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Abstract

The computational capacity of graphics cards for general-purpose computing
have progressed fast over the last decade. A major reason is computational heavy
computer games, where standard of performance and high quality graphics con-
stantly rise. Another reason is better suitable technologies for programming the
graphics cards. Combined, the product is high raw performance devices and
means to access that performance. This thesis investigates some of the current
technologies for general-purpose computing on graphics processing units. Tech-
nologies are primarily compared by means of benchmarking performance and
secondarily by factors concerning programming and implementation. The choice
of technology can have a large impact on performance. The benchmark applica-
tion found the difference in execution time of the fastest technology, CUDA, com-
pared to the slowest, OpenCL, to be twice a factor of two. The benchmark applica-
tion also found out that the older technologies, OpenGL and DirectX, are compet-
itive with CUDA and OpenCL in terms of resulting raw performance.
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1
Introduction

This chapter gives an introduction to the thesis. The background, purpose and
goal of the thesis, describes a list of abbreviations and the structure of this report.

1.1 Background

Technical improvements of hardware has for a long period of time been the best
way to solve computationally demanding problems faster. However, during the
last decades, the limit of what can be achieved by hardware improvements appear
to have been reached: The operating frequency of the Central Processing Unit
(CPU) does no longer significantly improve. Problems relying on single thread
performance are limited by three primary technical factors:

1. The Instruction-Level Parallelism (ILP) wall

2. The memory wall

3. The power wall

The first wall states that it is hard to further exploit simultaneous CPU instruc-
tions: techniques such as instruction pipelining, superscalar execution and Very
Long Instruction Word-processor (VLIW) exists but complexity and latency of
hardware reduces the benefits.

The second wall, the gap between CPU speed and memory access time, that may
cost several hundreds of CPU cycles if accessing primary memory.

The third wall is the power and heating problem. The power consumed is in-
creased exponentially with each factorial increase of operating frequency.

1



2 1 Introduction

Improvements can be found in exploiting parallelism. Either the problem itself
is already inherently parallelizable, or reconstruct the problem. This trend mani-
fests in development towards use and construction of multi-core microprocessors.
The Graphics Processing Unit (GPU) is one such device, it originally exploited
the inherent parallelism within visual rendering but now is available as a tool for
massively parallelizable problems.

1.2 Problem statement

Programmers might experience a threshold and a slow learning curve to move
from a sequential to a thread-parallel programming paradigm that is GPU pro-
gramming. Obstacles involve learning about the hardware architecture, and re-
structure the application. Knowing the limitations and benefits might even pro-
vide reason to not utilize the GPU, and instead choose to work with a multi-core
CPU.

Depending on ones preferences, needs, and future goals; selecting one technology
over the other can be very crucial for productivity. Factors concerning productiv-
ity can be portability, hardware requirements, programmability, how well it in-
tegrates with other frameworks and Application Programming Interface (API)s,
or how well it is supported by the provider and developer community. Within
the range of this thesis, the covered technologies are Compute Unified Device Ar-
chitecture (CUDA), Open Computing Language (OpenCL), DirectCompute (API
within DirectX), and Open Graphics Library (OpenGL) Compute Shaders.

1.3 Purpose and goal of the thesis work

The purpose of this thesis is to evaluate, select, and implement an application
suitable for General-Purpose computing on Graphics Processing Units (GPGPU).

To implement the same application in technologies for GPGPU: (CUDA, OpenCL,
DirectCompute, and OpenGL), compare GPU results with results from an sequen-
tial C/C++ implementation and a multi-core OpenMP implementation, and to
compare the different technologies by means of benchmarking, and the goal is to
make qualitative assessments of how it is to use the technologies.

1.4 Delimitations

Only one benchmark application algorithm will be selected, the scope and time
required only allows for one algorithm to be tested. Each technology have differ-
ent debugging and profiling tools and those are not included in the comparison
of the technologies. However important such tool can be, they are of a subjective
nature and more difficult to put a measure on.



2
Benchmark algorithm

This part cover a possible applications for a GPGPU study. The basic theory
and motivation why they are suitable for benchmarking GPGPU technologies is
presented.

2.1 Discrete Fourier Transform

The Fourier transform is of use when analysing the spectrum of a continuous
analogue signal. When applying transformation to a signal it is decomposed into
the frequencies that makes it up. In digital signal analysis the Discrete Fourier
Transform (DFT) is the counterpart of the Fourier transform for analogue signals.
The DFT converts a sequence of finite length into a list of coefficients of a finite
combination of complex sinusoids. Given that the sequence is a sampled function
from the time or spatial domain it is a conversion to the frequency domain. It is
defined as

Xk =
N−1∑
n=0

x(n)W kn
N , k ∈ [0, N − 1] (2.1)

where WN = e−
i2π
N , commonly named the twiddle factor [15].

The DFT is used in many practical applications to perform Fourier analysis. It
is a powerful mathematical tool that enables a perspective from another domain
where difficult and complex problems becomes easier to analyse. Practically used
in digital signal processing such as discrete samples of sound waves, radio signals
or any continuous signal over a finite time interval. If used in image processing,
the sampled sequence is pixels along a row or column. The DFT takes input in
complex numbers, and gives output in complex coefficients. In practical applica-

3



4 2 Benchmark algorithm

tions the input is usually real numbers.

2.1.1 Fast Fourier Transform

The problem with the DFT is that the direct computation require O(nn) complex
multiplications and complex additions, which makes it computationally heavy
and impractical in high throughput applications. The Fast Fourier Transform
(FFT) is one of the most common algorithms used to compute the DFT of a se-
quence. A FFT computes the transformation by factorizing the transformation
matrix of the DFT into a product of mostly zero factors. This reduces the order
of computations to O(n log n) complex multiplications and additions.

The FFT was made popular in 1965 [7] by J.W Cooley and John Tukey. It found it
is way into practical use at the same time, and meant a serious breakthrough
in digital signal processing [8, 5]. However, the complete algorithm was not
invented at the time. The history of the Cooley-Tukey FFT algorithm can be
traced back to around 1805 by work of the famous mathematician Carl Friedrich
Gauss[18]. The algorithm is a divide-and-conquer algorithm that relies on recur-
sively dividing the input into sub-blocks. Eventually the problem is small enough
to be solved, and the sub-blocks are combined into the final result.

2.2 Image processing

Image processing consists of a wide range of domains. Earlier academic work
with performance evaluation on the GPU [25] tested four major domains and
compared them with the CPU. The domains were Three-dimensional (3D) shape
reconstruction, feature extraction, image compression, and computational pho-
tography. Image processing is typically favourable on a GPU since images are
inherently a parallel structure.

Most image processing algorithms apply the same computation on a number of
pixels, and that typically is a data-parallel operation. Some algorithms can then
be expected to have huge speed-up compared to an efficient CPU implementation.
A representative task is applying a simple image filter that gathers neighbouring
pixel-values and compute a new value for a pixel. If done with respect to the
underlying structure of the system, one can expect a speed-up near linear to the
number of computational cores used. That is, a CPU with four cores can theoret-
ically expect a near four time speed-up compared to a single core. This extends
to a GPU so that a GPU with n cores can expect a speed-up in the order of n in
ideal cases. An example of this is a Gaussian blur (or smoothing) filter.

2.3 Image compression

The image compression standard JPEG2000 offers algorithms with parallelism
but is very computationally and memory intensive. The standard aims to im-
prove performance over JPEG, but also to add new features. The following sec-



2.4 Linear algebra 5

tions are part of the JPEG2000 algorithm [6]:

1. Color Component transformation

2. Tiling

3. Wavelet transform

4. Quantization

5. Coding

The computation heavy parts can be identified as the Discrete Wavelet Transform
(DWT) and the encoding engine uses Embedded Block Coding with Optimized
Truncation (EBCOT) Tier-1.

One difference between the older format JPEG and the newer JPEG2000 is the
use of DWT instead of Discrete Cosine Transform (DCT). In comparison to the
DFT, the DCT operates solely on real values. DWTs, on the other hand, uses
another representation that allows for a time complexity of O(N ).

2.4 Linear algebra

Linear algebra is central to both pure and applied mathematics. In scientific com-
puting it is a highly relevant problem to solve dense linear systems efficiently. In
the initial uses of GPUs in scientific computing, the graphics pipeline was suc-
cessfully used for linear algebra through programmable vertex and pixel shaders
[20]. Methods and systems used later on for utilizing GPUs have been shown
efficient also in hybrid systems (multi-core CPUs + GPUs) [27]. Linear algebra
is highly suitable for GPUs and with careful calibration it is possible to reach
80%-90% of the theoretical peak speed of large matrices [28].

Common operations are vector addition, scalar multiplication, dot products, lin-
ear combinations, and matrix multiplication. Matrix multiplications have a high
time complexity, O(N3), which makes it a bottleneck in many algorithms. Matrix
decomposition like LU, QR, and Cholesky decomposition are used very often and
are subject for benchmark applications targeting GPUs [28].

2.5 Sorting

The sort operation is an important part of computer science and is a classic prob-
lem to work on. There exists several sorting techniques, and depending on prob-
lem and requirements a suitable algorithm is found by examining the attributes.

