
���������+�0�0�6�6�6�������
���������������)��������

���������������	

���������������������������	�
���������������
���������������������������������������������������������������������������� �� �� �����	�
�����	�
�
�����	�
������ ���	���������	���������	���� �������
������
�
�	���������
�����
�
�����	���������������������
������� �����������!�
�"��������������������������

�
���	���	���������
�������	������������������������������������������������������ ��

�� ���
�������������������� ������������ �������� ���������� ���������������� ������������� �����!�"�#�$�%�&

�' �����������
�������
�(�������������������������������)�����������������������������������)�������������� ���
���)������ ���������	�)����������

�*���+���������������� �� �� �����	�
�����	�
�
�����	�
������ ���	���������	���������	���� �������
���������
�	������ ���
���� �
�
�����	�������� �� �� �����!���������,�-�-���,�%�$�&��

� ���������������������������*�.�.�.���*�����������������������)�������������������������������/���
���������������������'�	����������������

���������+�0�0���1�����������������0�$�#���$�$�#�2�0�*�� �/ �' ���"�#�$�%���3�,�4�3�$�%�%

�5���� ������ ���������������������������������6�����7�������������������������������������)�����	�
�)������������������������

�!���&���"�#�$�%���*�.�.�.����� �������������)���	�������������������������������������)������������������������������� �������������������������������*�.�.�.�����	�������
�������
��������������������
���)�)���������������	�������������������)�	�������������������������������0���������	�
�)���������������������������������������)���������������
���������������������������������������������)�����	��������������
�����������������������6�������)�)���������
�����6�����7���������������������)���������������������������
�	�����������������������
���������������)�����������������������	�����������������8���������8��������������
���������������������������������������6�����7���������������������6�����7����

�����������������	�������������	�����	������������������������
���������+�0�0�	�������7�
�������0���������)�
���9�	�����:�	�����+���
���+�����+�7�����+�����
�����$�4�"�2�#�"



Adaptive Object Centered
Teleoperation Control of a Mobile Manipulator

Fredrik B	aberg, Yuquan Wang, Sergio Caccamo, PetterÖgren

Abstract— Teleoperation of a mobile robot manipulating
and exploring an object shares many similarities with the
manipulation of virtual objects in a 3D design software such
as AutoCAD. The user interfaces are however quite different,
mainly for historical reasons. In this paper we aim to change
that, and draw inspiration from the 3D design community to
propose a teleoperation interface control mode that is identical
to the ones being used to locally navigate the virtual viewpoint
of most Computer Aided Design (CAD) softwares.

The proposed mobile manipulator control framework thus
allows the user to focus on the 3D objects being manipulated,
using control modes such asorbit object and pan object,
supported by data from the wrist mounted RGB-D sensor. The
gripper of the robot performs the desired motions relative to the
object, while the manipulator arm and base moves in a way that
realizes the desired gripper motions. The system redundancies
are exploited in order to take additional constraints, such
as obstacle avoidance, into account, using a constraint based
programming framework.

Index Terms— Virtual object, mobile manipulation, teleoper-
ation

I. I NTRODUCTION

Teleoperated mobile robots equipped with manipulators
are expected to play key roles in futureSearch and Rescue
and Explosive Ordnance Disposaloperations. In these ap-
plications, robots are sent to places where it is not safe for
humans to go, but dif�cult tasks still have to be carried out.

It is well known that robot teleoperation is a demanding
task [1], and a lot of research is currently aimed to improve
performance and reduce operator workload in these safety
critical applications.

It has been noted that robot teleoperation has many
similarities with playing �rst person perspective computer
games [2]. In both cases a human is controlling an entity that
is moving around in a remote environment trying to achieve
a speci�c task. These similarities have been used to improve
many parts of the teleoperation, from using gamepads for
input, to designing control modes and the presentation of
video streams and other sensing modalities.

