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Phase change, surface tension and turbulence in real fluids

Daniel L. Albernaz
Linné FLOW Centre, KTH Mechanics, The Royal Institute of Technology
SE-100 44 Stockholm, Sweden

Abstract
Sprays are extensively used in industry, especially for fuels in internal combus-
tion and gas turbine engines. An optimal fuel/air mixture prior to combustion
is desired for these applications, leading to greater efficiency and minimal lev-
els of emissions. The optimization depends on details regarding the different
breakups, evaporation and mixing processes. Besides, one should take into con-
sideration that these different steps depend on physical properties of the gas
and fuel, such as density, viscosity, heat conductivity and surface tension.

In this thesis the phase change and surface tension of a droplet for different
flow conditions are studied by means of numerical simulations. This work is
part of a larger effort aiming to developing models for sprays in turbulent flows.
We are especially interested in the atomization regime, where the liquid breakup
causes the formation of droplet sizes much smaller than the jet diameter. The
behavior of these small droplets is important to shed more light on how to
achieve the homogeneity of the gas-fuel mixture as well as that it directly
contributes to the development of large-eddy simulation (LES) models.

The numerical approach is a challenging process as one must take into ac-
count the transport of heat, mass and momentum for a multiphase flow. We
choose a lattice Boltzmann method (LBM) due to its convenient mesoscopic
nature to simulate interfacial flows. A non-ideal equation of state is used to
control the phase change according to local thermodynamic properties. We
analyze the droplet and surrounding vapor for a hydrocarbon fuel close to the
critical point. Under forced convection, the droplet evaporation rate is seen to
depend on the vapor temperature and Reynolds number, where oscillatory flows
can be observed. Marangoni forces are also present and drive the droplet inter-
nal circulation once the temperature difference at the droplet surface becomes
significant. In isotropic turbulence, the vapor phase shows increasing fluctu-
ations of the thermodynamic variables once the fluid approaches the critical
point. The droplet dynamics is also investigated under turbulent conditions,
where the presence of coherent structures with strong shear layers affects the
mass transfer between the liquid-vapor flow, showing also a correlation with the
droplet deformation. Here, the surface tension and droplet size play a major
role and are analyzed in detail.

Descriptors: Evaporation, equation of state, hydrocarbon fuel, lattice Boltz-
mann, deformation, droplet heating, critical point, Marangoni forces
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Fasöverg̊ang, ytspänning och turbulens i icke-ideala fluider

Daniel L. Albernaz
Linné FLOW Centre, KTH Mekanik, Kungliga Tekniska Högskolan
SE-100 44 Stockholm, Sverige

Sammanfattning
Sprayer används i stor utsträckning inom industri, särskilt för bränslen i för-
brännings- och gasturbinmotorer. En optimal bränsle/luft blandning före för-
bränning är önskvärd för dessa tillämpningar, vilket leder till stor effektivitet
och minimala niv̊aer av utsläpp. Optimeringen beror p̊a detaljer ang̊aende olika
uppbrott, avdunstning och blandningsprocesser. Dessutom bör man beaktas
att dessa olika stegen är beroende av fysikaliska egenskaper hos gas och bränsle,
s̊asom densitet, viskositet, värmeledningsförm̊aga och ytspänning.

I den här avhandlingen kommer fasöverg̊ang och ytspänning hos en droppe
i olika flödestillst̊and att studeras genom numeriska simuleringar. Detta arbete
är en del av ett större projekt som siktar till att utveckla modeller för sprayer
i turbulenta flöden, vilket har betydelse för energiomvandling av bränslen. Vi
är särskilt intresserade av atomiseringsregimen, där vätskan vid uppbrottet
bildar droppstorlekar mycket mindre än str̊aldiametern. Beteendet hos dessa
sm̊a droppar är viktigt för att tillföra ytterligare klarhet över hur man kan
uppn̊a homogenitet i gas-bränsleblandningen, s̊aväl som den bidrar direkt till
utvecklingen av large-eddy simulation (LES) modeller.

Den numeriska metoden är en utmanande process där man m̊aste beakta
transport av värme, massa och rörelsemängd för en flerfasströmning. Vi väljer
en Lattice Boltzmann Method (LBM) p̊a grund av dess mesoskopiska natur
att simulera strömning med fria gränsytor. En icke-ideal tillst̊andsekvation
används för att styra fasomvandling baserat p̊a lokala termodynamiska egen-
skaper. Vi undersöker droppen och kringliggande ånga för ett kolvätebränsle
nära den kritiska punkten. Under p̊atvingad konvektion synes en droppes
för̊angningshastighet bero p̊a ångtemperaturen och Reynolds tal, och os-
cillerande flöden kan observeras. Marangoni-krafter är ocks̊a närvarande och
driver p̊a droppens inre cirkulation när temperaturskillnaden vid droppytan blir
betydande. I isotrop turbulens visar ångfasen ökande fluktuationer i de termo-
dynamiska variablerna när fluiden närmar sig den kritiska punkten. Dropp-
dynamik undersöks ocks̊a i turbulens, där förekomsten av sammanhängande
strukturer med starka skjuvskikt p̊averkar massöverföringen mellan vätske och
ånga, som ocks̊a visar en korrelation med droppens deformation. Ytspänning
och droppstorlek har stort inflytande och analyseras i detalj.

Nyckelord: Avdunstning, tillst̊andsekvation, kolvätebränsle, lattice Boltz-
mann, deformation, droppe uppvärmning, kritisk punkt, Marangoni-krafter
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Preface

This thesis contains numerical investigations of phase change and surface
tension of a droplet for different flow conditions. Turbulent effects in single
and multiphase cases are also considered. The thesis is divided in two parts,
where the first one presents an overview of the work and the main results. The
second part consists of five journal articles. The layout of these papers has
been adjusted to fit the format of this thesis, but their content has not been
changed with respect to the original versions.

Paper 1.
Albernaz, D. L., Do-Quang, M. & Amberg, G., 2013 Lattice Boltzmann
Method for the evaporation of a suspended droplet. Interfac. Phenom. Heat
Transfer 1, 245-258

Paper 2.
Albernaz, D. L., Do-Quang, M. & Amberg, G., 2015 Multirelaxation-
time lattice Boltzmann model for droplet heating and evaporation under forced
convection. Phys. Rev. E 91, 043012

Paper 3.
Albernaz, D. L., Amberg, G. & Do-Quang, M., 2016 Simulation of a
suspended droplet under evaporation with Marangoni effects. Accepted for
publication in Int. J. Heat Mass Transfer

Paper 4.
Albernaz, D. L., Do-Quang, M., Hermanson, J. C. & Amberg, G.,
2016 Real fluids near the critical point in isotropic turbulence. Under revision
for publication in Phys. Fluids

Paper 5.
Albernaz, D. L., Do-Quang, M., Hermanson, J. C. & Amberg, G.,
2016 Droplet deformation and heat transfer in isotropic turbulence. Submitted
to J. Fluid Mech.
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Part I

Overview & Summary





CHAPTER 1

Introduction

The richness of fluid dynamics can be easily observed as we turn on the tap
in the bathroom. There are several interesting physical aspects to look into as
the water stream interacts with the surrounding air and splashes into the sink.
The gravity and velocity inlet play a major role in this scenario: as we increase
the water flow rate, instabilities are introduced and a breakup of the liquid jet
is observed, as seen in Fig. 1.1. The result is the formation of ligaments and
smaller drops, which contribute to increase the complexity of such flow.

Figure 1.1. (left) The water stream from a tap with high flow rate;
(right) the formation of ligaments and droplets due to the breakup
of the liquid jet.

To make it even more complicated, we could modify the conditions of the
surrounding air. Let us consider a gas with higher temperature and pressure
than the liquid fluid, where the difference between thermodynamic properties
would generate phase change. We could also change the location from the
bathroom to a combustion chamber where liquid fuel flows from narrow nozzles
instead. We are now dealing with an energy conversion system such as an
internal combustion engine or a gas turbine, which are essential to modern
human life. Similar to the tap water case, a fuel jet at high flow rate would
show an initial breakup that implies forming smaller structures as liquid sheets,
ligaments and droplets.

3



4 1. INTRODUCTION

1.1. Fuel sprays: state of the art

The conventional understanding of spray formation when liquid leaves the noz-
zle is based on the separation of the following stages (Lefebvre (1989)): develop-
ment of a jet, conversion of a jet into liquid sheets and ligaments, disintegration
of ligaments into relatively large droplets (primary breakup) and breakup of
large droplets into smaller ones (secondary breakup). The liquid jet may break
up into drops of widely different diameters, with sizes varying from the nozzle
diameter down to droplets of diameters several orders of magnitude smaller.
The size distribution is in general not uniform and depends on local flow con-
ditions and properties of the fuel and gas.

Different dimensionless numbers can help describing the flow and breakup
processes, among them the Reynolds number Re, which gives the ratio between
the inertial and viscous forces, and Weber number We that consists of the
ratio of inertia to surface tension force. Figure 1.2 shows a classical breakup
regime given by a phase diagram between Re and We. The instability of a
heavy fluid layer supported by a light one is known as Rayleigh instability and
occurs under an acceleration of the fluid system in the direction toward the
denser fluid (Rayleigh (1883)). This kind of instability is mainly observed in
the phase diagram when Re < 103 and We < 1. By increasing Re and/or
We by one order of magnitude, the jet becomes wavy due to aerodynamic
effects, known as the non-axisymmetric Rayleigh breakup. When Re is further
increased, the shear stresses at the gas/liquid interface strip off droplets. For
a given combination of Re and We a regime known as membrane breakup can
be obtained, where the whole round jet forms a thin sheet (membrane) before
breaking into drops. When even larger Reynolds numbers are used, Re ∼ 105,
short-wavelength shear instability takes place, known as atomization regime.
Here, the disintegration process begins at the jet surface and gradually erodes
the jet until it is completely broken up, as seen in Fig. 1.31. Droplet sizes
much smaller than the jet diameter can be observed. Atomization is achieved
beyond the upper bound of membrane breakup as seen in Fig. 1.2, and the
farther away from the bound, the finer the spray.

