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Abstract 

Isostasy is a key concept in geoscience to interpret the state of mass 
balance between the Earth’s crust and mantle. There are four well-
known isostatic models: the classical models of Airy/Heiskanen 
(A/H), Pratt/Hayford (P/H), and Vening Meinesz (VM) and the 
modern model of Vening Meinesz-Moritz (VMM). The first three 
models assume a local and regional isostatic compensation, whereas 
the latter one supposes a global isostatic compensation scheme.  

A more satisfactory test of isostasy is to determine the Moho interface. 
The Moho discontinuity (or Moho) is the surface, which marks the 
boundary between the Earth’s crust and upper mantle. Generally, the 
Moho interface can be mapped accurately by seismic observations, but 
limited coverage of seismic data and economic considerations make 
gravimetric or combined gravimetric-seismic methods a more realistic 
technique for imaging the Moho interface either regional or global 
scales.  

It is the main purpose of this dissertation to investigate an isostatic 
model with respect to its feasibility to use in recovering the Moho 
parameters (i.e. Moho depth and Moho density contrast). The study is 
mostly limited to the VMM model and to the combined approach on 
regional and global scales. The thesis briefly includes various 
investigations with the following specific subjects:  

1) to investigate the applicability and quality of satellite altimetry data 
(i.e. marine gravity data) in Moho determination over the oceans using 
the VMM model, 2) to investigate the need for methodologies using 
gravimetric data jointly with seismic data (i.e. combined approach) to 
estimate both the Moho depth and Moho density contrast over 
regional and global scales, 3) to investigate the spherical terrain 
correction and its effect on the VMM Moho determination, 4) to 
investigate the residual isostatic topography (RIT, i.e. difference 
between actual topography and isostatic topography) and its effect in 
the VMM Moho estimation, 5) to investigate the application of the 
lithospheric thermal-pressure correction and its effect on the Moho 
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geometry using the VMM model, 6) Finally, the thesis ends with the 
application of the classical isostatic models for predicting the geoid 
height.  

The main input data used in the VMM model for a Moho recovery is 
the gravity anomaly/disturbance corrected for the gravitational 
contributions of mass density variation due in different layers of the 
Earth’s crust (i.e. stripping gravity corrections) and for the gravity 
contribution from deeper masses below the crust (i.e. non-isostatic 
effects). The corrections are computed using the recent seismic crustal 
model CRUST1.0. 

Our numerical investigations presented in this thesis demonstrate that 
1) the VMM approach is applicable for estimating Moho geometry 
using a global marine gravity field derived by satellite altimetry and 
that the possible mean dynamic topography in the marine gravity 
model does not significantly affect the Moho determination, 2) the 
combined approach could help in filling-in the gaps in the seismic 
models and it also provides good fit to other global and regional 
models more than 90 per cent of the locations, 3) despite the fact that 
the lateral variation of the crustal depth is rather smooth, the terrain 
affects the Moho result most significantly in many areas, 4) the 
application of the RIT correction improves the agreement of our Moho 
result with some published global Moho models, 5) the application of 
the lithospheric thermal-pressure correction improves the agreement 
of VMM Moho model with some other global Moho models, 6) the 
geoid height cannot be successfully represented by the classical 
models due to many other gravitational signals from various mass 
variations within the Earth that affects the geoid.   

Key words: crust, gravity, mantle, Moho depth, non-isostatic effect, 
residual isostatic topography, stripping, thermal state, Vening 
Meinesz-Moritz model.  
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PART ONE 

 
Chapter 1 

 

‘’Since the P  wave can only reach down to a depth of 50 km, this 
depth marks the limit of the upper layer of the earth's crust. At this 
surface, there must be a sudden change of the material which makes 
up the interior of the earth, because there a step in the velocity of the 
seismic waves must exist.’’ 

(Andrija Mohorovičić, 1910) 

1. Introduction 

1.1 Earth’s structure  

Generally, the structure of the Earth’s interior can be layered in three 
main concentric shells by their different physical and chemical 
properties. The first layer is the crust, which is the outermost and 
thinnest layer. The crust can be categorized into the oceanic and 
continental crust. The oceanic crust ranges from 5-10 km thick, while 
the continental crust ranges from 35-70 km thick. The layer below the 
crust is the mantle, which is the thickest layer of the Earth. It can be 
divided into the upper and lower mantle. The upper mantle extends 
from the crust to a depth of 660 km and the lower mantle extends from 
660-2900 km beneath the Earth’s surface. The innermost layer of the 
Earth is the core, which can be classified into the outer and inner core. 
The outer core varies from 2900-5100 km in depth, whereas the inner 
core varies from 5100-6400 km below the Earth’s surface (see 
Anderson, 1989).  

The geoscientists typically use three sources of information to figure 
out the interior of the Earth’s structure:  

The first set is understood by direct evidence from rock samples by 
drilling projects. In this way, the scientists attempt to drill holes in the 
Earth’s surface, to a maximum depth of about 12 km, and explode 
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rocks for inferring the conditions within the Earth’s interior. The 
drilling method is severely limited, because it is difficult to drill a 
deep hole due to the high pressure and temperature, and on the other 
hand it is a time-consuming and expensive technology (Kearey et al. 
2013).   

The second set includes the records of seismic waves, which are 
generated, for example, by earthquakes, explosions, volcanoes and 
other natural sources. Accordingly, specialists can detect information 
about the Earth’s interior through detailed analysis of seismic data. 
This information can reveal that Earth consists of three main layers, 
the crust, the mantle, and the core. At this point it deserves to be 
mentioned that the seismic data are also expensive to collect and 
therefore sparse and in-homogeneously distributed around the Earth 
(see Anderson, 1989). 

The third set of information in modeling the Earth’s interior is the 
gravity field models generated through the modern satellite gravity 
missions such as Challenging Mini-satellite Payload (CHAMP), 
Gravity Recovery and Climate Experiment (GRACE) and Gravity 
field and steady state Ocean Circulation Explorer (GOCE), which can 
provide a global and homogeneous coverage of data. A huge 
improvement can also be obtained in the accuracy and spatial 
resolution of these models by combining them with airborne and 
ground-based gravity data and satellite altimetry data (see Hamayun, 
2014).  

1.2 Isostasy and its modelling  

Isostasy is a vital concept in the Earth sciences describing the state of 
equilibrium (or mass balance) to which the mantle tends to balance the 
mass of the crust in the absence of external disturbing forces. The 
transport of material over the Earth’s surface, such as glaciers, 
volcanism, and sedimentation could be factors that disturb isostasy 
(see Sjöberg and Bagherbandi, 2014).  

Isostasy can be viewed as an alternative to Archimedes’ principle of 
hydrostatic equilibrium, which states that a lighter solid body floats on 
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the denser underlying fluid like ice cubes in water. ‘’When a certain 
area of the crust reaches the state of isostasy, it is said to be in 
isostatic equilibrium (or balance), and the depth at which isostatic 
equilibrium prevails is called the compensation depth’’ (see Sjöberg 
and Bagherbandi, 2014). 

The four principle models of isostasy can briefly be listed as (a) the 
Airy/Heiskanen (A/H; Airy 1855; Heiskanen 1924 and 1938), (b) the 
Pratt/Hayford (P/H; Pratt 1855; Hayford 1909), (c) the Vening 
Meinesz (VM; Meinesz 1931), and (d) the Vening Meinesz-Moritz 
(VMM; Moritz 1990; Sjöberg 2009), respectively.     

A/H and P/H are local models in which variations in topographic 
height are compensated by either changes in the thickness of a 
uniform crustal density or by lateral changes in density of the crust 
and mantle. Both models predict that the crust and mantle respond to 
loads (e.g. volcanoes) or unloads (e.g. erosion) locally, while 
disregarding neighbouring regions in their presumptions (see Watts, 
2011). However, due to the elasticity of the Earth this is not a very 
realistic assumption. Vening Meinesz (1931) modified the A/H 
isostatic theory and introduced a regional model, in which loads and 
unloads are balanced by a gentle bending or flexure over a broad area. 
Moritz (1990) generalized the VM model from a regional to a global 
compensation with a spherical sea level approximation, as expressed 
by Sjöberg (2009) in mathematical form.  

1.3 Background of the Moho modelling  

One of the primary interfaces of the Earth’s interior is the boundary 
between the Earth’s crust and mantle, which is called the Mohorovičić 
discontinuity (or Moho). The discontinuity was first discovered in 
1909 by Croatian seismologist Andrija Mohorovičić, when analyzing 
seismograph records of an earthquake in the Kapula valley, namely P-
waves (compressional waves) and S-waves (shear waves). He noticed 
that the P-waves, which travel deeper into the Earth, moved faster than 
those that travel nearer the surface. Accordingly, he concluded that the 
Earth is not homogeneous, and at a specific depth there must be a 
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boundary surface, which distinguishes two media with different 
compositions, and by which the seismic waves propagate with 
different velocities (see Hamayun, 2014). 

Currently the Moho interface can be studied using two main methods: 
the gravimetric and seismic ones. These methods cannot provide the 
same results, as they are based on different hypotheses, different 
types, qualities and spatial distributions of data (Sjöberg, 2009).  