In this paper, we draw inspiration from another area of
virtual reality. Instead of computer games, we look at the in-
terfaces of3D design softwaresuch as Autodesk AutoCAD,
SolidWorks, V-REP1 and Gazebo1. These software tools
are used by engineers and architects to make 3D drawings
and designs. When manipulating objects, the users navigate

The authors are with the Computer Vision and Active Perception Lab.,
Centre for Autonomous Systems, School of Computer Science and Com-
munication, Royal Institute of Technology (KTH), SE-100 44 Stockholm,
Sweden. e-mail: f fbaberg jyuquan jcaccamo jpetter g@kth.se

1The last two examples are actually robot simulators, but this functionality
concerns creating 3D environments

Fig. 1. Concept illustration. A mobile manipulator with a virtual sphere.
The blue cube in the center of the sphere is the object to be examined. In
the control modeorbit object, the end effector moves on the sphere while
keeping the object in the center of view, when commanded left/right and
up/down.

the virtual space using the functionspan objectand orbit
object, see Figure 1. These functions are the core part of
an interface that is used daily by thousands of professionals
and has been re�ned in many iterations. Therefore, there is
reason to believe that the same functions would be useful
when exploring and manipulating remote objects with a
teleoperated mobile manipulator equipped with a RGB-D
sensor2.

With the proposed approach, the user can choose between
pan objectand orbit object when controlling the robot. In
both control modes, the full pose of the end effector, position
and orientation is controlled using a gamepad, and the video
stream from the RGB-D sensor mounted on the wrist of the
end effector is shown to the user.

In pan object, the sensor equipped end effector moves in
a so-called robot centric way, known from the literature, see
e.g. [3]. A requested translation forwards results in the end
effector moving on a straight line in the direction towards
whatever is in the center of view, and a requested translation
to the right results in a straight line to the right.

In orbit object, the motions areobject centric, and relative
to the object in the center of the sensor view. Also here, as
for pan object, a requested forward translation results in a

2Red Green Blue plus Depth, image including depth/distance information.
For instance Microsoft Kinect, Intel RealSense, PrimeSense.



straight line motion towards the object in the center of the
view. A requested translation to the right on the other hand,
results in a circular arc trajectory orbiting the object in center
of the view, and keeping that object in the center of the view
by a corresponding rotation, see Figure 1. The radius of the
orbit motion is given by the current distance to the center of
the object, which is estimated using the RGB-D sensor.

The two control modes described above complement each
other, and are often used in an alternating fashion. However,
aspan objectis equivalent with robot centric control, [3], we
focus this work onorbit objectwhich is new to the robotics
community.

In the design applications,orbit objectis useful for explor-
ing an object, and moving into a viewpoint that allow you to
add or remove details. In the robot teleoperation application,
we believe thatorbit object would be useful for exploring
objects, getting good camera views from all sides. It would
also be useful when gathering 3D data from the RGB-D
sensor, in order to create a high quality 3D-model. Finally,
it would be convenient when deciding on the appropriate
grasp point for lifting an object, or operating a door handle.

The approach presented in this paper realizes theorbit
object control mode using constraint based programming.
To realize the appropriate motion of the end effector, the
con�guration of the complete mobile manipulator must be
taken into account. Sometimes it is best to move only the
arm, but sometimes the mobile base has to be moved to
increase the range of the arm, while simultaneously taking
obstacles and internal singularities into account. All this has
to happen automatically, enabling the user to focus on the
task at hand, which is being carried out by moving the end
effector relative to the object of interest.

The contribution of this paper is that we show how
to realize the control modeorbit object in a teleoperated
mobile manipulator. To the best of our knowledge, this has
not been done before. We also show how to incorporate
avoidance of obstacles into the framework using constraint
based programming.

The structure of the paper is as follows. First, Section
II describes related work. Then, in Section III we will
provide some notation and de�nitions, and formulate the
problem, before proposing a solution in Section IV. The
solution is veri�ed with experiments in Section V, and �nally
conclusions can be found in Section VI.

II. RELATED WORK

As the proposed approach involves teleoperation of a mo-
bile manipulator, we will �rst discuss work on teleoperation
of mobile robots, and then manipulators.

Within the area of search and rescue robotics there has
been a lot of work on teleoperation of mobile robots, and
a nice overview of the problems involved can be found
in [1] and [4]. While [1] describes the domain in detail,
[4] suggest possible improvements in terms of multimodal
feedback, such as using combinations of video, audio, and
haptics.

In a study based on experiences from the AAAI Robot
Rescue Competitions in 2002-2004 [5], the authors noticed
an evolution over time, towards a large single interface, with
a large percentage of the screen dedicated to video.

The idea of supporting user situation awareness with a
virtual 3D rendering of the robot and its surroundings was
explored in [6] and [7] and the use of multi-touch Operator
Control Units (OCUs) including fusion of sensor information
to lower the operator's cognitive load was investigated in [8].

