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Gait Event Detection in Real-World Environment
for Long-Term Applications: Incorporating Domain
Knowledge into Time-Frequency Analysis

Siddhartha Khandelwal and Nicholas Wickstrom

Abstract—Detecting gait events is the key to many gait analysis
applications that would benefit from continuous monitoring or
long-term analysis. Most gait event detection algorithms using
wearable sensors that offer a potential for use in daily living
have been developed from data collected in controlled indoor
experiments. However, for real-word applications, it is essential
that the analysis is carried out in humans’ natural environment;
that involves different gait speeds, changing walking terrains,
varying surface inclinations and regular turns among other
factors. Existing domain knowledge in the form of principles
or underlying fundamental gait relationships can be utilized
to drive and support the data analysis in order to develop
robust algorithms that can tackle real-world challenges in gait
analysis. This paper presents a novel approach that exhibits
how domain knowledge about human gait can be incorporated
into time-frequency analysis to detect gait events from long-
term accelerometer signals. The accuracy and robustness of
the proposed algorithm are validated by experiments done in
indoor and outdoor environments with approximately 93,600
gait events in total. The proposed algorithm exhibits consistently
high performance scores across all datasets in both, indoor and
outdoor environments.

Index Terms—inertial sensors, accelerometer, wavelet trans-
form, morlet, gait analysis, stride parameters, principles of gait

I. INTRODUCTION

ORMAL gait consists of three primary components:

locomotion, balance and ability to adapt to the environ-
ment [1]. This requires a balance between various interacting
neuronal and musculoskeletal systems. Dysfunction in one or
more of these systems can disturb gait, which elucidates the
importance of gait analysis. In the temporal domain, the two
most relevant events in a normal gait cycle are heel strike (HS)
and toe off (TO); other parameters such as swing, stance and
stride duration can be computed from them. Thus, identifying
these events is the key to many gait analysis applications [2]-
[9] that would benefit from long-term, continuous monitoring
in humans’ natural environment, enabling gait assessment
and interventions that have not previously been possible
[10]. The present state of practice is to perform clinical
gait analysis in controlled gait labs equipped with stationary
sensor systems such as motion capture systems and force
plates [11]. Although these systems provide rich and accurate
information, they are inadequate for use in daily life as they
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are immobile, expensive, require high operational competence
and provide information that is restricted to only a couple of
steps. Foot switches such as force sensitive resistors (FSRs)
provide contact timing information and are often used as the
reference method in determining the accuracy of gait event
detection in other systems [2], [12]-[14]. However, they do
not provide any kinematic data or spatial information during
swing phase, which are important aspects in pathological
gait assessment [15]. Alternatively, inertial sensors such as
accelerometers and gyroscopes can be used for gait assessment
as they provide spatio-temporal information and can be used
in combination to estimate parameters such as the trajectory
of foot during gait [16]. Technological advancements have
made them miniature, low-powered, durable, inexpensive and
highly mobile, thus making it possible to collect long-term
data from daily life. While some researchers have developed
gait event detection algorithms from gyroscope data, others
have developed from accelerometer signals [17]. In either
of these situations, researchers could potentially benefit by
applying improved algorithms to existing gait databases and
utilizing them for future applications and further gait analysis.
In the context of gyro-based algorithms, many methods have
been developed from angular velocity signals obtained from
shank-attached gyroscopes. For example, the approach in [18]
uses adaptive thresholds while [13], [19] use peak detection
to identify HS and TO from angular velocity signals. Other
approaches include [20], where the gait cycle is divided
into four gait phases represented in the form of a state
machine and the transitions are governed by a knowledge-
based algorithm, and [21], where an online Hidden Markov
Model based method is presented. In [12], a wavelet based
method is used to search for peaks associated with HS and TO
which is modified in [22], such that the method can be used
with minimal time delay. On the other hand, accelerometers
are also being increasingly used as they are low powered
devices, in the range of few microamperes, and have been
shown to provide reliable measures of gait parameters [17],
[23]. Most algorithms analyze signals obtained from individual
accelerometer axis by positioning the sensor in a specific
pre-defined orientation [2], [3], [13], [24]-[28] with the as-
sumption that the accelerometer shall stay statically positioned
throughout the experiment. However, it is quite likely that
external factors might disturb the original configuration during
long-term analysis [28], and thus either the axis alignment
should be checked and readjusted frequently or the exact
orientation of the accelerometer must be known throughout, to
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compensate for the misalignment of the axes. An alternative is
to analyze the magnitude of the resultant accelerometer signal
instead which makes it invariant to individual axis alignment,
as done in [4], [29]. While some methodologies instruct
subjects to walk in a straight line or a given path at a self-
selected pace [4], [13], [27], [29], others either pre-define a set
of walking speeds or ask the subjects to walk slowly, normal
and fast, in order to test the algorithmic robustness to different
velocities [3], [14], [24]-[26], [28]. A number of algorithms
apply thresholds either to filtered accelerometer signals or use
them at some intermediate stage after signal transformation, to
perform peak detection for identifying events [25], [28], [29].
The performance of such algorithms is usually dependent on
choosing the optimum values of these thresholds and tuning
other parameters associated with them. Another approach is
the use of machine learning techniques that depend strongly
on labelled training data [2], [27]. Since they are data-driven
approaches that resemble a black-box model [26], not only
might they be difficult to interpret by clinicians [30] but it also
remains unclear whether and how often such a system would
need to be retrained with changing scenarios. Other approaches
include [4], where a rule-based state machine is realized with
four gait states, namely, mid-stance, pre-swing, swing and
loading response; and the state transitions are determined by
five reference signals derived from tri-axial accelerometer sig-
nals. In recent years, wavelet transforms are being increasingly
used for gait analysis [31] and in particular to detect gait events
[12], [27], [32]-[35]. In [27], wavelet transform is used to
express the raw acceleration signals in time-frequency space
which gives high dimensionality features. Then dimensionality
reduction is done using a manifold embedding algorithm to
project the data to a smaller dimensional subspace in order
to obtain a minimal subset of features that contain salient
signal information. Finally, a Gaussian mixture model (GMM)
is applied to classify each time sample as HS, TO or no-event.

