
is bandwidth minimization. Since such a solution
is derived using a linear upper and lower bound
of the server supply function, we also evaluate the
amount of pessimism introduced by our technique,
both theoretically and experimentally.

2 SYSTEM MODEL

The system is composed of n plants. Each plant is
controlled by a control task which is executing within
a server. Below we describe the model of the plant,
the control task, and the server.
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Fig. 2. Graphical interpretation of the nominal delay
and worst-case response-time jitter.

2.1 Plant model

A plant is modeled by a continuous-time system of
differential equations [1].

ẋ = Ax + Bu,

y = Cx,
(1)

where x, u, and y are the plant state, the control
signal, and the plant output, respectively. Since each
plant is considered in isolation, we do not report the
index i of the plant among all the controlled plants.

2.2 Control task model

The plant output y is sampled in a strictly periodic
manner with period h.1 The control signal u is com-
puted by a control task τ . Such a control signal is
updated any time the control task completes and is
held constant between two consecutive updates.

The instants when the input u is applied to the
plant do then depend on the way the task τ is
scheduled. The task parameters, which describe the
timing behavior of the task are:
• the best-case execution time, denoted by cb;
• the worst-case execution time, denoted by cw; and
• the sampling period, denoted by h.
In addition, the way the task is scheduled deter-

mines also the following task characteristics, which
depend in turn on the above mentioned parameters:
• the best-case response time Rb,
• the worst-case response time Rw,
• the nominal delay (or latency), denoted by L = Rb,

and
• the worst-case response-time jitter (jitter), denoted

by J = Rw −Rb.
The terminology and the notation are illustrated in
Figure 2. The nominal delay, or the latency, captures
the constant part of the delay, while the jitter corre-
sponds to the variation in the delay experienced by all
instances (jobs) of a task. Note that we do not consider
any deadlines for control tasks.

2.3 Server model

As introduced above, to isolate controllers from one
another, each control task is bound to execute over a

1. This essentially means that there exists a dedicated hardware
to sample the output of the plant strictly periodically. The output
then is stored in a buffer and the controller reads the output from
this buffer upon execution.

dedicated server. The periodic server S is described
by:
• the server budget Q;
• the server period P , and
• the server deadline D.

This model was also called EDP (Explicit Deadline
Periodic) model [20]. Every period P the server is
activated. Then, it allocates Q amount of time to the
task, before the server deadline expires.

The delay and jitter experienced by a task are tightly
connected to the best-case and worst-case response
times. To compute these two quantities, it is then nec-
essary to determine the worst and best case scenarios
with regard to the computational resource supplied
by the server.

To perform worst-case analysis for the tasks run-
ning within a server, a classic approach [15], [17], [18],
[19], [20] is to define the supply lower bound function
slbf(t), which is formally defined as follows.

Definition 1: The supply lower bound function
slbf(t) of a server S is the minimum amount of resource
provided in any interval of length t.

The exact expression of slbf(t) of a periodic server,
is

slbf(t) = max{0, kQ, t− P −D + 2Q− k(P −Q)} (2)

with k =
⌊
t−(D−Q)

P

⌋
, and it is depicted in Fig-

ure 3(a) by a solid line (please refer to the related
literature [15], [17], [18], [19], [20] for details on its
computation). As the expression of (2) may be difficult
to be managed, especially when the server parameters
are the variables subject to optimization (as we do in
this paper), it is often convenient to lower bound the
slbf(t) by the linear supply lower bound function lslbf(t),
defined as

lslbf(t) = max {0, α(t−∆)} , (3)

with, using Feng-Mok’s notation [15], the server band-
width α and delay ∆, defined as

α =
Q

P
, (4)

∆ = P +D − 2Q. (5)

The lslbf is depicted in Figure 3(a) by a dashed line.
Analogously, for the best-case analysis it is possible

to compute the supply upper bound function subf(t),
defined as follows.

Definition 2: The supply upper bound function
subf(t) of a server S is the maximum amount of
resource provided in any interval of length t.

In strict analogy to the worst case examined earlier,
the expression of the subf of a periodic server is

subf(t) = min{t, kQ, t+ P +D − 2Q− k(P −Q)} (6)

with k =
⌈
t+D−Q

P

⌉
, while the linear supply upper bound

function is

lsubf(t) = min {t, α(t+ ∆)} (7)
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Fig. 3. Worst-case and best-case resource allocation scenarios.

with α and ∆ as in (4) and (5), respectively. Figure 3(b)
shows the subf (by a solid line) as well as the lsubf (by
a dashed line).

3 SERVER-BASED ANALYSIS OF CONTROL
TASKS

In this section, we determine the best-case and worst-
case response times of the control task running within
a server, as functions of the server parameters P ,
Q, and D. The analysis is performed with the exact
slbf/subf functions of (2) and (6) (in Section 3.1) as
well as with the linear bounds lslbf/lsubf of (3) and (7)
(Section 3.2).

3.1 Exact characterization

In this section, the exact real-time analysis for a con-
trol task is derived. To derive the worst-case response
time of a task τ , we must consider the minimum
amount of resource time available to the task, which
is described by slbf(t).

The worst-case response time Rw of the first job of
the control task (released at time 0) is equal to the
first instant when the server has necessarily provided
at least cw amount of time, that is

Rw = min {t : slbf(t) ≥ cw} . (8)

By computing the pseudo-inverse of slbf(t), such a
value can be computed explicitly and it is equal to

Rw = D −Q+

⌈
cw

Q

⌉
(P −Q) + cw. (9)

The proof is similar to [28].
Unfortunately, the longest response time may occur

even at the later jobs, and not necessarily at the first
job. This is the case since, as mentioned before, we do
not enforce any task deadline, thus, response times
are allowed to be longer than the sampling periods
h. Therefore, we must evaluate the response times
of all jobs within the busy period, as indicated by
Lehoczky [29] for the arbitrary deadline case.