Seismic methods are one of the major techniques in modelling the 
thickness of the Earth’s crust, where the base of the crust is defined as 
the Moho. Moho models based on seismic data can be locally very 
accurate but useless in areas without adequate seismic observations, 
particularly over large portions of the oceans. Also the seismic data 
acquisition is costly with lack of global coverage. In contrast, while 
using satellite gravity data, information on the Moho can be inferred 
from a uniform and global data set. However, Moho models based on 
gravity data are in general characterized by simplified hypotheses to 
guarantee the uniqueness of the solution of the inverse gravitational 
problem (see Sjöberg and Bagherbandi, 2011; Reguzzoni et al. 2013). 
In any case, due to the complementary information described above, a 
combined gravimetric-seismic method could be useful in modelling 
the Moho.   

Much research using seismic surveys for recovering Moho has been 
carried out in the last decades globally. For instance, Shapiro and 
Ritzwoller (2002) and Meier et al. (2007) compiled global Moho 
models based on seismic data analysis, and Lebedev et al. (2013) 
estimated the Moho depth using seismic surface waves. For global 
studies the most frequently used crustal models are the CRUST2.0 
(Bassin et al. 2000) and CRUST1.0 model (Laske et al. 2013), 
compiled with 2°×2° and 1°×1° resolutions, respectively.  

Over large areas of the world with a sparse coverage of seismic data, a 
gravimetric-isostatic or combined gravimetric/seismic method can be 
useful. For example, Vening Meinesz (1931) modified the 
Airy/Heiskanen theory (Heiskanen and Moritz 1967, Section 3.4) by 
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introducing a regional isostatic compensation model based on a thin 
plate lithospheric flexure model (Watts, 2001, p. 114). Moritz (1990, 
Section 8) generalized the Vening Meinesz hypothesis from a regional 
to global compensation. Sjöberg (2009) expressed the Vening 
Meinesz-Moritz (VMM) problem as that of solving a non-linear 
Fredholm integral equation, and he also presented some solutions for 
recovering the Moho depth. The VMM method was also followed up 
by some additional theoretical studies, such as methods for estimating 
the Moho density contrast (MDC) (Sjöberg and Bagherbandi, 2011) 
and for reducing the Bouguer gravity anomaly for non-isostatic effects 
(Bagherbandi and Sjöberg, 2012; Bagherbandi et al. 2013). Tenzer 
and Bagherbandi (2012) demonstrated that the Moho depth estimated 
from the isostatic gravity disturbance based on solving the VMM 
model has a better agreement with the CRUST2.0 seismic model than 
those computed by the isostatic gravity anomaly. Their argument was 
also theoretically explained by Sjöberg (2013). Reguzzoni et al (2013) 
estimated the Moho depth and MDC using the combination of the 
CRUST2.0 and a GOCE global gravity models. Tenzer and Chen 
(2014) applied a new method to estimate the Moho depth using the 
gravimetric forward and inverse modeling in the spectral domain. 
Hamayun (2014) produced a Moho depth model using gravity 
disturbances together with two seismic models. Tenzer et al. (2015a) 
applied the CRUST1.0 model to estimate the average densities of 
crustal structures, and to compile the gravity field quantities derived 
by the Earth’s crustal structures and to investigate their spatial and 
spectral characteristics and their correlation with the crustal geometry 
in context of the gravimetric Moho determination. Sjöberg et al. 
(2015) showed that the application of the Bouguer gravity 
disturbances and the no-topography in VMM model to determine the 
Moho depth provide very similar results, implying the importance of 
not using the traditional Bouguer gravity anomaly for gravity 
inversion. Tenzer et al. (2015b) formulated the gravimetric inverse 
problem for determination of Moho geometry based on adopting the 
generalized compensation model by considering the variable depth 
and density of compensation. Reguzzoni and Sampietro (2015) 
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presented a new procedure applied to GOCE data for estimating the 
new crustal model GEMMA.  

1.4 Research objectives and author’s contributions 

1.4.1 Research objectives 

The study of the Moho structure can supply very useful information 
for applications in geology, geophysics and geodesy. For example, it 
is especially important in investigating the dynamics of the Earth’s 
interior, in unraveling the gravitational signal of anomalous subsurface 
distribution and in determining the geoid or quasi-geoid.  

The Moho parameter determination can generally be achieved through 
two techniques: the seismic and gravimetric ones. The seismic 
observations utilized in compiling global Moho models are typically 
sparse, and therefore the interpolation of global Moho depths, 
particularly over areas without adequate seismic data, could yield 
unrealistic results with large uncertainties. Accordingly, over large 
parts of the world with a limited coverage of seismic data, the 
gravimetric or combination of seismic and gravimetric data (combined 
approach) is fruitfully offered. 

Up to now, several different isostatic models have been proposed for 
mapping the Moho depth and MDC, and it is not specified which 
model is most suitable, which makes it difficult to judge what is the 
best method in a certain situation. The simplest isostatic models are 
the classical ones, with a local and regional compensation. In any 
case, there is no doubt that the VMM model with a global isostatic 
compensation is the most realistic gravimetric-isostatic method.  

In this thesis the used methods of determining Moho parameters can 
differ with respect to other proposed methods in different ways.  

In general, one main distinction is to apply the VMM isostatic model 
of the Moho. As the VMM hypothesis (in contrast to the classical 
isostatic hypotheses) is based on a global isostatic compensation, each 
compensated topographic mass column will experience a mass 
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anomaly versus that of the classical models (which are fully 
compensated locally or regionally). 

One can also distinguish our method from other methods for mapping 
the Moho surface from the used gravity anomaly or disturbance 
observations. For instance, the simple or refined Bouguer gravity 
anomaly versus the simple or refined Bouguer gravity disturbance.  

In gravimetric studies the anomalous density structure not only within 
the crust but necessarily within the whole lithosphere should be 
modeled. Hence, the observed gravity data should be corrected in two 
main ways namely for the gravitational contributions of mass density 
variations due in different layers of the Earth’s crust such as ice and 
sediments, as well as for  the gravity contribution from deeper masses 
below the crust.  

Another distinction is to combine the seismic and gravimetric models 
to diminish the seismic data gaps (i.e. combined approach), an 
approach which has not been very common in previous studies.  

Another feature is to compute the Moho depth and MDC uncertainties 
due to errors of the VMM and seismic models, which are typically 
overlooked. A proper understanding of these errors is necessary to 
secure the quality of the Moho results.  

The main objective of this thesis is to recover the Moho parameters 
(i.e. Moho depth and MDC) using available gravimetric and seismic 
models over regional and global scales to a resolution of 1°×1°. 
Particularly, this study has its main emphasis on the Moho parameter 
determination based on the VMM and combined methods.   

The gravimetric-isostatic VMM Moho determination comprises of two 
steps: the first step is the gravimetric forward modelling, and the other 
one is the gravimetric inverse modelling.  

Before using gravity data for Moho inversion, they should be 
corrected due to the gravitational contributions of known anomalous 
crustal density structures, mainly density variations of oceans, glacial 
ice, and sediments (i.e. stripping gravity corrections). For this purpose, 
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the gravimetric forward modeling technique is first used to compute 
the stripping gravity corrections using the recent seismic crustal model 
CRUST1.0. Moreover, the gravity signal associated with deeper 
masses below the crust (i.e. non-isostatic effects) must also be 
removed. The gravimetric inverse problem is then defined using the 
non-linear Fredholm integral equation of the first kind to determine 
the Moho depth (Sjöberg, 2009).   

In addition, we apply a combined approach to simultaneously estimate 
Moho depth and MDC by the VMM and available seismic models like 
CRUST1.0 (Laske et al. 2013) and MDN07 (Meier et al. 2007) 
models. This approach should have an optimal choice of the variance-
covariance matrix of observations for solving the system of normal 
equations.  

1.4.2 Contents of Part one 

Chapter 1 starts with introducing and explaining the general scope of 
the thesis. In Chapters 2 and 3 we review the mathematical aspects of 
the VMM model to determine the Moho depth and MDC, including its 
additive corrections (i.e. stripping gravity corrections and non-isostatic 
effects). In Chapter 4 we explain our technique of combining the 
gravimetric and seismic data to estimate both the Moho depth and 
MDC based on least-squares adjustment by elements. Chapter 5 
concludes the thesis and outlines topics for future research. 

1.4.3 Contents of Part two 

The thesis is based on 8 papers, which have already been published or 
submitted in international scientific journals. The publications will be 
referred to as Papers A-H as follows: 

PAPER A: 

Abrehdary, M., Sjöberg, L.E., and Bagherbandi, M. (2015). Modelling 
Moho depth in ocean areas based on satellite altimetry using Vening 
Meinesz–Moritz’ method, (Published in Journal of Acta Geodaetica et 
Geophysica, 1-13). 
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PAPER B: 

Abrehdary, M., Sjöberg, L.E., and Bagherbandi, M. (2015). Combined 
Moho parameters determination using CRUST1.0 and Vening 
Meinesz-Moritz Model, (Published in Journal of Earth Science, 26(4), 
607-616). 

PAPER C: 

Abrehdary, M., Sjöberg, L.E., and Bagherbandi, M. (2015). The 
spherical terrain correction and its effect on the gravimetric-isostatic 
Moho determination, (Published in Geophysical Journal International, 
204(1), 262-273). 

PAPER D: 

Abrehdary, M., Sjöberg, L.E., Bagherbandi, M., and Sampietro D. 
(2015) Modelling Moho parameters and their uncertainties from the 
combination of the seismic and satellite gravity data, (Submitted to 
Journal of Geodesy). 

PAPER E: 

Bagherbandi, M., Sjöberg, L.E., Tenzer, R., and Abrehdary, M. 
(2015). A new Fennoscandian crustal thickness model based on 
CRUST1.0 and a gravimetric–isostatic approach, (Published in 
Journal of Earth-Science Reviews, 145, 132-145). 