The existing gait event detection algorithms that offer po-
tential for use in daily living have been developed from data
collected in controlled indoor experiments placing a number
of assumptions on the experimental design itself. On the other
hand, human gait in the real-world is quite dynamic, and
frequently involves different gait speeds, changing walking
terrains, varying surface inclinations and regular turns among
other things. Although some recent attempts have been made
[27], it is highly challenging to imitate these scenarios in labs
or corridors. However, portable wearable systems can be used
to carry out long-term experiments directly in natural human
environments. Moreover, it is essential to distinguish between
walking and non-walking tasks prior to applying the event
detection algorithms [36] unless such a feature is included
in the algorithm itself. Instead of relying only on data-driven
approaches, existing domain knowledge about the fundamental
principles of gait and other prior auxiliary information could
be used to help guide the data analysis in order to achieve
greater robustness and accuracy. This paper proposes a novel
approach that exhibits how domain knowledge about human
gait can be incorporated into time-frequency analysis in order
to detect gait events from walking and running segments of
long-term accelerometer signals. The performance of the pro-

posed method is validated by experiments done in indoor and
outdoor environments, and the results are compared with two
state of the art algorithms. The rest of this paper is organized
as follows. Section II describes the proposed approach and
Section III outlines the data collection procedure. Section
IV presents the results of applying the algorithm in indoor
and outdoor environments. Finally, Section V discusses and
concludes this paper. The Appendix provides relevant details
required to implement a part of the proposed algorithm.

II. PROPOSED ALGORITHM
A. Domain Knowledge

To detect gait events from long-term accelerometer signals,
the algorithm should be able to tackle real-world issues such
as different gait speeds, changing environments and distur-
bances in sensor orientation. To achieve this goal, domain
knowledge in the form of principles or underlying fundamental
gait relationships between various governing gait parameters
can be utilized to drive and support the analysis. One such
underlying gait principle is the frequency relationship that is
present between gait event and gait cycle, i.e. the frequency
of the event (HS and TO) is twice that of the cycle. In the
proposed algorithm, the use of this knowledge is two-fold.
The first is to logically reason around choosing the appropriate
mother wavelet for wavelet transform, as there are insufficient
guidelines on the selection of wavelet basis function for gait
signals [31]. The second involves incorporating this fundamen-
tal frequency relationship into the signal analysis procedure,
which allows the algorithm to effectively tackle changes in gait
speeds. Thus, the raw acceleration signal is first pre-processed,
and this is followed by time-frequency analysis guided by
domain knowledge.

B. Time-Frequency Analysis

As mentioned in Section I, it is quite likely that the original
sensor orientation may be disturbed during long-term analysis.
Hence, to avoid misalignment issues, the magnitude of the
resultant accelerometer signal, Acc,., henceforth referred to as
the ‘composite acceleration signal’, is computed as:

Ace, = \/accl.2 + accy? + acc,? (D

where acc,,accy,acc, are the signals obtained from each
individual axis of the 3-axes accelerometer, respectively. Fig.
la shows the HS and TO events present in one gait cycle
of the composite acceleration signal. To exemplify the time-
frequency relationship between gait event and gait cycle,
continuous wavelet transform (CWT) is used [37]. It produces
a time-frequency decomposition where both, short-duration
high frequency and long-duration low frequency information
can be captured simultaneously. Another key advantage of
wavelet techniques is the variety of wavelet basis functions
available for signal analysis [38]. Domain knowledge is used to
select the appropriate wavelet based on the following criteria:
o It should highly correlate with both, the frequency of the
events and the frequency of the cycle in Acc,, in order

to clearly distinguish these spectral components in time.
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o It should be symmetric to avoid spectral domain skew-
ness. Moreover, a wavelet with a high degree of symmetry
leads to good performance for the analysis of periodic
signals [39].

Thus, the Morlet wavelet is chosen, which is a complex
sinusoid modulated by a Gaussian. It is defined as (1) =
7 1/4 iwon ¢=1°/2 where wy is the frequency and 7 is a
nondimensional time parameter [40]. The CWT of a discrete
time signal, z,, with equal time spacing ¢, is defined as the
convolution of xz,, with a scaled and translated mother wavelet

Yo(n):

n —n)d,

N-1 (
Wn(S) = Z xnl w*

n' =0

2)

S

where the (x) indicates the complex conjugate, s is the wavelet
scaling factor and n is the localized time index. Fig. 1b shows
the CWT of the Acc, signal where the time-frequency relation-
ship between the individual gait events of HS and TO and their
corresponding gait cycle can be simultaneously observed. The
event coefficients exist towards the finer scales that correspond
to higher frequencies while the cycle coefficients exist towards
the coarser scales corresponding to lower frequencies. As
shown in Fig. 1c, the event regions can be located by defining
appropriate boundaries along the spectral and temporal axes
and the position of the event can be derived by fitting a 2-
D Gaussian distribution over this region. However, defining
these boundaries is a challenging task as changes in gait speed
cause the event and cycle coefficients to shift along the scales,
as shown in Fig. 1d, because of shifts in the local signal
energy. Faster gait speeds mean higher gait frequency, and thus
the event and cycle coefficients exist towards the finer scales
and vice-versa. Hence, a tracking procedure is proposed that
utilizes domain knowledge to detect these transitions along the
scales such that the event regions can be determined.