The worst-case response time of the control task
within a server S = (Q,P,D) is obtained as follows,

Rw = sup
q∈N

{
D−Q+

⌈
qcw

Q

⌉
(P −Q)+ qcw− (q − 1)h

}
. (10)

We remind that (for example, see the proof of
Lemma 1 in [30]) the supremum of (10) has a finite
solution only when

α =
Q

P
≥ cw

h
. (11)

In analogy with (8), the best-case response time Rb

is defined through the subf function as follow

Rb = min{t : subf(t) ≥ cb}, (12)

which can also be computed explicitly, and it is equal
to

Rb = max

{
0, 2Q−D − P +

⌈
cb

Q

⌉
(P −Q)

}
+ cb. (13)

The proof is similar to the proof of Theorem 1 in [17].

3.2 Characterization with linear bounds
The main obstacle in using the exact response time
for finding the optimal server parameters (see Section
5) is that Equations (10) and (13) involve ceiling
functions. Hence, we propose to compute an upper
bound R

w
to the Rw and a lower bound Rb of Rb

using, respectively, the lslbf and lsubf functions, rather
than the exact ones, i.e., slbf and subf.

Observe that while this approximation involves
pessimism, it is safe from the stability point of view.

By replacing the slbf in (8) with the lslbf of (3), we
can readily compute the response time upper bound,
which is

R
w

=
cw

α
+ ∆. (14)

As shown in [30], such an upper bound to the re-
sponse time is finite only if the server bandwidth
is not smaller than the worst-case utilization of the
control task, that is

α =
Q

P
≥ cw

h
. (15)
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Similarly, by replacing subf in (12) by lsubf of (7), the
lower bound to the best-case response time is given
by,

Rb = max

{
cb,

cb

α
−∆

}
. (16)

4 STABILITY CONSTRAINT

It is well known that the delay and jitter in the
execution of the control applications are decisive fac-
tors in the performance and stability of the plants
associated with them. This is opposed to hard real-
time systems where the systems are design based on
the notion of deadline and worst-case response time.
For control applications, hence, the worst-case control
performance and stability are considered instead of
the worst-case response time and deadline.

To quantify the tolerable amount of delay and jitter
by a control application before the instability of the
plant, or to guarantee a certain degree of performance,
we use the Jitter Margin toolbox [26], [5], [2]. It
provides sufficient stability conditions for a closed-
loop system with a linear continuous-time plant and
a linear discrete-time controller.

For a given nominal delay, the Jitter Margin toolbox
computes the jitter margin (similar to the phase margin
and gain margin concepts) to guarantee the required
degree of performance or stability. The Jitter Margin
toolbox provides the stability curve that determines
the maximum tolerable response-time jitter J based
on the nominal delay L. While the curve can instead
be generated for a certain control performance, rather
than stability, we use the phrase stability curve in
this paper to refer to the output of the Jitter Margin
toolbox. The solid curves in Figure 4 are examples
of the stability curves generated by the Jitter Margin
toolbox. Observe that the area below the solid curve
is the stable area. The graph is generated for the plant
with transfer function 1000

s2+s and sampling period of 6
ms. The green curve is generated when a discrete-
time Linear-Quadratic-Gaussian (LQG) controller is
considered, whereas the blue curve is generated con-
sidering a Proportional-Integral-Derivative (PID) con-
troller.

For a given sampling period, the stability curve
can safely be approximated by a linear function of
the nominal delay and worst-case response-time jit-
ter. The linear approximation is generated by a con-
strained least-squared optimization on the original
curve generated by the Jitter margin toolbox, which is
computationally efficient. The linear stability condition
for a control application is of the form

L+ aJ ≤ b, (17)

where a ≥ 1, b ≥ 0. The nominal delay L identifies
the constant part of the delay that the control appli-
cation experiences, whereas the worst-case response-
time jitter J captures the varying part of the delay
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Fig. 4. The stability curves generated by the Jitter
Margin toolbox and their linear lower bounds (the area
below the curves is the stable area).

(see Figure 2, where Rb and Rw represent the best-
case and worst-case response times, respectively). The
linear lower bounds, depicted by the dashed lines,
on the original curves generated by the Jitter Margin
toolbox are also shown in Figure 4. In [5], Cervin et.
al. discussed the fact that L + J(L) is an increasing
function of L, where J(L) is the jitter margin for the
nominal delay L. We shall show that the coefficient a
is indeed always greater than 1. Let us consider two
nominal delays L and L′, where L < L′. Based on this
property, we can write the following inequality,

L+ J(L) < L′ + J ′(L′), (18)

which can be simplified to,

a = − L′ − L
J ′(L′)− J(L)

> 1. (19)

This indicates that control applications are more sensi-
tive to the varying part of the delay than the constant
part.

Often, the linear lower bound efficiently captures
the stable area identified by Jitter Margin. Although
we consider only a single linear function to lower
bound the curve generated by the Jitter Margin tool-
box in this manuscript, it is also possible to con-
sider a piecewise linear lower bound and perform all
optimizations throughout this paper for each linear
section and then choose the best solution among
all. However, for the sake of presentation, here, we
consider that the stability curve can be efficiently
bounded from below by a single linear function.

In order to apply the stability analysis discussed,
the values of the nominal delay (L) and worst-case
response-time jitter (J) of the control task should be
computed. The two metrics are defined based on the
worst-case and best-case response times as follows,

L = Rb,

J = Rw −Rb,
(20)
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where Rw and Rb denote the worst-case and best-case
response times, respectively. The stability constraint,
hence, can be formulated as,

L+ aJ ≤ b,
Rb + a(Rw −Rb) ≤ b.

(21)

For a given server, the stability condition (21), which is
based on the exact best-case and worst-case response
times, determines if the server, in the worst-case, can
guarantee the stability of the control task associated
with it (analysis problem).