Sorting algorithms can be organized into two categories, data-driven and data-
independent. The quicksort algorithm is a well known example of a data-driven
sorting algorithm. It performs with time complexity O(n log n) on average, but
have a time complexity of O(n2) in the worst case. Another data-driven algorithm
that does not have this problem is the heap sort algorithm, but it suffers from



6 2 Benchmark algorithm

difficult data access patterns instead. Data-driven algorithms are not the easiest
to parallelize since their behaviour is unknown and may cause bad load balancing
among computational units.

The data independent algorithms is the algorithms that always perform the same
process no matter what the data. This behaviour makes them suitable for im-
plementation on multiple processors, and fixed sequences of instructions, where
the moment in which data is synchronized and communication must occur are
known in advance.

2.5.1 Efficient sorting

Bitonic sort have been used early on in the utilization of GPUs for sorting. Even
though it has the time complexity of O(n log n2) it has been an easy way of doing
a reasonably efficient sort on GPUs. Other high-performance sorting on GPUs
are often combinations of algorithms. Some examples of combined sort methods
on GPUs are the bitonic merge sort, and a bucket sort that split the sequence into
smaller sequences before each being sorted with a merge sort.

A popular algorithm for GPUs have been variants of radix sort which is a non-
comparative integer sorting algorithm. Radix sorts can be described as being
easy to implement and still as efficient as more sophisticated algorithms. Radix
sort works by grouping the integer keys by the individual digit value in the same
significant position and value.

2.6 Criteria for Algorithm Selection

A benchmarking application is sought that have the necessary complexity and rel-
evance for both practical uses and the scientific community. The algorithm with
enough complexity and challenges is the FFT. Compared to the other presented
algorithms the FFT is more complex than the matrix operations and the regular
sorting algorithms. The FFT does not demand as much domain knowledge as the
image compression algorithms, but it is still a very important algorithm for many
applications.

The difficulties of working with multi-core systems are applied to GPUs. What
GPUs are missing compared to multi-core CPUs, is the power of working in se-
quential. Instead, GPUs are excellent at fast context switching and hiding mem-
ory latencies. Most effort of working with GPUs extends to supply tasks with
enough parallelism, avoiding branching, and optimize memory access patterns.
One important issue is also the host to device memory transfer-time. If the algo-
rithm is much faster on the GPU, a CPU could still be faster if the host to device
and back transfer is a large part of the total time.

By selecting an algorithm that have much scientific interest and history relevant
comparisons can be made. It is sufficient to say that one can demand a reason-
able performance by utilizing information sources showing implementations on
GPUs.



3
Theory

This chapter will give an introduction to the FFT algorithm and a brief introduc-
tion of the GPU.

3.1 Graphics Processing Unit

A GPU is traditionally specialized hardware for efficient manipulation of com-
puter graphics and image processing [24]. The inherent parallel structure of im-
ages and graphics makes them very efficient at some general problems where
parallelism can be exploited. The concept of GPGPU is solving a problem on the
GPU platform instead of a multi-core CPU system.

3.1.1 GPGPU

In the early days of GPGPU one had to know a lot about computer graphics to
compute general data. The available APIs were created for graphics processing.
The dominant APIs were OpenGL and DirectX. High-Level Shading Language
(HLSL) and OpenGL Shading Language (GLSL) made the step easier, but it still
generated code into the APIs.

A big change was when NVIDIA released CUDA, which together with new hard-
ware made it possible to use standard C-code to program the GPU (with a few ex-
tensions). Parallel software and hardware was a small market at the time, and the
simplified use of the GPU for parallel tasks opened up to many new customers.
However, the main business is still graphics and the manufacturers can not make
cards too expensive, especially at the cost of graphics performance (as would in-
crease of more double-precision floating-point capacity). This can be exemplified
with a comparison between NVIDIA’s Maxwell micro architecture, and the prede-

7



8 3 Theory
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Figure 3.1: The GPU uses more transistors for data processing

cessor Kepler: Both are similar, but with Maxwell some of the double-precision
floating-point capacity was removed in favour of single-precision floating-point
value capacity (preferred in graphics).

Using GPUs in the context of data centers and High-Performance Computing
(HPC), studies show that GPU acceleration can reduce power [19] and it is rele-
vant to know the behaviour of the GPUs in the context of power and HPC [16]
for the best utilization.

3.1.2 GPU vs CPU

The GPU is built on a principle of more execution units instead of higher clock-
frequency to improve performance. Comparing the CPU with the GPU, the
GPU performs a much higher theoretical Floating-point Operations Per Second
(FLOPS) at a better cost and energy efficiency [23]. The GPU relies on using high
memory bandwidth and fast context switching (execute the next warp of threads)
to compensate for lower frequency and hide memory latencies. The CPU is excel-
lent at sequential tasks with features like branch prediction.

The GPU thread is lightweight and its creation has little overhead, whereas on
the CPU the thread can be seen as an abstraction of the processor, and switching
a thread is considered expensive since the context has to be loaded each time.
On the other hand, a GPU is very inefficient if not enough threads are ready to
perform work. Memory latencies are supposed to be hidden by switching in a
new set of working threads as fast as possible.

A CPU thread have its own registers whereas the GPU thread work in groups
where threads share registers and memory. One can not give individual instruc-
tions to each thread, all of them will execute the same instruction. The figure
3.1 demonstrates this by showing that by sharing control-structure and cache,
the GPU puts more resources on processing than the CPU where more resources
goes into control structures and memory cache.
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Figure 3.3: 8-point radix-2 FFT using Cooley-Tukey algorithm

3.2 Fast Fourier Transform

This section extends the information from section 2.1.1 in the Benchmark applica-
tion chapter.

3.2.1 Cooley-Tukey

The Fast Fourier Transform is by far mostly associated with the Cooley-Tukey al-
gorithm [7]. The Cooley-Tukey algorithm is a devide-and-conquer algorithm that
recursively breaks down a DFT of any composite size of N = N1 ·N2. The algo-
rithm decomposes the DFT into s = logr N stages. The N -point DFT is composed
of r-point small DFTs in s stages. In this context the r-point DFT is called radix-r
butterfly.

Butterfly and radix-2

The implementation of anN -point radix-2 FFT algorithm have log2 N stages with
N/2 butterfly operations per stage. A butterfly operation is an addition, and a
subtraction, followed by a multiplication by a twiddle factor, see figure 3.2.

Figure 3.3 shows an 8-point radix-2 Decimation-In-Frequency (DIF) FFT. The
input data are in natural order whereas the output data are in bit-reversed order.
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Figure 3.4: Flow graph of an radix-2 FFT using the constant geometry algo-
rithm.

3.2.2 Constant geometry

Constant geometry is similar to Cooley-Tukey, but with another data access pat-
tern that uses the same indexing in all stages. Constant geometry removes the
overhead of calculating the data input index at each stage, as seen in figure 3.3
where the top butterfly in the first stage require input x[0], x[4], and in the sec-
ond stage x[0], x[2], whilst the constant geometry algorithm in figure 3.4 uses
x[0], x[4] as input for all stages.

3.2.3 Parallelism in FFT

By examining the FFT algorithm, parallelism can be exploited in several ways.
Naturally, when decomposing the DFT into radix-2 operations, parallelism can
be achieved by mapping one thread per data input. That would, however, lead to
an unbalanced load as every second input is multiplied by the complex twiddle
factor, whereas the other half has no such step. The solution is to select one thread
per radix-2 butterfly operation, each thread will then share the same workload.

3.2.4 GPU algorithm

The complete FFT application can be implemented in two different kernels: One
kernel executing over a single stage, and another kernel executing the last stages
that could fit within one block. The single-stage kernel, called the global kernel,
would execute each stage of the algorithm in sequential order. Each execution
would require in total as many threads as there are butterfly-operations. The
host would supply the kernel with arguments depending on stage number and
problem size. (See table 3.1 for full parameter list.) The global kernel algorithm
is shown in algorithm 1. The global kernel would only be called for the number of
stages not fitted in a single block (this depends on the number of selected threads
per block). The global kernel implements Cooley-Tukey algorithm.



3.2 Fast Fourier Transform 11

Parameter Argument
data Input/Output data buffer
stage [0, log2(N ) − log2(Nblock)]
bitmask LeftShift(FFFFFFFF16, 32 − stage)
angle (2 ·π)/N
dist RightShift(N, steps)

Table 3.1: Global kernel parameter list with argument depending on size of
input N and stage.

Algorithm 1 Pseudo-code for the global kernel with input from the host.
1: procedure GlobalKernel(data, stage, bitmask, angle, dist)
2: tid ← GlobalThreadId
3: low← tid + (tid & bitmask)
4: high← low + dist
5: twMask ← ShiftLeft(dist − 1, stage)
6: twStage← PowerOfTwo(stage) · tid
7: a← angle · (twStage & twMask)
8: Imag(twiddleFactor)← Sin(a)
9: Real(twiddleFactor)← Cos(a)

10: temp← ComplexSub(datalow, datahigh)
11: datalow ← ComplexAdd(datalow, datahigh)
12: datahigh ← ComplexMul(temp, twiddleFactor)
13: end procedure
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Parameter Argument
in Input data buffer
out Output data buffer
angle (2 ·π)/N
stages [log2(N ) − log2(Nblock), log2(N )]
leadingBits 32 − log2(N )
c Forward: −1, Inverse: 1/N

Table 3.2: Local kernel parameter list with argument depending on size of
input N and number of stages left to complete.