Experiments dealing with breakup of liquid jets are difficult due to the large
number of droplets. When non-intrusive methods are used, the light is scattered
by the presence of these particles, making the spray opaque. Therefore, most of
the available data is related to the average temporal development of the spray
by high-speed imaging or shadowgraphs (Dec (1997)). Regarding turbulent
mixing, which can be measured by Laser Induced Fluorescence (LIF) as seen
in Guillard et al. (1998), its combination with Particle Image Velocimetry (PIV)
allows the simultaneous measurement of concentration and velocity field.

1Lasheras, J. C., Villermaux, E. & Hopfinger, E. J. 1998 Break-up and atomization of a
round water jet by a high-speed annular air jet. J. Fluid. Mech. 357, 351–379, Fig. 2 (g)

©Cambridge University Press.
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Figure 1.2. Breakup regimes of a jet given for a Re−We diagram.

Figure 1.3. Representation of a fuel liquid jet atomization for high
Re number (left), where the formation of ligaments and droplets
much smaller than the jet diameter (right) are observed.

By combining these methods one is able to directly measure the turbulent
fluxes of the fluid under consideration (Borg et al. (2001)). The recent intro-
duction of high speed shutters (Sedarsky et al. (2007)) allows the capturing of
individual droplets and filaments in the spray cloud. However, this method is
still under development and requires special equipment. Much still has to be
done in order to obtain experimental data for the wide range of scales that
characterize a spray with high Re number.



6 1. INTRODUCTION

When simulating atomization of liquid jets, the dominant method in in-
dustrial applications consists of the Reynolds-averaged Navier-Stokes (RANS).
In this method, drastic simplifications are made, where physical modelling of
atomization and sprays is an essential part of the two-phase flow computa-
tion (Gorokhovski & Herrmann (2007)). Parameter tuning is usually necessary
with reference experimental data, and this should be done every time when the
flow conditions are changed. In more advanced cases such as direct numerical
simulation (DNS) and large-eddy simulation (LES), physical modelling of at-
omization and jets is still inevitable (Jiang et al. (2010)). For multiphase flows,
there is no model-free DNS since the interactions between different phases need
to be described. Even though detailed DNS with high resolution simulations
have been performed (e.g. Shinjo & Umemura (2010) and Shinjo & Umemura
(2011)), there are also assumptions regarding surface tension forces and/or
temperature for droplets in the smallest scales.

Overall, fuel sprays are extensively applied in industry, where an opti-
mal fuel/air mixture prior to combustion is desired, leading to best efficiency
and minimal levels of emissions (Shi et al. (2011)). In order to optimize fuel
sprays, details regarding the different breakups, evaporation and mixing pro-
cesses should be scrutinized and well understood. Besides, one should take into
account that these processes depend on physical properties of the gas and fuel,
e.g. density, viscosity, heat conductivity and surface tension.

Recently, different research groups at KTH Mechanics started a collabora-
tive project aiming for developing simulations and models for droplets clouds
and sprays in turbulent fluid flows, with relevance for energy conversion of
mixtures of biofuels and conventional fuels. The project was divided into four
branches: (i) the LES modelling of secondary droplet breakup and turbulent
mixing process, as seen in Fig. 1.4 2, with the goal of understanding the interac-
tion between turbulence characteristics and the droplet physical properties; (ii)
the different breakup processes of liquid sheet and droplets under different flow
conditions by using a Volume of Fluid (VOF) approach (Kékesi et al. (2014));
(iii) development of subgrid-scale models for LES of reacting and turbulent
flows by using new modelling concepts (Grigoriev et al. (2013)); (iv) DNS of
droplets under evaporation in idealized conditions, where surface forces may
dominate. The last part is to be handled by a diffuse interface method in mi-
croscopic dimensions and is the context of the present thesis. The parts (ii),
(iii) and (iv) would provide information for the development of LES models
that could be used in part (i).

2Nyg̊ard, A. & Fuchs, L. 2013 Numerical investigation of mixing in intermittent jets. 14th

European Turbulence Conference.
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Figure 1.4. Illustration of a LES simulation for an incompressible
liquid turbulent jet break-up.

1.2. Scope of the thesis

As we draw attention to the smaller scales in a fuel spray under an atomiza-
tion regime, droplets between ≈ 0.2mm to nanoscales can be observed. These
small droplets are more sensitive to local temperatures as they have larger
surface area to volume ratio in comparison to larger ones. In other words,
smaller droplets are heated up more quickly, which makes the evaporation pro-
cess faster. The evaporation rate would depend on the flow condition and
local thermodynamic properties. These droplets are also responsive to a turbu-
lent environment: it is expected that the presence of coherent structures with
strong shear layers should affect the mass transfer between the liquid-vapor
flows, where surface tension might also play an important role under certain
conditions. The droplet behavior may shed more light on how to achieve the
homogeneity of the mixture of the fuel and the surrounding air.

The primary focus of this work is to numerically investigate the dynamics of
a single droplet in different flow conditions, where surface tension, phase change
and turbulent effects are analyzed in detail. This is an important step to gain
in-depth insight into the different physical phenomena taking place inside a fuel
jet. Moreover, it contributes directly for modelling the smaller scales present
in fuel sprays, which consists in one of the goals from the collaborative project
between different research groups at KTH Mechanics. Although the study
of a single droplet dynamics may sound simple, the numerical approach is a
challenging process as one must take into account the transport of heat, mass
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and momentum for a multiphase flow. We make use of a lattice Boltzmann
method, shown as a promising method for dealing with interfacial flows as it
can address macro- and microscales. A non-ideal equation of state is used to
control the phase change according to local thermodynamic properties, where a
hydrocarbon fuel is taken into consideration. In order to obtain a density ratio
as observed in Diesel engines under operational conditions (between 20 and 65,
as seen in Taylor (1985)), we analyze the droplet and surrounding vapor close
to the critical point.

The following chapters present the relevant theoretical and physical as-
pects contained in this thesis. Chapter 2 describes the phase change, where
the latent heat and different equations of state are discussed. The theoretical
droplet heating and evaporation is also derived for a static condition. Chapter
3 introduces the surface tension and the Marangoni effect. Chapter 4 gives a
brief description of turbulence. Chapter 5 provides an overview of the numer-
ical method used. We summarize the main results in Chapter 6 and present
concluding remarks in Chapter 7.



CHAPTER 2

Phase change

A transition from one state of matter (solid or liquid or gas) to another without
a change in chemical composition is defined as phase change. During this
transition, a system either absorbs or releases a fixed amount of energy per
volume, changing the arrangement of the molecules as seen in Fig. 2.1. The
temperature of the system stays constant as heat is added or taken from the
process. The amount of heat q can be expressed as the product of the mass m
and the specific latent heat L of the material, following

q = mL . (2.1)

The specific latent heat measures the change in enthalpy during the phase
change taken at constant temperature. In the case of phase transition from
liquid to vapor, the difference between the vapor and liquid enthalpies gives
the latent heat of vaporization Lhv, written as

Lhv = ∆h = hv − h` , (2.2)

where h is enthalpy and the subscripts v and ` denote the vapor and liquid,
respectively. In evaporation, the energy added is used to break the bonds
between the molecules. For a pure substance, liquid-vapor phase change always
occurs at the saturation temperature. Since the phase change in our numerical
model is controlled by an equation of state, some basic concepts are described
below.

Figure 2.1. Phase change between the states of matter, where
different arrangement of molecules are obtained.

9



10 2. PHASE CHANGE

2.1. Equations of state

The expression equation of state (EOS) refers to equilibrium relationships in-
volving pressure p, temperature T and specific volume υ (which can also be
written in terms of density ρ, where υ = 1/ρ). If the vapor or gas can be
approximated as an ideal gas, the EOS is given as

pυ = RT , (2.3)

where R is the gas constant. It is known that an ideal EOS is inaccurate in
describing the behavior of many fluids, especially as critical point or saturation
conditions are approached. In addition, an ideal gas EOS is of course incapable
of modelling the liquid phase. A non-linear cubic EOS includes the interaction
between molecules and takes into account a finite molecule volume. These
considerations deviate from ideality and allow a non-ideal EOS to describe
several fluids with good agreement, especially their liquid-vapor properties close
to the critical point. The van der Waals (vdW) EOS is the simplest and most
well-known cubic EOS, given by

p =
RT

υ − b
− a

υ2
, (2.4)

where a = 27(RTc)
2/(64pc) is the attraction parameter and b = RTc/(8pc)

represents the volume occupied by the molecules of the substance, i.e. the
repulsion parameter. The subscript c denotes the variable value at the critical
point. Different non-ideal EOS have been proposed in an effort to improve the
EOS accuracy. Kaplun & Meshalkin (2003) proposed the M-K EOS which has
the following form

p =
RT

υ

(
1 +

c′

υ − b′

)
− a′

υ2
, (2.5)

where a′, b′ and c′ are parameters used to fit the desired experimental data.
Note that for b′ = c′, the vdW EOS is obtained. Another renowned EOS is the
Peng-Robinson P-R EOS, given by

p =
RT

υ − b
− aα′(T )

υ2 + 2bυ − b2
, (2.6)

with a = 0.45724R2T 2
c /pc and b = 0.0778RTc/pc. The parameter α′(T ) =

[1 + (0.37464 + 1.54226w − 0.26992w2)(1 −
√
T/Tc)]

2 is defined according to
the acentric factor w and is a function of the actual temperature T . An EOS
is useful for predicting the p − υ − T behavior of a fluid in a desired range of
values. A T −υ diagram can be used for finding the coexisting specific volumes
of the liquid and vapor phases as a function of temperature. A curve in this
diagram represents the saturated liquid and vapor lines.