Thus, as depicted in Fig. 4, the proposed algorithm consists
of three major steps that are performed systematically. These
steps are elaborated in the following subsections.

1) Pre-processing: First, composite acceleration signal
Acc, is computed from the individual acceleration signals
obtained from the 3-axes accelerometer using eq. 1. Then, the
CWT of this signal is computed using eq. 2, by convoluting
Ace, with a scaled and translated real-valued Morlet wavelet
to obtain W, (s). The range of scales to be considered for
CWT can be estimated from the non-linear frequency-scale
relationship of the Morlet [40], as shown in Fig. 2a.

2) Tracking the gait speed changes: As explained earlier,
changes in gait speed cause transitions of the event and
cycle coefficients along the scale or spectral axis and these
transitions need to be detected in order to find appropriate
event region boundaries. This is done by defining a tracking
procedure that utilizes the domain knowledge about the fre-
quency relationship between the gait event and cycle, i.e. the
frequency of the event (HS and TO) is twice that of the cycle.
The relative contribution of these two major frequencies to the
total signal energy at a specific scale s can be measured by
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Fig. 1. (a) HS and TO events in one gait cycle of a composite acceleration
signal, Acc,, obtained from the 3-axis accelerometer attached to the right
ankle. The amplitude of Acc, is approx. 10 m/s? during stance due to the
effect of the gravitational component. (b) Time-frequency representation (top
view) of the composite acceleration signal using CWT by the Morlet wavelet.
The HS and TO events exist in the finer scales (30-70) while the corresponding
gait cycle exists along the coarser scales (90-140). The color bar presented
in this subfigure is also applicable to subfigures lc and 1d. (c) Example of
spectral-temporal boundary, shown as semi-transparent walls, around the HS
and TO region in one gait cycle. (d) Example of CWT coefficients shifting
along the spectral axis with changes in gait speed. With faster gait speeds,
the event and cycle coefficients shift towards the finer scales and vice-versa.

the scale-dependent energy density spectrum E, as:

N-1
ES = Z |Wn<8)|2, s € [Lsmax} (3)
n=0

where |W,,(s)|? is the 2-D wavelet energy density func-
tion known as the scalogram that measures the total energy
distribution of the signal [37]. Peaks in Ej highlight the
dominant energetic scales and it is the event and cycle peaks
that contribute to most of the signal energy in the spectral
domain. Thus, the energy density spectrum E, of the CWT
coefficients can be approximated as a mixture of two 1-D
Gaussian distributions, where each Gaussian represents the
spectral signal energy of the event and cycle, respectively as:

“4)

S—fie

E. ~ a. e_< Te

S—Hc )2

2
) + a. e_( e

event cycle

In addition, the event-cycle frequency relationship can be used
to associate the two Gaussian means in F as:

®)

where p. and p. are the two most dominant scales represent-
ing event and cycle energy, respectively. Using this approxi-
mation, an a priori energy density spectrum estimate E; is
formulated which is used to start the tracking procedure. The
value of Gaussian mean p_ (in scale units) can be obtained
from the frequency-scale relationship of the Morlet, shown
in Fig. 2a, by making an initial assumption of the frequency

He =2 e
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Fig. 2. (a) Frequency-scale relationship for Morlet wavelet. So, for example, if
the minimum gait frequency is assumed to be 0.5Hz, then the corresponding
maximum scale to be considered for analysis is 208, denoted Smax. (b) A
priori energy density spectrum estimate Eg formulated by assuming the
initial frequency of the event to be 2Hz, i.e. pe =52 and o~ = 9.

of the event. The corresponding .~ is then computed using
eq. 5. Also for simplicity, both Gaussians are assumed to
be of unit amplitude and equal standard deviation o—, well
representing event and cycle energies. With these simplified
initial parameters, £/, can be formulated (shown in Fig. 2b)
as:

P ) I G B

To track the transitions of event and cycle coefficients along
the spectral axis, an overlapping running window is taken
along the temporal axis of the CWT coefficients. Within
each window, FE, is computed using eq. 3 and is cross-
correlated with the a priori estimate E_, which helps in
extracting event and cycle spectral information from E using
the Gaussian approximation formulation given in eq. 4. Based
on the extracted information, the parameters in £ are updated
to form an a posteriori estimate ES, which serves as the prior
for the next window. See the Appendix and Figures 6 and 7
for details of the entire tracking procedure within a window.