Shared/Local memory

The local kernel is always called, and encapsulates all remaining stages and the
bit-reverse order output procedure. It is devised as to utilize shared memory
completely for all stages. This reduces the primary memory accesses to a single
read and write per data point. The kernel implements the constant geometry
algorithm to increase performance in the inner loop: the input and output index
is only calculated once. See algorithm 2.

Register width

The targeted GPUs work on 32 bit registers and all fast integer arithmetic is based
on that. Procedures using bitwise operations are constructed with this architec-
tural specific information, as seen in the bitmask parameter in table 3.1 and the
leadingBits parameter in table 3.2. The bitmask parameter is used to get the off-
set for each stage using the Cooley-Tukey algorithm. The leadingBits parameter
is used in the bit-reverse operation to remove the leading zeroes that comes as a
result of the use of a 32 bit register.

Bit-reverse example: If the total size is 1024 elements, the last log2(1024) = 10
bits are used. When encountering 1008 = 11111100002 for bit-reversal in this
context (with a problem size of 1024 points) the result is 63. However, using a 32
bit register:

1008 = 000000000000000000000011111100002 (3.1)

bits reversed:

264241152 = 000011111100000000000000000000002 (3.2)

The leading zeroes becomes trailing zeroes that needs to be removed. A logic
right shift operation by the length of leadingBits = 32 − log2(1024) = 22 solves
this.

3.3 Related research

Scientific interest have mainly been targeting CUDA and OpenCL for compar-
isons. Benchmarking between the two have established that there is difference
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Algorithm 2 Pseudo-code for the local kernel with input from the host.
1: procedure LocalKernel(in, out, angle, stages, leadingBits, c)
2: let shared be a shared/local memory buffer
3: low← ThreadId
4: high← low + BlockDim
5: of f set ← BlockId ·BlockDim · 2
6: sharedlow ← inlow+of f set
7: sharedhigh ← inhigh+of f set
8: ConstantGeometry(shared, low, high, angle, stages)
9: revLow← BitReverse(low + of f set, leadingBits)

10: revHigh← BitReverse(high + of f set, leadingBits)
11: outrevLow ← ComplexMul(c, sharedlow)
12: outrevHigh ← ComplexMul(c, sharedhigh)
13: end procedure

14: procedure ConstantGeometry(shared, low, high, angle, stages)
15: outi ← low · 2
16: outii ← outI + 1
17: for stage← 0, stages − 1 do
18: bitmask ← ShiftLeft(0xFFFFFFFF, stage)
19: a← angle · (low & bitmask)
20: Imag(twiddleFactor)← Sin(a)
21: Real(twiddleFactor)← Cos(a)
22: temp← ComplexSub(sharedlow, sharedhigh)
23: sharedouti ← ComplexAdd(sharedlow, sharedhigh)
24: sharedoutii ← ComplexMul(twiddleFactor, temp)
25: end for
26: end procedure
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in favour of CUDA, however it can be due to unfair comparisons [10], and with
the correct tuning OpenCL can be just as fast. The same paper stated that the
biggest difference came from running the forward FFT algorithm. Examination
showed that large differences could be found in the Parallel Thread Execution
(PTX) instructions (intermediary GPU code).

Porting from CUDA to OpenCL without loosing performance have been explored
in [9], where the goal was to achieve a performance-portable solution. Some of
the main differences between the technologies are described in that paper.



4
Technologies

Five different multi-core technologies are used in this study. One is a proprietary
parallel computing platform and API, called CUDA. Compute Shaders in OpenGL
and DirectCompute are parts of graphic programming languages but have a fairly
general structure and allows for general computing. OpenCL have a stated goal
to target any heterogeneous multi-core system but is used in this study solely on
the GPU. To compare with the CPU, OpenMP is included as an effective way to
parallelize sequential C/C++-code.

4.1 CUDA

CUDA is developed by NVIDIA and was released in 2006. CUDA is an extension
of the C/C++ language and have its own compiler. CUDA supports the function-
ality to execute kernels, and modify the graphic card RAM memory and the use
of several optimized function libraries such as cuBLAS (CUDA implementation
of Basic Linear Algebra Subprograms (BLAS)) and cuFFT (CUDA implementation
of FFT).

A program launched on the GPU is called a kernel. The GPU is referred to as
the device and the the CPU is called the host. To run a CUDA kernel, all that is
needed is to declare the program with the function type specifier __global__
and call it from the host with launch arguments, for other specifiers see table 4.1.
The kernel execution call includes specifying the thread organization. Threads
are organized in blocks, that in turn are specified within a grid. Both the block
and grid can be used as One-dimensional (1D), Two-dimensional (2D) or Three-
dimensional (3D) to help the addressing in a program. These can be accessed
within a kernel by the structures blockDim and gridDim. Thread and block

15



16 4 Technologies

Function type Executed on Callable from
__device__ Device Device
__global__ Device Host
__host__ Host Host

Table 4.1: Table of function types in CUDA.

__global__ void cu_global (
cpx * in ,
unsigned int mask ,
f l oa t angle ,
int steps ,
int d i s t )

{
cpx w;
int t i d = blockIdx . x * blockDim . x + threadIdx . x ;

/ / Input o f f s e t
in += t i d + ( t i d & mask ) ;
cpx *h = in + d i s t ;

/ / Twiddle f a c t o r
angle *= ( ( t i d << steps ) & ( ( d i s t − 1) << steps ) ) ;
_ _ s i n c o s f ( angle , &w. y , &w. x ) ;

/ / B u t t e r f l y
f l oa t x = in−>x − h−>x ;
f l oa t y = in−>y − h−>y ;
* in = { in−>x + h−>x , in−>y + h−>y } ;
*h = { (w. x * x ) − (w. y * y ) , (w. y * x )+(w. x * y ) } ;

}

Figure 4.1: CUDA global kernel

identification is done with threadIdx and blockIdx.

All limitations can be polled from the device and all devices have a minimum
feature support called Compute capability. The compute capability aimed at in
this thesis is 3.0 and includes the NVIDIA GPU models starting with GK or later
models (Tegra and GM ).

CUDA exposes intrinsic integer functions on the device and a variety of fast math
functions, optimized single-precision operations, denoted with the suffix -f. In
the CUDA example in figure 4.1 the trigonometric function __sincosf is used
to calculate both sinα and cosα in a single call.

4.2 OpenCL

OpenCL is a framework and an open standard for writing programs that executes
on multi-core platforms such as the CPU, GPU and Field-Programmable Gate Ar-
ray (FPGA) among other processors and hardware accelerators. OpenCL uses a
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__kernel void o c l _ g l o b a l (
__global cpx * in ,
f l oa t angle ,
unsigned int mask ,
int steps ,
int d i s t )

{
cpx w;
int t i d = get_g loba l_ id ( 0 ) ;

/ / Input o f f s e t
in += t i d + ( t i d & mask ) ;
cpx *high = in + d i s t ;

/ / Twiddle f a c t o r
angle *= ( ( t i d << steps ) & ( ( d i s t − 1) << steps ) ) ;
w. y = s i n c o s ( angle , &w. x ) ;

/ / B u t t e r f l y
f l oa t x = in−>x − high−>x ;
f l oa t y = in−>y − high−>y ;
in−>x = in−>x + high−>x ;
in−>y = in−>y + high−>y ;
high−>x = (w. x * x ) − (w. y * y ) ;
high−>y = (w. y * x ) + (w. x * y ) ;

}

Figure 4.2: OpenCL global kernel

similar structure as CUDA: The language is based on C99 when programming a
device. The standard is supplied by the The Khronos Groups and the implemen-
tation is supplied by the manufacturing company or device vendor such as AMD,
INTEL, or NVIDIA.

OpenCL views the system from a perspective where computing resources (CPU
or other accelerators) are a number of compute devices attached to a host (a CPU).
The programs executed on a compute device is called a kernel. Programs in the
OpenCL language are intended to be compiled at run-time to preserve portability
between implementations from various host devices.

The OpenCL kernels are compiled by the host and then enqueued on a compute
device. The kernel function accessible by the host to enqueue is specified with
__kernel. Data residing in global memory is specified in the parameter list by
__global and local memory have the specifier __local. The CUDA threads
are in OpenCL terminology called Work-items and they are organized in Work-
groups.