In order to find the specific volumes analytically, a Maxwell construction
could be used (Faghri & Zhang (2006)). The Maxwell construction, also known
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as the “equal area rule”, is derived from the condition that the free energies of
the gas and the liquid must be equal when they coexist. The T − υ diagram
of the fluid chosen for performing numerical simulations can be obtained by
experimental data. The comparison of the data to the Maxwell construction
for a specific EOS is a way to evaluate if such EOS is suitable for represent-
ing the desired fluid. Hydrocarbon fluids are common fuels when one has in
mind the application of evaporating fuel in different engines. Throughout this
thesis we make use of a hexane fluid (C6H14), where the respective real val-
ues are obtained from Lemmon et al. (2013). The acentric factor of hexane is
w = 0.30075.

Figure 2.2 shows the reduced temperature Tr as a function of the reduced
specific volume, υr. Thermodynamic variables are shown in terms of the re-
duced variables, i.e. the actual quantity normalized by the critical value. There-
fore, the critical point corresponds to Tr = 1 and υr = 1. The experimental
data is plotted with the analytical solutions of different EOS. When compared
to a nonpolar heavy hydrocarbon such as hexane, the vdW EOS presents poor
agreement both for the liquid and vapor phases. The M-K EOS shows better
results, however errors of the order of ∼ 90% for the liquid phase far from the
critical point (Tr ≈ 0.7) are present. The P-R EOS shows good agreement with
the experimental data, especially for the vapor phase, where error is maintained
below 1%. We adopt the P-R EOS through the rest of this thesis. We would
like to mention that the coexistence curve from numerical simulations matches
the analytical solution of the P-R EOS (Albernaz et al. (2015)).
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Figure 2.2. Reduced temperature Tr as a function of the reduced
specific volume υr, for different equations of state, where a hexane
fluid (C6H14) is considered. Taken from Albernaz et al. (2013).
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2.2. Clausius-Clapeyron relation

An equilibrium state for two phases of a pure substance (single component) is
given when both have the same temperature and pressure. If the temperature
of a two-phase system in equilibrium is changed slightly, the pressure of the
system will be affected; this relationship is described by the Clausius-Clapeyron
relation (Faghri & Zhang (2006)). On a pressure-temperature P − T diagram
one can also obtain the coexistence condition, which is characterized by a curve
that separates one phase from the other. The Clausius-Clapeyron relation gives
the slope of the tangents to this curve, and is written as

dP

dT
=

∆s

∆υ
, (2.7)

where dP/dT is the slope of the tangent to the coexistence curve at any point,
∆s and ∆υ are the change in specific entropy and specific volume, respectively.
The entropy change can be defined as the enthalpy variation divided by the
thermodynamic temperature ∆s = ∆h/T . By using Eq. (2.2), entropy change
is rewritten as

∆s =
Lhv
T

. (2.8)

The latent heat of vaporization can be explicitly expressed by combining the
definition in Eq. (2.8) with Eq. (2.7), obtaining

Lhv = T
dP

dT
(υv − υ`) . (2.9)

Using the P-R EOS in Eq. (2.6) and for a certain temperature, the latent heat
of vaporization in our model can be evaluated through the RHS of Eq. (2.9).
The latent heat data obtained from Lemmon et al. (2013) matches with the
one obtained in the model used.

2.3. The D2 law

The evaporation of a liquid fuel consists of the detachment of molecules from
its surface, where there is diffusion of the vapor formed into the surround-
ing environment. In order to model the evaporation, some assumptions can
be made: one can consider a motionless and isolated pure liquid droplet,
where the surrounding medium is inert and has a uniform higher temperature
than the droplet to trigger the phase change. The droplet shape is consid-
ered spherical and slow evaporation (quasi-steady assumption) is utilized. The
one-component equation of transport of heat in spherical coordinates is given
by:

r2ρcpvr
∂T

∂r
=

∂

∂r

(
r2k

∂T

∂r

)
, (2.10)
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where r is the radial distance from the droplet center, vr is the velocity in the
radial direction and k is the thermal conductivity. The term cp represents the
specific volume at constant pressure, which is assumed constant as the slow
evaporation has the implication of considering a limited temperature difference
between the phases. It is important to note that in one-component evapora-
tion the equation of transport of heat is sufficient due to the presence of only
self-diffusion, i.e. the vapor is diffused into the surrounding vapor (Holyst et al.
(2013)). The mass balance at the interface requires that the steady state va-
por flux equals the evaporation rate at the droplet. Therefore, the continuity
equation is given as

r2ρvr = r2
i ρivi . (2.11)

By using Eq. (2.11) we integrate Eq. (2.10) with respect to r, which gives

r2
i ρivicp

∂T

∂r
= r2k

dT

dr
+ constant , (2.12)

where the integration constant is determined from algebraic manipulations,
according to the boundary condition given from the energy balance at the
interface, which assumes (Sirignano (2010))

R2kv
dT

dr

∣∣∣
i,v

= R2k`
dT

dr

∣∣∣
i,`

+R2ρiviLhv = R2ρiviLeff , (2.13)

where Leff denotes the effective latent heat of vaporization, R is the droplet
radius and subscript i refers to quantities evaluated at the interface. The tem-
perature of the entire droplet is generally considered constant, as the transport
of heat inside the droplet is negligible, i.e. Leff = Lhv, which is also assumed
in order to obtain an analytical solution. Using the boundary condition in Eq.
(2.13), Eq. (2.12) becomes

r2
i ρivicp

(
T − Ti +

Lhv
cp

)
= r2k

dT

dr
. (2.14)

After separating the variables we integrate Eq. (2.14) within the intervals
[ri, r∞] and [Ti, T∞], obtaining

r2
i ρivicp
r

= ki ln

(
T∞ − Ti + Lhv/cp
T − Ti + Lhv/cp

)
, (2.15)

setting r equal to ri at the surface, we have

riviρicp = ki ln(1 +B) , (2.16)

where the nondimensional Spalding number B is given as

B =
cp(T∞ − Ti)

Lhv
. (2.17)
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Using the mass continuity at the droplet surface −ρ`dri/dt = ρivi and now
integrating for r and t, for an initial diameter D0, the diameter D evolution in
time is obtained as

D2 = D2
0 −

[
8αiρi
ρ`

ln(1 +B)

]
t , (2.18)

where αi = ki/(cpρi) is the thermal diffusivity evaluated at the interface. Equa-
tion (2.18) is known in literature as the D2 evaporation law (Kuo (2005)), where
the evaporation coefficient is given as

βv =
8αiρi
ρ`

ln(1 +B) . (2.19)

The evaporation coefficient βv represents the magnitude of the negative slope of
the straight line obtained when D2 is plotted as a function of time. In this way,
the droplet evaporation time (lifetime) can be written as tev = D2

0/βv, which is
seen to be longer for larger droplets. Even though several simplifications were
made, the D2 law has been verified by numerous experimental data. However,
it is important to mention that this analytical solution is not valid under many
flow conditions and thermodynamic properties.



CHAPTER 3

Surface tension

In a liquid there is an attractive force between molecules that is absent in gases.
The surface tension is produced due to this difference between intermolecular
forces at the liquid-vapor interface. Even though the interface is often treated
as a sharp discontinuity on the macroscale, the change of properties between
different phases has a microscopic origin (Faghri & Zhang (2006)).

Near the interphase boundary, the density varies in space, and the interfa-
cial energy can be computed as an excess energy of this inhomogeneous layer.
If deformation occurs, both the shape and the area of the surface will affect
the internal energy of the interface. Therefore, surface tension is responsible
for the shape of liquid droplets.

3.1. The Young-Laplace law

For a liquid droplet suspended in the vapor phase as illustrated in Fig. 3.1
(left), the pressure inside is related to the vapor pressure by the Young-Laplace
equation

∆p = σ

(
1

R1
+

1

R2

)
, (3.1)

where R1 and R2 are the droplet radii of curvature in each of the axes that
are parallel to the surface and ∆p = p` − pv is the pressure difference between
the droplet interior and the vapor. The surface tension is denoted as σ. For
a spherical droplet, R1 = R2 = R. The Young-Laplace law can be obtained
from the force balance. In a half-sphere droplet, the surface tension force acts
parallel to the surface, given as the surface tension times the circumference,
σ2πR. In order to have a droplet in equilibrium, the opposite force due to
pressure difference times the area ∆pπR2 has to be of the same magnitude,
where the equality becomes Eq. (3.1).

Figure 3.1 (right) shows the verification of the Young-Laplace law done
for our numerical model (in lattice units). Different values for the surface
tension can be achieved in the model by changing the interface thickness, which
is controlled by a dimensionless parameter κ (Márkus & Házi (2011)). The
symbols indicate the numerical results whereas solid lines correspond to the
theoretical values, i.e. linear fit. It is observed that the linear dependence of
∆p with 2/R is retrieved.

15
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Figure 3.1. (left) Schematic of a liquid droplet suspended in vapor
phase; (right) Verification of the Young-Laplace law for different
surface tensions, taken from Albernaz et al. (2016a).