3) Locating and identifying the gait event: In order to set
up appropriate boundaries to define spectral-temporal event
regions as shown in Fig. lc, the information stored in the
tracking procedure is utilized. The Gaussian means fi. , and
flc,» that are stored in every window r hold information
about the local frequency of the event and cycle for the
time duration of that window. By successively compiling
them from all windows and selecting the CWT coefficients
at those particular scales, two distinct temporal signals are
obtained that match the frequency of the event and cycle in the
composite acceleration signal as shown in Fig. 3. The discrete
time signal matching the frequency of the event, denoted z¥,
is obtained as:

e

X, = Wn[(ﬂ6707ﬂe,la "'7[’\1‘6,7’? "'aﬂe,%—l)T]

(7

where W, is the CWT coefficients computed using eq. 2,
r is the window index, M is the window step, n is the
discrete time sample and N is the total number of samples
in the composite acceleration signal. Similarly, the discrete
time signal matching the frequency of the cycle, denoted z¥,,
is obtained as:

fo = Wn[(ﬂc,Oaﬂc,la ~~'7,ac,7"a “wﬂc N 71)T} (8)
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Fig. 3. (a) The figure shows CWT coefficients from one gait cycle. The two
temporal signals, x¢, and x¢,, are obtained by selecting the CWT coefficients
from scales corresponding to Gaussian means fie r and fic,- that are stored
in every window 7. As shown, zf, and ¢, hold information about the local
frequency of the event and cycle. The local minima points (m;) in ¢, give
the temporal bounds for individual event regions. The positions where the
signal x¢, changes sign from negative to positive mark the beginning and end
of consecutive gait cycles. (b) Example of the two temporal signals, ¢, and

x§,, obtained after low-pass filtering, that match the frequency of the event

and cycle in the composite acceleration signal, Acc,., respectively. All signals
have been standardized using zscore to scale them into the figure.

In order to remove high frequency noise and window edge
effects, both signals, = and z{,, are low-pass filtered us-
ing a zero-phase FIR filter with a cut-off frequency that is
higher than the maximum expected gait frequency, taken to
be 8Hz. The local minima points in z¢, defined by the set
{m: m is the local minimum in x¢ }, provides the bounds for
the individual event regions along the temporal axis (shown
as circular dots in Fig. 3). To determine the corresponding
spectral boundary for the event region, the scale sy, which
distinguishes the event and cycle spectral energies, is succes-
sively compiled from all windows as:

o

€))

T
SX,05 SA, 1y ooy SNy eeey Sy ﬂ—l]

e
S
A,n AT

So for a given temporal bound m;(n), the corresponding
spectral bound is given by the scale interval [1, sf\n] Thus, a
2-D spectral-temporal event region Ji(n, s) is located as:

mi(nﬂ 5) = W7l€[mi7mi+1] (5 € [1a Si,nD (10)
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The temporal position of the maximum CWT coefficient value
in M;(n,s) could be simply used to estimate the event.
However, highly noisy signal segments in Acc, could lead to
multiple local maxima in those CWT event regions and higher
uncertainty in the precise location of the event. Thus, a 2-D
Gaussian distribution fitting is done over each such spectral-
temporal event region R;(n, s), such that the peak of the 2-D
Gaussian fit gives the estimated location of the gait event in
scale and time. Time signal z7, is then used to identify an event
as an HS or TO. The positions where the signal x¢, changes
sign from negative to positive gives the temporal bounds for
consecutive gait cycles (shown as squares in Fig. 3). Thus,
within every gait cycle, the first event is labelled as an HS
and the next as a TO.

C. Performance Assessment

Two state of the art algorithms, Rueterbories et al. (Ag) [4]
and Aung et al. (A 4) [27], introduced earlier in Section I, were
also implemented in order to compare them with the proposed
method (Apys). The method of Hanlon et al. [41] was adopted
to compute the ground truth (GT) gait events from the FSR
measurements. A threshold value representing 39% of the
maximum FSR value was used to identify the HSs on the rising
edge of the FSR signal. The same procedure was repeated to
identify the TOs after excluding the HS segments (HS+10
samples) from the signal. The matching between the actual gait
events from the GT and the events detected by the proposed
algorithm was based on a temporal tolerance of 45 samples
or £0.039s. Any event missed by the FSR but detected by
the algorithms implemented was automatically considered a
false positive since the FSR was considered to be the GT.
Statistical measures of sensitivity, specificity and F1 score
were computed [42]. Conventionally, Mean Absolute Error
(MAE) is used to present the temporal accuracy of a method in
detecting gait events. The MAE was calculated (in samples) as
the mean of the absolute temporal difference between the true
positives of the algorithm and the corresponding GT events.
Any constant bias was removed prior to the MAE calculation,
for all algorithms. However, few true positives could lead
to a low MAE value, indicating high accuracy even though
many false positives might be detected by the method. Thus,
the stride time was calculated and the Kolmogorov-Smirnov
(KS) test was used to test the null hypothesis that the stride
time samples from the algorithm and the GT came from the
same empirical distribution [43]. If they did not, then the test
rejected the null hypothesis at the 5% significance level. The
KS test result provided an alternate perspective on the accuracy
of a method as it took the entire stride time distribution into
account, i.e. including both true positives and false positives.
The data collected were divided into training and test data
as the methodology in A4 required training of the model
parameters. One third of the total number of subjects from
the indoor and outdoor experiments were randomly selected
to represent the hold-out test data. The purpose of this was
to test the algorithmic performance in subjects that were not
included in the training procedure. Sensitivity, specificity and
the MAE of all algorithms were computed from the hold-out
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Fig. 4. Flow of the proposed gait event detection algorithm. The abbreviations
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and E‘S,T represent the a priori, current and a posteriori energy density
spectrum estimates in the current window index r, respectively. F_

N ; . o s,r+1
represents the a priori estimate in the next window with index r + 1.

test data. However, the F1 score was computed by including
the data from all subjects. Welch’s t-test was used to find
any significant differences between the F1 scores of any two
sample groups.