Similarly to CUDA the host application can poll the device for its capabilities and
use some fast math function. The equivalent CUDA kernel in figure 4.1 is imple-
mented in OpenCL in figure 4.2 and displays small differences. The OpenCL
math function sincos is the equivalent of __sincosf.
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[ numthreads (GROUP_SIZE_X , 1 , 1 ) ]
void dx_global (

uint3 threadIDInGroup : SV_GroupThreadID ,
uint3 groupID : SV_GroupID ,
uint groupIndex : SV_GroupIndex ,
uint3 dispatchThreadID : SV_DispatchThreadID )

{
cpx w;
int t i d = groupID . x * GROUP_SIZE_X + threadIDInGroup . x ;

/ / Input o f f s e t
int in_low = t i d + ( t i d & mask ) ;
int in_high = in_low + d i s t ;

/ / Twiddle f a c t o r
f l oa t a = angle * ( ( t id <<steps )& ( ( d i s t − 1)<< steps ) ) ;
s i n c o s ( a , w. y , w. x ) ;

/ / B u t t e r f l y
f l oa t x = input [ in_low ] . x − input [ in_high ] . x ;
f l oa t y = input [ in_low ] . y − input [ in_high ] . y ;
rw_buf [ in_low ] . x = input [ in_low ] . x + input [ in_high ] . x ;
rw_buf [ in_low ] . y = input [ in_low ] . y + input [ in_high ] . y ;
rw_buf [ in_high ] . x = (w. x * x ) − (w. y * y ) ;
rw_buf [ in_high ] . y = (w. y * x ) + (w. x * y ) ;

}

Figure 4.3: DirectCompute global kernel

4.3 DirectCompute

Microsoft DirectCompute is an API that supports GPGPU on Microsoft’s Win-
dows Operating System (OS) (Vista, 7, 8, 10). DirectCompute is part of the Di-
rectX collection of APIs. DirectX was created to support computer games devel-
opment for the Windows 95 OS. The initial release of DirectCompute was with
DirectX 11 API, and have similarities with both CUDA and OpenCL. DirectCom-
pute is designed and implemented with HLSL. The program (and kernel equiva-
lent) is called a compute shader. The compute shader is not like the other types
of shaders that are used in the graphic processing pipeline (like vertex or pixel
shaders).

A difference from CUDA and OpenCL in implementing a compute shader com-
pared to a kernel is the lack of C-like parameters: A constant buffer is used in-
stead, where each value is stored in a read-only data structure. The setup share
similarities with OpenCL and the program is compiled at run-time. The thread
dimensions is built in as a constant value in the compute shader, and the block
dimensions are specified at shader dispatch/execution.

As the code example demonstrated in figure 4.3 the shader body is similar to that
of CUDA and OpenCL.
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void main ( )
{

cpx w;
uint t i d = gl_GlobalInvocat ionID . x ;

/ / Input o f f s e t
uint in_low = t i d + ( t i d & mask ) ;
uint in_high = in_low + d i s t ;

/ / Twiddle f a c t o r
f l oa t a = angle * ( ( t id <<steps )& ( ( d i s t − 1U)<< steps ) ) ;
w. x = cos ( a ) ;
w. y = s in ( a ) ;

/ / B u t t e r f l y
cpx low = data [ in_low ] ;
cpx high = data [ in_high ] ;
f l oa t x = low . x − high . x ;
f l oa t y = low . y − high . y ;
data [ in_low ] = cpx ( low . x + high . x , low . y + high . y ) ;
data [ in_high ] = cpx ( (w. x *x ) − (w. y*y ) , (w. y*x )+(w. x *y ) ) ;

}

Figure 4.4: OpenGL global kernel

4.4 OpenGL

OpenGL share much of the same graphics inheritance as DirectCompute but also
provides a compute shader that breaks out of the graphics pipeline. The OpenGL
is managed by the Khronos Group and was released in 1992. Analogous to HLSL,
OpenGL programs are implemented with GLSL. The differences between the two
are subtle, but include how arguments are passed and the use of specifiers.

Figure 4.4 show the OpenGL version of the global kernel.

4.5 OpenMP

Open Multi-Processing (OpenMP) is an API for multi-platform shared memory
multiprocessing programming. It uses a set of compiler directives and library
routines to implement multithreading. OpenMP uses a master thread that forks
slave threads where work is divided among them. The threads runs concurrently
and are allocated to different processors by the runtime environment. The par-
allel section of the code is marked with preprocessor directives (#pragma) and
when the threads are running the code they can access their respective id with
the omp_get_thread_num() call. When the section is processed the threads
join back into the master thread (with id 0).

Figure 4.5 shows how the for-loop section is parallelized by scheduling the work-
load evenly with the static keyword. An important difference from the GPU-
implementations is that the twiddle factors are computed in advance and stored
in memory. Another difference is the number of threads, which is a fixed num-
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void add_sub_mul ( cpx * l , cpx *u , cpx *out , cpx *w)
{

f l oa t x = l−>x − u−>x ;
f l oa t y = l−>y − u−>y ;
* out = { l−>x + u−>x , l−>y + u−>y } ;
*(++ out ) = { (w−>x *x ) − (w−>y*y ) , (w−>y*x )+(w−>x *y ) } ;

}
void f f t _ s t a g e ( cpx * i , cpx *o , cpx *w, uint m, int r )
{
#pragma omp p a r a l l e l for schedule ( s t a t i c )

for ( int l = 0 ; l < r ; ++l )
add_sub_mul ( i +l , i +r+l , o+( l <<1) ,w+( l & m) ) ;

}

Figure 4.5: OpenMP procedure completing one stage

ber where each thread will work on a consecutive span of the iterated butterfly
operations.

4.6 External libraries

External libraries were selected for reference values. FFTW and cuFFT were se-
lected because they are frequently used in other papers. clFFT was selected by
the assumption that it is the AMD equivalent of cuFFT for AMDs graphic cards.

FFTW

Fastest Fourier Transform in the West (FFTW) is a C subroutine library for com-
puting the DFT. FFTW is a free software[11] that have been available since 1997,
and several papers have been published about the FFTW [12, 13, 14]. FFTW sup-
ports a variety of algorithms and by estimating performance it builds a plan to
execute the transform. The estimation can be done by either performance test of
an extensive set of algorithms, or by a few known fast algorithms.

cuFFT

The library cuFFT (NVIDIA CUDA Fast Fourier Transform product) [21] is de-
signed to provide high-performance on NVIDIA GPUs. cuFFT uses algorithms
based on the Cooley-Tukey and the Bluestein algorithm [4].

clFFT

The library clFFT, found in [3] is part of the open source AMD Compute Libraries
(ACL)[2]. According to an AMD blog post[1] the library performs at a similar
level of cuFFT1.

1The performance tests was done using NVIDIA Tesla K40 for cuFFT and AMD Firepro W9100
for clFFT.
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Implementation

The FFT application has been implemented in C/C++, CUDA, OpenCL, Direct-
Compute, and OpenGL. The application was tested on a GeForce GTX 670 and a
Radeon R7 R260X graphics card and on an Intel Core i7 3770K 3.5GHz CPU.

5.1 Benchmark application GPU

5.1.1 FFT

Setup

The implementation of the FFT algorithm on a GPU can be broken down into
steps, see figure 5.1 for a simplified overview. The application setup differs
among the tested technologies, however some steps can be generalized; get plat-
form and device information, allocate device buffers and upload data to device.

The next step is to calculate the specific FFT arguments for a N -point sequence
for each kernel. The most important differences between devices and platforms
are local memory capacity and thread and block configuration. Threads per block
was selected for the best performance. See table 5.1 for details.

Setup

Upload Data

Calc. FFT
ArgumentsCPU:

GPU:

Launch
Kernel

Global Kernel
	

Launch
Kernel

Local Kernel

Fetch
Data

Free
Resources

Figure 5.1: Overview of the events in the algorithm.
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Device Technology Threads / Block Max Threads Shared memory

GeForce GTX 670

CUDA 1024

1024

49152
OpenCL 512 49152
OpenGL 1024 32768
DirectX 1024 32768

Radeon R7 260X
OpenCL 256

256 32768OpenGL 256
DirectX 256

Table 5.1: Shared memory size in bytes, threads and block configuration per
device.

Thread and block scheme

The threading scheme was one butterfly per thread, so that a sequence of six-
teen points require eight threads. Each platform was configured to a number of
threads per block (see table 5.1): any sequences requiring more butterfly oper-
ations than the threads per block configuration needed the computations to be
split over several blocks. In the case of a sequence exceeding one block, the se-
quence is mapped over the blockIdx.y dimension with size gridDim.y. The
block dimensions are limited to 231, 216, 216 respectively for x, y, z. Example: if
the threads per block limit is two, then four blocks would be needed for a sixteen
point sequence.

Synchronization

Thread synchronization is only available of threads within a block. When the
sequence or partial sequence fitted within a block, that part was transferred to
local memory before computing the last stages. If the sequence was larger and
required more than one block, the synchronization was handled by launching sev-
eral kernels in the same stream to be executed in sequence. The kernel launched
for block wide synchronization is called the global kernel and the kernel for
thread synchronization within a block is called the local kernel. The global kernel
had an implementation of the Cooley-Tukey FFT algorithm, and the local kernel
had constant geometry (same indexing for every stage). The last stage outputs
data from the shared memory in bit-reversed order to the global memory. See
figure 5.2, where the sequence length is 16 and the threads per block is set to
two.