PAPER F: 

Bagherbandi, M., Tenzer, R., Sjöberg, L.E., and Abrehdary, M. 
(2015). On the residual isostatic topography effect in the gravimetric 
Moho determination, (Published in Journal of Geodynamics, 83, 28-
36). 

PAPER G:   

Bagherbandi, M., Sjöberg, L.E., Bai, Y., Tenzer, R., Abrehdary, M. 
Miranda, S., and Sanchez, J.M. (2016). Effect of the lithospheric 
thermal state on the Moho geometry, (Submitted to Journal of South 
American Earth Science). 
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PAPER H: 

Sjöberg, L. E., Abrehdary, M., and Bagherbandi, M. (2014). The 
observed geoid height versus Airy’s and Pratt’s isostatic models using 
matched asymptotic expansions, (Published in Journal of Acta 
Geodaetica et Geophysica, 49(4), 473-490). 
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Chapter 2 
 

2. Moho parameter determination based on 
gravimetric and seismic methods  

There are two main methods for determining the depth of the Moho 
interface: gravimetric and seismic methods. In case of the gravimetric 
method of Moho determination, gravity data are employed under a 
certain isostatic hypothesis, which is based on isostatic equilibrium of 
the crust on the dense underlying mantle, whereas in the seismic 
method, Moho is identified as a surface where the velocity of the 
seismic wave changes (see Papers B, D and E).  

The four most well-known isostatic models of estimating the Moho 
depth from gravity data can be listed as the Airy/Heiskanen (A/H), the 
Pratt/Hayford (P/H), the Vening Meinesz (VM), i.e. classical isostatic 
models, and the Vening Meinesz-Moritz (VMM) model. These 
models are described in the following. 

2.1 The classical isostatic models 

2.1.1 The Airy/Heiskanen model  

In 1855 G. B. Airy introduced an isostatic model that was later 
developed for geodetic purposes by W. A. Heiskanen. According to 
the Airy/Heiskanen theory the densities of the Earth’s crust ( 0 ) and 

mantle ( 1 ) are assumed to be constant (usually, 0 2.67   g/cm3 and 

1 3.27   g/cm3). The topographical masses of height h over the geoid 

are compensated in such a way that, the crustal root of density 0 1   

penetrates down into the mantle at a depth t under a chosen 
compensation surface (see Heiskanen and Moritz, 1967, Section 3.4).  

The isostatic mass compensation leads to the following equation: 

 0 1 0h t                                         (2.1) 

from which t can be obtained accordingly. 
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For the oceans, it is similarly assumed that the crust has anti-roots 

with height t . For water density  31.03 g/ cmw   and depth h , the 

following equation holds: 

   1 0 0 wt h                                    (2.2) 

Using known densities and formulas given above, the roots and anti-
roots can be easily found to be proportional to the height of 
topography and the depth of the ocean, respectively, 

4.45 and 2.73t h t h                             (2.3) 

The normal thickness of the Earth’s crust is denoted by T; values of 
around 

0 30 kmT                                           (2.4)  

are assumed. The crustal thickness under mountains is then 

0T h t                                              (2.5) 

and under the oceans it is 

0T h t                                              (2.6) 

It should be mentioned that the defined roots and anti-roots of the 
crustal thickness can be also obtained in a spherical approximation 
(e.g. Rummel et al. 1988). 

2.1.2 The Pratt-Hayford model  

In 1855 J. H. Pratt proposed his model that was later put into a 
mathematical form by J. F. Hayford for geodetic applications. 
According to the Pratt/Hayford theory the mass density under 
mountains is assumed to be smaller than that under the oceans (see 
Heiskanen and Moritz, 1967, Section 3.4). The isostatic equilibrium is 
thus maintained by the following equation: 

  0D h D                                      (2.7a)  

or 
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m c c

h

D h
   


                                  (2.7b) 

where  3
0 2.67 g/ cm   and   are the densities for 0h  and 

0,h   respectively, and D is the compensation depth (usually = 100 

km). For the oceans, the compensating formulas become 

  0wD h h D                                       (2.8a) 

or 

 0 0 w

h

D h
   


  


                                (2.8b) 

2.1.3 The Vening Meinesz regional model  

Both the A/H and P/H isostatic models are simplified to such an extent 
that the isostatic compensation is strictly local, which is not the case in 
reality. This is because ‘’this presupposes free vertical mobility of the 
masses to a degree that is obviously unrealistic in this strict form’’ 
(Heiskanen and Moritz 1967, Section 3.4). For this reason, F. A. 
Vening Meinesz (1931) modified the A/H theory and introduced a 
regional instead of local isostatic compensation based on flat Earth 
approximation. In Vening Meinesz’ modification of A/H isostatic 
theory, the Earth’s crust is regarded as a homogenous elastic plate, 
which is floating on a viscous mantle.   

2.2 The Vening Meinesz-Moritz model  

Typically, the classical isostatic models assume a uniform crustal 
density, without regarding the crustal density heterogeneities. This 
assumption propagates large errors into the Moho geometry estimated 
by gravity data, because the actual topography is not fully isostatically 
compensated. Furthermore, the sub-crustal density structures and 
additional geodynamic processes contribute to the overall isostatic 
balance (see Paper F). However, the VM model agrees better with 
reality than the first two classical isostatic models (i.e. A/H and P/H 
models), as it states that the isostatic compensation is regional rather 
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than local. Moritz (1990) improved the VM hypothesis to the global 
case, while regarding a spherical approximation of the Earth’s surface. 
Sjöberg (2009) illustrated a new solution for the Moritz theory, named 
the Vening Meinesz-Moritz (VMM), and it is the main purpose of this 
chapter to estimate the Moho parameters based on this hypothesis.  

2.2.1 Main concept of the VMM hypothesis   

The VMM isostatic problem is based on the condition that the isostatic 
gravity anomaly ( Ig ) vanishes. This states that the isostatic 

compensating attraction ( CA ) fully compensates the Bouguer gravity 

anomaly ( Bg ) at observation point P on the geoid surface (Sjöberg, 

2009):   

      0,I B Cg P g P A P                           (2.9a) 

The defined Bouguer gravity anomaly is given by: 

                             T
Bg gP P A P                               (2.9b) 

where g  is the (surface) gravity anomaly and TA  is the direct 

topographic effect on gravity (DITE) (see Sjöberg, 2013).   

It should however, be pointed out that Eq. (2.9a) suffers from some 
problems due to the density variation within the crust (as crust has 
different layers) and the disturbing gravity signals from masses below 
the crust (i.e. non-isostatic effects) (Bagherbandi and Sjöberg, 2012; 
Bagherbandi et al. 2013). This is because the gravity data are 
generated by various sources, while the variable Moho topography is 
only one of them. Hence we have to remove these effects and the 
signal from density variations within the crust from Eq. (2.9a). The 
methodology used for correcting the gravity signal for such 
anomalies/disturbances is addressed in Chapter 3.  

Another problem is that the Bouguer gravity anomaly used in Eq. 
(2.9a) still does not remove all topographic effects (Sjöberg, 2013; 
Sjöberg et al. 2015), but it needs also a reduction for the secondary 
indirect topographic effect (SITE).  
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2.2.2 New definitions of Bouguer and isostatic gravity anomalies 

Recently Sjöberg (2013) and Sjöberg et al. (2015) have argued that the 
topographic reduction of the Bouguer anomaly is incomplete without 
applying the so-called secondary indirect topographic effect (SITE) or 
the indirect effect on the gravity anomaly, which leads to the no-
topography gravity anomaly. This is because the gravity anomaly is 
related with the disturbing gravity potential (Γ) by the fundamental 
equation of physical geodesy in spherical approximation (Heiskanen 
and Moritz 1967, p. 29) as follows: 

2 2 ,g g
r r r

   
   
                           (2.10) 

where r is the geocentric radius (of the observation point). 

Accordingly, as ,NT TV    where NT is the disturbing potential 

with the topographic signal TV removed, the relations between the 
DITEs are defined as follows (Sjöberg et al. 2015): 

2 ,
T

T T V
g A

r
                                      (2.11) 

i.e. the DITE of the gravity anomaly ( Tg ) differs from that of the 

gravity disturbance ( TA ) by the term 2VT/r, which is the SITE. In 
other words, the Bouguer gravity anomaly, as defined by Eq. (2.9b), 
contains a remaining topographic contribution that is only removed 
after applying the SITE, while the no-topography gravity anomaly:  

NT Tg g g                                          (2.12) 

is consistent with the Bouguer gravity disturbance with no remnant 
signal from the topography.  

In a similar way, the traditional isostatic gravity anomaly, as above, 
does not fully compensate for the topographic attraction, but it also 
needs to be corrected in accordance with Eq. (2.12) to become the 
rigorous isostatic gravity anomaly (Sjöberg, 2013): 
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2 2 ,
I

T
new NT C C

C I

V V V
g g A g

r r


                      (2.13) 

where the term -2VC/r is a remnant isostatic compensation, ‘‘the 
secondary indirect isostatic effect’’ (SIIE). Only by adding this term 
the isostatic gravity anomaly becomes consistent with the isostatic 
gravity disturbance: 

      0,I B Cg P g P A P                           (2.14) 

Below we focus on using only the gravity disturbance.  

