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Abstract. Optimization problems with cardinality constraints are very difficult mathemati-
cal programs which are typically solved by global techniques from discrete optimization. Here we
introduce a mixed-integer formulation whose standard relaxation still has the same solutions (in
the sense of global minima) as the underlying cardinality-constrained problem; the relation between
the local minima is also discussed in detail. Since our reformulation is a minimization problem in
continuous variables, it allows us to apply ideas from that field to cardinality-constrained problems.
Here, in particular, we therefore also derive suitable stationarity conditions and suggest an appro-
priate regularization method for the solution of optimization problems with cardinality constraints.
This regularization method is shown to be globally convergent to a Mordukhovich-stationary point.
Extensive numerical results are given to illustrate the behavior of this method.
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1. Introduction. We consider the cardinality-constrained optimization problem

(1.1) min
x

f(x) s.t. x ∈ X, ‖x‖0 ≤ κ,

where f : Rn → R denotes a continuously differentiable function; κ > 0 is a given
natural number; ‖x‖0 denotes the cardinality of the vector x ∈ R

n, i.e., the number of
its nonzero elements; andX ⊆ R

n is a subset determined by any further constraints on
x. Throughout this manuscript, we assume that κ < n, since otherwise the cardinality
constraint would not constrain x.

The cardinality-constrained optimization problem (1.1) has a wide range of appli-
cations including portfolio optimization problems with constraints on the number of
assets [6], the subset selection problem in regression [20], and the compressed sensing
technique used in signal processing [9]. The optimization problem (1.1) is difficult
to solve mainly because it involves the cardinality constraint defined by the mapping
‖ · ‖0, which, despite its notation that is quite common in the community, is not a
norm and neither convex nor continuous.

The difficulty in solving problem (1.1) is also reflected in the fact that it can
be reformulated as a mixed-integer problem. However, even for simple instances,
just testing feasibility of the constraints in (1.1) is known to be NP-complete [6].
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Nevertheless, the mixed-integer formulation of the cardinality-constrained problem is
the basis for the development of many algorithms which use ideas and techniques from
discrete optimization in order to find the exact or an approximate solution of problem
(1.1). We refer the reader to [5, 6, 10, 21, 26, 31, 32] and references therein for a couple
of different ideas. Stationarity conditions and algorithms for the unconstrained case
X = R

n can be found in [3].
The cardinality-constrained problem (1.1) is also closely related to the sparse op-

timization problem, where the term ‖x‖0 is typically a part of the objective function
used for enhancing sparsity of produced solutions. A standard technique then is to
replace this term by the l1-norm ‖x‖1, which gives rise to a convex optimization prob-
lem (provided that all other ingredients are convex) and for which a global minimum
can be computed by standard techniques. In general, however, this yields only an
approximation of the sparsest solution.

The very recent paper [12] uses a different basic idea and presents a reformula-
tion of the sparse optimization problem as a standard nonlinear program (NLP) with
complementarity-type constraints, not involving any integer variables. The so-called
“half complementarity” formulation used in that paper corresponds to our reformula-
tion of the cardinality-constrained problem (1.1). Our derivation of this reformulation
is different from that used in [12] and provides some insights in itself: We first use
another mixed-integer formulation of the cardinality-constrained problem, employing
some binary variables, and then show that the standard relaxation of these binary
variables, has the nice property that its solutions are still the same as the solutions
of the original cardinality-constrained problem (1.1). We presented some preliminary
results on this reformulation without proofs in [7]. Apart from this derivation, the
remaining part of our paper is, in any case, different from [12]. Nonetheless, some
results from the present paper can be translated to sparse optimization problems. A
paper discussing the corresponding results and some differences is under preparation.

We should also say that the NLP-reformulation used in [12] and also the one
introduced here yield an NLP whose structure is very similar to a mathematical
program with complementarity constraints (MPCC); cf. [11, 19, 23]. In fact, it is
possible to further rewrite the NLP-reformulation in such a way that one really gets
an MPCC (this is the “full complementarity” formulation in [12]). Hence, in principle,
one might try to apply the full machinery known from MPCCs. However, it turns out
that, besides the usual constraint qualifications, also the MPCC-tailored constraint
qualifications are typically violated in this case. Despite this negative observation, we
show that our current approach has some stronger properties that are not exhibited
in the MPCC-context. We comment on this later within the paper.