Calculation

The indexing for the global kernel was calculated from the thread id and block
id (threadIdx.x and blockIdx.x in CUDA) as seen in figure 5.3. Input and
output is located by the same index.

Index calculation for the local kernel is done once for all stages, see figure 5.4.
These indexes are separate from the indexing in the global memory. The global
memory offset depends on threads per block (blockDim.x in CUDA) and block
id.
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Figure 5.2: Flow graph of a 16-point FFT using (stage 1 and 2) Cooley-Tukey
algorithm and (stage 3 and 4) constant geometry algorithm. The solid box
is the bit-reverse order output. Dotted boxes are separate kernel launches,
dashed boxes are data transfered to local memory before computing the re-
maining stages.

int t i d = blockIdx . x * blockDim . x + threadIdx . x ,
io_low = t i d + ( t i d & (0 xFFFFFFFF << s t a g e s _ l e f t ) ) ,
io_high = io_low + (N >> 1 ) ;

Figure 5.3: CUDA example code showing index calculation for each stage in
the global kernel, N is the total number of points. io_low is the index of the
first input in the butterfly operation and io_high the index of the second.
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int n_per_block = N / gridDim . x .
in_low = threadId . x .
in_high = threadId . x + ( n_per_block >> 1 ) .
out_low = threadId . x << 1 .
out_high = out_low + 1 ;

Figure 5.4: CUDA code for index calculation of points in shared memory.

Technology Language Signature
CUDA C extension __brev(unsigned int);
OpenGL GLSL bitfieldReverse(unsigned int);
DirectCompute HLSL reversebits(unsigned int);

Table 5.2: Integer intrinsic bit-reverse function for different technologies.

The last operation after the last stage is to perform the bit-reverse indexing oper-
ation, this is done when writing from shared to global memory. The implementa-
tion of bit-reverse is available as an intrinsic integer instruction (see table 5.2). If
the bit-reverse instruction is not available, figure 5.5 shows the code used instead.
The bit-reversed value had to be right shifted the number of zeroes leading the
number in a 32-bit integer type value. Figure 5.2 show the complete bit-reverse
operations of a 16-point sequence in the output step after the last stage.

5.1.2 FFT 2D

The FFT algorithm for 2D data, such as images, is first transformed row-wise
(each row as a separate sequence) and then an equal transform of each column.
The application performs a row-wise transformation followed by a transpose of
the image to reuse the row-wise transform procedure for the columns. This
method gives better memory locality when transforming the columns. A trans-
formed image is shown in figure 5.6.

x = ( ( ( x & 0xaaaaaaaa ) >> 1) | ( ( x & 0x55555555 ) << 1 ) ) ;
x = ( ( ( x & 0 xcccccccc ) >> 2) | ( ( x & 0x33333333 ) << 2 ) ) ;
x = ( ( ( x & 0 xf0f0 f0 f0 ) >> 4) | ( ( x & 0 x0f0f0 f0 f ) << 4 ) ) ;
x = ( ( ( x & 0 xf f00f f00 ) >> 8) | ( ( x & 0 x00f f00f f ) << 8 ) ) ;
return ( ( x >> 16) | ( x << 1 6 ) ) ;

Figure 5.5: Code returning a bit-reversed unsigned integer where x is the
input. Only 32-bit integer input and output.
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(a) Original image (b) Magnitude representation

Figure 5.6: Original image in 5.6a transformed and represented with a quad-
rant shifted magnitude visualization (scale skewed for improved illustra-
tion) in 5.6b.

The difference between the FFT kernel for 1D and 2D is the indexing scheme. 2D
rows are indexed with blockIdx.x, and columns with threadIdx.x added
with an offset of blockIdx.y · blockDim.x.

Transpose

The transpose kernel uses a different index mapping of the 2D-data and threads
per blocks than the FFT kernel. The data is tiled in a grid pattern where each tile
represents one block, indexed by blockIdx.x and blockIdx.y. The tile size is
a multiple of 32 for both dimensions and limited to the size of the shared memory
buffer, see table 5.1 for specific size per technology. To avoid the banking issues,
the last dimension is increased with one but not used. However, resolving the
banking issue have little effect on total running-time so when shared memory
is limited to 32768, the extra column is not used. The tile rows and columns
are divided over the threadIdx.x and threadIdx.y index respectively. See
figure 5.7 for a code example of the transpose kernel.

Shared memory example: The CUDA shared memory can allocate 49152 bytes
and a single data point require sizeof(float) · 2 = 8 bytes. That leaves room
for a tile size of 64 · (64 + 1) · 8 = 33280 bytes. Where the integer 64 is the highest
power of two that fits.

The transpose kernel uses the shared memory and tiling of the image to avoid
large strides through global memory. Each block represents a tile in the image.
The first step is to write the complete tile to shared memory and synchronize the
threads before writing to the output buffer. Both reading from the input memory
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__global__ void transpose ( cpx * in , cpx *out , int n )
{

uint tx = threadIdx . x ;
uint ty = threadIdx . y ;
__shared__ cpx t i l e [CU_TILE_DIM ] [ CU_TILE_DIM + 1 ] ;
/ / Write t o shared ( t i l e ) from g l o b a l memory ( in )
int x = blockIdx . x * CU_TILE_DIM + tx ;
int y = blockIdx . y * CU_TILE_DIM + ty ;
for ( int j = 0 ; j < CU_TILE_DIM ; j += CU_BLOCK_DIM)

for ( int i = 0 ; i < CU_TILE_DIM ; i += CU_BLOCK_DIM)
t i l e [ ty+ j ] [ tx+ i ]= in [ ( y+ j ) *n+(x+ i ) ] ;

__syncthreads ( ) ;
/ / Write t o g l o b a l ( out ) from shared memory ( t i l e )
x = blockIdx . y * CU_TILE_DIM + tx ;
y = blockIdx . x * CU_TILE_DIM + ty ;
for ( int j = 0 ; j < CU_TILE_DIM ; j += CU_BLOCK_DIM)

for ( int i = 0 ; i < CU_TILE_DIM ; i += CU_BLOCK_DIM)
out [ ( y+ j ) *n+(x+ i ) ]= t i l e [ tx+ i ] [ ty+ j ] ;

}

Figure 5.7: CUDA device code for the transpose kernel.

and writing to the output memory is performed in close stride. Figure 5.8 shows
how the transpose is performed in memory.

5.1.3 Differences

Setup

The majority of differences in the implementations were related to the setup
phase. The CUDA implementation is the most straightforward, calling the pro-
cedure cudaMalloc() to allocate a buffer and cudaMemcpy() to populate it.
With CUDA you can write the device code in the same file as the host code and
share functions. OpenCL and OpenGL require a char * buffer as the kernel
source and is most practical if written in a separate source file and read as a file
stream to a char buffer. DirectCompute shaders are most easily compiled from
file. Figure 5.9 gives a simplified overview of how to setup the kernels in the
different technologies.

Kernel execution

Kernel launch in CUDA is like a procedure call in C/C++ with the difference
that the kernel launch syntax require <<< and >>> to set the block and thread
dimension. The special syntax is used in-between the name and the function
operators (), see example: kernel_name<<<threadDim, blockDim>>>().
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input

tile

output

Figure 5.8: Illustration of how shared memory is used in transposing an
image. Input data is tiled and each tile is written to shared memory and
transposed before written to the output memory.

/ / A l l o c a t e memory b u f f e r on d e v i c e
cudaMalloc
/ / Upload data
cudaMemcpy

(a) CUDA setup

/ / S e l e c t p l a t f o rm from a v a i l a b l e
clGetPlatformIDs
clGetDeviceIDs
clCreateContext
clCreateCommandQueue
c lCrea teBuf fer
/ / Upload data
clEnqueueWriteBuffer
/ / Crea t e k e r n e l
clCreateProgramWithSource
clBuildProgram
clCreateKernel

(b) OpenCL setup

/ / S e l e c t adap t e r from
/ / enumerat ion not shown
D3D11CreateDevice
device−>CreateBuffer
/ / Data upload
context −>UpdateSubresource
/ / Crea t i on o f v iews f o r a c c e s s .
device−>CreateShaderResourceView
device−>CreateUnorderedAccessView
D3DCompileFromFile
device−>CreateComputeShader
context −>CSSetConstantBuffers

(c) DirectCompute setup

/ / OpenGL needs a v a l i d r ende r ing
/ / con t ex t , s upp l i e d by the OS .
g l u t I n i t (&argc , argv ) ;
glutCreateWindow ( " GLContext " ) ;
g lewIni t ( ) ;
/ / Crea t e compute shader
glCreateProgram ( ) ;
glCreateShader (GL_COMPUTE_SHADER ) ;
glShaderSource
glCompileShader
glAttachShader
glLinkProgram
/ / Crea t e b u f f e r and upload
glGenBuffers
glBindBufferBase
glBufferData

(d) OpenGL setup

Figure 5.9: An overview of the setup phase for the GPU technologies.
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The other technologies require some more setup; OpenCL and OpenGL need one
function call per parameter. OpenCL maps with index, whereas OpenGL maps
with a string to the parameter. In DirectCompute a constant buffer is suitable
for the parameters. The constant buffer is read-only and accessible globally over
the kernel. DirectCompute and OpenGL share a similar launch style where the
compute shader is set as the current program to the device context, and a dispatch
call is made with the group (block) configuration. See table 5.3 for a list of how
the kernels are launched.