2.2.3 The VMM solution by the refined Bouguer gravity disturbance  

Based on Sjöberg (2009), the isostatic compensation attraction can be 
divided into two terms:  

     0C C CA P A P dA P                               (2.15) 

where 0CA  and CdA  are the mean and the residual compensation 

attraction, respectively, and they can also be written as: 

     0 2 2

3 3

R T R
P P

C
P PR R T

r r r t r r r t
A P k drd drd

l l 

 




  
  

  
    ,   (2.16) 

where k G   , G is the Newtonian gravitational constant,   is the 

MDC, i.e. density contrast between the lower crust and uppermost 
mantle, 0T  is the normal (or mean) Moho depth,   is the unit sphere, 

Pr  and r are the geocentric distances to the computation point and 

integration point, respectively, 2 2P P Pl r r rr t   , and cost  , 

where   is the geocentric angle between the computation and 

integration points. By inserting Eqs. (2.16) and (2.15) into Eq. (2.14), 
one obtains: 

       
2

03

R
P

C B C
PR T

r r r t
dA P G drd g A f P

l

  



         (2.17) 



17 

 

According to Sjöberg (2009) and (2013), the last equation can be 
formulated and simplified in the following form: 

   , ,GR K s d f P


                             (2.18) 

where  f P  is given in Eq. (2.20) below, R is the radius of the mean 

Earth sphere, K is the integral kernel function of the spherical distance 

  and the parameter  1 /s T R   (s being a simple function of the 

Moho depth T, which is the unknown of the integral equation). The 
spectral representation of K is given by:  

   3

0

1
, 1 (cos ),

3
n

n
n

n
K s s P

n
 







 

                  (2.19) 

where (cos )nP   is the Legendre’s polynomial of degree n. 

The integral in Eq. (2.18) relates the variable Moho depth with the 
given values of the isostatic gravity disturbance. As for the isostatic 
gravity disturbance Ig , the functional f on the right-hand side of Eq. 

(2.17) is defined as follows: 

     0 ,B Cf P g P A P                             (2.20) 

where  
0CA P  is the nominal compensation attraction, which is 

approximately given by: 

 
0 04CA P kT                                     (2.21) 

2.2.3.1 The VMM Moho depth  

The expression given in Eq. (2.18) is a non-linear Fredholm integral 
equation of the first kind for the unknown Moho depth. Its solution 
was presented under a second-order approximation by Sjöberg (2009) 
as:  

         
 

2 2 2
1 1 1

1 3

1

32 sin / 2 Q

T P T Q T P
T P T P d

R R 


 


            (2.22)  
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where 1T  is the first-order approximation, defined by the spectral form: 

   1
0

1
2 ,

1

n

nm nm
n m n

T P f Y P
n



 

    
                   (2.23) 

where nmf  is the spherical harmonic coefficient of the isostatic gravity 

disturbance  f P , and nmY  is the fully-normalized spherical 

harmonic of degree n and order m.  

2.2.3.2 The VMM Moho Density Contrast 

For obtaining MDC using the VMM method, Eq. (2.18) is rewritten, 
where MDC is not considered constant, as follows: 

    , ,R K s d b P


                           (2.24a) 

where 

   0 /B Cb P g A G                            (2.24b) 

and its series of spherical harmonic is given by: 

   
0

n

nm nm
n m n

b P b Y P


 

                            (2.24c) 

In order to formulate the linearized observation equations for the 
product T  , the integral term on the left-hand side of Eq. (2.24a) 

can be expanded into a Taylor series to second order. By the 
substitution of the first two terms of the binomial series for sn+3 from 
Eq. (2.19) to Eq. (2.24a) one can obtain (Sjöberg and Bagherbandi, 
2011): 

 

     2

0

,

1 2
4 ,

2 1 2

n

nmnm nm
n m n

R K s d

n n
T T Y P

n R


  

  


 



        




               (2.25) 

and from Eqs. (2.24a) and (2.24c), one can obtain the following 
solution for the product T  : 



19 

 

       2

0

2 1 2
,

4 1 2

n

nm nmnm
n m n

n n
T P b T Y P

n
 





 

  
     

     (2.26) 

Approximating  2

nm
T  by  0 nm

T T , the solution for   

becomes:  

   
 

     0

0 0

2

/1 1
,

4 1 2 / 2 /

n

nm nm
n m n

b P
P

T P

T R
b Y P

T P n n T R








 

 

 
     

 
             (2.27) 

It states that if T is known, the varying MDC can be estimated from 

the spectrum of b . 

2.3 Seismic methods 

2.3.1 Principle of the Methods 

The seismic methods are most effective for investigating the structure 
of the Earth’s interior. They utilize different types of seismic waves 
like body waves (i.e. P-waves or compressional waves and S-waves or 
shear waves) and surface waves. The velocity of seismic waves is a 
key parameter in these methods. The propagation velocity of the 
seismic waves depends on the elastic properties and density of the 
medium. P-waves have a higher velocity than S-waves and they travel 
through any type of material, including fluid, while S-waves cannot 
travel in fluids, as fluids do not support shear stress (Schuck and 
Lange, 2007). 

The seismic waves are usually generated by a hit (e.g. earthquake, 
explosion, volcano and or other natural sources) on the Earth’s 
surface, and they travel within the subsurface. During their travelling 
through the subsurface seismic waves are reflected and refracted when 
elastic contrasts arise at boundaries between layers and rock masses of 
different rock properties (seismic velocities and/or bulk densities) or at 
man-made obstacles. By recording of seismic waves returning from 
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the subsurface to the surface, one can partially make conclusions on 
structures and lithological composition of the subsurface. By 
measuring the travel times of seismic waves and determining their 
material specific velocities, a geological model of the subsurface can 
be created (Schuck and Lange, 2007).    

Since the 1920’s, the seismic reflection and refraction waves have 
widely been used to study the structure of the Earth's interior, and 
man-made vibrations are often generated to investigate shallow, 
subsurface structures.  

Accordingly, a useful explanation for the Moho interface is defined as 
that level in the Earth, where the velocity of body waves changes. 
Generally, in the Earth’s lower crust the velocity of the P-waves and 
S-waves are approximately 7 and 4 km/s, while they abruptly increase 
to 8 and 4.6 km/s in the uppermost mantle. Thus, the P-waves and S-
waves velocity contrast at the Moho discontinuity are about 1 and 0.5 
km/s, respectively. This indicates a substantial change in the elastic 
parameters, resulting from a substantial change in the rock types in the 
crust and uppermost mantle (Grad and Tiira, 2012).  

However, due to the limited coverage of seismic observations, their 
application for the recovery of the Moho interface is not merely 
offered, highlighting the need for using gravimetric data, jointly with 
other geophysical data. 

2.4 The global Earth crustal model  

Recently, several global models of the Earth’s crust by means of 
seismic and gravimetric observations and also combination of them 
have been published. A summary of these models is described in the 
following.  

2.4.1 The gravimetric models 

2.4.1.1 DMM2.0 

The DMM2.0 model (Hamayun, 2014) is derived through the gravity 
disturbance together with two seismic models; CRUST1.0 (Laske et 
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al. 2013) and MDN07 (Meier et al. 2007). The resolution of the model 
is 2°×2°. The gravity disturbances are represented in terms of 
spherical harmonics coefficients. In order to remove the nuisance 
signal in the observed gravity disturbances, stripping corrections due 
to topography, bathymetry, ice, sediments, and other crust 
heterogeneities are applied. 

2.4.1.2 GEMMA1.0 

The GEMMA1.0 model (Reguzzoni and Sampietro, 2015) is an Earth 
crustal model based on GOCE satellite data and some prior seismic 
information. The model has a resolution of 0.5°×0.5° and it is 
composed of seven layers describing geometry and density of oceans, 
ice sheets, upper, medium and lower sediments, crystalline crust and 
upper mantle. 

2.4.2. The seismological models 

2.4.2.1 CRUST1.0 

The CRUST1.0 model (Laske et al. 2013) is based on a new database 
of crustal thickness data from active source seismic studies as well as 
from receiver function studies. The new model is specified on a 1°×1° 
grid and incorporates 35 key crustal types that include the thickness, 
density and velocity of P-waves (VP) and S-waves (VS) for eight 
layers (ice, water, upper, middle, and lower sediments, upper, middle, 
and lower crust). The VP values are based on field measurements, 
whereas VS and density are calculated by using empirical VP-VS and 
VP-density relationships, respectively. For regions lacking field 
measurements, such as large parts of Africa, South America, 
Antarctica and Greenland, the seismic velocity structure of the crust is 
extrapolated from the average crustal structure for regions with similar 
crustal age and tectonic setting. The topography, bathymetry and ice 
cover are taken from ETOPO1 topographic/bathymetric model 
(Amante and Eakins, 2009). The sediment cover is based on the 
sediment model by Laske and Masters (1997), with some near-coastal 
updates.  
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2.4.2.2 MDN07 

The MDN07 model (Meier et al. 2007) is derived from phase and 
group velocities of Rayleigh and Love waves, delivered with its 
corresponding uncertainties. The model has a formal resolution of 
2°×2° but it is actually limited by the lateral resolution of the input 
phase and group velocity maps ranging between 500 and 1000 km. It 
has been computed using a neural network approach, which allows 
modeling the posterior Moho depth probability distribution. The 
whole procedure involves no linearization and the final solution is 
totally independent from the CRUST1.0 model (see Sampietro et al. 
2013; Paper D).  

2.4.3 Combining the gravimetric and seismological models 

2.4.3.1 KTH11C 

The KTH11C model (Sjöberg and Bagherbandi, 2011) is produced 
based on a preliminary combined solution to Vening Meinesz-Moritz 
global inverse problem for the Moho density contrast as well as for the 
Moho depth with a resolution of 2°×2° by using the data files of 
EGM2008 global gravitational field, the DTM2006 solid Earth 
topographic model and CRUST2.0 crustal model in a least squares 
procedure.  