The organization is as follows: We begin with some background material in sec-
tion 2. We then present our NLP-reformulation of the cardinality-constrained opti-
mization problem (1.1) and discuss in detail the relation between the global and local
minima in section 3. Stationary conditions of our NLP-reformulation are discussed
separately in section 4; here the difficulty is that standard constraint qualifications
are usually violated by our NLP-reformulation. Nevertheless, it is shown that the
usual KKT-conditions are necessary optimality conditions for the case of a polyhe-
dral convex set X , whereas this is not true even if X is convex and satisfies the Slater
constraint qualification. The previous discussion motivates us to consider a suitable
regularization method for the solution of the cardinality-constrained problem (1.1),
which we describe and analyze in section 5. Extensive numerical results are presented
in section 6, and we conclude with some final remarks in section 7.
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Notation: The vector e := (1, . . . , 1)T ∈ R
n denotes the all-ones vector, whereas

ei := (0, . . . , 0, 1, 0, . . . , 0)T ∈ R
n is the ith unit vector. With Br(a) := {x | ‖x−a‖2 ≤

r} we indicate the closed (Euclidean) ball of radius r > 0 centered in a given point
a ∈ R

n. An inequality x ≥ 0 for some vector x is defined componentwise. Finally,
supp(x) := {i | xi �= 0} denotes the support of a given vector x.

2. Preliminaries. In this section, we recall some basic definitions related to
standard NLPs that will play some role in our subsequent analysis.

To this end, consider the optimization problem

(2.1)
min f(x) s.t. gi(x) ≤ 0 ∀i = 1, . . . ,m,

hi(x) = 0 ∀i = 1, . . . , p,

with some continuously differentiable functions f, gi, hi : R
n → R.

Definition 2.1. A vector x∗ ∈ R
n is called a stationary point of the NLP (2.1)

if there exist Lagrange multipliers λ ∈ R
m and μ ∈ R

p such that the following KKT
(Karush–Kuhn–Tucker) conditions hold:

∇xL(x
∗, λ, μ) = 0,

λi ≥ 0, gi(x
∗) ≤ 0, λigi(x

∗) = 0 ∀i = 1, . . . ,m,

hi(x
∗) = 0 ∀i = 1, . . . , p,

where L(x, λ, μ) := f(x)+λT g(x)+μTh(x) denotes the Lagrangian of problem (2.1).
Given a local minimum x∗ of (2.1) such that certain conditions are satisfied at x∗,

it is possible to show that x∗ is also a stationary point in the sense of Definition 2.1.
The conditions required here are called constraint qualifications (CQ). There are a
number of different CQs known for NLPs, and we recall some of them in the following
discussion. To this end, let X := {x | g(x) ≤ 0, h(x) = 0} be the feasible set of (2.1),
and let us introduce some cones that play an important role in the definition of some
of these CQs. The set

TX(x∗) :=
{
d ∈ R

n | ∃{xk} ⊆ X ∃{tk} ↓ 0 : xk → x∗ and d = lim
k→∞

xk − x∗

tk

}

is called the (Bouligand) tangent cone of the set X at the point x∗ ∈ X . The corre-
sponding linearization cone of X at x∗ ∈ X is given by

LX(x∗) :=
{
d ∈ R

n | ∇gi(x
∗)T d ≤ 0 (i : gi(x

∗) = 0), ∇hi(x
∗)T d = 0 (i = 1, . . . , p)

}
.

Note that the inclusion TX(x∗) ⊆ LX(x∗) always holds.
Finally, we recall that the polar cone of an arbitrary cone C ⊆ R

n is defined by

C∗ := {w ∈ R
n | wT d ≤ 0 ∀d ∈ C}.