III. EXPERIMENTS

The study involved 20 healthy subjects (12 males and 8 fe-
males, average age: 33.447 years, average weight: 73.2+10.9
kg, average height: 172.6+£9.5 cm) with 11 subjects partici-
pating in indoor and 9 participating in outdoor experiments.
Each subject had a 3-axes Shimmer3 accelerometer (£ 8g)
attached to both ankles using Velcro straps. For the left ankle,
the accelerometer axis was positioned with the y-axis pointing
downward and the x-axis to the anterior direction while, for the
right ankle, the accelerometer was casually attached without
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TABLE I
SUMMARY OF THE EXPERIMENTS CARRIED OUT IN INDOOR AND OUTDOOR ENVIRONMENTS.
Al . | Total no. of
No. of . Type of . pprf)x © ‘a fo- ©
. Environment L. Description Speed duration gait events
subjects activity .
(minutes) recorded
4km/hr to 8km/hr;
Walk Start walking and switch to . m 'r O, m/ar
Indoor - & . ‘ fortabl d increasing in steps of 10 30944
1 Treadmill run running at any comfortable spee 0.4km/hr every minute
walk | Treadmill is set to (5%0%10%0%15%0%) gy e ed speed 12 25631
inclinations with 2 mins at each angle
Indoor - Walk Walking without any restrictions Self-selected speed 3 7361
Flat space Run Steady running or jogging Self-selected speed 3 10130
9 Outdoor - Walk Walking without any restrictions Self-selected speed 3 10844
Street Run Steady running or jogging Self-selected speed 3 8684
* Two subjects did not complete the entire duration of the activity due to bad weather conditions.
any planned orientation. The subjects were provided shoes that TABLE 11

had force sensitive resistors (FSRs) fixed at the extreme ends
of the sole in order to provide the ground truth values for HS
and TO. Both, the accelerometer and the FSRs had a sampling
frequency of 128Hz, and the FSR output was stored locally
on the Shimmer3 microSD card using an external expansion
board. After every experiment, the data was transferred to
a remote computer and the analysis was made offline using
MATLAB v8.5 (MathWorks, USA). Informed consent was
obtained from all subjects prior to the experiments. The
study was approved by and all procedures were conducted in
accordance with the guidelines of the Ethical Review Board
of Lund, Sweden. Table I summarizes the experiments carried
out in different environments. The indoor experiments were
conducted on the treadmill and in a large, empty flat space.
The outdoor experiments were conducted in the form of a
closed path on a street that was approximately 50% flat and the
rest being equally uphill and downhill. The path included four
turns, and the uphill and downhill inclination angles ranged
between 5° and 10°. Except when on the treadmill, the subjects
were free to select their pace and change directions during
all other activities. Manual inspection revealed that, for some
data sets, few events were missed due to extremely low FSR
values. The percentage of the missed FSR events for indoor
and outdoor data sets was 0.05% and 0.09%, respectively. Four
subjects from the indoor and three subjects from the outdoor
experiments were selected at random to act as the hold-out
test data.

IV. RESULTS

Table II shows the mean and standard deviation of these
performance scores for indoor (flat space) walking test data,
which is the environment in which most gait event detection
algorithms have been developed. Each cell in the table displays
a distinct performance score for detecting HS or TO from the
accelerometer signal obtained from the left (LF) or right foot
(RF). The column under LF displays the score when the sensor
is positioned at a fixed pre-defined axis while that under RF
displays the score when the sensor is positioned arbitrarily,
thus reflecting the influence to changes in axis orientation.
The statistical measures of sensitivity and specificity display
the true positive rate and the true negative rate of detecting

MEAN (AND STANDARD DEVIATION) OF THE PERFORMANCE SCORES
COMPUTED FOR INDOOR (FLAT SPACE) WALKING TEST DATA. Appm, Aa &
AR STAND FOR PROPOSED METHOD, METHOD [27] AND METHOD [4].

Indoor walk: Flat space
Performance
measures LF RE

HS TO HS TO

Apar 0.99 0.98 0.99 0.99
(0.00) | (0.03) | (0.00) | (0.00)

Sensitivity As 0.80 091 0.99 0.97
(0.36) | (0.10) | (0.00) | (0.02)
Ar 0.98 0.97 0.98 0.98
(0.00) | (0.03) | (0.00) | (0.01)
Apar 0.99 0.98 0.99 0.99
(0.00) | (0.03) | (0.00) | (0.00)
Specificity An 0.96 0.00 0.95 0.07
(0.05) | (0.00) | (0.05) | (0.08)
Ar 0.99 0.97 0.99 0.98
(0.00) | (0.03) | (0.00) | (0.01)
0.55 0.77 0.66 0.62
AN 066) | 094 | ©.69 | 0.73)
MAE

(in samples) Ax 0.85 0.90 0.74 0.88
(0.88) | (0.98) | (0.80) | (1.18)

Ar 0.67 0.98 0.86 0.79
(0.74) | (0.98) | (0.85) | (0.77)

KS test Apm 2/a 4/a 4/a 44

datasets not rejected Aa 2/4 0/4 3/4 0/4

( total datasets tested ) »AR 4/4 4/4 4/4 4/4
No. of GT gait events 682 678 680 678