Technology Code to set parameters and execute kernel
CUDA cuda_kernel<<<blocks, threads>>>(in, out,...);

OpenCL

clSetKernelArg(kernel, 0, sizeof(cl_mem), &in);
clSetKernelArg(kernel, 0, sizeof(cl_mem), &out);
/* Set rest of the arguments. */
clEnqueueNDRangeKernel(cmd_queue, kernel, dim, 0, work_sz, ...);

DirectCompute

context->CSSetUnorderedAccessViews(0, 1, output_uav, NULL);
context->CSSetShaderResources(0, 1, &input_srv);
context->CSSetShader(compute_shader, nullptr, 0);
arguments = {/* Struct holding all arguments */ ...}
dx_map_args<dx_cs_args>(context, constant_buffer, &arguments);
context->Dispatch(groups.x, groups.y, groups.z);

OpenGL

glUseProgram(program);
glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 0, buffer_in);
glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 1, buffer_out);
glUniform1f(glGetUniformLocation(program, "angle"), angle);
/* Set rest of the arguments. */
glDispatchCompute(groups.x, groups.y, groups.z)

Table 5.3: Table illustrating how to set parameters and launch a kernel.

Kernel code

The kernel code for each technology had a few differences. CUDA have the
strongest support for a C/C++ -like language and only adds a function-type spec-
ifier. The kernel program is accessible from the host via the __global__ spec-
ifier. OpenCL share much of this but is restricted to a C99-style in the current
version (2.0). A difference is how global and local buffers can referenced, these
must be declared with the specifier __global or __local.

DirectCompute and OpenGL Compute Shader is coded in HLSL and GLSL re-
spectively. These languages are similar and share the same level of restrictions
compared to CUDA C/C++ and OpenCL C-code. Device functions can not use
pointers or recursion. However, these are of little importance for the performance
since all code is in-lined in the building and compilation of the kernel program.

Synchronization

The synchronization on thread and block-level is different. In CUDA can threads
within a block can be synchronized directly on the GPU. On block-level synchro-
nization, the host is required as in building the stream or queue of commands.
The equivalent exists in all technologies. Device and host synchronization is sim-
ilar to block-level synchronization, however, in DirectCompute this is not done
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Figure 5.10: OpenMP implementation overview transforming sequence of
size N .

trivially as with a blocking function call from the host. CUDA, OpenCL and Di-
rectCompute uses the same kernel stream to execute kernels sequentially, while
the sequential execution in OpenGL is accomplished by the use of

glMemoryBarrier (GL_SHADER_STORAGE_BARRIER_BIT)

in between launches. See table 5.4 for the synchronization functions used.

Technology Threads in blocks Host and Device
CUDA __syncthreads(); cudaDeviceSynchronize();
OpenCL barrier(CLK_LOCAL_MEM_FENCE); clFinish(cmd_queue);
OpenGL barrier(); glFinish();
DirectCompute GroupMemoryBarrierWithGroupSync(); -

Table 5.4: Synchronization in GPU technologies.

5.2 Benchmark application CPU

5.2.1 FFT with OpenMP

The OpenMP implementation benefits in performance from calculating the twid-
dle factors in advance. The calculated values are stored in a buffer accessible from
all threads. The next step is to calculate each stage of the FFT algorithm. Last is
the output index calculation where elements are reordered. See figure 5.10 for
an overview.

Twiddle factors

The twiddle factor are stored for each butterfly operation. To save time, only the
real part is calculated and the imaginary part is retrieved from the real parts due
to the fact that sin(x) = cos(π/2 + x) and sin(π/2 + x) = − cos(x). See figure 5.5 for
an example. The calculations will be split among the threads by static scheduling
in two steps: first calculate the real values, then copy from real to imaginary.

Butterfly

The same butterfly operation uses the constant geometry index scheme. The in-
dexes are not stored from one stage to the next but it makes the output come in
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Twiddle factor table W
i <(W ) =(W )
0 cos(α · 0) <(W [4])
1 cos(α · 1) <(W [5])
2 cos(α · 2) <(W [6])
3 cos(α · 3) <(W [7])
4 cos(α · 4) −<(W [0])
5 cos(α · 5) −<(W [1])
6 cos(α · 6) −<(W [2])
7 cos(α · 7) −<(W [3])

Table 5.5: Twiddle factors for a 16-point sequence where α equals (2 ·π)/16.
Each row i corresponds to the ith butterfly operation.

void omp_bit_reverse ( cpx *x , int l ead ing_bi t s , int N)
{
#pragma omp p a r a l l e l for schedule ( s t a t i c )

for ( int i = 0 ; i <= N; ++ i ) {
int p = b i t _ r e v e r s e ( i , l e a d i n g _ b i t s ) ;
i f ( i < p )

swap(&( x [ i ] ) , &(x [ p ] ) ) ;
}

}

Figure 5.11: C/C++ code performing the bit-reverse ordering of a N-point
sequence.

continuous order. The butterfly operations are split among the threads by static
scheduling.

Bit-Reversed Order

See figure 5.11 for code showing the bit-reverse ordering operation in C/C++
code.

5.2.2 FFT 2D with OpenMP

The implementation of 2D FFT with OpenMP runs the transformations row-wise
and transposes the image and repeat. The twiddle factors are calculated once and
stays the same.

5.2.3 Differences with GPU

The OpenMP implementation is different from the GPU-implementations in two
ways: twiddle factors are pre-computed, and all stages uses the constant geom-
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Platform Model Library name Version
NVIDIA GPU GeForce GTX 670 cuFFT 7.5
AMD GPU Radeon R7 260X clFFT 2.8.0
Intel CPU Core i7 3770K 3.5GHz FFTW 3.3.4

Table 5.6: Libraries included to compare with the implementation.

etry algorithm. The number of parallel threads are on the Intel Core i7 3770K
3.5GHz CPU four, whereas the number is on the GPU up to 192 (seven warps,
one per Streaming Multiprocessor (SM), with 32 threads each).

5.3 Benchmark configurations

5.3.1 Limitations

All implementations are limited to handle sequences of 2n length or 2m × 2m

where n and m are integers with maximal value of n = m + m = 26. The se-
lected GPUs have a maximum of 2GB global memory available. The limitation
is required since the implementation uses a total of 226 ·sizeof(float2) · 2 =
1073741824 bytes. However on the Radeon R7 R260X card, problems with Di-
rectCompute and OpenGL set the limit lower. DirectCompute handled sizes of
n <= 224 and OpenGL n <= 224 and m <= 29.

5.3.2 Testing

All tests executed on the GPU utilize some implementation of event time stamps.
The time stamp event retrieve the actual start of the kernel if the current stream
is busy. The CPU implementations used Windows QueryPerformanceCounter
function, which is a high resolution (< 1µs) time stamp.

5.3.3 Reference libraries

One reference library per platform was included to compare how well the FFT
implementation performed. The FFTW library for the CPU, runs a planning
scheme to create an execution plan for each environment and data input size.
Similar strategy is used in the cuFFT and clFFT libraries used for the GeForce
GTX 670 and Radeon R7 R260X respectively. Table 5.6 sums up information
about the external libraries.
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Evaluation

6.1 Results

The results will be shown for the two graphics cards GeForce GTX 670 and
Radeon R7 R260X, where the technologies were applicable. The tested technolo-
gies are shown in table 6.1. The basics of each technology or library is explained
in chapter 4.

The performance measure is total execution time for a single forward transform
using two buffers: one input and one output buffer. The implementation input
size range is limited by the hardware (graphics card primary memory). However
there are some unsolved issues near the upper limit on some technologies on the
Radeon R7 R260X.

CUDA is the primary technology and the GeForce GTX 670 graphics card is the
primary platform. All other implementations are ported from CUDA implemen-
tation. To compare the implementation, external libraries are included and can
be found in italics in the table 6.1. Note that the clFFT library failed to be mea-
sured in the same manner as the other GPU implementations: the times are mea-
sured at host, and short sequences suffer from large overhead.

The experiments are tuned on two parameters, the number of threads per block
and how large the tile dimensions are in the transpose kernel, see chapter 5 and
table 5.1.

1Free software, available at [11].
2Available through the CUDAToolkit at [22].
3OpenCL FFT library available at [3].

33
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Platform Tested technology

Intel Core i7 3770K 3.5GHz CPU
C/C++
OpenMP
FFTW1

GeForce GTX 670

CUDA
OpenCL
DirectCompute
OpenGL
cuFFT2

Radeon R7 R260X

OpenCL
DirectCompute
OpenGL
clFFT3

Table 6.1: Technologies included in the experimental setup.

6.1.1 Forward FFT

The results for a single transform over a 2n-point sequence are shown in figure
6.1 for the GeForce GTX 670, Radeon R7 R260X and Intel Core i7 3770K 3.5GHz
CPU.