In the context of the optimization problem, as will
be discussed in Section 5, however, the presence of
discontinuous operators (ceiling) in the exact expres-
sions (10) and (13) of the worst-case and best-case
response times makes them unsuitable. Hence, we
use the upper/lower bound of the worst/best-case
response times and redefine the nominal delay and
the worst-case response-time jitter as follows,

L = Rb,

J = R
w −Rb.

(22)

While using the linear supply bounds involves some
pessimism compared to the original supply bounds,
it is safe from the stability point of view [5]. Nonethe-
less, the amount of introduced pessimism is discussed
in Section 6.

The stability constraint based on the linear bounds
is given in the following,

b ≥ L+ aJ,

b ≥ Rb + a(R
w −Rb),

b ≥ a(
cw

α
+ ∆)− (a− 1) max

{
cb,

cb

α
−∆

}
,

= a(
cw

α
+ ∆) + (a− 1) min

{
−cb,−

(
cb

α
−∆

)}
,

which we rewrite as

min

{
a(cw − cb) + cb

α
+ (2a− 1)∆− b,

acw

α
+ a∆− (a− 1)cb − b

}
≤ 0. (23)

Hence, Equation (23) describes the constraint on the
server parameters (the bandwidth α and the delay ∆,
see Section 2.3), which guarantees the stability of the
controller running within such a server.

5 OPTIMAL DESIGN OF STABILIZING
SERVERS

In this section, we describe the procedure to design
optimal stabilizing servers. The objective of the op-
timization is to minimize the utilization required in
order to guarantee the stability of all control applica-
tions, that is

U =

n∑
i=1

(
αi +

ε

Pi

)
, (24)

where ε denotes the switching overhead for the
server and is considered to be strictly positive. If no
overhead is considered, then the solution would be
with P → 0, making this an impractical server period.

We propose the implicit deadline server design, in
which all server deadlines are set equal to the periods,
Di = Pi.

Thanks to the isolation provided by the resource
allocation mechanism, the stability of each control
task is guaranteed through the parameters (α and ∆)
of the server running the task only (Equation (23)).
Hence, the minimization of the total server utilization
of (24) can be broken down into one bandwidth
minimization problem for each server, rather than a
more complex minimization which involves all task
parameters together.

If we assume D = P for all servers, we can perform
the following optimization for each control applica-
tion and conclude based on the obtained results,

min
α,∆

α+
2ε(1− α)

∆

s.t. min

{
a(cw − cb) + cb

α
+ (2a− 1)∆− b,

acw

α
+ a∆− (a− 1)cb − b

}
≤ 0.

(25)

Notice that in the above cost the period P is replaced
by ∆

2(1−α) , as it follows from (4)–(5) for D = P .
The solution to the above problem is the minimum

bandwidth (including the overhead) required to guar-
antee stability of control task τ .

Let us proceed with finding the global optimum of
the problem (25), which is concerned with a single
control task in isolation. The stability constraint in (25)
can be written as

min{gI(α,∆), gII(α,∆)} ≤ 0,

which is equivalent to

(gI(α,∆) ≤ 0) ∨ (gII(α,∆) ≤ 0),

with ∨ denoting the logical or between two proposi-
tions. Thus, the problem (25) can be solved by solving
individually the following two problems

min
α,∆

α+
2ε(1− α)

∆

s.t.
a(cw − cb) + cb

α
+ (2a− 1)∆− b ≤ 0,

(26)

and,

min
α,∆

α+
2ε(1− α)

∆

s.t.
acw

α
+ a∆− (a− 1)cb − b ≤ 0.

(27)

and then select the best solution between the two
produced by (26) and (27). Moreover, in order for the
response time to be finite, the server bandwidth α
has to satisfy α ≥ cw

h , which leads to an additional
constraint in each of the problems (26) and (27).
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To solve problems (26) and (27), we use the KKT
(Karush-Kuhn-Tucker) necessary conditions for op-
timality [31]. According to the KKT condition, the
optimum x∗ of the problem

min
x

f(x)

s.t. gi(x) ≤ 0, i = 1 . . .m,
(28)

must necessarily satisfy the following conditions

∇f(x∗) +

m∑
i=1

µ∗i∇gi(x∗) =0,

µ∗i gi(x
∗) =0, i = 1 . . .m,

µ∗i ≥0, i = 1 . . .m.

(29)

For the case of our problem, it is assumed that g1(x)
is associated with the stability constraints shown in
problems (26) and (27), whereas g2(x) is associated
with inequality (11).

Let us proceed with solving problem (26). From the
KKT condition of the gradient, if we differentiate w.r.t.
α and then ∆, we find

1− 2ε

∆
− µ1

a(cw − cb) + cb

α2
− µ2 = 0 (30)

−2ε(1− α)

∆2
+ µ1(2a− 1) = 0 (31)

We consider two cases: µ2 = 0 and µ2 > 0.
µ2 = 0: Let us first assume there is no constraint on
the server bandwidth α, i.e., µ2 = 0. Since a ≥ 1 and
α < 1, from (31), we immediately find the multiplier
µ1, that is:

µ1 =
2ε(1− α)

∆2(2a− 1)
> 0,

hence the constraint of (26) is active and must hold
with the equal sign.