HS and TO, respectively. The MAE, in sample units, gives the
temporal accuracy of the algorithm for the correctly identified
events. The KS test result is shown as a ratio of how many
stride time data sets were not rejected by the null hypothesis
compared to the total stride time data sets tested. The last
row of the table shows the total number of GT gait events
recorded from the test set data. The remaining rows present
a comparison with the implemented methods in A4 and Ag.
Table IIT shows the mean and standard deviation of the perfor-
mance scores for all indoor activities grouped together, only
outdoor walking and all outdoor activities grouped together.
The structure of Table III is similar to that of Table II, where
each cell displays a score for detecting HS or TO from LF or

1534-4320 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

DOI 10.1109/TNSRE.2016.2536278, IEEE



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2016.2536278, IEEE
Transactions on Neural Systems and Rehabilitation Engineering

TABLE III
MEAN (AND STANDARD DEVIATION) OF THE PERFORMANCE SCORES COMPUTED FOR ALL INDOOR ACTIVITIES GROUPED TOGETHER, ONLY OUTDOOR
WALKING AND ALL OUTDOOR ACTIVITIES GROUPED TOGETHER. THE SCORES PRESENTED ARE COMPUTED FROM THE TEST DATA OF EACH ACTIVITY.
Apm, Aa & AR STAND FOR PROPOSED METHOD, METHOD [27] AND METHOD [4], RESPECTIVELY.

Indoor: Treadmill & Flat space Outdoor
Performance Walk & run Walk Walk & run
measures LF RF LF RF LF RF

HS TO HS TO HS TO HS TO HS TO HS TO

Ay 0.99 0.97 0.99 0.99 0.99 0.98 0.99 0.98 0.99 0.99 0.99 0.99
(0.00) | (0.02) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.01) | (0.00) | (0.00) | (0.00) | (0.00)

Sensitivity An 0.97 0.77 0.99 0.92 0.99 0.94 0.45 0.98 0.99 0.89 0.70 0.54
(0.05) | (0.16) | (0.01) | (0.10) | (0.00) | (0.07) | (0.47) | (0.00) | (0.00) | (0.02) | (0.24) | (0.16)

Ar 0.84 0.75 0.82 0.71 0.98 0.97 0.99 0.98 0.70 0.43 0.69 0.44
(0.12) | (0.23) | (0.12) | (0.23) | (0.00) | (0.02) | (0.00) | (0.00) | (0.02) | (0.04) | (0.02) | (0.03)

Apar 0.99 0.97 0.99 0.99 0.99 0.98 0.99 0.98 0.99 0.99 0.99 0.99
(0.00) | (0.03) | (0.00) | (0.00) | (0.00) | (0.01) | (0.00) | (0.02) | (0.00) | (0.00) | (0.00) | (0.00)

Specificity A 0.92 0.08 0.84 0.06 0.83 0.01 0.63 0.04 0.84 0.19 0.72 0.01
A (0.12) | (0.12) | (0.21) | (0.11) | (0.21) | (0.02) | (0.53) | (0.07) | (0.07) | (0.24) | (0.20) | (0.02)

Ar 0.95 0.85 0.94 0.82 0.99 0.97 0.99 0.98 0.99 0.71 0.96 0.71
(0.08) | (0.11) | (0.05) | (0.11) | (0.00) | (0.02) | (0.00) | (0.00) | (0.00) | (0.02) | (0.02) | (0.02)

Aoyt 0.92 1.50 1.02 1.17 0.78 0.80 0.66 0.93 1.29 1.82 1.08 1.50
MAE (0.93) | (1.28) | (0.99) | (1.12) | (0.77) | (0.99) | (0.79) | (1.13) | (1.08) | (1.32) | (0.91) | (1.23)

. 1.08 1.89 1.05 1.27 1.03 1.68 0.88 0.99 1.13 2.50 1.64 1.51

(in samples) Aa

(1.06) | (1.52) | (0.97) | (1.21) | (0.88) | (1.68) | (0.93) | (1.12) | (0.96) | (1.44) | (1.16) | (1.20)

Ar 1.04 1.28 1.27 1.30 0.98 1.02 0.75 1.21 1.23 1.23 1.30 1.22
(1.05) | (1.17) | (1.22) | (1.24) | (0.95) | (1.00) | (0.82) | (1.18) | (1.05) | (1.08) | (1.19) | (1.22)

KS test Apm | 12/12 | 1212 | 12/12 | 12/12 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3

( datasets not rejected ) Aa 6/12 0/12 5/12 0/12 1/3 0/3 0/3 0/3 1/3 0/3 0/3 0/3

total datasets tested Ar 5/12 5/12 4/12 4/12 3/3 3/3 3/3 3/3 0/3 0/3 0/3 0/3
No. of GT gait events 6848 6837 6847 6842 566 562 565 562 1266 1264 1267 1264

RF, for a particular environment and activity (listed at the top
of the table). The best performance scores have been shown as
bolded font in both tables. Fig. 5 shows the mean F1 score of
all algorithms for detecting HS and TO in indoor and outdoor
environments, obtained using all subjects’ data.