The CUDA implementation was the fastest on the GeForce GTX 670 over most
sequences. The OpenCL implementation was the only technology that could run
the whole test range on the Radeon R7 R260X. DirectCompute was limited to 224

points and OpenGL to 223 points. A normalized comparison using CUDA and
OpenCL is shown in figure 6.2.

The experimental setup for the CPU involved low overhead and the short se-
quences could not be measured accurately. This is shown as 0µs in the figures.
Results from comparing the sequential C/C++ and multi-core OpenMP imple-
mentation with CUDA are shown in figure 6.3. FFTW was included and demon-
strated how an optimized (per n-point length) sequential CPU implementation
perform.

Results from comparing the implementations on the different graphics cards are
shown in figure 6.4. The results are normalized on the result of the tests on the
GeForce GTX 670.

DirectCompute, OpenGL, and OpenCL was supported on both graphics cards,
the results of normalizing the resulting times with the time of the OpenCL imple-
mentation is shown in figure 6.5.
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Figure 6.1: Overview of the results of a single forward transform. The clFFT
was timed by host synchronization resulting in an overhead in the range of
60µs. Lower is faster.
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Figure 6.2: Performance relative CUDA implementation in 6.2a and OpenCL
in 6.2b. Lower is better.
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Figure 6.3: Performance relative CUDA implementation on GeForce GTX
670 and Intel Core i7 3770K 3.5GHz CPU.
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Figure 6.5: Performance relative OpenCL accumulated from both cards.

6.1.2 FFT 2D

The equivalent test was done for 2D-data represented by an image of m×m size.
The image contained three channels (red, green, and blue) and the transformation
was performed over one channel. Figure 6.6 shows an overview of the results of
image sizes ranging from 26×26 to 213×213.

All implementations compared to CUDA and OpenCL on the GeForce GTX 670
and Radeon R7 R260Xrespectively are shown in 6.7. The OpenGL implementa-
tion failed at images larger then 211×211 points.

The results of comparing the GPU and CPU handling of a 2D forward transform
is shown in figure 6.8.

Comparison of the two cards are shown in figure 6.9.

DirectCompute, OpenGL and OpenCL was supported on both graphics cards,
the results of normalizing the resulting times with the time of the OpenCL imple-
mentation is shown in figure 6.10.
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Figure 6.6: Overview of the results of measuring the time of a single 2D
forward transform.
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Figure 6.7: Time of 2D transform relative CUDA in 6.7a and OpenCL in
6.7b.
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Figure 6.8: Performance relative CUDA implementation on GeForce GTX
670 and Intel Core i7 3770K 3.5GHz CPU.
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Figure 6.10: Performance relative OpenCL accumulated from both cards.

6.2 Discussion

The foremost known technologies for GPGPU, based on other resarch-interests,
are CUDA and OpenCL. The comparisons from earlier work have focused pri-
marily on the two [10, 25, 26]. Bringing DirectCompute (or Direct3D Compute
Shader) and OpenGL Compute Shader to the table makes for an interesting mix
since the result from the experiment is that both are strong alternatives in terms
of raw performance.

The most accurate and fair comparison with a GPU is when number of data is
scaled up, the least amount of elements should be in the order of 212. By not fully
saturating the GPUs streaming multiprocessors, there is less gain from moving
from the CPU. One idea is to make sure that even if the sequences are short,
they should be calculated in batches. The results from running the benchmark
application on small sets of data are more or less discarded in the evaluation.

The CPU vs GPU

The implementation aimed at sequences of two-dimensional data was however
successful at proving the strength of the GPU versus the CPU. The difference in
execution time of the CPU and GPU is a factor of 40 times slower when running
a 2D FFT over large data. Compared to the multi-core OpenMP solution, the
difference is still a factor of 15 times slower. Even the optimized FFTW solution
is a factor of 10 times slower. As a side note, the cuFFT is 36 times faster than
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FFTW on large enough sequences, they do use the same strategy (build an ex-
ecution plan based on current hardware and data size) and likely use different
hard-coded unrolled FFTs for smaller sizes.

The GPU

The unsurprising result from the experiments is that CUDA is the fastest technol-
ogy on GeForce GTX 670, but only with small a margin. What might come as
surprise, is the strength of the DirectCompute implementation. Going head-to-
head with CUDA (only slightly slower) on the GeForce GTX 670, and performing
equally (or slightly faster) than OpenCL.

OpenGL is performing on par with DirectCompute on the Radeon R7 R260X.
The exception is the long sequences that fails with the OpenGL-solution on the
Radeon R7 R260X, sequences otherwise working on the GeForce GTX 670. The
performance of the OpenGL tests are equal or better then OpenCL in 1D, but
outperforming OpenCL in 2D.

The biggest surprise is actually the OpenCL implementation. Falling behind by
a relatively big margin on both graphics cards. This large margin was not antici-
pated based on other papers in comparisons. Effort has been made to assure that
the code does in fact run fairly compared to the other technologies. The ratio for
OpenCL versus CUDA on long sequences are about 1.6 and 1.8 times slower for
1D and 2D respectively on the GeForce GTX 670. The figure 6.5 and 6.10 shows
that DirectCompute is faster by a factor of about 0.8 of the execution-time of
OpenCL. The same comparisons of OpenCL and OpenGL shows similar results.
The one thing that goes in favor of OpenCL is that the implementation did scale
without problem: All sequences were computed as expected. The figures 6.2b
and 6.7b shows that something happened with the other implementations, even
clFFT had problem with the last sequence. OpenGL and DirectCompute could
not execute all sequences.

External libraries

Both FFTW on the CPU and cuFFT on the GeForce GTX 670 proved to be very
mature and optimized solutions, far faster then any of my implementations on
respective platform. Not included in the benchmark implementation is a C/C++
implementation that partially used the concept of the FFTW (a decomposition
with hard-coded unrolled FFTs for short sequences) and was fairly fast at short
sequences compared to FFTW. Scalability proved to be poor and provided very
little gain in time compared to much simpler implementations such as the con-
stant geometry algorithm.

cuFFT proved stable and much faster than any other implementation on the GPU.
The GPU proved stronger than the CPU at data sizes of 212 points or larger, this
does not include memory transfer times. Comparing cuFFT with clFFT was pos-
sible on the GeForce GTX 670, but that proved only that clFFT was not at all
written for that architecture and was much slower at all data sizes. A big prob-
lem when including the clFFT library was that measuring by events on the device
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failed, and measuring at the host included an overhead. Short to medium-long
sequences suffered much from the overhead, a quick inspection suggests of close
to 60µs (comparing to total runtime of the OpenCL at around 12µs for short se-
quences). Not until sequences reached 216 elements or greater could the library
beat the implementations in the application. The results are not that good ei-
ther, a possible explanation is that the clFFT is not at all efficient at executing
transforms of small batches, the blog post at [1] suggest a completely different
result when running in batch and on GPUs designed for computations. The con-
clusions in this work are based on cards targeting the gaming consumer market
and variable length sequences.

6.2.1 Qualitative assessment

When working with programming, raw performance is seldom the only require-
ment. This subsection will provide qualitative based assessments of the technolo-
gies used.

Scalability of problems

The different technologies are restricted in different ways. CUDA and OpenCL
are device limited and suggest polling the device for capabilities and limitations.
DirectCompute and OpenGL are standardized with each version supported. An
example of this is the shared memory size limit: CUDA allowed for full access,
whereas DirectCompute was limited to a API-specific size and not bound by the
specific device. The advantage of this is the ease of programming with Direct-
Compute and OpenGL when knowing that a minimum support is expected at
certain feature support versions.

Both DirectCompute and OpenGL had trouble when data sizes grew, no such
indications when using CUDA and OpenCL.

Portability

OpenCL have a key feature of being portable and open for many architecture
enabling computations. However, as stated in [10, 9], performance is not portable
over platforms but can be addressed with auto-tuning at the targeted platform.
There were no problems running the code on different graphic cards on either
OpenCL or DirectCompute. OpenGL proved to be more problematic with two
cards connected to the same host. The platform-specific solution using either OS

tweaking or specific device OpenGL expansions made OpenGL less convenient
as a GPGPU platform. CUDA is a proprietary technology and only usable with
NVIDIAs own hardware.

Moving from the GPU, the only technology is OpenCL and here is where it excels
among the others. This was not in the scope of the thesis however it is worth
noting that it would be applicable with minor changes in the application.

Programmability

The experience of this work was that CUDA was by far the least complicated
to implement. The fewest lines of code needed to get started and compared to
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C/C++ there were fewer limitations. The CUDA community and online documen-
tation is full of useful information, finding solutions to problems was relatively
easy. The documentation4 provided guidance for most applications.

OpenCL implementation was not as straight forward as CUDA. The biggest dif-
ference is the setup. Some differences in the setup are:

• Device selection is not needed actively in CUDA

• Command queue or stream is created by default in CUDA

• CUDA creates and builds the kernel run-time instead of compile-time.

Both DirectCompute and OpenGL follows this pattern, although they inherently
suffer from graphic specific abstractions. The experience was that creating and
handle memory-buffers was more prone to mistakes. Extra steps was introduced
to create and use the memory in a compute shader compared to a CUDA and
OpenCL-kernel.