In [9] the authors identify seven fundamental problems in
OCU design, propose a solution focussing on sensor data
presentation, and present results from end-user evaluations.

The proposed paper differs from the work above in that
none of the above consider the actual control layer of the
OCU, instead they focus on how information is presented to
the operator.

Within the area of mobile robot control, a lot of inspiration
has been drawn from similarities between computer games,
and robot teleoperation, and [2] is an early study on this
topic. There it is argued that Video Game Based Frame-
works (VGBF) are very useful for both evaluating existing
interfaces and inspiring the design of new ones. The authors
then go on to make a detailed categorization of input and
output devises as well as methods used in different games
and discuss different combinations of real video streams and
rendered images of the vehicle surroundings.

One way of using inspiration from computer games was
presented in [10], where the classical robot control mode of
Tank Controlwas replaced withFree Look Controlwhich is
used in many computer games.

In our work, we draw inspiration from virtual interfaces,
but our inspiration comes not from computer games, but from
professional modeling tools such as AutoCAD.

There has also been a lot of studies into the area of teleop-
eration for manipulation. The importance of different refer-
ence frames, i.e. robot centric or view centric, was explored
in [3], where the author propose an Ecological interface
design that aims to make relationships in the environment
perceptually evident to the user, in order to minimize the
effort needed for understanding those relationships.

The use of smartphones or tablets to control a manip-
ulator was investigated in [11], where the operator could
either modify the target position of the end effector in
the workspace, or use the high level skill of autonomous
grasping.

The effect of stereoscopic displays on task performance
and cognitive workload was investigated in [12], and perfor-
mance on different autonomy levels was studied in [13]. The
levels included direct control, waypoint control, indication of
general grasps area, and completely autonomous grasping.

Performing manipulation with user input in terms of 2D
click and drag input from a mouse was explored in [14].
There, �ve different strategies were investigated, including
joint space control, cartesian space control, and 3 versions
of obstacle avoidance based on reactive control, �ltered
prediction and motion planning.

Teleoperation of a 8 DoF mobile manipulator using a 6



DoF joystick was investigated in [15]. The authors propose
a control approach where the user controls the gripper pose,
while the mobile base adapts and follows the gripper when
possible and needed, to avoid over extending the arm.

The approach proposed in this paper differs from all the
above in that the control mode is neither robot centric nor
world centric, but object centric. In theorbit object control
mode, a commanded motion to the right results in moving
right with respect to the gripper, but keeping a constant
distance to the object. This is motivated by an argument
similar to the ones suggesting inspiration from computer
game interfaces [2], but this time the inspiration comes from
the professional 3D design community.

Motions can be constrained through virtual �xtures [16],
and the approach used in this paper can be seen as such in
the sense that regions can be restricted through constraints.
However our implementation does not use force sensors for
feedback, which is the case in for instance [17].

Introducing different constraints for restricting motion
could introduce con�icts, in which case it could be necessary
to prioritize [18]. In this paper we do not explicitly consider
priorities, however by changing weights and introducing
slack variables this could be considered.

III. PROBLEM FORMULATION

In this section, we describeorbit object in more detail,
and establish the notation used in the paper.

Boldface will indicate vectors, and the indicesw, b, a, e, o
denoteworld, robotbase,arm base,end effector andobject
respectively. The frames can be seen in Figures 2 and 3.

q - joint positions
pi

j - position of objectj in frame i
r(t) - distance between end effector and object
J - Spatial Jacobian
fi - constraints
Adgxy - Adjoint transformation from x to y
ei

j - unit vector j in frame i
�pi j - velocity of object j with respect to objecti (in
frame i).
Ri

j - Rotation matrix of object j in relation to frame i.
ve

d - desired end effector velocity (user input)
we

d - desired end effector angular velocity (user input)
u - joint velocity for arm+base, from optimization
problem.
Ie; Iie - Set of indices for equalities and inequalities.

A dot above a symbol indicates differentiation with respect to
time, e.g.�q denotes the joint velocities. Superscript indicates
which frame is used. We now de�ne the control mode.

Orbit Object To move on the surface of a sphere, centered
on the object, with a �xed radius. In Figure 2 this would
correspond to moving along the surface of the sphere, with
constant radiusr(t), and with x-axis atf eg aligned with the
vector betweenf eg andf og, i.e. always facing the centre of
the sphere.

Given the de�nition above, we aim to solve the following
problem.

Fig. 2. Illustration of frames and points de�ned, side view.