V. DISCUSSION AND CONCLUSION

The experiments were specifically designed to test the
performance of the algorithm on various aspects of robust-
ness in a real-world setting. The objective of conducting
experiments on a treadmill, in an indoor space and on an
outdoor street was to assess the performance in a variety
of environmental conditions consisting of different surfaces,
varying inclinations and regular turns. The aim of having fixed
and arbitrary sensor orientations on the left and right ankles
was to evaluate the influence of changes in axis orientation on
the method’s performance in these environments. Similarly,
the goal of defining walking and running activities was to
evaluate the performance at different gait speeds. Most gait
event detection algorithms, such as A, and Ag, have been
developed from walking data collected in indoor settings.
The proposed algorithm demonstrates good performance for
detecting both HS and TO from indoor walking data, implied
by the high sensitivity, specificity and F1 scores shown in
Table II and Fig. 5. Moreover, it detects them with high
temporal accuracy shown by the low MAE values that are
below one sample and the KS test results that do not reject
any of the four data sets tested. In comparison, Ar also

shows high performance scores for detecting both HS and TO,
while A, detects HS significantly better than TO (p<0.05).
Although A, has an average MAE of below one sample, the
low KS test result indicates the occurrence of excessive false
positives, especially for detecting TO. All algorithms exhibit
no influence to changes in axis orientation with no significant
difference between the F1 scores of the left and right foot
(»>0.05). The proposed method also exhibits robustness to
different gait speeds in indoor environments. It has high
performance scores for all the indoor activities (walk and run)
grouped together, as shown in Table III and Fig. 5. While Ag
had exhibited good performance for indoor walking, it under-
performs when running is included, with a significantly lower
F1 score as compared to walking (p<0.05). Moreover, when
running is included, Ag’s performance decreases even more
for detecting TO as compared to HS (p<0.05). In contrast
to the controlled indoor experiments, the outdoor experiments
were semi-controlled and representative of humans’ natural
environment in the real-world. The outdoor walking and
running data grouped together plausibly represented the most
diverse scenario, with unconstrained outdoor conditions and
different gait speeds. The proposed method demonstrated good
performance in this scenario, implied by the high performance
scores shown in Table III and Fig. 5, with no significant
difference between the indoor and outdoor F1 scores (p>0.05).
It also performed well in terms of temporal accuracy, with an
average MAE of 1.42 samples and none of the datasets being
rejected by the KS test. Both As and Agr had their lowest
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Fig. 5. Mean F1 scores of all algorithms for detecting HS and TO in indoor
and outdoor environments. The mean values for each given activity on the x-
axis were calculated by averaging the F1 score values obtained using data of
all subjects. The activities labelled Inwqik, Inay, Outywyx and Outay represent
only indoor (flat space) walking, all indoor activities grouped together, only
outdoor walking and all outdoor activities grouped together, respectively. The
mean F1 score of detecting HS for a particular activity is shown as a square
while that for detecting TO is shown as a triangle. The F1 score reaches its
best value at 1 and worst at 0. Apy, Aa & Ag stand for Proposed Method,
method [27] and method [4], respectively.

F1 scores for detecting events in this scenario as compared to
all other environments in which they were tested. It was also
significantly lower than their F1 scores for indoor activities
grouped together (p<0.05). This might be attributed to the
fact that both A, and Ag were designed using indoor walking
data only and since activities in outdoor conditions are more
uncontrolled and dynamic, they introduce more noise in the
accelerometer signals. Moreover, it is difficult to make an
objective comparison between algorithms that were designed
using different datasets and protocols. However, the results
exhibit that the proposed method could be directly applied in
different environments for long-term applications.

The ability of the proposed method to effectively tackle real-
world challenges is enabled by the use of domain knowledge
to guide the time-frequency analysis. Knowledge about the
event-cycle frequency relationship present in gait is utilized
to logically reason around choosing the appropriate mother
wavelet (Morlet), in order to gain a distinct separation between
the event and cycle frequencies in time, as shown in Fig.
1b and lc. It is also utilized in the tracking procedure to
tackle any gait speed speed changes, which is a substantial
requirement for many real-world applications. In addition, the
scale-frequency relationship of the Morlet is used to select the
appropriate scales for analysis based on the frequency of the
activity. While the proposed method was developed with the
accelerometer placed around the ankle, it still remains to be
investigated if and how the technique may be utilized to detect
events from other parts of the body. With an arbitrary sensor
placement on the body, it might be challenging to attribute the
sensor information to the left or right foot, thus making it diffi-
cult to identify and label individual events. However, it would
be possible to detect gait cycles using the tracking procedure
presented in this method. Another limitation of the proposed

method is that it has been validated only on healthy gait.
Future work is needed to test the method on pathological gait
and make any required adaptations to the algorithm. A service
has been provided (http://islab.hh.se/mediawiki/Gait_events) to
assist interested readers in making use of the proposed method
with their data.

To conclude, this paper proposes a novel approach that
exhibits how domain knowledge about human gait can be
incorporated into time-frequency analysis in order to develop a
robust algorithm that can detect gait events from long-term ac-
celerometer signals. The ability of the algorithm to effectively
adapt in real-world scenarios is validated by experiments done
in indoor and outdoor environments that involve different gait
speeds, changing walking terrains, varying surface inclinations
and regular turns among other things. The proposed algorithm
is shown be accurate and robust with consistently high perfor-
mance scores across all datasets.