If we set, to have a more compact notation,

xI = a(cw − cb) + cb, yI = ε(2a− 1), zI = b, (32)

then the equality constraint of (26) can be rewritten
as

xI

α
+ yI

∆

ε
= zI, (33)

from which we find
∆

ε
=
αzI − xI

αyI
, (34)

and then the multiplier µ1 is

µ1 =
2(1− α)

yI

(
αyI

αzI − xI

)2

. (35)

By replacing (34) and (35) in the condition (30), we
find:

1− 2
αyI

αzI − xI
− 2(1− α)

yI

α2y2
I

(αzI − xI)2

xI

α2
= 0

zI(zI − 2yI)α
2 − 2xI(zI − 2yI)α+ xI(xI − 2yI) = 0

α2 − 2
xI

zI
α+

xI(xI − 2yI)

zI(zI − 2yI)
= 0

α = αI (1± δI)

where we set

α` =
x`
z`
, δ` =

√
1− z`(x` − 2y`)

x`(z` − 2y`)
(36)

with ` = I. The values αI and δI represent, respectively,
the consumed bandwidth in absence of overhead and
the increase of bandwidth needed due to overhead.
Among the two solutions, the smaller one makes the
corresponding value of ∆ negative. Hence, the only
acceptable solution for the server bandwidth is given
by αI(1+δI) and there is no need to check the second-
order sufficient conditions.

The solution identified here corresponds to the case
where there is no constraint on server bandwidth
α (i.e., µ2 = 0). Therefore, if this solution satisfies
constraint (11), i.e., α ≥ cw

h , then there is no need to
consider the case where µ2 > 0 (because the solution
in the larger search space is valid even considering
this constraint); otherwise, this case has to be taken
into account.
µ2 > 0: Now let us consider the case where the
solution found does not satisfy constraint (11), i.e.,
α < cw

h . From Equation (30), we have,

µ2 = 1− 2ε

∆
− µ1

a(cw − cb) + cb

α2
. (37)

Substituting µ2 in the second equality of (29), i.e.,
µ2g2(x) = µ2

(
−α+ cw

h

)
= 0, we obtain,(

1− 2ε

∆
− µ1

a(cw − cb) + cb

α2

)
︸ ︷︷ ︸

first term

(
−α+

cw

h

)
︸ ︷︷ ︸

second term

= 0. (38)

The above equation has at most three solutions. The
solution found so far is equivalent to considering the
first term to be equal to zero, i.e., µ2 = 0 (see Equa-
tion (37)). As discussed before, the solutions obtained
considering the first term are invalid since they do
not satisfy constraint (11). Therefore, the only valid
solution is cw

h . In other words, the optimal solution α∗I
is equal to αI(1 + δI) except when this solution does
not satisfy constraint (11). The final solution is then
given by,

α∗I = max

{
αI(1 + δI),

cw

h

}
, (39)

in which we also account for the constraint (11). The
corresponding optimal value of the server delay ∆∗I
can be computed from (34).

To solve the second problem (27), we simply ob-
serve that by setting

xII = acw, yII = aε, zII = b+ (a− 1)cb. (40)

the constraint can be rewritten as in (33) by replacing
xI, yI, and zI, with xII, yII, and zII of (40). Since the cost
functions and the constraints of the two problems are
the same, it follows that the solution is exactly the
same as (39), with the corresponding replacements.
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Since the two problems have to be considered in
logical or, the minimal bandwidth α∗ and delay ∆∗

which can guarantee the stability of the control task
(within the assumption of server deadline D equal to
the server period P ) is given by the better solution of
the two problems, i.e.,

min

{
α∗I +

2ε(1− α∗I )

∆∗I
, α∗II +

2ε(1− α∗II)

∆∗II

}
. (41)

After performing the above procedure for all
servers and having found the minimum resource
utilization required for stability of all control appli-
cations, we should now check if the resource demand
is less than or equal to the resource supply. In the
case of the implicit deadline servers running on a
uniprocessor, the solution found is valid if and only
if the utilization is less than or equal to one, i.e.,

n∑
i=1

(
α∗i +

2ε(1− α∗i )
∆∗i

)
≤ 1. (42)

6 THEORETICAL GUARANTEES

We shall now discuss the degree of pessimism intro-
duced in the proposed approach by using the linear
bounds instead of the exact response times. Towards
this, we need to define the notion of optimistic supply
function. Note that the optimistic supply functions are
unsafe and are only used to quantify the amount of
pessimism introduced in our approach.

The optimistic supply lower bound function olslbf(t) of
a server is a linear upper bound on the supply lower
bound function (as shown by the dotted line in Figure
3(a)). To obtain this, we notice that the optimistic
supply functions are only Q

P (P − Q) different from
the linear supply bound functions, as it is shown in
Figure 5. Since we have the linear supply lower bound
function lslbf(t), the optimistic supply lower bound
function is obtained as follows,

olslbf(t) = max

{
0,
Q

P
(t− (P +D − 2Q)) +

Q

P
(P −Q)

}
= max

{
0,
Q

P
(t− (D −Q))

}
.

Similarly, we define the optimistic supply upper bound
function olsubf(t) as follows (shown by the dotted line
in Figure 3(b)),

olsubf(t) = min

{
t,
Q

P
(t+ (P +D − 2Q))− Q

P
(P −Q)

}
= min

{
t,
Q

P
(t+ (D −Q))

}
.

Computing the pseudo-inverse of these optimistic
supply functions, we obtain optimistic bounds for the
best-case and worst-case response times,

Rw =
cw

α
+ ∆,

R
b

= max

{
cb,

cb

α
−∆

}
,

(43)

Q

P

α (P−Q)

lower bound on supply function

upper bound on supply function

Fig. 5. The relation between linear, optimistic, and
exact supply functions.

where ∆ = D −Q.
The next two subsections discuss the theoretical

results on the amount of pessimism involved in our
design method. We shall first restrict out attention to
the stability of one single controller. Then, we focus
on both stability and schedulability of the set of all
servers.

6.1 Stability of controllers

In this subsection, we shall focus on the stability
of a single controller. The following lemma clarifies
the relation between using the optimistic and exact
supply functions for stability guarantees.

Lemma 1: If the stability constraint (23) of a control
task is satisfied within a server S = (Q,P,D) with
the exact supply functions, it is also satisfied within
the same server but considering the optimistic supply
functions.

Proof: From the definition of the optimistic supply
functions,

∀t, subf(t) ≥ olsubf(t),

∀t, slbf(t) ≤ olslbf(t).