The biggest issue with OpenGL is the way the device is selected, it is handled by
the OS. Firstly, in the case of running Windows 10, the card had to be connected
to a screen. Secondly, that screen needed to be selected as the primary screen.
This issue is also a problem when using services based on Remote Desktop Pro-
tocol (RDP). RDP enables the user to log in to a computer remotely. This works
for the other technologies but not for OpenGL. Not all techniques for remote ac-
cess have this issue, it is convenient if the native tool in the OS support GPGPU

features such as selecting the device, especially when running a benchmarking
application.

6.2.2 Method

The first issue that have to be highlighted is the fact that 1D FFTs were mea-
sured by single sequence execution instead of executing sequences in batch. The
2D FFT implementation did inherently run several 1D sequences in batch and
provided relevant results. One solution would have been to modify the 2D trans-
formation to accept a batch of sequences organized as 2D data. The second part
of performing column-wise transformations would then be skipped.

The two graphics cards used are not each others counterparts, the releases differs
17 months (GeForce GTX 670 released May 10, 2012 compared to Radeon R7
R260X in October 8, 2013). The recommended release price hints the targeted
audience and capacity of the cards, the GeForce GTX 670 was priced at $400
compared to the Radeon R7 R260X at $139. Looking at the OpenCL performance
on both cards as seen in figure 6.9, revealed that medium to short sequences are
about the same, but longer sequences goes in favour of the GeForce GTX 670.

Algorithm

The FFT implementation was rather straight forward and without heavy opti-
mization. The implementation lacked in performance compared to the NVIDIA

4https://docs.nvidia.com/cuda/cuda-c-programming-guide/
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developed cuFFT library. Figure 6.7a shows cuFFT to perform three to four times
faster then the benchmark application. Obviously there is a lot to improve. This
is not a big issue when benchmarking, but it removes some of the credibility of
the algorithm as something practically useful.

By examining the code with NVIDIA Nsight5, the bottleneck was the memory
access pattern when outputting data after bit-reversing the index. There were no
coalesced accesses and bad data locality. There are algorithms that solves this by
combining the index transpose operations with the FFT computation as in [17].

Some optimizations were attempted during the implementation phase and later
abandoned. The reason why attempts was abandoned was the lack of time or
no measurable improvement (or even worse performance). The use of shared
memory provide fewer global memory accesses, the shared memory can be used
in optimized ways such as avoiding banking conflicts6. This was successfully
tested on the CUDA technology with no banking conflicts at all, but gave no
measurable gain in performance. The relative time gained compared to global
memory access was likely to small or was negated by the fact that an overhead
was introduced and more shared memory had to be allocated per block.

The use of shared memory in the global kernel combined with removing most
of the host-synchronization is a potentially good optimization. The time distribu-
tion during this thesis did not allow further optimizations. The attempts to imple-
ment this in short time were never completed successfully. Intuitively guessed,
the use of shared memory in the global kernel would decrease global memory ac-
cesses and reduce the total number of kernel launches to dlog2( N

Nblock
)e compared

to log2(N ) − log2(Nblock) + 1.

Wider context

Since GPU acceleration can be put to great use in large computing environments,
the fastest execution time and power usage is important. If the same hardware
performs faster with another technology the selection or migration is motivated
by reduced power costs. Data centers and HPC is becoming a major energy con-
sumer globally, and future development must consider all energy saving options.

6.3 Conclusions

6.3.1 Benchmark application

The FFT algorithm was successfully implemented as benchmark application in
all technologies. The application provided parallelism and enough computa-
tional complexity to take advantage of the GPU. This is supported by the increase
in speed compared to the CPU. The benchmark algorithm executed up to a factor

5A tool for debugging and profiling CUDA applications.
6Good access pattern allows for all threads in a warp to read in parallel, one per memory bank at

a total of 32 banks on GeForce GTX 670, a banking conflict is two threads in a warp attempting to
read from the same bank and becomes serialized reads.
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Implementation 1D 2D
CUDA 1 1
OpenMP ×13 ×15
C/C++ ×18 ×40

Table 6.2: Table comparing CUDA to CPU implementations.

of 40 times faster on the GPU as seen in table 6.2 where the CUDA implementa-
tion is compared to the CPU implementations.

6.3.2 Benchmark performance

Benchmarking on the GeForce GTX 670 graphics card performing a 2D forward-
transformation resulted in the following rank:

1. CUDA

2. DirectCompute

3. OpenGL

4. OpenCL

Benchmarking on the Radeon R7 R260X graphics card performing a 2D forward-
transformation resulted in the following rank:

1. DirectCompute

2. OpenGL7

3. OpenCL8

The ranking reflects the results of a combined performance relative OpenCL,
where DirectCompute average at a factor of 0.8 the speed of OpenCL.

6.3.3 Implementation

The CUDA implementation had a relative advantage in terms of code size and
complexity. The necessary steps to setup a kernel before executing was but a frac-
tion of the other technologies. OpenCL needs runtime compiling of the kernel
and thus require many more steps and produces a lot more setup code. Porta-
bility is in favour of OpenCL, but was not examined further (as in running the
application on the CPU). The DirectCompute setup was similar to OpenCL with
the addition of some more specifications required. OpenGL followed this pattern
but did lack the support to select device if several was available.

The kernel code was fairly straight forward and was relatively easy to port from
CUDA to any other technology. Most issues could be traced back to the memory

7Failed to compute sequences longer then 223 elements.
8Performance very close to or equal to DirectCompute when sequence reached 224 elements or

more.
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buffer handling and related back to the setup phase or how buffers needed to be
declared in-code. CUDA offered the most in terms of support to a C/C++ like
coding with fewer limitations than the rest.

6.4 Future work

This thesis work leave room for expanding with more test applications and im-
prove the already implemented algorithm.

6.4.1 Application

The FFT algorithm is implemented in many practical applications, the perfor-
mance tests might give different results with other algorithms. The FFT is very
easy parallelized and put great demand on the memory by making large strides.
It would be of interest to expand with other algorithms that puts more strain on
the use of arithmetic operations.

FFT algorithms

The benchmark application is much slower than the external libraries for the
GPU, the room for improvements ought to be rather large. One can not alone ex-
pect to beat a mature and optimized library such as cuFFT, but one could at least
expect a smaller difference in performance in some cases. Improved or further
use of shared memory and explore a precomputed twiddle factor table would be
a topic to expand upon. Most important would probably be to examine how to
improve the access pattern towards the global memory.

For the basic algorithm there are several options to remove some of the overhead
when including the bit-reversal as a separate step by selecting an algorithm with
different geometry.

Based on cuFFT that uses Cooley-Tukey and Bluestein’s algorithm, a suggested
extension would be to expand to other then 2k sizes and implement to compare
any size of sequence length.

6.4.2 Hardware

More technologies

The graphic cards used in this thesis are at least one generation old compared
to the latest graphic cards as of late 2015. It would be interesting to see if the
cards have the same differences in later generations and to see how much have
been improved over the generations. It is likely that the software drivers are
differently optimized towards the newer graphic cards.

The DirectX 12 API was released in the fourth quarter of 2015 but this thesis
only utilized the DirectX 11 API drivers. The release of Vulkan, comes with the
premise much like DirectX 12 of high-performance and more low-level interac-
tion. In a similar way AMDs Mantle is an alternative to Direct3D with the aim of
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reducing overhead. Most likely, the (new) hardware will support the newer APIs
in a more optimized way during the coming years.

Graphics cards

The GeForce GTX 670 have the Kepler micro architecture. The model have been
succeeded by booth the 700 and 900 GeForce series and the micro architecture
have been followed by Maxwell (2014). Both Kepler and Maxwell uses 28nm de-
sign. The next micro architecture is Pascal and is due in 2016. Pascal will include
3D memory (High Bandwidth Memory (HBM2)) that will move onto the same
package as the GPU and greatly improve memory bandwidth and size. Pascal
will use a 16nm transistor design that will grant higher speed and energy effi-
ciency.

The Radeon R7 R260X have the Graphics Core Next (GCN) 1.1 micro architecture
and have been succeeded by the Radeon Rx 300 Series and GCN 1.2. The latest
graphic cards in the Rx 300 series include cards with High Bandwidth Memory
(HBM) and will likely be succeeded by HBM2. The Radeon R7 R260X is not
target towards the high-end consumer so it would be interesting to see the perfor-
mance with a high-end AMD GPU.

Intel Core i7 3770K 3.5GHz CPU

The used Intel Core i7 3770K 3.5GHz CPU have four real cores but can utilize
up to eight threads in hardware. Currently the trend is to utilize more cores per
die when designing new CPUs. The release of Intel Core i7-6950X and i7-6900K
targeting the high-end consumer market will have 10 and 8 cores. The i7-6950X
is expected some time in the second quarter in 2016.

Powerful multi-core CPUs will definitely challenge GPUs in terms of potential
raw computing capability. It would make for an interesting comparison by us-
ing high-end consumer products of the newest multi-core CPUs and GPUs. This
work was made with processing units from the same generation (released in 2012-
2013) and the development in parallel programming have progressed and ma-
tured since.
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