Fig. 3. Illustration of frames and points de�ned, top view.

Problem 3.1: Implement the control mode above, while
avoiding collisions.

We will now describe the proposed solution.

IV. PROPOSEDSOLUTION

We propose to use a Constraint Based Programming (CBP)
framework in order to solve Problem 3.1. Following the
approach presented in [19] we �rst describe the problem we
want to solve, and then state a reactive algorithm where a
convex quadratic programming (QP) problem is solved in
each timestep, taking the user input and the current state of
all constraints into account.

Problem 4.1:Given a time interval[t0; t f ], initial state
q(t0) = q0 and a control system

�q = h(q;u);

where q 2 Rn and u 2 Rm. Let us formulate the control
objective in terms of a set of functionsfi : Rn ! R and
boundsbi 2 R, i 2 I � N as follows

min
u(�)

f j (q(t f );t f ); j 2 I (1)

(s.t.) fi(q(t);t) � bi ; 8i 2 Iie; t > t0 (2)

fi(q(t);t) = bi ; 8i 2 Ie; t > t0 (3)

where we assume that the constraints are satis�ed att0, i.e.
fi(q0; t0) � bi for all i 2 Iie and fi(q0; t0) = bi for all i 2 Ie
and Iie; Ie � I .

Now, instead of addressing Problem 4.1 above directly, we
look at a related problem where the constraints above are
turned into feedback form, with controls moving the system
back towards satisfying the constraints if they are momen-
tarily not met due to e.g. uncertainties or disturbances. The



related problem describes an online local controller, that also
takes user input into account at each time step.

Problem 4.2:

min
u

�f j (q(t);u;t) + uTQu; j 2 I (4)

(s.t.) �fi(q;u;t) � � ki( fi(q;t) � bi); 8i 2 Iie; (5)
�fi(q;u;t) = � ki( fi(q;t) � bi); 8i 2 Ie; (6)

where ki are positive scalars andQ is a positive de�nite
matrix.

First we look at the inequalities. It is clear that Equa-
tion (2) is satis�ed for t > t0 as long as Equation (5)
is satis�ed. Furthermore, in the worst case, if we have
equality in Equation (5) then the bounds of Equation (2)
will be exponentially approached, but not violated, with time
constant 1=ki . Note that the bound willonly be approached
if motion in that direction corresponds to an improvement
in the objective function, or is needed with respect to some
other constraint.

Looking at the equalities, we also see that as long as
Equations (6) are satis�ed, so will (3), fort > t0. Further-
more, if we have an error in the desired equality (3), then (6)
will drive that error down to zero exponentially, with time
constant 1=ki .

Then in the objective function, we know that (1) is kept
small as long as its derivative�f j (q(t);u;t); j 2 I is minimized.
We smooth the inputu by adding a quadratic regularization
term uTQu in (4), whereQ is a diagonal positive-de�nite
matrix designed to weight elements inu.

In order to address Problem 3.1 we need to provide a
mapping between Problem 3.1 and 4.1. Then, we rely on the
formalism above and iteratively solve Problem 4.2 in order
to solve the two �rst ones.

Problem 3.1 can be captured in terms of the following
constraints and corresponding equations.

� Keep desired distance from object, (7)
� Keep desired orientation w.r.t object, (8) and (9)
� Limit minimum end-effector altitude, (10)
� Avoid collision between robot and object, (11)
� Move according to user input. (12)

Formally, the constraints can be stated as

f1 := jjpe
ojj2 = rd (7)

f2 := pe
o

> ee
x � jj pe

ojj2jjee
xjj2 = 0; (8)

f3 := eb
z

>
ee

y = 0; (9)

f4 := pb
e

>
eb

z � zmin; (10)

f5 := jjpw
b � pw

obsjj2 � rr ; (11)

f6 := �pe
e = ve

d; (12)

whererd denotes desired distance between end-effector and
object, given by the user.zmin is the minimum vertical
separation of the end-effector and the robot base,rr the
minimum distance from obstacles andve

d is the desired end-
effector movement given by user input. Only the movement
in y- and z-direction, in the end-effector frame, is considered
in constraint f6 since the distance is given by constraintf1.

Note that for readability there is a mixture of frames used
in the constraints. Also note that there are inequalities in
f4; f5 whereas the rest are equalities, thusIie = f 4;5g and
Ie = f 1;2;3;6g.