This, in turn, leads to the following inequalities
among the exact and optimistic response times,

Rb = min{t :subf(t)≥cb} ≤ min{t :olsubf(t)≥cb} = R
b
,

Rw = min{t :slbf(t)≥cw} ≥ min{t :olslbf(t)≥cw} = Rw.

This indicates that considering the optimistic supply
functions results in a lower bound for the worst-case
response time Rw and an upper bound for the best-
case response time R

b
. Note that since a ≥ 1, Rw ≤

Rw, R
b ≥ Rb, we have,

L+aJ = aRw +(1−a)Rb ≥ aRw +(1−a)R
b

= L+aJ,

where L = R
b

and J = Rw − R
b
. Hence, if there

exists a server with the exact supply functions that
can satisfy inequality (21), then the stability constraint
(21) is also satisfied considering the optimistic linear
supply functions, i.e.,

L+ aJ ≤ b L+aJ≥L+aJ
=⇒ L+ aJ ≤ b.
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Lemma 2: If the stability constraint (23) of a control
task is satisfied within a server S = (Q,P,D) with
the linear supply functions, it is also satisfied within
the same server but considering the exact supply
functions.

Proof: The following relations hold for the re-
sponse times,

Rb = min{t :subf(t)≥cb} ≥ min{t : lsubf(t)≥cb} = Rb,

Rw = min{t :slbf(t)≥cw} ≤ min{t : lslbf(t)≥cw} = R
w
.

Since a ≥ 1, we have the following inequalities,

aRw + (1− a)Rb ≤ aRw
+ (1− a)Rb,

L+ aJ ≤ L+ aJ,

from which the theorem follows,

L+ aJ ≤ b L+aJ≤L+aJ
=⇒ L+ aJ ≤ b.

The next theorem establishes one important relation
between stabilizing controllers based on the linear
supply functions and the exact supply functions.

Theorem 1: If the stability constraint (23) of a control
task is satisfied within a server S = (Q,P,D) with
the exact supply functions, it is also satisfied within a
server S′ = (Qk ,

P
k ,

D
k ) with the linear supply functions

and k ≥ 1 + P−Q
D−Q .

Proof: Let us first prove the following inequalities,

∀t, subf(t) ≥ lsubf′(t),

∀t, slbf(t) ≤ lslbf′(t).
(44)

To prove subf(t) ≥ lsubf ′(t), we derive the optimistic
linear lower bound olsubf(t) on the exact supply
upper bound function subf(t). If we can prove that
this optimistic linear lower bound olsubf(t) is always
greater than or equal to lsubf ′(t), considering that it is
a lower bound of subf(t), we have subf(t) ≥ lsubf ′(t).
The linear lower bound on subf(t) is given by (accord-
ing to the definition of the optimistic supply upper
bound functions),

olsubf(t) = min

{
t,
Q

P
(t+ (D −Q))

}
.

Let us also derive the lsubf ′(t) for the implicit
deadline server S′ = (Qk ,

P
k ,

D
k ),

lsubf ′(t) = min

{
t,
Q
k
P
k

(t+
1

k
(P +D − 2Q))

}
.

Our goal is to find k such that the optimistic lin-
ear lower bound on the exact supply upper bound
function olsubf(t) is always above the linear upper
bound lsubf ′(t). Note that, if x ≥ y and x′ ≥ y′, then
min{x, x′} ≥ min{y, y′}. Since t ≥ t, we only need to

focus on the second terms inside the min-functions in
olsubf(t) and lsubf ′(t), i.e.,

Q

P
(t+ (D −Q)) ≥

Q
k
P
k

(t+
1

k
(P +D − 2Q)).

Re-arranging the terms, we obtain,

k ≥ 1 +
P −Q
D −Q

.

Analogously, to prove slbf(t) ≤ lslbf ′(t), we start by
showing that the optimistic linear upper bound on
slbf(t) is given by (according to the definition of the
optimistic supply lower bound functions),

olslbf(t) = max

{
0,
Q

P
(t− (D −Q))

}
.

The linear lower bound on server S′ is given by,

lslbf ′(t) = max

{
0,

Q
k
P
k

(t− 1

k
(P +D − 2Q))

}
.

Observe that, if x ≤ y and x′ ≤ y′, then max{x, x′} ≤
max{y, y′}. Since 0 ≤ 0, it is enough to focus on
the second terms inside the max-functions. We would
like to find k such that the optimistic linear upper
bound on slbf(t), denoted by olslbf(t), is always below
lslbf ′(t), i.e.,

Q

P
(t− (D −Q)) ≤

Q
k
P
k

(t− 1

k
(P +D − 2Q)),

which simplifies to,

k ≥ 1 +
P −Q
D −Q

,

which is the same as the previous condition on k.
As a result of the inequalities in (44), the following

relations hold for the response times,

Rb = min{t :subf(t)≥cb} ≤ min{t : lsubf ′(t)≥cb} = Rb′,

Rw = min{t :slbf(t)≥cw} ≥ min{t : lslbf ′(t)≥cw} = R
w′
.

Since a ≥ 1, we have the following inequalities,

aRw + (1− a)Rb ≥ aRw′
+ (1− a)Rb′,

L+ aJ ≥ L′ + aJ
′
,

from which the theorem follows,

L+ aJ ≤ b L+aJ≥L′+aJ′
=⇒ L′ + aJ

′ ≤ b.

Note that the bound is tight when k = 1 + P−Q
D−Q

since the linear lower bound on subf(t) is the same
as lsubf ′(t) and the linear upper bound on slbf(t) is
the same as lslbf ′(t). The tightness is in the sense that,
for server S′ = (Qk ,

P
k ,

D
k ), decreasing k by a small

positive value, violates the inequalities in (44).
The important message of Theorem 1 is that, if a

server S = (Q,P,D) (with the exact supply functions)
with bandwidth α = Q

P is identified that satisfies the
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2Q

Q

t

0 P−Q 2P−Q−Q 3P−Q

slbf

S

slbf ’

 ’lslbf

 ’S

(a) Worst-case resource allocation scenario (implicit deadline).