Using this notation, we can state some of the more prominent CQs.
Definition 2.2. Let x∗ be a feasible point of the NLP (2.1). Then we say that

x∗ satisfies the
(a) linear independence CQ (LICQ) if the gradient vectors

∇gi(x
∗) (i : gi(x∗) = 0), ∇hi(x

∗) (i = 1, . . . , p)

are linearly independent;
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(b) Mangasarian–Fromovitz CQ (MFCQ) if the gradient vectors ∇hi(x
∗) (i =

1, . . . , p) are linearly independent and, in addition, there exists a vector d ∈ R
n such

that ∇hi(x
∗)T d = 0 (∀ i = 1, . . . , p) and ∇gi(x

∗)Td < 0 (∀ i : gi(x
∗) = 0) hold;

(c) constant rank CQ (CRCQ) if for any subsets I1 ⊆ {i | gi(x
∗) = 0} and

I2 ⊆ {1, . . . , p} such that the gradient vectors

∇gi(x) (i ∈ I1), ∇hi(x) (i ∈ I2)

are linearly dependent in x = x∗, they remain linearly dependent for all x in a neigh-
borhood (in R

n) of x∗;
(d) constant positive linear dependence condition (CPLD) if for any subsets I1 ⊆

{i | gi(x∗) = 0} and I2 ⊆ {1, . . . , p} such that the gradient vectors

∇gi(x) (i ∈ I1) and ∇hi(x) (i ∈ I2)

are positive-linear dependent in x = x∗ (i.e., there exist multipliers (α, β) �= 0 with
α ≥ 0 and

∑m
i=1 αi∇gi(x

∗) +
∑p

i=1 βi∇hi(x
∗) = 0), they are linearly dependent for

all x in a neighborhood (in R
n) of x∗;

(e) Abadie CQ (ACQ) if TX(x∗) = LX(x∗) holds;
(f) Guignard CQ (GCQ) if TX(x∗)∗ = LX(x∗)∗ holds.
The LICQ, MFCQ, ACQ, and GCQ conditions belong to the standard conditions

in the optimization community; see, e.g., [2, 22]. Also CRCQ, introduced originally
in [17], has found widespread applications; cf. [17] for some examples. Finally, CPLD
might be less known; the condition was introduced in [24] and afterwards shown to
be a CQ in [1]. The following implications hold:

LICQ

MFCQ

CRCQ

CPLD ACQ GCQ

Most of these implications follow immediately from the above definitions. The only
nontrivial part is that the ACQ follows from CPLD, a statement that can be derived
from [1, 4]. In view of this diagram, LICQ is the strongest and GCQ the weakest CQ
among those given here. In fact, one can show that (in a certain sense) GCQ is the
weakest possible CQ which guarantees local minima to be stationary points; see [2].

We close this section with a small example which may be viewed as a special case
of the class of problems that will be introduced in the following section and which
indicates that GCQ will play a central role in our analysis.

Example 1. Consider the two-dimensional optimization problem

min
x,y

f(x) s.t. xy = 0, 0 ≤ y ≤ 1,

where we denote the variables by x and y instead of x1 and x2 since this simplifies
the notation and since this also fits better into the framework that will be discussed
later. Geometrically, it is clear (and can also be verified analytically in an easy way)
that this simple optimization problem violates ACQ in (x∗, y∗) = (0, 0), and hence
also the stronger conditions LICQ and MFCQ. On the other hand, GCQ is satisfied
in (x∗, y∗), and thus every local minimum is a stationary point. See Figure 1.

3. Reformulation. This section presents a reformulation of the cardinality-
constrained problem (1.1) as a smooth optimization problem and then discusses the
relation between the solutions (in the sense of global minima) and local minima of
the original and reformulated problems in sections 3.1 and 3.2, respectively.
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0
x

1

y

(a) feasible set. (b) TX(0, 0) LX (0, 0).

0
wx

wy

(c) TX(0, 0)∗ = LX(0, 0)∗.

Fig. 1. Illustration of Example 1.