2.4.3.2 GEMMA2012C 

The GEMMA2012C model (Reguzzoni et al. 2013) is partly derived 
in a similar way to the KTH11C model. In details, the model is 
generated by combining the seismic global model CRUST2.0 with 
gravity observations from the GOCE satellite mission for recovering 
both the Moho density contrast and Moho depth with a resolution of 
0.5°×0.5°. 

2.5 Uncertainties in the Moho parameters  

Quantitative error estimates of Moho depth and MDC are of great 
importance to any usage of crustal model. Nevertheless, the evaluation 
of uncertainties in the Moho depth and MDC are usually overlooked. 
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Therefore, we tried to present a reasonable method to estimate the 
uncertainty in those observations of the VMM and CRUST1.0 models.  

2.5.1 Uncertainties in the VMM model 

Typically the uncertainties in the VMM Moho depth could be 
attributed on one hand to stochastic errors in the global gravity and 
topographic models as well as ice and sediment datasets ( 2

T ), and on 

the other hand to systematic biases due to unmodeled mantle (and 
crustal) density structures and geophysical processes. These biases 
propagate to the Moho geometry and causes disagreements between 
the gravimetric isostatic and seismic Moho models. The mean-square 
error (MSE) of the modeled Moho depth can be estimated as (see 
Bagherbandi et al. 2014): 

     2 2 ,TMSE T P bias T                       (2.28) 

where the bias can be expressed: 

   
max

0

1 1
2 .

4 1

NI
n n

g
nm nm

n m n

bias T Y P c
G n   

     
          (2.29) 

Here NIg  is the non-isostatic effect on gravity with its spherical 

harmonic coefficients 
NIg

nmc  as: 
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Moreover, the variance of the MDC is estimated by (see Sjöberg and 
Bagherbandi, 2011):  

 22 2
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2 4
0 0

T T T

T T
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

  
 




                             (2.31) 

and the variance of T   can also be approximated by the following 

formula (see Sjöberg and Bagherbandi, 2011):  



24 

 

2 2
2 2 2

, , , ,

2 ,
4 4T nm nm nm kl nmkl

n m n m k l n m

N N N
G G
   
 



       
   

    (2.32) 

where   is normal gravity,      2 1 1 / 1nmN n n n    , 2
nm , and 

nmkl  are the potential coefficient error degree and order variances and 

covariances, respectively (e.g. Pavlis and Saleh, 2004). 

2.5.2 Uncertainties in the seismic crustal model 

The accuracies of the produced Moho contour maps are heavily 
affected by the uncertainties in the published interpretations of crustal 
structures. The uncertainties in the seismic crustal models arise from 
several factors such as the survey method, the spatial resolution of the 
survey, (for example the spacing of the shot points and the recording 
stations), and the analytical techniques utilized to process the data 
(Christensen and Mooney, 1995; Chulick et al. 2013).  

It is indeed difficult to estimate the uncertainties associated to seismic 
crustal models of Moho depth and MDC, as the qualities of these 
models are not specified, and they vary a lot from place to place due to 
the accuracy as well as the quantity of available seismic observations.  

The uncertainties are different in various seismic methods and can be 
different even for the same methods in different experiments and 
areas. For example, the lowest uncertainties are expected to be about 5 
% of Moho depth for new and good-quality seismic refraction profiles 
and to be about 6–8 % for older, reinterpreted and compiled profiles. 
The lowest uncertainties about 20 % are assigned to results derived by 
surface waves and gravity modeling. The largest uncertainties of the 
Moho depths are strongly attributed to inaccuracies of crustal models 
currently available (Grad and Tiira, 2012). 

Čadek and Martinec (1991) estimated Moho depth uncertainties in 
their global Moho model of the order 20 % (5 km) for the oceanic 
crust and of the order 10 % (3 km) for the continental crust. The 
results of more recent seismic and gravity studies, however, 
demonstrated that these error estimates are too optimistic. Grad and 
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Tiira (2009), for example, revealed that the uncertainties in the 
estimated Moho depths based on the seismic data under the Europe 
regionally are about 10 km with the average error of more than 4 km.  

Much larger Moho uncertainties are expected over large portions of 
the world where the seismic data are sparse.     

Similarly the errors in the MDC propagate proportionally to the errors 
in the estimated Moho depths.  

2.6. Numerical investigations  

We utilize the VMM model together with CRUST1.0 model to 
estimate the Moho undulations; first for ocean areas, and second for 
both land and ocean areas. In this way, different heterogeneous data 
have been used, including the global Earth gravity field model (e.g. 
DNSC08GRA and EGM2008), the global topography model (e.g. 
DTM2006 and Earth2014), and the global seismic crustal model (e.g. 
CRUST1.0). In the global study the data were compiled in a set of 
1°×1° blocks. In details 21815 blocks onshore and 42985 blocks 
offshore were considered. A comparison of the Moho results with 
some other global models is presented in Tables 2.1 and 2.2 and also 
in Figs. 2.1 to 2.3 (see Papers A and C). 

Table 2.1. Statistics of the Bouguer gravity disturbance and Moho depth 
computed through satellite altimetry. STD is the standard deviation of the 
estimated quantities over the ocean blocks. RMS is the Root Mean Square. 

Altimetry
Bg  and AltimeryT  are the Bouguer gravity disturbance and VMM Moho 

depth estimated by satellite altimetry. 1.0GEMMAT and 1.0CRUSTT are the 

GEMMA1.0 and CRUST1.0 Moho depths (see Paper A). 

Unit Quantities Max. Mean Min. STD RMS 

mGal Altimetry
Bg  767.04 474.58 85.67 112  

km 

AltimetryT  43.18 14.73 1.14 5.52 
1.0Altimetry GEMMAT 

 31.98 0.41 -20.42 3.02 3.05 
1.0Altimetry CRUSTT 

 19.17 0.49 -8.92 2.20 2.25 
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Table 2.1 illustrates that the Bouguer gravity disturbance, generated 
through satellite altimetry observations, varies from 86 to 767 mGal 
with a global average of 474 mGal and standard deviation of 112 
mGal in ocean areas. It also shows that the VMM Moho depth 
computed by satellite altimetry data ranges from 43 to 1 km, with a 
global average of 15 km. As can also be seen from the table, the 
VMM Moho depth is compared with those from the GEMMA1.0 and 
CRUST1.0 models. By simple comparison of the VMM Moho depth 
in this study and the GEMMA1.0 model, we found out that the 
differences vary from -20.4 to 31.9 km, with a global average of 0.41 
km and a RMS fit of 3 km. A similar comparison with the seismic 
CRUST1.0 model yields -8.9 to 19.1 km, with a global average and 
RMS fit of 2.2 km and 2.2 km, respectively. 

a)                                                                    b) 

  

Figure 2.1. (a) The Bouguer gravity disturbance generated by satellite 
altimetry (in mGal), and (b) The Moho depth estimated via satellite altimetry 
(in km), (see Paper A)  

As one can see in Fig. 2.1a, the large Bouguer gravity disturbances, 
generated by the DNSC08GRA global marine gravity field model, 
range to more than 700 mGal in ocean areas, whereas close to the 
continents they are generally small (see Paper A).    

As shown in Fig. 2.1b, the Moho depths are generally less than 15 km 
in the ocean areas and along the oceanic ridges, but dominate to more 
than 30 km towards continental margins (see Paper A).   
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Table 2.2. Statistics of global estimates of the Bouguer gravity disturbance 
and Moho depth. STD is the standard deviation of the estimated quantities 

over the blocks. RMS is the Root Mean Square. SSBg  and 
RSBg  are the 

simple and refined spherical Bouguer gravity disturbance. STCg  is the 

calculated spherical terrain correction. ST  and RT  are the estimated VMM 

Moho depth based on the simple and refined Bouguer gravity disturbance. 
1.0CRUSTT is the Moho depth derived by CRUST1.0 model. .

S
S AT , .

R
S AT , S

FenT , 

R
FenT , 1.0

.
CRUST

S AT  and 1.0CRUST
FenT  are the estimated VMM Moho depths based on 

the simple and refined Bouguer gravity disturbance and those from 
CRUST1.0 in South America and Fennoscandia (see Paper C).   

Unit Quantities Max Mean Min STD RMS 

mGal 

SSBg  530.02 180.38 -1326.5 244.8  

STCg  896.36 16.97 -205.48 115.31 

RSBg  562.82 128.87 -620.54 178.10 

km 

ST  92.59 24.62 5.84 15.07 
RT  64.53 23.09 5.84 12.57 

1.0R CRUSTT T  16.70 0.19 -19.86 2.72 2.73 
1.0S CRUSTT T  27.52 1.72 -17 5.31 5.58 
1.0

. .

CRUSTS
S A S AT T  24.79 0.48 -12.42 4.84 4.86 

1.0CRUSTS
Fen FenT T  9.24 -1.39 -9.41 3.13 3.42 

1.0

. .