2Q

Q

t

Q0 P+Q

subf

S

’

 ’lsubf

subf

S ’

(b) Best-case resource allocation scenario (implicit deadline).

Fig. 6. Worst-case and best-case resource allocation scenarios for implicit deadline server.

stability constraint (21) for the control task associated
with it, then there exists a server S′ = (Qk ,

P
k ,

D
k ) (with

the linear supply functions) that can also satisfy the
stability constraint (21) for the control task and the
required bandwidth is the same, i.e., α′ =

Q
k
P
k

= Q
P .

The theorem also states that, in the worst-case, the
server S′ has to be run k times more frequently
compared to S. In practice, of course, this might
be a disadvantage, if the context-switch overhead is
significant.

The following corollary discusses the particular case
of implicit deadline servers (i.e., D = P ) and it will
be used in the next section.

Corollary 1: If the stability constraint (23) of a con-
trol task is satisfied within an implicit deadline server
S = (Q,P ) with the exact supply functions, it is
also satisfied within an implicit deadline server S′ =
(Q2 ,

P
2 ) with the linear supply function.

Proof: The proof follows by substituting D = P in
k ≥ 1 + P−Q

D−Q in Theorem 1, i.e., k ≥ 2.

For clarification see Figure 6. In Figure 6(a), the lin-
ear supply lower bound function lslbf ′ is both a lower
bound for the exact supply lower bound function slbf ′

and the optimistic upper bound on slbf, i.e., olslbf.
This implies that the amount of resource provided by
slbf ′ in the worst case is more than or equal to the
amount of resource provided by slbf in the worst case.
Similarly, Figure 6(b) shows that the linear supply
upper bound function lsubf ′ is both an upper bound
for the exact supply upper bound function subf ′ and
the optimistic lower bound of subf, olsubf.

The bound is tight in the sense that the linear
supply lower bound functions lslbf ′ is not only the
tightest linear lower bound on the exact supply lower
bound function slbf ′, but also the tightest linear upper
bound on the exact supply lower bound function slbf.
Similar results can be derived for the linear supply
upper bound function lsubf ′.

6.2 Schedulability of servers
Thus far in this section, we have limited our attention
only to the stability of a single server. However, for
a system to be implementable, not only should the
stability constraint be satisfied, but also the system
should be schedulable. The next theorem provides an
important analytical result to bound the pessimism
involved in using the linear supply functions.

Note that, in many situations, the monotonicity
property does not hold [32]. The following Lemma
discusses the monotonicity property with respect to
processor speed.

Lemma 3: If the stability constraint (23) is guaran-
teed for a task running within a server S = (Q,P,D)
on a processor and considering the linear supply
functions, it is also guaranteed within the same server
and on a higher speed processor.

Proof: It can be shown that if stability constraint
(23) is satisfied, then, on a processor with speed aug-
mented by a factor λ (λ ≥ 1), the following stability
constraint is also satisfied,

min

{
a(cw − cb) + cb

λα
+ (2a− 1)∆− b,

1

λ

(
acw

α
− (a− 1)cb

)
+ a∆− b

}
≤ 0. (45)

The above inequality holds since the terms multiplied
by the factor 1

λ are non-negative considering α ≤ 1
and a ≥ 1.

Since the linear stability constraint is satisfied on
a processor which is λ times faster, so is the exact
stability condition (according to Lemma 2).

Theorem 2: If a set of controllers is guaranteed to be
implemented (i.e., the system is schedulable and all
the plants are guaranteed to be stable) using implicit
deadline servers Si = (Qi, Pi) and considering the ex-
act supply functions over a unit-speed processor, then
the same set is guaranteed to be implemented using
implicit deadline servers S′i = (Qi

2 ,
Pi

2 ) considering the
linear supply functions over a λ-speed processor with
λ =

∑n
i=1

Qi+2ε
Pi

, ε being the switching overhead.
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Proof: According to Corollary 1, if the stability
constraint of a control application can be satisfied
within an implicit deadline server Si = (Qi, Pi) with
the exact supply functions, then it is also satisfied
within an implicit deadline server S′i = (Qi

2 ,
Pi

2 ) with
the linear supply functions. Therefore, server S′i with
the linear supply functions provides guarantees from
the stability point of view. However, in addition to
stability, the schedulability of the controllers should
also be investigated.

Note that, considering the exact supply functions,
the system is schedulable if and only if,

U =

n∑
i=1

(
αi +

ε

Pi

)
=

n∑
i=1

(
Qi
Pi

+
ε

Pi

)
≤ 1. (46)

Now, let us consider the case where the linear supply
functions are used,

U ′ =

n∑
i=1

(
αi +

ε
Pi
2

)
=U +

n∑
i=1

ε

Pi
. (47)

The system based on the linear supply functions is
schedulable if,

λ ≥ U +

n∑
i=1

ε

Pi
, (48)

where λ is the relative speed of the processor. Having
considered a processor which is λ times faster, it is
now required to discuss the impact of this choice on
stability. This is addressed by Lemma 3, which states
that the stability guarantees (with regard to stability
constraint (23)) are preserved on faster processors. It
can also be shown that if constraint (11) is satisfied
on a processor (i.e., cw

h ≤ α), then it is also satisfied
on a processor which is faster (i.e., 1

λ
cw

h ≤
cw

h ≤ α).
This result indicates that: if the stability of the

controllers cannot be guaranteed on a processor with
speed λ = U +

∑n
i=1

ε
Pi

=
∑n
i=1

Qi+2ε
Pi

considering
the linear supply functions, then it for sure cannot
be guaranteed considering the exact supply functions,
since it implies U > 1.