3.2. Marangoni effect

Surface effects play a critical role in many kinetic process of materials and can
even drive the flow by tangential gradients of surface tension, known as the
Marangoni effect (Marangoni (1871)). Surface tension depends on the tem-
perature T , solute concentration c and surfactant concentration. Neglecting
surfactant effects, surface tension variations can be therefore defined as

dσ(T, c) =
∂σ

∂T
dT +

∂σ

∂c
dc . (3.2)

When the solute concentration drives the variation of the surface tension, the
Marangoni effect is referred to as the solutocapillary effect. In cases where
the surface tension changes with the temperature, the Marangoni effect is de-
noted as the thermocapillary effect. Both effects can coexist depending on the
conditions. Figure 3.2 shows the variation of surface tension as a function of
temperature. The numerical results are compared to normalized experimental
data of a hexane fluid where a very good agreement can be seen. The general
trend is that surface tension decreases with the increase of temperature. The
thermal dependence of the surface tension is defined as σT = dσ/dT , which is
directly obtained from the plot in Fig. 3.2 for a hexane fluid.

An example of how the surface tension gradient can give rise to a bulk
fluid motion is shown in Fig. 3.3 and was studied by Levich (1962). An open
rectangular container is considered with a very thin liquid layer at the bottom,
where one of the sidewalls has a higher constant temperature TH than the other
side, characterized with a constant temperature TL.
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Figure 3.2. The surface tension is plotted as a function of the
reduced temperature. Comparison between numerical results and
experimental data for a hexane fluid taken from Albernaz et al.

(2016a).

Figure 3.3. Thermocapillary motion in a shallow water.

The difference in side wall temperatures results in a temperature gradient
along the surface and a corresponding surface temperature gradient in the x
direction. The variation of surface tension is maintained and a thermocapillary
motion is generated at the interface, where the fluid height h is a function of
the distance, i.e. h(x). To illustrate this, we assume a low Re number and
neglect inertial terms, as well as lateral velocity gradients. For a steady two-
dimensional incompressible flow, with constant liquid viscosity, the momentum
equation in the x direction reduces to the Couette form

∂p

∂x
= µ

∂2u

∂z2
, (3.3)

and the z momentum equation without surface curvature effects is given as

∂p

∂z
= −ρg . (3.4)
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The integral form of the continuity equation for the fully developed flow is∫ h(x)

0

u(z)dz = 0 , (3.5)

where the liquid surface layer is set in motion by the surface tension force,
which generates a displacement of the fluid in the opposite direction below the
surface, as sketched in Fig. 3.3. It is important to note that the Marangoni
force acts from regions of low to high surface tension. The thermally induced
Marangoni force relates the normal component of the shear stress to the tangen-
tial derivative of the temperature. At the interface, with curvature neglected,
it is written as:

µ
∂u

∂z
=
dσ

dx
at z = h(x) . (3.6)

A no-slip boundary condition is given at the bottom, i.e. u(z = 0) = 0.
The liquid velocity has a maximum value umax at the interface, which can be
obtained after some mathematical manipulations from the equations above as
(Probstein (1994))

umax =
h

4µ

dσ

dx
, (3.7)

which is given as a function of the driving force dσ/dx. Gradients in surface
tension can also lead to instabilities, with subsequent cellular-type flows, as
widely investigated for Bénard-Marangoni instability (Guyon et al. (2001)). It
is important to note that one could relate Eq. (3.2) to (3.6), obtaining

µ
∂u

∂z
= σT

dT

dx
, (3.8)

where the shear stresses are explicitly balanced by the physical parameter σT
times the temperature gradient. This type of relation consists of a boundary
condition that acts at the free surface of the fluid (typically a gas-liquid inter-
face) and will be further used to discuss the internal circulation of a droplet
caused by thermocapillary effects. The motion obtained at the droplet sur-
face due to differences in surface tension can be a mechanism to generate this
internal flow.



CHAPTER 4

Turbulence

Turbulence appears much more often than we realize. Its presence may be
desirable, e.g. for applications as the mixing of different reactants in combustion
devices, where mixing has to occur as rapidly as possible, or undesirable, e.g.
when drag is increased. An essential feature of turbulent flows is that the fluid
velocity field varies significantly and irregularly in both position and time. In
this type of flow, unsteady vortices appear on many scales and interact with
each other, where the transport and mixing are much more effective than in
the laminar regime. For a laminar case, the fluid flows in parallel layers.

Richardson (1922) was the first to realize that turbulence is composed by
eddies of different sizes. Large eddies are unstable and break down into smaller
ones that undergo a similar breakup process, so that energy is transferred to-
ward smaller scales, until kinetic energy is converted into heat at the smallest
scales of motion, where viscosity dominates. This is the concept of an energy
cascade, with energy transfer across several scales until molecular viscosity is
effective in dissipating the kinetic energy into internal energy. Kolmogorov
(1941a) proposed hypotheses that led to the most important contribution to
quantitative statistical description of turbulent flows. In the first hypothesis,
he postulated that for high Reynolds numbers, the small-scale turbulent mo-
tions are statistically isotropic. In general, large eddies are anisotropic and
are affected by the boundary conditions of the flow (Pope 2000). Kolmogorov
argued that the smaller eddies lose any preferred orientation, obtaining a local
isotropy that is independent of the large-scale motions. The statistics of small
scales are universally dependent on the kinematic viscosity ν and the rate of
energy dissipation ε. With only these two parameters, a length scale can be
obtained by dimensional analysis as

η =

(
ν3

ε

)1/4

, (4.1)

where η is known as the Kolmogorov length scale. The respective Kolmogorov
velocity and time scales are uη = (εν)1/4 and tη = (ν/ε)1/2. These scales
characterize the smallest, dissipative eddies. The Reynolds number based on
these scales is unity, i.e. Reη = ηuη/ν = 1, indicating that viscous stresses and
inertial forces balance at this level.

19
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A turbulent flow can also be viewed as a superposition of a spectrum of
velocity fluctuations and eddies upon a mean flow. A convenient way to deal
mathematically with turbulent quantitites is to separate between the average
and fluctuating parts. This splitting is known as a Reynolds decomposition,
which assumes e.g. for velocity ui

ui = ui + u′i , (4.2)

where ui denotes the time average and u′i the fluctuation part. In order to
obtain the equation of motion for turbulent flows, we assume an incompressible
Navier-Stokes equation with a total instantaneous velocity given by

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

, (4.3)

where density ρ is considered constant. Introducing the Reynolds decomposi-
tion for the velocity and pressure quantities, and taking the average gives

∂ui
∂t

+ (uj + u′j)
∂(ui + u′i)

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

. (4.4)

The average of the fluctuating part and its derivatives are zero. For the incom-
pressible condition ∂ui/∂xi = 0, Eq. (4.4) can be rewritten as

∂ui
∂t

+ +uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+

∂

∂xj

(
ν
∂ui
∂xj
− u′iu′j

)
. (4.5)

Equation (4.5) is known as the Reynolds-averaged Navier-Stokes (RANS) equa-
tion, first proposed by Reynolds (1895). The change in mean momentum due to
the unsteadiness and convection of the mean flow is represented in the left hand
side of Eq. (4.5). The right hand side gives, respectively, the isotropic stress
owing to the mean pressure field, the viscous stresses, and apparent stress owing
to the fluctuating velocity field. This last term is referred to as the Reynolds
stress. It consists of a nonlinear tensor with symmetric properties, which has
led to the creation of many different turbulence models. By isolating the trace
of this tensor one obtains the kinetic energy (per unit mass) of the turbulent
fluctuations, defined as

E =
1

2
u′iu
′
i =

1

2

(
u′21 + u′22 + u′23

)
. (4.6)

The turbulent kinetic energy can also be expressed in terms of the integral over
wavenumber space, giving

E =

∫ ∞
0

E(k)dk , (4.7)

where k denotes the wavenumber.
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4.1. Homogeneous isotropic turbulence

Isotropic turbulence by direct numerical simulation has been extensively stud-
ied (Ishihara et al. 2009). Homogeneity ensures that there are no gradients
in the mean turbulence statistics (invariance in translation) whereas isotropy
leads to absence of anisotropy, i.e. no mean shear or buoyancy effects (invari-
ance in rotation). Stationary turbulence is created by inserting energy into
the flow field through the low wavenumber modes so that a turbulent cascade
develops as statistical equilibrium is reached.

In a DNS of homogeneous isotropic turbulence, the solution domain is
a cube of side L with periodic boundary conditions. The lowest non-zero
wavenumber in magnitude is k0 = 2π/L. The scalar wavenumber is given
as k = (k · k)1/2. For a high Reynolds number, the span of lengthscales will
also be large and it is possible to find a range of wavelengths that satisfy

η � 2π

k
� L , or

1

L
� k � 1

η
. (4.8)

The viscosity is negligible in this range of wavenumbers, which is known as
the inertial subrange. Here, the dominant energy process is the transfer of
kinetic energy from large eddies to smaller eddies by inertial forces, known
as the inertial subrange. The power spectrum E(k) in this range must be
independent of the kinematic viscosity ν and can only depend on ε and k,
which assumes

E(k) = Cε2/3k−5/3 , (4.9)

where C is a universal constant. Equation (4.9) is known as the Kolmogorov
−5/3 law (Kolmogorov 1941b), and has been widely verified in turbulent flows.
Figure 4.1 shows how E(k) is distributed as a function of the wavenumber,
where the −5/3 slope is seen for the inertial range. Low wavenumbers would
correspond to large scales whereas high wavenumbers to smaller ones, i.e., it
describes the energy distribution among eddies of different sizes. Energy is
transferred successively to smaller scales, where the decay seen in Fig. 4.1
corresponds to the cascade, which takes place over several orders of magnitude.
The rate at which the turbulent kinetic energy is dissipated by viscosity is given
by

ε = 2ν

∫ ∞
0

k2E(k)dk . (4.10)

The dissipation occurs at high wavenumbers, i.e. at the smallest eddies present
so that kinetic energy is dissipated through viscosity. It can also be written as
ε = ν

∑
x (∇u)

2
/L3. The large eddy turnover time scales with tL = L/urms,

urms being the root mean square of the fluctuating velocity.
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Figure 4.1. Energy spectrum as a function of the wavenumber.