CRUSTR
S A S AT T  12.55 -0.81 -12.42 3.14 3.24 

1.0CRUSTR
Fen FenT T  10.81 -1.20 -9.41 2.92 3.16 

Table 2.2 demonstrates that the simple spherical Bouguer gravity 
disturbance corrected for density variation of bathymetry, ice and 
sediment varies between -1326.5 and 530 mGal with a global average 
and standard deviation of 180.4 mGal and 245 mGal. It also shows 
that the refined spherical Bouguer gravity disturbance ranges from -
620.5 to 562.9 mGal, with a global average and standard deviation of 
128.9 mGal and 178.1 mGal (see Paper C). As seen the Moho depths 
estimated from the simple spherical Bouguer gravity disturbance vary 
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from 6 to 93 km, with a global average and standard deviation of 25 
km and 15 km. Similar to the Moho depths estimated via the simple 
spherical Bouguer gravity disturbance, the Moho depths estimated by 
the refined spherical Bouguer gravity disturbance vary from 6 to 65 
km, with a global average and standard deviation of 23 km and 13 km, 
respectively. For evaluating the estimated results for the Moho depth 
(from the simple and refined Bouguer gravity disturbance), the 
CRUST1.0 seismic model is used. The RMS differences of the Moho 
depths estimated by the simple and refined spherical Bouguer gravity 
disturbances compared with that estimated by the seismic based 
CRUST1.0 model are 5.6 and 2.8 km, respectively.  

Also in Table 2.2 one can see the considerable mean value differences 
from the estimated Moho depths (either simple or refined spherical 
Bouguer gravity disturbance) and the CRUST1.0 model, which are 1.8 
and 0.2 km, respectively. These biases are caused by disagreements 
between the Moho depths estimated by the simple and refined cases 
on one hand and that by the CRUST1.0 model, and more so for the 
simple Bouguer case in comparison to the refined Bouguer case.  

Table 2.2 also shows the Moho depths computed via VMM, before 
and after applying the terrain correction, and CRUST1.0 models in 
South America and Fennoscandia. These areas are most complicated 
areas in view of rough topography and post-glacial rebound. One can 
see that the RMS fits for the refined Bouguer gravity disturbances 
with CRUST1.0 are 3.3 and 3.2 km in South America and 
Fennoscandia, respectively. These values are about 33 % and 7.6 % 
smaller than the corresponding RMS fits of 4.9 and 3.4 km obtained 
from the simple Bouguer gravity disturbances. 
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a)                                                                     b) 

Figure 2.2. (a) The estimated simple spherical Bouguer gravity disturbance 
corrected for the bathymetry, ice, sediment and non-isostatic effects (unit 
mGal), and (b) The estimated refined spherical Bouguer gravity disturbance 
corrected for the bathymetry, ice, sediment and non-isostatic effects (unit 
mGal), (see Paper C).    

Figure 2.2a depicts the simple spherical Bouguer gravity disturbances 
(i.e. only considering the gravitational of the spherical Bouguer shell 
without the terrain correction) corrected due to the ocean 
(bathymetry), ice, sediment variations and the NIEs, respectively. 

As can be seen in Fig. 2.2b the refined spherical Bouguer gravity 
disturbances are generally negative, while oceanic areas are dominated 
by positive gravity values. The figure supports the theory that 
topographic masses are to much extent isostatically compensated.  

a)                                                                    b) 

  

Figure 2.3. (a) The estimated VMM Moho depth based on the simple 
spherical Bouguer gravity disturbance, and (b) The estimated VMM Moho 
depth based on the refined spherical Bouguer gravity disturbance (in km) 
(see Paper C).    
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Figure 2.3a, showing the Moho depths estimated from the simple 
spherical Bouguer gravity disturbances, illustrates small Moho depths 
in the open ocean areas and along the oceanic ridges. As one would 
expect, in flat areas the simple Bouguer gravity disturbance can 
properly be used to remove most of the gravitational attraction of 
topographic masses, but in areas with rugged topography and near 
ocean coastlines, gravity disturbances are distorted by not correcting 
for the terrain features. Hence, in particular in these areas the simple 
Bouguer gravity disturbance must be improved by replacing it by the 
refined Bouguer disturbance, which means (at least theoretically) that 
the attraction of all the topographic mass has been removed.    

In Fig. 2.3b the Moho depths computed via the refined spherical 
Bouguer gravity disturbances are shown. Similar to Fig. 2.3a, small 
Moho depths are generally seen in the ocean areas and along the 
oceanic ridges, increasing with topographic elevation in continental 
areas with maxima in Tibet and Andes. Comparing with Fig. 2.3a, one 
can see that the unrealistically extreme Moho depths of more than 90 
km are now of order of 65 km, and the Moho depths in Greenland and 
Antarctica have also decreased all due to the applying the terrain 
correction. Also, the generally sharp changes of Moho depths along 
the continental margins in Fig. 2.3a are modified to smoother 
transition.   

2.6.1 Uncertainties in the VMM and CRUST1.0 models 

Here a numerical study in order to investigate the uncertainties related 
to the VMM Moho depth and CRUST1.0 MDC models is performed 
(see Bagherbandi et al. 2014; Paper D). This is because, a proper 
understanding of these errors is necessary to secure the quality of the 
Moho results.  
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Table 2.3. Statistics of global estimates of the CRUST1.0 and VMM 
standard errors for 1°×1° block data. STD is the standard deviation. RMS is 

Root Mean Square. VMMT
S  and 1.0CRUSTS


are the standard error of the 

estimated Moho depth and CRUST1.0 MDC (see Paper D).  

Unit Quantities Max. Mean Min. STD 

km VMMT
S  0.90 0.72 0.66 0.03 

kg/m3 1.0C RU STS


 166 73.76 39.99 34.60 

 a)                                                                   b) 

Figure 2.4. (a) The MDC derived by the CRUST1.0 model, and (b) standard 
errors of the MDC (in kg/m3) 

As one can see in Fig. 2.4a, the lowest MDCs are located in ocean 
areas, in particular along ocean ridges. As the oceanic ridges are 
special areas due to the presence of hot spots and light materials very 
close to the solid Earth topography due to the thinning of the oceanic 
crust, we get small MDCs in these regions. On the contrary, large 
MDCs are typically located in mountainous continental areas. The 
large MDCs in Antarctica are also notable.  

Figure 2.4b depicts the CRUST1.0 MDC standard errors estimated in 
Paper D. From Fig. 2.4b one can see that for oceanic regions all 
standard errors are mostly less than 50 kg/m3, whereas for continental 
regions, standard errors reach up to 120 kg/m3.  

The probable reasons for having the large errors in mountainous 
continental areas might be due to the uncertainties in the CRUST1.0, 
and for parts of Antarctica the uncertainty can be explained by the fact 
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that the density of ice topography was not properly distinguished from 
rock topography (see Paper D).  

Furthermore, the ocean ridges have significant variations. As the 
ocean ridges have young lithospheric age (cf. Bagherbandi and 
Sjöberg, 2013; Paper B), the large errors in such regions are likely the 
lack in modelling the thermal expansion (the mantel convection).  
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Chapter 3 
 

3. Additive corrections to gravity disturbance 

Nowadays, the Earth’s gravity field has been recognized as an 
important source of information about the deep Earth’s structure. 
These gravity data contain the short and long-wavelength features of 
the Earth structure, i.e. the signals from the topography and density 
heterogeneities related to bathymetry, ice, sediments and also from 
those in the mantle and core/mantle topography variations.  

In other words, the long-wavelength contribution to the gravity field, 
say to degree and order 10, may be related to the mantle as well as 
core-mantle boundary topography (Sjöberg, 2009) and those between 
11 to 35 degrees reflect the influence of Moho depth variations and 
lateral density anomalies of the crust (see Ellmann, 2004). And finally, 
the remaining short-wavelength contribution indicates smaller, near 
surface mass anomalies (see Corchete et al. 2010).     

To isolate the gravity data caused only by the geometry of the Moho 
interface, all aforementioned signals contributors to the gravity data 
must be removed by applying the so-called stripping corrections and 
non-isostatic effects (Bagherbandi and Sjöberg, 2012; Bagherbandi et 
al. 2013; Tenzer et al. 2012 and 2015a).  

3.1 Crust density variation corrections 

In order to compute the refined Bouguer gravity disturbances, i.e. free-
air gravity disturbances corrected for topography, bathymetry, ice 
thickness and sediment basins (i.e. stripping corrections), Tenzer et al. 
(2012) and (2015a) developed and applied a uniform mathematical 
formalism of computing the gravity corrections of the density 
variations within the Earth’s crust by: 

TBIS t b i sg g g g g                               (3.1) 
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where tg  is the topographic gravity correction, and bg , ig  and
sg  are the stripping gravity corrections due to the ocean 

(bathymetry), ice and sediment density variations, respectively.  

Applying a spherical approximation of the Earth, the gravity 
corrections on the right-hand side of Eq. (3.1) are computed using the 
following expression: 

      2
0

1
maxn n

q q
nm nm

n m n

GM
g = n c Y P

R
P
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  ,                    (3.2) 

where 8 3 23986005 10 m sGM    is the geocentric gravitational 

constant. The (fully normalized) potential coefficients q
nmc  of a 

particular volumetric mass density (or density contrast) layer q (i.e., 
topography, bathymetry, glacial ice and sediments) are defined by:  
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             (3.3) 

where q  is the Earth’s mean mass density, and the coefficients (
q i

qL ) are evaluated (from discrete data of density q  and thickness 

qL ) by applying a discretization to the following integral convolution 

   1

4
q q j

q q n mnm
L L Y Q d ,



  


        j = 1, 2,…,n         (3.4)  

3.2 Non-Isostatic Effects 

It is important to remind that in general the crust is not in complete 
isostatic equilibrium and the observed gravity data are not only 
generated by the topographic/isostatic masses but also from those in 
the deep Earth interior, that leads to non-isostatic effects (NIEs) (see 
Bagherbandi and Sjöberg 2012 and 2013).  