Corollary 2: The factor λ in Theorem 2 is bounded
from above by 2.

Proof: Let us assume the system is implementable
considering the exact supply functions. This, in turn,
implies that the utilization U is

U =

n∑
i=1

(
αi +

ε

Pi

)
≤ 1.

Since αi ≥ 0, we obtain
n∑
i=1

ε

Pi
= U −

n∑
i=1

αi ≤ U.

Observe that λ is given by,

λ = U +

n∑
i=1

ε

Pi
≤ 2 · U.

Since U ≤ 1 in an implementable system, the bound
on λ follows: λ ≤ 2.

As discussed before, the optimal values of server
parameters cannot be obtained efficiently, when the
exact supply functions are used. Therefore, we con-
sider the notion of optimistic supply functions, for
which the server parameters may be computed effi-
ciently (see Section 7).

7 ASYMPTOTIC ANALYSIS

In this section, we shall identify a lower bound on
the minimum achievable utilization by the approach
discussed in the previous sections, i.e., the implicit
deadline servers. We will use this bound in our exper-
iments (Section 8.2) in order to evaluate the efficiency
of our optimization technique discussed in Section 5.
To obtain a tight lower bound on the minimum uti-
lization required for guaranteeing stability of a plant
associated with an implicit deadline server, optimistic
linear supply functions are considered in this section.

Let us consider the optimistic upper bound on the
slbf(t), denoted by olslbf(t), and the optimistic lower
bound on subf(t), denoted by olsubf(t) (see Section
6). Lemma 1 states that if there exists a server with
the exact supply functions that can satisfy inequality
(21), then it is also possible to find a solution using
the optimistic linear supply functions that satisfies
inequality (21).

Forming the stability constraint based on the op-
timistic response times, defined in Equation (43), we
realize that the stability constraint (23) remains exactly
the same, but assuming ∆ instead of ∆. Now let us
focus on the special case of implicit deadline server
(D = P ) that leads to ε

P = ε(1−α)
∆ . The optimization

problem then will be as follows,

min
α,∆

α+
ε(1− α)

∆

s.t. min

{
a(cw − cb) + cb

α
+ (2a− 1)∆− b,

acw

α
+ a∆− (a− 1)cb − b

}
≤ 0.

(49)

Notice that this optimization problem is the same
as problem (25), except for the factor 2 in the term that
captures switching overhead ( ε(1−α)

∆ versus 2ε(1−α)
∆ ).

Therefore, the solution to this problem can be ob-
tained using the approach in Section 5, simply by
substituting the overhead ε

2 instead of ε.
While the objective function of the above optimiza-

tion problem is the same for both the exact and
optimistic supply functions (i.e., α + ε

P ), the stability
constraint uses optimistic response times instead of
the exact results. However, according to Lemma 1,
if there exists a solution that guarantees the stability
constraint when the exact supply functions are used,
then there is also a solution considering the optimistic
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TABLE 1
Example: task set data

i cbi cwi hi ai bi F (s)

1 30 60 600 1.18 831 1000
s2+s

2 92 184 920 1.16 826 98.1
s2−98.1

3 427 854 2847 1.14 2697 9.81
s2−9.81

supply functions (i.e., the search space of this prob-
lem contains the search space of the exact problem).
Therefore, the total utilization found in this section is
lower than or equal to the one that could possibly be
found for the implicit deadline server considering the
exact supply functions.

8 EVALUATION
We will first illustrate and evaluate our proposed
approach in Section 8.1 by a small example and later
in Section 8.2 by a large set of experiments.

8.1 Illustrative example
In this section, the server design approach discussed
in Section 5 will be illustrated using a small example.
Further, we also compare the results to the asymptotic
bound developed for the case of implicit deadline
servers in Section 7.

Let us consider a set of three controllers whose
parameters are reported in Table 1. In the table we
report best-case and worst-case execution times (cbi
and cwi ), the period (hi), the coefficients of the linear
constraint between delay and jitter (ai and bi of the
constraint in (21)), and the transfer function of the
plant to be controlled. We assume a server switching
overhead of ε = 0.3. All time quantities are given in
units of 0.01 ms throughout this section.

The server parameters obtained after optimization
are reported in Table 2. In the first column group of
the table (labelled by ”Implicit Deadline”) we report
server budgets Qi, periods Pi, bandwidth αi, delay
∆i, and overhead due to switching Oi = ε

Pi
for the

implicit deadline design strategy (ID) proposed in
Section 5. In the second column group of the table
(labelled by ”Asymptotic Analysis”), the correspond-
ing results for the asymptotic analyses of the implicit
deadline server (AA) in Section 7 are reported.

The total utilization obtained by the asymptotic
analysis for the implicit deadline approach in Section
7 is UAA = 0.71, while the total utilization in the
case of the implicit deadline servers obtained by our
design approach (Section 5) is slightly higher, i.e.,
UID = 0.72. The detailed calculation is given in the
follow,

UAA =
∑3
i=1

(
α∗i +

ε(1−α∗i )

∆∗i

)
=
(

0.100 + 0.3(1−0.100)
130

)
+
(

0.249 + 0.3(1−0.249)
23.6

)
+
(

0.345 + 0.3(1−0.345)
34.4

)
=0.71,

UID =
∑3
i=1

(
α∗i + 2

ε(1−α∗i )

∆∗i

)
=
(

0.100 + 2 0.3(1−0.100)
130

)
+
(

0.253 + 2 0.3(1−0.253)
32.8

)
+
(

0.347 + 2 0.3(1−0.347)
48.3

)
=0.72.

TABLE 2
Example: Solution to the server design problem.