Another important length scale is the Taylor microscale, defined in terms
of the square root of the ratio between variances of the velocity and velocity
gradient, following

λ =

[
15νu2

rms

ε

]1/2

. (4.11)

The Taylor microscale signifies an intermediate length scale at which fluid vis-
cosity still affects the dynamics of turbulent eddies in the flow, however it is
not a dissipative scale. The Taylor microscale is traditionally applied to a tur-
bulent flow, which can be characterized by a Kolmogorov spectrum of velocity
fluctuations, as in isotropic turbulence. A Taylor Reynolds number is obtained
when considering this microscale, which becomes

Reλ =
urmsλ

ν
. (4.12)

Developed isotropic turbulence is illustrated in Figure 4.2 by showing the in-
stantaneous magnitude of the velocity field. The Taylor Reynolds number used
in this simulation is Reλ = 110.
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Figure 4.2. Magnitude of the instantaneous velocity field in a
three-dimensional periodic domain, where Reλ = 110.



CHAPTER 5

Numerical method

The numerical simulation of flows with phase change is challenging due to
the evolving nature of the fluid-fluid interface. It is essential to couple the
interfacial mass transfer, latent heat and surface tension in accordance with
the relevant conservation of mass, momentum and energy. There are various
numerical schemes which can be used for the direct numerical simulation of
gas-liquid flows. For Navier-Stokes solvers, i.e. based on the discretization
of macroscopic governing equations, the volume of fluid method (Scardovelli &
Zaleski (1999)), level set method (Sethian & Smereka (2003)) and front tracking
method (Tryggvason et al. (2001)) are the most common methods used.

Different methods have been applied to investigate droplet evaporation.
Tanguy et al. (2007) developed a level set method associated with the ghost
fluid method to enable higher order discretization schemes at the interface.
Zhang (2003) and Balaji et al. (2011) used a finite volume method where the
droplet maintains a spherical shape. A volume of fluid method (VOF) was used
by Hase & Weigand (2004) where strong deformations are captured. Schlottke
& Weigand (2008) improved the same VOF code to perform direct numeri-
cal simulations of droplet evaporation. VOF was also used by Strotos et al.
(2011) and Banerjee (2013) where a multicomponent droplet was considered.
Although each method has a different approach, in order to satisfy conserva-
tion conditions, a local vaporizing mass flow rate has to be set explicitly, which
is usually done by means of a reference experimental data. An evaporation
model often introduces different simplifications, e.g. non deformable droplet
(axisymmetric evaporation) or the assumption of constant gas physical proper-
ties (quasi-steady). The available evaporation models can be found in reviews
by Sazhin (2006) and Erbil (2012).

Unlike the conventional numerical methods previously mentioned, Molec-
ular Dynamics (MD) and lattice Boltzmann method (LBM) are two methods
where no tracking method is needed for generating an interface. The phase
segregation can emerge naturally as a result of particle interactions. MD is
used for simulating the physical movements of atoms and molecules, where
many degrees of freedom are present. A common method in this category is
the Monte Carlo molecular method, which is based on states according to ap-
propriate Boltzmann probabilities. The drawback of MD is due to the large
amount of molecules needed for simulating macroscopic flows and the simulated
time, which at present is in the order of nanoseconds.

24
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The LBM is becoming an increasingly important method for simulating
multiphase flows (Sukop & Thorne (2006)). It is in the category of diffuse
interface methods and is based on a mesoscopic kinetic equation for particle
distribution functions (Chen & Doolen (1998)). The mesoscopic approach is a
simplification of MD, where instead of simulating every molecule one takes into
consideration a group of molecules which are confined at nodes and move in a
discrete number of directions, as illustrated in Fig. 5.1. By averaging the kinetic
equations one reproduces the Navier-Stokes equations at the macroscopic level.

Figure 5.1. Macro-, meso- and microscale for the numerical modelling.

The mesoscopic nature of LBM includes only a minimal amount of mi-
croscopic details in order to reproduce interfacial physics and macroscopic flow
hydrodynamics in a consistent manner (Safari et al. (2013)). Its nature is there-
fore responsible for avoiding the need for tracking the interface as it bridges
microscopic phenomena and the macroscopic scale. It also presents a convenient
framework to incorporate thermodynamic effects, which naturally generate the
phase separation. The kinetic equation provides also the advantages of easy
implementation of boundary conditions and fully parallel algorithms. Because
of the current availability of fast and massively parallel machines, there is a
trend to use codes that can exploit the intrinsic features of parallelism, which
is the case of the LBM.

5.1. The lattice Boltzmann method

The lattice Boltzmann model is constructed as a simplified, fictitious molecular
dynamics method in which space, time, and particle velocities are all discrete.
In other words, the LBM vastly simplifies Boltzmann’s original conceptual view
by reducing both the number of possible particle spatial positions and the
continuum microscopic momenta. Particle positions are confined to the nodes
of the lattice, which is characterized as a regular grid. The lattice Boltzmann
equation is given by

fi(x + ciδt, t+ δt)− f(x, t) = δtΩi + δtF
′
i , (5.1)

where fi is the density distribution function, t is time and δt is the time step.
The lattice velocity is given by ci, x is the spatial position and F ′ is an external
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forcing term, which can include e.g. gravity forces or interparticle interactions.
The change of fi due to collisions is represented by Ωi. The notation i is given
as i = 0, . . . , N , where N denotes the number of directions of the particle
velocities at each node. For two-dimensional simulations a lattice with nine-
velocity directions is recommended (D2Q9), while a nineteen-velocity lattice is
usually applied for three-dimensional calculations (D3Q19).

Starting from an initial state, the configuration of particles at each time
step evolves in two sequential sub-steps, described as (i) streaming, which is
given by the LHS of Eq. (5.1), where each particle moves to the nearest node
in the direction of its velocity; and (ii) collision, which occurs when particles
arriving at a node interact and change their velocity directions according to
scattering rules. It is important to note that the streaming process of the LBM
is linear. This feature comes directly from the kinetic theory and contrasts
with the nonlinear convection terms in other numerical approaches that use
a macroscopic representation. Simple convection combined with a collision
operator allows the recovery of the nonlinear macroscopic advection through
multi-scale expansions, which turns out to be one big advantage when dealing
with LBM. The macroscopic fluid quantities, such as density and velocity, are
calculated by

ρ =

N∑
i=0

fi , u =
1

ρ

N∑
i=0

cifi . (5.2)

The macroscopic velocity u is an average of the discretized microscopic veloc-
ities ci weighted by the directional densities fi. Different collision operators
have been proposed. A simple linearized version of the collision operator makes
use of a relaxation time towards the local equilibrium using a single time re-
laxation. This collision model is known as the Bhatnagar-Gross-Krook (BGK),
which was proposed by Bhatnagar et al. (1954) and is written as

Ωi = −fi − f
eq
i

τf
, (5.3)

where feq is a local equilibrium distribution, which has to be formulated so
that the Navier-Stokes equations are recovered in the macroscopic scale. In
order to do so, the equilibrium function has to be defined as

feqi = ωiρ

[
1 +

ci · u
c2s

+
(ci · u)2

2c4s
− u · u

2c2s

]
, (5.4)

where cs is the sound speed and ωi are the weights according to the lattice
chosen. By using the BGK collision operator, the kinematic viscosity ν is
denoted as

ν = c2s(τf − 1/2) . (5.5)
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We would like to mention that although the BGK model is widely used due
to its simplicity, it is numerically unstable under certain conditions, e.g. for
high Reynolds numbers where lower values of the fluid viscosity are necessary.
This can be solved by using a more robust collision operator. The multiple-
relaxation-time model (MRT) proposed by Lallemand & Luo (2000) allows
for different physical quantities to be adjusted independently and has shown
significant improvement in the numerical stability. If body forces acting on a
fluid are absent, i.e. F ′i = 0 in Eq. (5.1), the equation of state for this model
assumes the form as for an ideal gas, where

p = ρc2s . (5.6)

However, with the idea of simulating a vapor-liquid flow, F ′i should be used.
In LBM, the phase segregation can be modelled by an interaction force, i.e. a
special mesoscospic force which acts between every pair of neighboring nodes.
Shan & Chen (1993) proposed the pseudopotential model, where this interac-
tion force is calculated from an interaction potential ψ. For single-component
multiphase flows, the force is given by

F = ψ(ρ(x))G

N∑
i=1

ψ(ρ(x + ci))ci , (5.7)

where G is the interaction strength. We note that the potential is dependent
on the local fluid density. For this force, the equation of state (EOS) has the
form (He & Doolen (2002))

p = ρc2s −
Gc2

2
Ψ2 , (5.8)

where c is a lattice constant. Many discussions have been made on how to
choose the potential ψ. The only way to satisfy both the mechanical sta-
bility solution (Maxwell construction) and the thermodynamic theory is if
ψ ∝ exp(−1/ρ), as shown by Shan & Chen (1994). If one wants to include an
arbitrary EOS, a different approach is recommended. We adopted a method
proposed by Kupershtokh et al. (2009), where the force is given as

F = 2Φ∇Φ, (5.9)

where Φ is a special function written as

Φ =
√
ρc2s − κp(ρ, T ) , (5.10)

here p(ρ, T ) can be based on an arbitrary EOS. The term κ denotes a dimen-
sionless parameter that controls the interface thickness in lattice units. Ku-
pershtokh et al. (2009) also proposed a numerical approximation for the local
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force based on a linear combination of the local and the mean value gradient
approximations, calculated by

F =
A

c2s

N∑
i=1

λiΦ
2(x + ci)ci +

(1− 2A)

c2s
Φ(x)