According to Sjöberg (2009) the major parts of the long-wavelengths 
of the geopotential are arisen by density variations in the Earth’s 
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mantle and core/mantle topography variations. Such NIEs could be the 
contribution of different factors, such as crustal thickening/thinning, 
thermal expansion of mass of the mantle (Kaban et al. 2004), Glacial 
Isostatic Adjustment (GIA), plate flexure (Watts 2001, p. 114), and 
effect of other phenomena (Tenzer et al. 2009). This implies that this 
contribution to gravity will lead to systematic errors/NIEs of the 
computed Moho topography. Hence the NIEs should also be corrected 
on the isostatic gravity disturbance.  

Assuming that the seismic Moho model CRUST1.0 is known and 
correct, the gravity effect of the NIEs can be determined by: 

                         2
0

1
maxn n

NIE NIE
nm nm

n m n

GM
g = n c Y

R
P
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                    (3.5) 

where 

CRUST1.0NIE VMM
nm nm nmc c c                                  (3.6) 

The spherical harmonic coefficients j
nmc  (j = VMM, CRUST1.0) in 

Eq. (3.6) are generated using the following expression 
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   (3.7) 

Here e  35.5 g/ cm is the Earth’s mean density,  3R 6371 10 m   is 

the Earth’s mean radius (which approximates the geocentric radius of 

the geoid surface), VMMT , CRUST1.0T  and 0T
 are the VMM and 

CRUST1.0 Moho depths and its mean value (approximately 23 km 

based on CRUST1.0 model), respectively.  is the constant MDC 

and the spherical harmonic coefficients   0j
nm

T T  , 

  0

2 2

j nm
T T  are defined for the following products of the MDC 

and depth:  0jT T  ,  0

2 2

j
T T  . 
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Taking into consideration the gravitational contribution of the crust 
density heterogeneous, the non-isostatic effects are applied to the 
isostasy gravity disturbance Ig . The isostatic equilibrium equation in 

Eq. (2.9a) is then rewritten as: 

     0 0.
B

TBISN
I Cg P g P A P                          (3.8) 

Here 
B

TBISNg  is the refined Bouguer gravity disturbance corrected for 

the gravitational contributions of topography and density variations of 
the oceans, ice, sediments and NIEs.  

Combining Eqs. (3.1) and (3.8), the fundamental formula of solving 
the VMM problem in Eq. (2.19) becomes  

  0, ,
B

TBISN
CGR K s d g A


                             (3.9) 

3.3. Numerical investigations  

The gravity disturbances are corrected in two main ways namely for 
the gravitational contributions of mass density variation due in 
different layers of the Earth’s crust such as ice and sediments, as well 
as for  the gravity contribution from deeper masses below the crust 
(i.e. NIEs).  

The statistics of the gravity corrections and respective corrected 
gravity disturbances are presented in Tables 3.1. The gravity 
corrections are computed using the recent seismic crustal thickness 
model CRUST1.0 with a resolution of 1°×1°.  
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Table 3.1. Statistics of global estimates of the gravity disturbances, stripping 
gravity corrections and NIEs. STD is the standard deviation of the estimated 

quantities over the blocks.  δg  is the gravity disturbances computed by the 

GOCO03S coefficients (Mayer-Gürr et al. 2012).  δg b ,  δg i , and  δg s  are 

the bathymetric, ice and sediment stripping gravity corrections derived from 

the CRUST1.0, respectively.  δg  is the non-isostatic effects.  δg TBISN  is 

the refined Bouguer gravity disturbance after applying the topographic and 
stripping gravity corrections due to the ocean, ice and sediment density 
variations (see Paper C). 

Unit Quantities Max Mean Min STD 

mGal 

g 285.85 -0.44 -281.40 23.84
Tg 255.13 -71.06 -647.61 105.98
Bg 721.60 332.91 110.28 165.02 
Ig 325.78 21.84 -2.61 56.57 
Sg 185.31 45.48 -0.02 32.47 

NIEg 248.70 -134.65 -497.98 69.98
TBISNg 562.82 128.87 -620.54 178.10

Figure 3.1 depicts the Bouguer gravity disturbances corrected due to 
the ocean (bathymetry), ice, sediment variations and the NIEs, 
respectively. As one can see from Fig. 3.1, these features can 
drastically change the Bouguer gravity disturbances from the free-air 
disturbances over oceans due to the application of the bathymetric 
stripping gravity correction. They also change in central Greenland 
and Antarctica due to application of the ice density variation stripping 
gravity correction and change less remarkably due to applying the 
sediment density variation stripping gravity correction in polar areas 
(see Paper C). 



    a)     b) 

    c)     d) 

    e)  f) 

 g) 

Figure 3.1. (a) The free-air gravity disturbance computed using the 
GOCO03S coefficients complete to degree 180 of spherical harmonics, (b) 
The topographic gravity correction, (c) The bathymetric stripping gravity 
correction, (d) The ice density variation stripping gravity correction, (e) The 
sediments density variation stripping gravity corrections, (f) non-isostatic 
effects and (g) refined Bouguer gravity disturbances after applying the 
topographic and stripping gravity corrections due to the ocean, ice, sediment 
density variations and non-isostatic effects (unit mGal)   
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Chapter 4 

4. The combined approach

Generally, the Moho interface is delineated accurately through seismic 
observations, but the limited coverage of such observations and 
economic considerations make gravimetric or combined gravimetric-
seismic data a more realistic technique for imaging Moho models.  

4.1 Combining the gravimetric and seismic models 

Our main purpose in this chapter is simultaneously to estimate the 
Moho depth and MDC by combining gravimetric and seismic models. 
Our method is based on a linearized least-squares adjustment by 
elements. Basically T  , estimated by means of gravity observations, 

is combined with independent a priori estimates 0T  and 0  of those 

parameters, with the goal of getting separate improved estimates of 
each parameter (see Sjöberg and Bagherbandi, 2011; Papers B, D, and 
E). To that end, we form the system of (linearized) observation 
equations as:  

εLxA  (4.1) 

where  

0 0 1 0 0

2 0

3 0

0 1 , and .

1 0

T l T
T

l

l T

 



 

     
                  

A x L    (4.2)  

Here, the observation vector L in Eq. (4.2) is composed of three 
observations, namely  Tl1  (Eq. 2.26) and both 2l  and 3l T

are derived by the values of the seismic crustal models, respectively, 

and T and    are the corrections to the priori estimates 0T  and 

0  of T  and  , and i  are the observation errors. 
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The least squares solution of this system of equations becomes: 

 ˆ 
-1T -1 T -1x A Q A A Q L (4.3) 

The covariance matrix xQ ˆ  of the estimated parameters is given by:

 2
ˆ 0

-1T -1
xQ A Q A (4.4) 

Here Q is the covariance matrix of L and 2
0  is the variance of the 

unit weight which can be estimated by: 

ˆ= 2 T -1
0 L Q (L - Ax) (4.5) 

Finally, the least-squares solutions for both the Moho depth and MDC 
are given by:   

0
ˆ ˆT T T  (4.6) 

and 

0
ˆ ˆ             (4.7) 

where T̂ and ˆ   are the estimated improvements to 0T  and 0 .  

4.2. Numerical investigations  

A combined solution for both the Moho depth and the MDC was 
given above. In the numerical solution, the priori estimates of Moho 
depth and MDC are needed, which are obtained from MDN07 (Meier 
et al. 2007) and CRUST1.0 models and T   is estimated by Eq. 

(2.26) (see Papers B, D and E).  



Table 4.1. Statistics of global estimates of the combined approach for 1°×1° 

block data. STD is the standard deviation. RMS is Root Mean Square. T̂  is

the estimated Moho depth from combined approach, dT̂  is the estimated

improvement to 0T , and 
T̂

S  is the standard error of the estimated Moho

depth. ̂  is the estimated MDC from combined approach, ˆd   is the 

estimated improvement to 0 , and ˆS   is the standard error of the 

estimated MDC. 1.0CRUSTT and 14KTH CT are the Moho depths derived from 

CRUST1.0 and KTH14C models. 11KTH C  and 14KTH C are the MDC 

derived by the KTH11C and KTH14C models (see Paper D).    

 Unit Quantities Max. Mean Min. STD 

km 

T̂ 70.15 23.37 6.57 12.98 

ˆdT 18.98 -2.71 -38.70 5.27

T̂
S 8.20 1.27 0.00 0.91 

14ˆ KTH CT T 21.68 -0.45 -35.28 4.34 4.36
1.0ˆ CRUSTT T 16.99 0.51 -18.58 3.10 3.15

kg/m3 

̂  679.83 345.37 21 111.72 

ˆd   471.43 -15.06 -604.70 114.72

ˆS  132.87 20.26 0.07 14.70 
11ˆ KTH C   269.15 -75.21 -492.33 93.37 119.9
14ˆ KTH C    585.85 23.24 -395.75 76.84 80.28

  a)     b) 

Figure 4.1. (a) The Moho depth estimated from combined approach, and (b) 
standard errors of the estimated Moho depth (unit km) 
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Figure 4.1a exhibits the Moho depth computed by the combined 
approach. As one would expected, the largest depths in the continental 
crust are seen in the mountainous regions Tibet and Andes, while 
smaller Moho depths are generally seen in the oceanic areas and in 
particular along the oceanic ridges. Note how well the estimated Moho 
depths follow the topography.   