Implicit Deadline Asymptotic Analysis
i Q∗i P ∗i α∗i ∆∗i O∗i Q∗i P ∗i α∗i ∆∗i O∗i
1 7.25 72.5 0.100 130 0.004 14.5 145 0.100 130 0.002
2 5.56 22.0 0.253 32.8 0.010 7.82 31.4 0.249 23.6 0.010
3 12.8 37.0 0.347 48.3 0.008 18.1 52.5 0.345 34.4 0.006∑

0.700 0.022 0.694 0.018

Observe that the solution found by the asymptotic
analysis for the implicit deadline servers is not stable
(it does not guarantee stability considering the exact
stability condition). However, the solution obtained
by the implicit deadline approach is guaranteed to be
stable (valid considering the exact stability condition),
while only 1% away from the asymptotic analysis,
in terms of resource utilization. This indicates that,
for the discussed example, the solution obtained by
our approach is less than 1% away from the actual
optimum.

8.2 Experimental results
To further evaluate our proposed server design ap-
proach we compare four different methods:
• Implicit deadline servers: the implicit deadline

server design (ID) is proposed in Section 5.
• Implicit deadline asymptotic analysis: the

asymptotic analysis of implicit deadline servers
(AA) is discussed in Section 7 and produces
solutions that are not guaranteed to be stable, but
their resource utilization is less than or equal to
the actual optimum.

• Harmonic servers: if we design the servers fol-
lowing the rules of Section 5, the periods of
the servers will be unrelated to each other. For
harmonic servers (HA), instead, we investigate
the case in which we explicitly set all the server
periods equal to the same value P [25].

• General asymptotic analysis: the general asymp-
totic analysis (GA) is an asymptotic analysis for
both implicit deadline and harmonic servers and,
therefore, it could be used as a common base-
line for both servers. The idea is to consider
the switching overhead negligible, in addition to
considering the optimistic supply functions.

Note that the general asymptotic analysis (GA) is
an approach that outperforms the optimal, in terms of
total bandwidth usage, both for the implicit deadline
and harmonic servers. In other words, the general
asymptotic analysis (GA) produces a lower bound on
the total bandwidth usage, but does not guarantee
stability. Therefore, this general asymptotic analysis
(GA) is considered as the baseline for the comparison.
However, it is important to observe that the asymp-
totic analysis (AA), which also does not guarantee
stability, is an approach that performs at least as well
as the optimal, in terms of the required bandwidth,
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if implicit deadline servers are considered. Therefore,
asymptotic analysis (AA) provides a tighter lower
bound for the optimal solution of implicit deadline
servers. Hence, the gap between the implicit deadline
(ID) and asymptotic analysis for implicit deadline
server (AA) is the metric that is important for us (and
not the absolute percentage reported).

We have generated 1000 benchmarks with a number
of control applications from 2 to 10. The plants consid-
ered are chosen from a database consisting of inverted
pendulums, ball and beam processes, DC servos, and
harmonic oscillators [1], [5]. Such plants are consid-
ered to be representative of realistic control problems
and are extensively used for experimental evaluation.
To generate a set of random control tasks for a given
utilization, the UUniFast algorithm is used [33]. The
periods are chosen based on common rules of thumb
[1]. Having the period and task utilization, the worst-
case execution time can be computed. The switching
overhead is given by ε = r ·mini=1...n{cbi }, where r is
randomly chosen with a uniform distribution in the
interval of [0.01, 0.10].

The experiments are repeated for several values of
total task utilization (

∑n
i=1

cwi
hi

) and the results are
shown in Figure 7. The metric used for this compari-
son is the relative quality, defined as

(
NGA−N X
NGA

× 100
)

,
where NX and NGA are the number of benchmarks
for which the approach X and general asymptotic
analysis, respectively, could find a valid solution.
Therefore, the metric states the quality of the approach
X (X could be HA, ID, or AA) compared to the
general asymptotic analysis (GA). For each value of
utilization, we evaluate the percentage of benchmarks
for which the stability could not be guaranteed, and
we call it “invalid solutions”.2

The number of invalid solutions found for both
implicit deadline and harmonic servers increases with
utilization. Nevertheless, the harmonic servers per-
form slightly better for low utilization (50% uti-
lization), while for high utilization (more than 55%
utilization), the implicit deadline servers performs
slightly better than the harmonic servers. It is also
noteworthy that the gap between the implicit deadline
approach (ID) and the asymptotic analysis (AA) is
always less than 5%. In other words, the implicit
deadline approach (ID) is less than 5% away from the
theoretical optimum, for the benchmarks considered
here. Interestingly, for low utilization, the harmonic
(HA) performs slightly better than the asymptotic
analysis for the implicit deadline (AA). The results
illustrate that for high loads the possibility to assign
individual server periods with the implicit deadline
servers approach outweighs the advantage of poten-
tially reduced jitters with the harmonic servers.

2. Note that, as mentioned, “valid” solutions with AA and GA
are not guaranteed to be stable, as opposed to those produced with
ID and HA.
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Fig. 7. The percentage of the benchmarks for which
stability of the control task could not be guaranteed
compared to the general asymptotic analysis (GA).

9 CONCLUSIONS

Providing guarantees for stability of control appli-
cations is perhaps the most important requirement
while implementing embedded control systems. The
fundamental difference between the control systems
and what we classically understand by hard real-
time systems advocates the need for new analysis
and design techniques. In this paper, we have pro-
posed the use of resource reservation mechanisms for
designing embedded control systems. Exploiting the
server mechanism provides not only compositionality,
scalability, and isolation, but also a simple interface
between the control stability and real-time scheduling
aspects which facilitates the design process. Finally,
we have addressed the analysis and design of stabi-
lizing servers and demonstrated the efficiency of our
proposed approaches both theoretically and experi-
mentally.
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of Computer Science at Linköping University. He has published more
than 300 technical papers and five books in various topics related to
embedded systems, and has received four best paper awards and
one best presentation award in major international conferences.


	Analysis and Design of Real - TP
	trans_control_server