In order to obtain a suitable reformulation of the cardinality-constrained problem
(1.1), we first consider the mixed-integer problem

(3.1)

min
x,y

f(x) s.t. x ∈ X,

eT y ≥ n− κ,
xiyi = 0 ∀i = 1, . . . , n,
yi ∈ {0, 1} ∀i = 1, . . . , n.

Next, we consider the following standard relaxation of (3.1):

(3.2)

min
x,y

f(x) s.t. x ∈ X,

eT y ≥ n− κ,
xiyi = 0 ∀i = 1, . . . , n,
0 ≤ yi ≤ 1 ∀i = 1, . . . , n,

where the binary constraints are replaced in the usual way by some simple box con-
straints. The formulation (3.2) will be of central importance for this paper.

Remark 1. Note that the subsequent considerations would also hold with the
inequality eTy ≥ n−κ in (3.2) being replaced by the equality constraint eT y = n−κ.
The corresponding modifications are minor. Numerically, we prefer to work with the
inequality version because this enlarges the feasible region and therefore provides some
more freedom.

3.1. Relation between global minima. According to the next result, the two
problems (1.1) and (3.1) have the same solutions in x in the sense of global minima.

Theorem 3.1. A vector x∗ ∈ R
n is a solution of problem (1.1) if and only if there

exists a vector y∗ ∈ R
n such that (x∗, y∗) solves the mixed-integer problem (3.1).

Proof. Since the objective functions of the two problems (1.1) and (3.1) are the
same and do not depend on y, it suffices to show that x is feasible for (1.1) if and
only if there exists a vector y such that (x, y) is feasible for (3.1).

First assume that x is feasible for (1.1). Then, due to ‖x‖0 ≤ κ, the vector y ∈ R
n

defined componentwise by

yi :=

{
0 if xi �= 0

1 if xi = 0
∀ i = 1, . . . , n

satisfies y ∈ {0, 1}n, eT y ≥ n − κ, and xiyi = 0 for all i = 1, . . . , n. Hence (x, y) is
feasible for problem (3.1).

Conversely, assume that we have a feasible pair (x, y) of problem (3.1). Then
define the index set J := {i | yi = 1}. Since, by assumption, yi ∈ {0, 1} and
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eT y ≥ n − κ, it follows that |J | ≥ n − κ. Furthermore, using xiyi = 0 for all
i = 1, . . . , n, we see that xi = 0 at least for all i ∈ J ; hence ‖x‖0 ≤ κ. Thus, x is
feasible for problem (1.1).

The following result states that the relaxed problem (3.2) is still equivalent to the
original cardinality-constrained problem (1.1) in the sense of global minima.

Theorem 3.2. A vector x∗ ∈ R
n is a solution of problem (1.1) if and only if

there exists a vector y∗ ∈ R
n such that (x∗, y∗) is a solution of the relaxed problem

(3.2).
Proof. By analogy with the proof of Theorem 3.1, it can be shown that a vector

x is feasible for (1.1) if and only if there exists a vector y such that (x, y) is feasible
for (3.2). (Take J := {i | yi ∈ (0, 1]} instead of J = {i | yi = 1} in the previous
proof.) Since the objective function of both problems is the same, this implies the
assertion.

An immediate consequence of the previous theorem is the following existence
result.

Theorem 3.3. Suppose that the feasible set F := {x ∈ X | ‖x‖0 ≤ κ} of the
cardinality-constrained problem (1.1) is nonempty and that X is compact. Then both
problem (1.1) and the relaxed problem (3.2) have a nonempty solution set.

Proof. First note that the set C := {x ∈ R
n | ‖x‖0 ≤ κ} is obviously closed. Hence

the feasible set F of (1.1) is the intersection of a compact set X with a closed set C
and, therefore, compact. Since the objective function f is continuous, it follows that
the cardinality-constrained optimization problem (1.1) has a nonempty solution set,
and by Theorem 3.2 this implies that the relaxed problem (3.2) is also solvable.

3.2. Relation between local minima. In view of Theorem 3.2, there is a one-
to-one correspondence between the solutions of the original problem (1.1) and the
solutions of the relaxed problem (3.2). Our next aim is to investigate the relation
between the local minima of these two optimization problems. The following result
shows that every local minimum of the given cardinality-constrained problem yields
a local minimum of the relaxed problem (3.2).