N∑
i=1

λiΦ(x + ci)ci , (5.11)

where A is a correlative fitting parameter that allows a better fit with the
coexistence curve for the desired fluid, satisfying the Maxwell construction.
The value of A changes according to the EOS adopted. Equation (5.11) is a
numerical approximation for the local force based on a linear combination of the
local and the mean value gradient and improves the numerical stability, where
the spurious currents around the interface are significantly reduced. These
currents are a common problem in simulations with free boundaries. The use
of Eq. (5.11) is followed by the definition of F ′i in Eq. (5.1) as

F ′i = feqi (ρ,u + ∆u)− feqi (ρ,u) , (5.12)

where ∆u = F/ρ. Equation (5.12) describes the exact difference method
(EDM) and was proposed by Kupershtokh & Medvedev (2006). It can also
be rewritten as (Shan et al. (2006))

F ′i = ωi

[
ci · F
c2s

+
(ci · v)(ci · F)

c4s
− v · F

c2s

]
. (5.13)

Due to the presence of the body force F ′i , the actual fluid velocity v should be
taken at half time step, i.e. averaging the momentum before and after collision,
giving

v = u +
F

2ρ
. (5.14)

Although it is possible to show that the total momentum in the whole com-
putational domain is conserved, the momentum is not conserved locally when
an interparticle force model is used. As a result, spurious velocities appear in
regions adjacent to the interface. The velocity field for an equilibrium condition
between a liquid droplet and vapor is shown in Fig. 5.2. The radius is repre-
sented by the solid circle. The unphysical spurious currents can be observed,
where the maximum value is around the interface. The increase of these cur-
rents may cause numerical instabilities and departure from real fluid conditions,
more prominent when a BGK model is used. The maximum spurious veloc-
ity observed in this equilibrium condition is |vmax| ∼ 10−4. Our simulations
showed that not only higher density ratio contribute to the increase of spurious
currents (as reported in Yuan & Schaefer (2006)) but also sharper interfaces.
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Figure 5.2. Velocity field for an equilibrium condition, where
Tr = 0.85. The maximum velocity is |vmax| ∼ 10−4. Taken from
Albernaz et al. (2013).

Through a Chapman-Enskog (C-E) analysis, the mass and momentum con-
servation equations are obtained at the macroscopic scale, given respectively
as (Chin (2001))

∂ρ

∂t
+∇ · (ρv) = 0 , (5.15)

∂

∂t
(ρv) +∇ · (ρvv) = −∇p+∇ · (2µS) + F′ , (5.16)

where µ is the dynamic viscosity and S = (∇v+(∇v)T )/2 the deviatoric stress.
The pressure of the LBM is therefore calculated using an equation of state. In
contrast, in the direct numerical simulation of incompressible Navier-Stokes
equations, the pressure satisfies a Poisson equation with velocity gradients act-
ing as sources. Solving this equation for the pressure often produces numerical
difficulties that require special treatment. This has shown to be another ad-
vantage of using LBM instead of conventional macroscopic methods.

5.2. Energy equation

The energy equation can be given in terms of the fluid temperature T . For a
Newtonian fluid, this equation is given as (Bird (1960))

ρcv
DT

Dt
= ∇ · (k∇T )− T

(
∂p

∂T

)
ρ

∇ · u + µΦv , (5.17)

here cv is the specific heat at constant volume and k is the thermal conductivity.
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The quantity Φv is known as the dissipation function and assumes, for a
three-dimensional case,

Φv = 2

[(
∂ux
∂x

)2

+

(
∂uy
∂y

)2

+

(
∂uz
∂z

)2
]

+

(
∂uy
∂x

+
∂ux
∂y

)2

+

(
∂uz
∂y

+
∂uy
∂z

)2

+

(
∂ux
∂z

+
∂uz
∂x

)2

− 2

3

(
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

)2

(5.18)

Multiphase LBM have been used widely in isothermal flow simulations (e.g.
Sbragaglia et al. (2009); Wagner & Yeomas (1999)). Recently, thermodynamic
effects with phase change have been considered in the LBM perspective by
different schemes (Gan et al. (2012)). Among the thermal LB models for mul-
tiphase flows proposed, the multispeed (Gonnella et al. (2007)) and passive
scalar (Zhang & Chen (2003)) approaches stand out. The multispeed approach
assures energy conservation at a mesoscopic level, introducing the energy as a
moment of distribution functions and enlarging the number of discrete speeds
of the distribution functions in order to achieve the proper symmetries for the
internal energy flux. This approach comes with a higher computational cost.
Throughout this work we use the passive scalar approach, where the tempera-
ture field is advected passively by the fluid flow, so the coupling between energy
and momentum is done at the macroscopic level. Moreover, this approach is
numerically more stable than the multispeed one.

By solving the temperature as a passive scalar, one can use the hybrid
scheme, where Eq. (5.17) is solved by finite difference scheme. In order to do
so, Eq. (5.17) is rewritten with a forward Euler scheme as (Albernaz et al.
(2016b))

T (x, t+ 1) = T (x, t)− v · ∇+T +
1

ρcv
∇+k∇+T + α∆+T

− T

ρcv

(
∂p

∂T

)
ρ

∇+ · v +
ν

cv
Φv , (5.19)

where α = k/(ρcv) denotes the thermal diffusivity and the superscript + corre-
sponds to the finite difference operators. Equation (5.19) was used for solving
problems where turbulence is considered (Papers 4 and 5). One could also solve
Eq. (5.17) by employing a double distribution function (DDF) scheme (Márkus
& Házi (2011)) where a second distribution function is used for monitoring the
temperature field. This distribution can be given as

gi(x + ciδt, t+ δt) = gi(x, t)−
1

τg
(gi − geqi ) + Ci , (5.20)
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where Ci is a correction term and geqi denotes the equilibrium distribution
function. The temperature is evaluated by

T =
∑
i

gi . (5.21)

The equilibrium function is written as

geqi = ωiT (1 + 3ci · v) . (5.22)

In order to obtain Eq. (5.17), the correction term Ci needs to assume

Ci = ωi

[
∇ · (k∇T )

ρcv
− αLB∇2T +

ν

cv
Φv

]
+ ωiT

[
1− 1

ρcv

(
∂p

∂T

)
ρ

]
∇ · v ,

(5.23)

where αLB = (τg − 1/2)/3 is the lattice thermal diffusivity.

5.3. Validations and tests

In order to check the behavior of the physical properties as functions of the
different parameters, we simulated first a static suspended droplet in thermo-
dynamic equilibrium with its surrounding vapor, i.e. where no mass transfer
occurs. Thermodynamic variables are shown with reduced values and remaining
quantities are given in lattice units (l.u.), where reference length corresponds
to the lattice spacing δx and time to δt. The boundaries are periodic, with 2D
simulations performed for a domain of 300 × 300 (l.u.). The influence of the
parameters Tr, τf and κ are listed in Table 5.1. Surface tension σ is obtained
by Young-Laplace law (as seen on Chapter 3). The increase of κ produces a
thinner interface thickness li where surface tension is weaker. The maximum
velocity vmax, which represents the spurious currents in the equilibrium con-
dition, is enhanced either by a thinner interface or by reducing the relaxation
time τf .

case Tr τf κ σ (l.u.) li (l.u.) vmax (l.u.) ρ`/ρv

1 0.80 0.5813 0.010 0.1030 5 4.9e− 4 36.5
2 0.85 0.5813 0.005 0.1208 11 1.1e− 4 19.4
3 0.85 0.5813 0.010 0.0852 6 3.8e− 4 19.6
4 0.85 0.5208 0.010 0.0850 6 2.1e− 3 19.6
5 0.90 0.5813 0.010 0.0468 8 1.3e− 4 9.9

Table 5.1. Physical properties according to the reduced tempera-
ture Tr, relaxation time τf and κ.



32 5. NUMERICAL METHOD

We observe that the density ratio ρ`/ρv is independent of τf , for the same
Tr and κ. Furthermore, for lower values of τf the computational time needed to
achieve equilibrium is raised. When Tr increases, for the same κ, the interface is
thicker, which is expected as it gets closer to the critical point. It is important
to mention that these results were performed using a MRT collision operator.
If a BGK model is employed to simulate the same static droplet with the
relaxation times used in Table 5.1, the computations become unstable. The
dynamics of phase change had also to be validated, which is done by means
of a static radial droplet evaporation only due to diffusion. The analytical
solution for the droplet evaporation rate obtained in section 2.3 is compared to
the numerical results.

In order to simulate a static droplet evaporation, the droplet is first equili-
brated with the vapor at the saturated temperature in a periodic domain. Then,
outflow boundaries are used, where Neumann boundary condition is applied to
the velocity. The temperature is then gently raised at the boundaries, set by
a Dirichlet boundary condition. To keep the pressure p(ρ, T ) constant, density
is also set as DBC, calculated by the P-R EOS for a given initial pressure and
current temperature. The heat-up of the surrounding vapor, i.e. the conduc-
tion of heat through the boundaries to the vapor phase toward the droplet
interface takes t ∼ 5×104. After this heat-up phase, the droplet evaporation is
analyzed. We observe that a symmetric radial flow is obtained, where no artifi-
cial heating occurs. Consistent droplet evaporation was seen even for relatively
high density ratio, ρ`/ρv ∼= 130, for Tr = 0.7.