Having stated the constraints we now need to provide their
time derivatives in order to formulate Problem 4.2. Details
of how the derivatives were obtained can be found in the
Appendix. In this paper we assume both the object to be
inspected and the obstacle to be stationary. In the following,
Jt andJw denotes the translational and rotational part of the
Jacobian matrix. Unless otherwise stated, the Jacobian matrix
is given in the world frame,J = [ AdgwaJarm;Jbase].

¶ f1
¶q

= �
pe

o
> Jtp

pe
o

> pe
o

(13)

¶ f2
¶q

= � pe
o

> S(Rw
e ee

x)Jw � (Rw
e ee

x)
> Jt +

pe
o

> Jtp
pe

o
> pe

o

(14)

¶ f3
¶q

= � eb
z

>
S(Rb

eee
y)J

b
w (15)

¶ f4
¶q

= � eb
z

>
Jb
t (16)

¶ f5
¶q

= �
pb

obs
>

Jtq
pb

obs
> pb

obs

(17)

¶ f6
¶q

= Je
t (18)

Putting it all together we get Problem 4.3, theorbit object
version of Problem 4.2. In this case we let�f j = 0, as the
youBot arm only has 5 DoFs.

Problem 4.3:

minimize u(t)> Q� u(t)

subject to
¶ f1
¶q

u(t) = ke(rd � jj pw
o � pw

e jj2)

¶ f2
¶q

u(t) = ke(0:0� (pe
o

> Rw
e ee

x � jj pe
ojj2jjRw

e ee
xjj2))

¶ f3
¶q

u(t) = ke(0:0� (eb
z

>
Rb

eee
y))

¶ f4
¶q

u(t) � � kie(zd � (pw
e

> ew
z ))

¶ f5
¶q

u(t) � � kie(rr � (jjpw
b � pw

obsjj2))

¶ f6
¶q

u(t) = ve
d

where ke, kie are weights for the equality- and inequality
constraints.

V. SIMULATIONS

To illustrate the proposed approach, V-REP is used to
simulate a KUKA youBot platform equipped with a youBot
arm. On the sensor carrier of the arm, a kinect-like camera
is mounted, providing RGB-D data.

The code is written in C++, and runs in Ubuntu 14.04
with ROS Indigo. The simulator has a scene with a youBot,



equipped with an arm and a kinect camera, and an object to
be examined. From V-REP the object location, expressed in
the world frame, is obtained. Odometry data and joint states
are provided as normal ROS topics. For repeatability, input
is generated by given functions of time, but could easily be
provided by user commands from a gamepad. Gurobi is used
for solving the optimization problem.

The task is to examine a cube shaped object, with each
side 0:2 m, using theorbit object control mode, as seen in
Figure 4. This requires movement of both the arm and the
base.

Fig. 4. A scene from V-REP, with the youBot executing the algorithm.

Running the algorithm, we get the results shown in Fig-
ures 5-18.

As illustrations, two different cases of movements will be
presented. One is orbiting by moving sideways along the y-
axis, while changing the desired object distancerd (case 1),
and the other is orbiting by moving upwards along the z-
axis (case 2). The user inputs are given functions of time, as
shown in Figures 5 and 6.

Fig. 5. Case 1: Input during orbit movement, moving in the y-direction
of the camera-frame.

Fig. 6. Case 2: Input during orbit movement, moving in the z-direction of
the camera-frame.

We will now see how well the different constraints were
satis�ed. The �rst constraint is to keep the required distance

to the object, formalized in Equation (7). The corresponding
results can be found in in Figures 7 and 8. Given that the
approach is reactive, based on the desired user input, we
cannot expect that the errors converge to zero, instead, a
small remaining lag can be seen in Figure 7.

Fig. 7. Case 1: Distance between end-effector and center of object.rd is
the desired distance, andr(t) is the actual distance.

Fig. 8. Case 2: Distance between end-effector and center of object.rd is
the desired distance, andr(t) is the actual distance.

The second constraint is found in Equation (8) and makes
sure the object of interest is kept in the center of view. We
here present the error as absolute value of an angle. At the
start of the simulation, there is a signi�cant error in end
effector orientation, as can be seen in Figure 9 and 10. This
is signi�cantly reduced, but does not converge to zero. The
reason is that this constraint requires motion of both base and
the 5 DoF arm and the heavy base is much less precise in its
motions, and there is also a modeling error in the simulator
model.

Fig. 9. Case 1: End effector orientation.

Fig. 10. Case 2: End effector orientation.