Theorem 3.4. Let x∗ ∈ R
n be a local minimum of (1.1). Then there exists a

vector y∗ ∈ R
n such that the pair (x∗, y∗) is also a local minimum of (3.2).

Proof. Let us define a vector y∗ componentwise by

y∗i :=

{
1 if x∗

i = 0
0 if x∗

i �= 0
∀i = 1, . . . , n.

Then we have y∗i = 1 if and only if x∗
i = 0 and hence eT y∗ = n−‖x∗‖0 ≥ n−κ. It is

easy to see that (x∗, y∗) is feasible for problem (3.2). We claim that (x∗, y∗) is a local
minimum of (3.2). To this end, first note that there exists an r1 > 0 such that

f(x) ≥ f(x∗) ∀x ∈ X ∩Br1(x
∗), ‖x‖0 ≤ κ,

due to the assumed local optimality of x∗ for problem (1.1). Furthermore, let us
choose r2 = 1

2 . Then we have yi > 0 for all y ∈ Br2(y
∗) and all i such that y∗i > 0.

This observation immediately yields the inclusion

(3.3) {i | yi = 0} ⊆ {i | y∗i = 0} ∀y ∈ Br2(y
∗).

Now take r := min{r1, r2}, and let (x, y) ∈ Br(x
∗) × Br(y

∗) be an arbitrary feasible
vector of the relaxed problem (3.2). Then, in particular, we have x ∈ X . Moreover,
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the inclusion (3.3) implies

xi �= 0 =⇒ yi = 0 =⇒ y∗i = 0 =⇒ x∗
i �= 0

and therefore shows that ‖x‖0 ≤ ‖x∗‖0. Hence x is feasible for problem (1.1). Since
we also have x ∈ Br1(x

∗), we obtain f(x) ≥ f(x∗) from the local optimality of x∗

for problem (1.1). Consequently, (x∗, y∗) is a local minimum of the relaxed problem
(3.2).

Note that if ‖x∗‖0 = κ, then the vector y∗ in Theorem 3.4 is unique; i.e., there
exists exactly one y∗ such that (x∗, y∗) is a local minimum of (3.2) (see Proposi-
tion 3.5 below). If ‖x∗‖0 < κ, then y∗ is not unique. Unfortunately, the converse of
Theorem 3.4 is not true in general. This is shown by the following counterexample.

Example 2. Consider the three-dimensional problem

(3.4) min
x

‖x− a‖22 s.t. ‖x‖0 ≤ κ, x ∈ R
3,

with a := (1, 2, 3)T and κ := 2. This problem has a unique global minimizer at

x∗ := (0, 2, 3)T

as well as two local minimizers at

x1 := (1, 0, 3)T and x2 := (1, 2, 0)T .

On the other hand, the relaxed problem (3.2) has a unique global minimum at

x∗ := (0, 2, 3)T , y∗ := (1, 0, 0)T

(this is consistent with Theorem 3.2), but the number of local minima is larger;
namely, they are

x1 := (1, 0, 3)T , y1 := (0, 1, 0)T ,

x2 := (1, 2, 0)T , y2 := (0, 0, 1)T ,

x3 := (1, 0, 0)T , y3 := (0, t, 1− t)T ∀t ∈ (0, 1),

x4 := (0, 2, 0)T , y4 := (t, 0, 1− t)T ∀t ∈ (0, 1),

x5 := (0, 0, 3)T , y5 := (t, 1− t, 0)T ∀t ∈ (0, 1),

x6 := (0, 0, 0)T , y6 := (t1, t2, t3)
T ∀ti > 0 s.t. t1 + t2 + t3 = 1.

Note that the corresponding yi is neither unique nor binary for i = 3, 4, 5, 6, i.e., for
all those xi which are not local minima of (1.1).