Figure 5.3 compares the solution of the D2 law, Eq. (2.18), here adapted
for the 2D coordinates, to the numerical results using D0 = 60 l.u., D∞ = 300,
αi = 0.0223 and Spalding number B = 0.431. We make use of the parameters
defined for cases 2 and 3 in Table 5.1, where only the thickness of the interface
is changed. The spurious currents for case 2 are almost four times smaller than
for case 3. Nevertheless, we observe that our model is able to produce the
correct evaporation rate for both interface thicknesses. Since the static droplet
evaporation occurs only due to diffusion, the results indicate that the spurious
currents do not influence the evaporation rate. As the droplet shrinks, case 2
shows slight deviation from the D2 law. This is expected since the interface
thickness is of the order of the droplet size, where an overestimation of diffusion
occurs. Therefore, it is important to be aware of the accuracy of the results
based on the relation between the droplet size and interface thickness.

It is also important to show that the mass transfer rate in the simulations
are consistent with the latent heat, given by the jump condition in Eq. (2.13)
and included in the analytical solution through the Spalding number B. The
latent heat Lhv is obtained from hexane properties (Lemmon et al. (2013)),
being Lhv(T = 0.8) = 0.51, Lhv(T = 0.85) = 0.45 and Lhv(T = 0.9) = 0.38.
First, it was verified that the same Lhv is obtained from the Clausius-Clapeyron
relation in Eq. (2.9), with the current Peng-Robinson EOS.
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the D2 law solution (Eq. (2.18)) and simulation results are shown,
for two different interface thicknesses. Taken from Albernaz et al.

(2015).

We then compare the square diameter evolution between the numerical
results and the D2 law for different latent heat, shown in Fig. 5.4. Here, the
temperature difference is kept the same for all cases, T∞ − Ti = 0.1. The
numerical results correspond to cases 1, 3 and 5 and are in accordance with the
analytical solutions.
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It is seen that an increase of Lhv is responsible for a slower evaporation.
Such behavior is expected, as more energy is needed to generate the phase
change. Figure 5.5 shows the relative error ε between the D2 law and nu-
merical results as a function of the normalized square diameter. The error is
evaluated at the same time-step. Different droplet sizes are tested, where the
parameters used correspond to case 3 in Table 5.1. We note that good agree-
ment with the D2 law is obtained, where the smaller droplet D0 = 50 gives
ε ∼= 1% when D2/D2

0 = 0.5.
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Figure 5.5. Error between D2 law and simulation results, for dif-
ferent droplet sizes. Taken from Albernaz et al. (2015).



CHAPTER 6

Summary of results

We cover in this chapter the main results presented in Part II. Throughout this
work we make use of a LBM method that incorporates phase change through
a non-ideal equation of state, where a hexane fluid (C6H14) is considered.

6.1. Forced convection

Results from two-dimensional numerical simulations are reported in Albernaz
et al. (2013) and Albernaz et al. (2015), included as Paper 1 and Paper 2,
respectively. Paper 1 deals mostly with model validation, where different equa-
tions of state are considered. We observe that the Peng-Robinson EOS suits
well for describing a hexane fluid (as seen in Fig. 2.2). Static evaporation
is analyzed, without imposing standard evaporation models (Sazhin (2006)),
along with gravitational effects. In Paper 2 we have mainly focused on the
analysis of a convective flow around a droplet in a Lagrangian frame. We first
have validated the latent heat and evaporation rate in our model by comparing
it to the D2 law. The Reynolds number is based on the inlet velocity U and
droplet diameter D, assuming Re = UD/ν. We observe the droplet swelling
caused by the pressure wave due to the flow initialization. The saturated pres-
sure in the whole domain is shifted by changing the inlet temperature until
an equilibrium condition is achieved, where no evaporation or condensation
occurs. The evaporation rate is then examined only by means of temperature
difference between the incoming vapor and droplet, denoted as ∆T . Raising
the superheated vapor temperature decreases the droplet lifetime, as expected.

The increase in Reynolds number can generate an oscillatory behavior in
the droplet. We analyze the droplet deformation based on a relation between
the droplet width and breadth. Due to the wake-droplet interactions, vortices
at the droplet bottom are periodically created and blown away, as shown in
Fig. 6.1. The solid circle denotes the droplet interface. First, (a) two symmet-
ric eddies are formed at the droplet bottom region due to the flow separation,
where the droplet deformation is maximum. The blowing along the droplet sur-
face induces the detachment of these vortices (b), which are convected along
with the vapor flow. The vortices develop and grow in size (c), and droplet
deformation reaches a minimum. A backflow is generated by these vortices
(d), which assist the formation of new eddies close to the droplet bottom re-
gion, completing an oscillatory cycle. Internal circulation is observed inside
the droplet. The evaporation rate is seen to increase also when convection is

35
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stronger, as the internal circulation enhances heat transfer. Figure 6.2 shows
the isotherms along with velocity vectors normal to the droplet surface at the
onset of an evaporation case with ∆T = 0.002, where (left) condensation and
(right) evaporation take place. A velocity vector pointing outwards means the
occurrence of local evaporation whereas if pointing inwards gives an indication
of local condensation. While Fig. 6.2 (left) shows condensation at the top and
bottom regions, in (right) condensation happens only at the top, with stronger
evaporation at the droplet sides. We show that a wider boundary layer (BL) is
obtained due to this blowing as shear stresses around the droplet are decreased.
We have also computed the velocity in tangential direction along the droplet
surface, which supports the effect of local blowing coupled to the BL thickness.

200 300

100

200

300

x

y

(a) (b)

(c) (d)

Figure 6.1. Streamlines for Re = 130 and ∆T = 0, taken from
Albernaz et al. (2015).
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Figure 6.2. Isotherms and velocity vectors normal to the droplet
surface, for Re = 130 and ∆T = 0.002, where (left) condensation
and (right) evaporation occur. Taken from Albernaz et al. (2015).

Three-dimensional simulations of a droplet in forced convection are pub-
lished in Albernaz et al. (2016a), in Part II as Paper 3. We first validate
the surface tension under static condition, followed by an investigation of the
droplet behavior in a temperature gradient imposed at the motionless surround-
ing vapor. Marangoni effects drive the droplet displacement due to the surface
tension gradient along the interface, caused by the temperature gradient. The
droplet center of mass velocity is seen to be proportional to the temperature
variation at its surface. We then show results of an evaporative droplet in forced
convection, as illustrated in Fig. 6.3, where streamlines indicate a flow in the
negative y-direction. Vortices are developed at the droplet rear and vectors
represent the flow at the droplet surface.

Figure 6.3. Forced convection around the droplet taken from Al-
bernaz et al. (2016a).
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Figure 6.4. Squared diameter of the droplet as a function of time,
taken from Albernaz et al. (2016a).

Figure 6.4 shows the temporal development of the normalized square di-
ameter for different ∆T . The contribution of shear stresses and the Marangoni
effect are quantified in Table 6.1, corresponding to the cases in Fig. 6.4 when
D2/D2

0 = 0.45. One can note that the estimation of each effect is similar to
the balance in Eq. (3.8), where ∆Ts here assumes the temperature variation
at the surface line of half of the droplet L = πD/2. The Marangoni effect
increases with temperature difference, being equivalent to the shear contribu-
tions when ∆T = 0.01. It is also important to mention the slight decrease in
viscous stresses by raising ∆T . Such behavior is directly related to a stronger
evaporation, where the blowing along the droplet surface increases, diminishing
the amount of shear stresses. These results reinforce the important relation be-
tween the generation of internal circulation by surface tension variations along
the droplet and enhancement of the heat transfer, and thus phase change.

∆T Viscous: µv
∂u
∂x × 10−6 Marangoni: σT

∆Ts

L × 10−6

0.002 11.51 4.70
0.005 8.34 6.13
0.010 7.05 7.03

Table 6.1. Shear stress and Marangoni effect as a function of ∆T
for D2/D2

0 = 0.45, taken from Albernaz et al. (2016a).
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6.2. Turbulence with a single phase fluid

Extensive works for turbulent flows with an ideal EOS can be found for both
incompressible (Pumir 1994) and compressible cases (Kida & Orzag 1990). Our
curiosity was raised when trying to answer the following question: what hap-
pens for a real fluid in a turbulent flow when it assumes a temperature and
pressure closer to the critical point? In order to answer this, we have analyzed
in Albernaz et al. (2016b) (Paper 4) a single phase fluid in three-dimensional
isotropic turbulence. The fluid is described by a non-ideal EOS allowing us
to scrutinize the difference of thermodynamic variables as conditions approach
criticality. Figure 6.5 shows the time evolution of temperature fluctuations for
the ideal EOS and different temperatures using the PR EOS. The fluctuations
are seen to increase with temperature. We have calculated and averaged a
normalized pressure fluctuation based on the Reynolds decomposition, and ob-
served fluctuations when T = 0.98 to be two orders of magnitude higher than
the ones found for the ideal case.
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Figure 6.5. Turnover time evolution of the temperature fluctua-
tions for Reλ ≈ 110, taken from Albernaz et al. (2016b).

The pressure PDF is shown in Fig. 6.6 for different temperatures. The
ideal EOS result is also plotted and compared to data by Donzis & Jagan-
nathan (2013), where good agreement is obtained. We have averaged the whole
computational domain over multiple datasets, so that statistically robust infor-
mation is ensured. For a PR EOS, the behavior for T = 0.8 resembles the ideal
case. The enhancement of the temperature causes a decrease in the negative
pressure fluctuations. While the negative tail narrows, the positive fluctuation
seems to be insensitive to the temperature and follows a Gaussian distribu-
tion (plotted as dotted lines). The PDFs for density and temperature are seen
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to follow the same behavior. We have also analyzed the spectra of thermody-
namic variables, where a Kolmogorov −5/3 scaling is obtained. A −7/3 scaling
is observed for the pressure spectra in a narrow region of the inertial range,
as reported both experimentally (Tsuji & Ishihara 2003) and numerically (Go-
toh & Fukayama 2001). The kinetic energy spectra also shows a −5/3 scaling,
where the spectrum is independent of the EOS or temperature considered.
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Figure 6.6. Semi-log pressure PDF for different temperatures.
The dotted curve represents a Gaussian distribution, while data
for an Ideal EOS from Donzis & Jagannathan (2013) (circles) is
also plotted for comparison. Taken from Albernaz et al. (2016b).