Figure 4.2b maps the estimated Moho depth standard errors. One can 
observe that the standard errors in oceanic regions are smaller than 3 
km, whereas for continental regions the standard errors grow up to 7 
km. Similar to Fig. 4.1b, notable errors are seen in the Gulf of Mexico, 
Chile, Eastern Mediterranean, Timor sea and parts of polar regions, 
which could be partly due to the failure of properly modelling the 
sediment thickness in the CRUST1.0 model, to the uncertainties in the 
MDN07 model, and also due to a mismodeling the density of ice 
topography from rock topography in polar regions. 

 a)   b) 

Figure 4.2. (a) The MDC estimated by combined approach, and (b) standard 
errors of the MDC (unit kg/m3) 

Since the MDC is highly dependent on the properties of the crust and 
upper mantle of the study area, it is partially difficult to provide a 
standard value for it. However, as can be seen from Fig. 4.2a, the 
largest MDCs are concentrated in mountainous continental areas, for 
example in the Tibet and Andes and parts of Antarctica, whereas 
smaller MDCs are seen in ocean areas.  

Figure 4.2b maps the MDC standard errors estimated by the combined 
approach. From Fig. 4.2b one can see that for oceanic regions all 
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standard errors are mostly less than 50 kg/m3, while for continental 
regions, standard errors reach up to 120 kg/m3.  

The probable reasons for having the large errors in the Gulf of 
Mexico, Eastern Mediterranean and Timor sea could be attributed to 
the lack in modelling of the sediment thickness in the CRUST1.0 (see 
Paper B). For Chile the error might be due to the uncertainties in the 
CRUST1.0, and for polar regions the uncertainty can be explained by 
the fact that the density of the ice topography was not properly 
distinguished from rock topography.  

Table 4.2. Sources of regional Moho depth models used in this study 

Model ID Resolution Region Survey type 
SAM10 

(Lloyd et al. 2010) 2°×2° 
South 

America 
Receiver function 

NAM02 
(Chulick and 

Mooney, 2002) 
1°×1° 

North 
America 

Seismic refraction and 
other seismic data 

AFR07 
(Pasyanos and 
Nyblade, 2007) 

1°×1° Africa 
Fundamental-mode surface 
wave 

EUP09 
(Grad and Tiira, 

2009) 
0.1°×0.1° Europe 

Body and surface waves, 
receiver function and other 
seismic data  

ASA03 
(Marone et al. 

2003) 
2°×2° Asia 

Seismic refraction, 
reflection and receiver 
function 

AUS11 
(Kennett, 2011) 0.5°×0.5° Australia Receiver function 

ANT13 
(Baranov and 
Morelli, 2013) 

1°×1° Antarctica 
Seismic refraction, 
reflection and tele seismic 
receiver function 

As can be seen in Table 4.2, in order to validate the quality of our 
estimated Moho depth, some regional models SAM10, NAM02, 
AFR07, EUP09, ASA03, AUS11 and ANT13 are used (see Paper D).  



  a)     b) 

Figure 4.3. (a) Regional map of seismic estimates of the Moho depth used in 
this study (in km), and (b) Coherence between combined approach and 
Moho depths from seismic regional models. 

Figure 4.3a shows the regional Moho depths derived from seismic 
information in South and North America, Africa, Europe, Asia, 
Australia and Antarctica, respectively, and Fig. 4.3b depicts the 
coherence between combined approach and these Moho depths. The 
latter figure shows that Moho depths of the combined approach agree 
with the seismic estimates in 93 per cent of the locations, illustrating 
that there is a reasonably good agreement between the two sets. The 
main discrepancies are located in the areas of transition between 
continental and oceanic crust, which could be attributed to the 
different resolutions of each model and or to imperfect estimates in 
combined approach and seismic models. In Fig. 4.3a  yellow areas 
indicate that the two models are not consistent, this of course can be 
do either to an error in terms of Moho depth or to a wrong estimate of 
the model accuracy (see Paper D). 
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Chapter 5 
 

5. Conclusions and Future Research  

5.1 Conclusions  

The study of the Moho discontinuity has become a crucial topic in 
inferring the dynamics of the Earth’s interior for a long time. In 
general, the Moho can be studied with profitable results through 
seismic data. However due to the sparsity of seismic data in parts of 
the world, it has not been well determined. With the advent of satellite 
missions, it has been possible to recover the Moho parameters (i.e. 
Moho depth and Moho density contrast) via satellite gravity 
observations based on isostatic models.   

So far, various isostatic models have been presented for recovering the 
Moho parameters (see Section 1.3), but it was not clarified which one 
is most appropriate to employ for geophysical and geodynamical 
purposes. The preliminary and simplest isostatic models proposed are 
the classical ones, with a local and regional compensation. However, 
those models cannot image realistically the actual Moho undulation. 
This is because they suppose a uniform crustal density, while 
disregarding the density irregularities distributed within the crust and 
sub-crust.    

Understanding this important role of Moho recovery, its determination 
has been in the centre of the discussions by many geoscientists during 
the last decades. Therefore, we undertook the task of determination of 
Moho parameters and their uncertainties based on the VMM and the 
combined methods via gravimetric and seismic data over regional and 
global scales to a resolution of 1°×1°. First of all, this is because the 
VMM model (in contrast to the classical models) is based on a global 
isostatic compensation, which makes it more realistic than the 
classical ones. Moreover, the combined method (i.e. combination of 
the gravimetric and seismic data) can diminish substantially the 
seismic data gaps and provide a high resolution data coverage.    
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The main input data utilized for a Moho recovery in the thesis, either 
on the VMM or the combined methods, are the gravity 
anomaly/disturbance observations together with data from 
seismological models (e.g. CRUST1.0 and MDN07). The observed 
gravity data contains disturbing signals from the topography and 
density heterogeneities associated to bathymetry, ice, sediments and 
also from those in the mantle and core/mantle topography variations. 
Therefore, in order to isolate the gravity data caused only by the 
geometry of the Moho, aforementioned signal contributors to the 
gravity data are tried to be suppressed by applying the stripping 
gravity corrections and non-isostatic effects. The corrections are 
calculated using CRUST1.0.  

To fulfil the goals of the thesis, we performed various studies as 
reported in the 8 papers of Part two, which are accepted or submitted 
in refereed journals. Based on the numerical investigations in these 
papers we found that:  

The VMM approach in predicting Moho depth using a global marine 
gravity field model obtained by satellite altimetry data is applied 
successfully over the oceans, and the possible mean dynamic 
topography in the marine gravity model cannot substantially affect the 
Moho determination.    

The utilization of the refined spherical Bouguer gravity disturbance in 
the VMM method for finding the Moho depth improved the RMS fits 
of our Moho results with the CRUST1.0 Moho model about 51 % 
compared to result obtained by using the simple spherical Bouguer 
gravity disturbance (i.e. only considering the gravitational of the 
spherical Bouguer shell without the terrain correction), implying that 
despite the fact that the lateral variation of the crustal depth is rather 
smooth, the terrain affects the Moho result most significantly in many 
areas.  

The application of the lithospheric thermal-pressure correction (i.e. the 
contribution of the lithospheric thermal state) to the gravity data 
improved the disagreement between the VMM gravimetric Moho 
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solution to the CRUST1.0 seismic model about 40 % in South 
America, particularly over oceans and continental margins. 

In an overall view, there is a relation between the degrees of isostatic 
compensation (i.e. complete and incomplete compensation) and 
geological structures in Fennoscandia, which can affect the Moho 
geometry. In details the geological features are related to different 
compensation-ratios, showing that a lower compensation-ratio denotes 
a stronger geological unit.  

The isostatic gravity bias due to disagreement between the actual and 
isostatically compensated topographies corresponds to the Moho 
correction, so that applying this correction to the gravimetrically 
determined Moho depth significantly improves the RMS fit of our 
gravimetric result with some published global Moho models about 20 
% and it also improves RMS fit about 46 % in some regions (e.g. 
Fennoscandia).  

The combined approach is able to simultaneously estimate the Moho 
parameters (i.e. Moho depth and Moho density contrast) with 
corresponding uncertainties by combining gravimetric and seismic 
information based on a linearized least-squares adjustment model. The 
Moho parameters computed by the combined approach provide good 
fit to all other regional and global models in 90 per cent of the 
locations.   

The geoid height can hardly be successfully modelled by the classical 
isostatic models due to the many other signals from various mass 
variations within the Earth that affects the geoid. 

5.2 Future research   

Some recommendations for future work can be considered as follows: 

1. As can be seen in this thesis, the resolution of our Moho results 
depends on the CRUST1.0 model that is used. This is because in the 
method we use the global additive corrections are calculated using this 
model. It is therefore recommended to produce Moho models of 
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higher spatial resolution, once a global crustal model of higher 
resolution becomes available. 

2. The combined approach used in this study faces a problem in some 
rift zones, most likely due to too rough a priori values in the least 
squares procedure after linearization of the original nonlinear 
equations. This problem is recommended to be considered in a 
forthcoming study. 

3. Recently, a huge improvement has been observed in the accuracy 
and spatial resolution of global gravity field models, which are 
achieved by using the new data of the GOCE satellite mission. It is 
recommended to apply the improved gravity models for updating the 
Moho model. 

4. The current study can further be extended in modeling other 
boundaries, for example, the core-mantle boundary (or Gutenberg 
discontinuity).   

5. The classical isostatic models applied in this research estimate the 
geoid well over neither global nor regional scales. Therefore a study 
for a more reasonable isostatic model in predicting the geoid 
undulations (e.g. VMM model) is still open. 
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