Let (x∗, y∗) be a local minimizer of problem (3.2). One may think that if y∗ is
binary, then x∗ is a local minimizer of problem (1.1). Unfortunately, this claim is not
true in general. We demonstrate this by a modification of the previous counterexam-
ple.

Example 3. Consider once again the three-dimensional cardinality-constrained
problem from (3.4), but this time with a := (1, 2, 0)T and the cardinality number κ :=
1. Here, it is easy to see that the pair (x∗, y∗) with x∗ := (0, 0, 0)T , y∗ := (1, 1, 0)T is
a local minimizer of the corresponding relaxed problem (3.2) with a binary vector y∗,
while x∗ is not a local minimizer of (1.1). Note, however, that the vector y∗ is not
unique in this case.

The previous two examples illustrate that the relation between the local minima
of the two problems (1.1) and (3.2) is not as straightforward as for the global minima.
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A central observation in this context is that those local minima of the relaxed problem,
which are also local minima of the original problem, satisfy the cardinality constraint
‖x‖0 ≤ κ with equality, which, in view of the subsequent result, is equivalent to the
statement that the vector y∗ defined by x∗ is unique.

Proposition 3.5. Let (x∗, y∗) be a local minimum of problem (3.2). Then
‖x∗‖0 = κ holds if and only if y∗ is unique, i.e., if there is exactly one y∗ such that
(x∗, y∗) is a local minimum of (3.2). In this case, the components of y∗ are binary.

Proof. First assume that ‖x∗‖0 = κ holds. Then it follows immediately from the
constraints in (3.2) that there exists a unique vector y∗ such that (x∗, y∗) is feasible
for problem (3.2). The components of this vector y∗ are obviously given by

y∗i :=

{
1 if x∗

i = 0
0 if x∗

i �= 0
∀i = 1, . . . , n

and thus are binary.
Conversely, suppose that y∗ is unique. To prove that ‖x∗‖0 = κ, we assume, on

the contrary, that ‖x∗‖0 < κ. Since this implies ‖x∗‖0 ≤ n − 2 (recall that κ < n),
we can find j1 �= j2 such that x∗

j1
= x∗

j2
= 0. Then consider the vectors y′, y′′ ∈ R

n

with components defined by

y′i :=
{

1 if x∗
i = 0,

0 if x∗
i �= 0,

y′′i :=

⎧⎨
⎩

1
2 if i ∈ {j1, j2},
1 if x∗

i = 0, i /∈ {j1, j2},
0 if x∗

i �= 0,
∀i = 1, . . . , n.

Then obviously y′ �= y′′, but (x∗, y′) and (x∗, y′′) are both feasible for (3.2) since, e.g.,

eT y′′ = n− ‖x∗‖0 − 1 ≥ n− (κ − 1)− 1 = n− κ.

Similar to the proof of Theorem 3.4, it can be verified that both (x∗, y′) and (x∗, y′′)
are local minima of problem (3.2), thus contradicting the uniqueness of y∗. Hence, we
necessarily have ‖x∗‖0 = κ, which, as was noted above, implies that y∗ is binary.

We are finally in the position to prove a special case of the converse of Theorem 3.4.
Theorem 3.6. Let (x∗, y∗) be a local minimizer of problem (3.2) with ‖x∗‖0 = κ.

Then x∗ is a local minimum of the cardinality-constrained problem (1.1).
Proof. By assumption, there exists some number r1 > 0 such that (x∗, y∗) is a

minimum of the relaxed problem (3.2) in a neighborhood Br1(x
∗)×Br1(y

∗) of (x∗, y∗).
Let us choose

r2 > 0 with r2 < min{|x∗
i | | x∗

i �= 0}
and r := min{r1, r2}. We claim that x∗ is a minimum of the cardinality-constrained
problem (1.1) in the neighborhood Br(x

∗). To this end, let x ∈ Br(x
∗) be an arbitrary

feasible point of problem (1.1). By definition of r2 and r, we have

x∗
i �= 0 =⇒ xi �= 0 ∀ i = 1, . . . , n,

which implies κ = ‖x∗‖0 ≤ ‖x‖0. By the feasibility of x we know ‖x‖0 ≤ κ and thus

{i | x∗
i �= 0} = {i | xi �= 0},

or, equivalently, that

{i | x∗
i = 0} = {i | xi = 0}.
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This, however, implies that (x, y∗) is also feasible for the relaxed problem (3.2) sat-
isfying (x, y∗) ∈ Br(x

∗) × Br(y
∗). Consequently, we obtain f(x) ≥ f(x∗) from the

local optimality of (x∗, y∗) for problem (3.2). Altogether, this shows that x∗ is a local
minimum of (1.1).