We have also examined the effect of the Taylor Reynolds number on the
thermodynamic fluctuations, as shown in Fig. 6.7. While the pressure fluc-
tuations for the ideal case are insensitive to Reλ, the PR EOS shows a differ-
ent scenario, where fluctuations increase significantly with Reλ for a condition
close to the critical point. This unreported phenomena is more pronounced
when analyzing the skewness and flatness factors as a function of Reλ. For
all thermodynamic variables, the skewness (Fig. 6.8 (a)) is seen to increase
with Reλ, whereas flatness (Fig. 6.8 (b)) decreases with Reλ. This is a clear
indication that the PDF of the thermodynamic fluctuations assume a behavior
closer to a Gaussian distribution, where a narrower range of fluctuation is ob-
tained. Therefore, we have found that the long negative tails seen for an ideal
fluid are not present with a non-ideal EOS when high temperature and Reλ
are considered.
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Figure 6.7. Pressure fluctuation for different Reλ, shown for the
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Figure 6.8. (a) Skewness and (b) flatness factors for pressure, den-
sity and temperature as a function of Reλ, with T = 0.95. Taken
from Albernaz et al. (2016b).

6.3. Droplet in isotropic turbulence

We have also investigated in Albernaz et al. (2016c) (Paper 5) the droplet
dynamics in a turbulent environment. The heat and mass transfer between
phases are taken into consideration. This study is relevant to fuel sprays in
energy conversion systems as well as in nature, e.g. in the rain formation. The
primary focus has been to analyze the coupling between turbulence parameters,
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thermodynamic variables and droplet dynamics. The density ratio is ρ`/ρv ≈
10, where the vapor moves faster than the liquid due to the fact that it is
lighter. The droplet is displaced and deformed by pressure and shear stress at
the interface.

Fluctuations of thermodynamic and turbulence variables are averaged sep-
arately for the liquid and vapor phases. Droplet statistics are described in terms
of the droplet volume Vd, local Weber number Wed and deformation parame-
ter S∗ = S/S0 − 1, where S is the droplet surface area and S0 the equivalent
area of a sphere with the same volume. We also define an Ohnesorge number
Oh = µ`/(ρ`2Rσ)1/2, where only the surface tension or the droplet radius are
changed. We have first performed simulations for a constant Taylor Reynolds
number Reλ. As expected, the amount of deformation grows with lower surface
tensions or larger droplet size: the Weber number explains this increase and is
seen to be correlated to S∗ as found by different authors (Perlekar et al. 2012;
Qian et al. 2006). The droplet volume shows fluctuations that correspond to the
presence of evaporation/condensation. The amount of phase change is directly
related to the surface tension, droplet size and thermodynamic fluctuations:
lower surface tension and larger drop produce a growth in thermodynamic fluc-
tuations and increase the phase change.

We then examine the effects of changing Reλ and Oh as seen in Table 6.2.
The same droplet size is used, which means that different Oh are obtained by
changing only the surface tension. Turbulence quantities such as the Taylor
length scale λ and Kolmogorov length η decrease by increasing Reλ, whereas a
larger averaged velocity urms as well as higher dissipation in the liquid phase
ε` are obtained. One should also observe that the turbulence quantities are
insensitive to changes in Ohnesorge number (surface tension).

Reλ λ η urms Oh S∗ Wed ε`

73 32.2 1.73 0.0287 0.0044 0.00054 0.0252 2.79× 10−10

74 32.5 1.74 0.0288 0.0047 0.00069 0.0300 2.69× 10−10

74 32.6 1.74 0.0287 0.0052 0.0013 0.0512 3.32× 10−10

90 27.9 1.34 0.0411 0.0044 0.0024 0.0523 5.76× 10−10

91 28.1 1.35 0.0410 0.0048 0.0029 0.0596 5.21× 10−10

91 28.0 1.35 0.0410 0.0052 0.0049 0.0843 5.79× 10−10

106 24.8 1.11 0.0541 0.0044 0.010 0.1306 1.35× 10−9

107 24.8 1.10 0.0545 0.0048 0.012 0.1583 1.37× 10−9

107 24.8 1.10 0.0546 0.0053 0.016 0.1749 1.31× 10−9

133 21.0 0.84 0.0801 0.0047 0.087 0.5960 4.57× 10−9

Table 6.2. Averaged parameters and turbulence quantities for
long-time simulations with different Reλ. Approximately the same
droplet size is used for all cases. Taken from Albernaz et al. (2016c).
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An interesting behavior is observed for the temporal evolution of S∗ when
changing the Ohnesorge number and Reλ. For Reλ ≈ 74, distinct peaks in S∗

are present only for the higher Oh (lower surface tension). However, these peaks
are seen for Reλ ≈ 107 independently of the Oh, as shown in Figure 6.9. The
temporal behavior for different Ohnesorge numbers is not significantly different.
This is reflected in the averaged quantities of S∗ and Wed which show more
substantial changes for lower Reλ, as seen in Table 6.2. Figure 6.10 shows
various deformed droplet shapes at different times, according to stars found
in Fig. 6.9. The temperature distribution at the surface is also illustrated.
The local equilibrium at the droplet surface shows low temperature regions
associated with stronger curvature whereas higher temperature is obtained in
flatter surface regions.
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Figure 6.9. Deformation S∗ evolution with time for Reλ ≈ 107.
Taken from Albernaz et al. (2016c).

Figure 6.10. Temperature field at the droplet surface for different
deformation values, for Reλ = 107 and Oh = 0.0053. Taken from
Albernaz et al. (2016c).
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The oscillation frequency of the droplet has been investigated and compared
to classical predictions by Rayleigh (1879). The basic modes of oscillation n = 2
and n = 3 could be identified for Reλ = 74 (Fig. 6.11). However, for Reλ = 107
as shown in Fig. 6.12, these modes are not distinct. Instead, they are replaced
by a continuous spectrum, showing a decrease that scales as ∼ f−3.
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Figure 6.11. Power spectrum of the deformation parameter as a
function of frequency for Reλ = 74. The theoretical basic modes of
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Correlation coefficients have also been calculated, where Wed is strongly
correlated with the liquid energy dissipation rate. A positive correlation is seen
for the fluctuations of droplet volume and vapor temperature, which are more
likely to happen between positive temperature fluctuation and droplet conden-
sation, as shown in the joint probability distribution function in Figure 6.13.
This result confirms that phase change is coupled to temperature fluctuations.
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Figure 6.13. Contour lines for the joint p.d.f. of the temperature
fluctuation in the domain T ′ with fluctuations of the droplet volume
V ′d , for Reλ = 74. Taken from Albernaz et al. (2016c).



CHAPTER 7

Concluding remarks

We have investigated the dynamics of an evaporative droplet under static con-
ditions and forced convection. Unlike standard numerical approaches, where
the interactions between different phases need to be described with appro-
priate jump conditions, we control the phase change directly by a non-ideal
equation of state. This is possible by using a mesoscopic lattice Boltzmann
method. We have first validated the evaporation rate and latent heat with a
theoretical evaporation prediction, known as the D2 law. An advantage of the
absence of assumptions, such as constant surface tension forces and droplet
temperature, resides in highlighting phenomena that are usually neglected,
such as Marangoni forces. Under certain conditions, we have observed that
the Marangoni effect plays a major role.

We have also used this model to study flows in isotropic turbulence. The
novelty in using a non-ideal equation of state to establish local thermodynamic
properties has led us to examine a single phase fluid approaching the critical
point. Unreported phenomena have been revealed based on detailed analyses of
thermodynamic variables behavior and different turbulent intensities. Lastly,
we have investigated the dynamics of a droplet in turbulence. The heat and
mass transfer, as well as the density contrast are considered. To the best of the
authors’ knowledge, such conditions have not been previously treated. Strong
correlations between droplet deformation, volume fluctuations due to phase
change occurrence and temperature fluctuations have been reported. We have
also looked into the temporal spectra of droplet deformations coupled to the
droplet oscillatory modes.

The main contribution of this work lies in the possibility of studying real
fluids in both evaporative and turbulent environments. A spontaneous continu-
ation of this work would be the inclusion of a multicomponent model. Instead of
analyzing the droplet surrounded by its own vapor, the insertion of a gas would
allow the study of other parameters such as the diffusion coefficient and mass
fraction of different species. This improvement would bring the model closer
to available experimental data, allowing its validation by a direct comparison.

Another suggestion for future work would be the investigation of droplet
collisions surrounded by a gas with higher temperature. The primary focus
would be on how phase change can affect droplet interactions. It would be
interesting to consider a wide range of surface tension variation, which right
now is a limitation to the present model: surface tension is not an independent
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variable. Publications using lattice Boltzmann methods applied to multiphase
flows have increased substantially over the last five years, where new models
and approaches are opening doors to broaden applicability. A remedy to the
surface tension might be found in a recent work by Xu et al. (2015), where
surface tension can be tuned in order to assume a desirable value.

Further on, a similar model could also be used for simulating the breakup of
a jet injected in a hot gas flow. As breakup is spontaneously included based on
local thermal properties, several scales could be studied in detail without the use
of modelling, as currently done by standard computational fluid dynamics. This
would shed more light on how to optimize conditions for achieving homogeneity
of the mixture of the fuel and the surrounding air. One would aim for a
parameter investigation by changing properties such as surface tension and
density ratio. The use of multicomponent models would allow investigations of
the effect of additives in the fuel, with direct application to biodiesel fuels.
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