APPENDIX

This section elaborates on the details required to implement
the tracking procedure to tackle changes in gait speeds. As
explained earlier in Section II-B2, in order to track the
transitions of the event and cycle coefficients, an overlapping
running window is taken along the temporal axis of the CWT
coefficients. In principle, a window size that captures the
information about one gait cycle would be sufficient but it
is practically desired to be large enough to account for signal
noise and should thus include additional gait cycles. In this
paper, the running window size is taken to be 3 or 6 seconds
with a 50% overlap. The entire tracking procedure within a
given window consists of the following steps (refer Fig. 6):

i. The energy density spectrum E ;. of the CWT coefficients

selected from the current window is computed using eq. 3
as By, = Y UM, (5)[2 where s € [1, Smax], 7 is
the window index and M is the window hop size, i.e. the
number of samples by which each successive window is
advanced in time. F, , highlights the dominant energetic
scales of event and cycle in the current window r.

ii. The a priori estimate E; » 1s cross-correlated (x) with
E - in order to measure the scale delay 7, between them,
calculated as 7, = argmax ey ;. (L, % Es ). For the
first window (r=1), the a priori estimate formulated in eq.
6 is used. Scale delay 7, reflects the change in gait speed
from the previous window. However, very fast transitions
in gait speeds would cause large shifts in the local signal
energy. As such, the Gaussian mixture parameters in £ .
may be very different from that of E;,, resulting in
an incorrect 7, value due to poor alignment of the two
signals. Thus, Constraint I is used to verify that 7, lies
within the expected scale bounds:

Hep+Tr>1
N;r+7—r<smax

Constraint I : (11)
iii. If Constraint I is satisfied, then the a priori estimate E_,.
is updated to form an a posteriori estimate Ej .. This
is done by first calculating a scale, sy, = argmin E, ,.
where s € [ug,. + Tp, i, + 7], that helps to distinguish
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. 6. Example of the steps involved in the tracking procedure of window

index r=1. The first subfigure shows the a priori energy density spectrum
estimate g , to start the tracking procedure. The second subfigure shows

the

scale delay, 7 in the cross-correlation result of (Eg , x Es ). The

third subfigure shows s , which distinguishes the scales corresponding to
event and cycle energies in E, ;.. The fourth subfigure shows the a posteriori
estimate /s whose parameters are stored after both constraints are satisfied.

iv.
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the range of scales in which the event and cycle energies
lie in E,,. The set of equations used to form the a
posteriori estimate I . are:

ﬂe,r arg ma‘xse[l,s,\,r]EsaT

&e,r = InaXS€[17S>\,7~]ESwT

&e,r = Ue_,r

ﬂc,r = argmMaXge(s, . smax]Zs,r

&c,r = ma‘XSE[SA,7vysmax]ES7r

a’c,r = 0-0_77‘ (12)

To verify that the updated Gaussian means in EA” uphold
the frequency relationship stated in eq. 5, a constraint is
applied as Constraint I1I:1.9 < % < 2.1. The relation-
ship is relaxed by 5% to accommodate effects of signal
noise and low frequency resolution in finer scales [44].

If either of the constraints are not satisfied, then curve
fitting of a two term 1-D Gaussian mixture is per-
formed over E,, and the resulting fit parameters are
used to constitute E’Sﬂﬁ. Since curve fitting is sensitive
to starting point declarations, the event-cycle frequency
relationship can be utilized to define two sets of possible
starting points for {ae, e, Oc, Gc, e, 0c}, to guide the
fitting procedure in order to obtain a good fit. These
are Setl = {ay,ty/2, Smax/16, Gy, ty, Smax/8} and
Set2 = {ay, ly, Smax/16, Gy, 2Ly, Smax/8} Where p, is
the most energetic scale in E; - i.e. argmax,epy 5 4
and a,, is the corresponding energy value at that scale i.e.
MAXc[1, 5na.] Fs,r- Thus, two fits over E; ;. are obtained
by using each set as the starting point. In order to decide
the better fit, an initial check is made to verify whether

Es,r

x10

—E(s,r)
.l ---RMSE;#(Fit1) = 0.0012
---RMSE;#(Fit2) = 0.0009
2 « RMSE, 0, (Fit1) = 0.0008
210/ % | + RMSE,.,,(Fit2) = 0.0027
€
<
5| ]
¢ —
0—‘,:"——' | | | e .
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Scales

Fig. 7. Example of how RMSE computation is influenced by the lower energy
values in Ejs . Even though Fitl is a better fit than Fit2, initially it gives
a higher RMSE;,,;+ because it includes lower energy scales corresponding
to the lower 10% values of E . However, if these lower energy scales are
excluded, then Fitl gives a lower RMSE, ¢, indicating that it is a better fit
as compared to Fit2.

the fit parameters lie within the expected bounds, i.e.
{ae,ac} > 0 and {pe, tic, 0,0} € [1, Smax), and a fit
that lies outside these bounds is rejected. If both fits
lie within the expected bounds, then root mean square
error (RMSE) is computed for both the fits. In the RMSE
computation, only high energy density values are taken
into account, and the lower 10% of E,, is excluded
to remove its influence on the RMSE calculation as it
does not contribute to the event and cycle energies, as
shown in Fig. 7. The better fit is chosen as the one
with the lowest RMSE value, following which Constraint
II is verified again to ensure that the fit is correct.
In case of violation, the a posteriori estimate EAM is
constituted directly from the existing parameters of the a
priori estimate E_, without any update from the current
window, i.e. E‘S’T — E;r.

The Gaussian parameters in a posteriori estimate EASVT
and scale s) , computed in the current window are stored
following which EASW serves as the prior for the next
window, ie. E_ 4 ES,T.
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