Regarding the additional assumption ‖x∗‖0 = κ used in Theorem 3.6: Of course
it depends on the concrete problem whether this condition is satisfied in a global
minimum of (1.1). However, whenever the cardinality constraint is a critical resource
constraint, it is not unreasonable to assume that it is active in a global solution.

We close this section with a short comparison of our reformulation with the more
standard one used in [6].

Remark 2. Consider the cardinality-constrained optimization problem (1.1), and
assume, in addition, that the set X includes lower and upper bounds on the variables
xi, say 0 ≤ xi ≤ ui for all i = 1, . . . , n. Then, suppressing all other constraints, our
complementarity-type reformulation yields the equivalence

0 ≤ xi ≤ ui (i = 1, . . . , n),
‖x‖0 ≤ κ

}
⇐⇒

⎧⎪⎪⎨
⎪⎪⎩

0 ≤ xi ≤ ui (i = 1, . . . , n),
0 ≤ yi ≤ 1 (i = 1, . . . , n),
xiyi = 0 (i = 1, . . . , n),
eT y ≥ n− κ,

whereas the mixed-integer program suggested in [6] provides the equivalence

0 ≤ xi ≤ ui (i = 1, . . . , n),
‖x‖0 ≤ κ

}
⇐⇒

⎧⎨
⎩

0 ≤ xi ≤ ui(1 − yi) (i = 1, . . . , n),
yi ∈ {0, 1} (i = 1, . . . , n),
eT y ≥ n− κ,

whose standard relaxation gives the constraints

0 ≤ xi ≤ ui(1− yi), 0 ≤ yi ≤ 1 (i = 1, . . . , n), eT y ≥ n− κ

which are linear in x and y but no longer equivalent to the cardinality constraints. It is
interesting to compare this formulation with our complementarity-type reformulation.
To this end, we neglect the constraint eT y ≥ n− κ, which is used in both cases, and
consider a single component i of the vectors xi and yi. Then we have the constraints

(3.5) 0 ≤ xi ≤ ui, 0 ≤ yi ≤ 1, xiyi = 0,

whereas [6] yields

(3.6) 0 ≤ xi ≤ ui(1− yi), 0 ≤ yi ≤ 1.

The sets described by (3.5) and (3.6) are shown in Figures 2(a) and (b), respectively.
It follows that (3.6) is simply the convex hull of our reformulation (3.5). Apart from
this relation, we note, however, that our formulation can also be used when there are
no lower or upper bounds on the variables.

4. Stationarity conditions. Here we investigate the question whether the stan-
dard KKT conditions are necessary optimality conditions for the relaxed program
(3.2) or whether we have to deal with a weaker stationary concept in general. It turns
out that the KKT conditions are indeed satisfied for the case where X is polyhedral
convex, whereas this is no longer true (in general) for the case of a nonlinear set X .
We therefore divide this section into two subsections, 4.1 and 4.2, where we discuss
the linear and the nonlinear cases separately.
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0 ui
xi

1

yi

(a) 0 ≤ xi ≤ ui, 0 ≤ yi≤1, xi yi= 0 .

0 ui
xi

1

yi

(b) 0 ≤ xi ≤ ui(1 − yi), 0≤ yi ≤ 1.

Fig. 2. Comparison of the two different reformulations/relaxations.

4.1. Linear constraints. In order to be able to prove the existence of Lagrange
multipliers in a minimum of the reformulated problem (3.2), we consider the special
case where X is polyhedral convex, i.e.,

X = {x ∈ R
n | aTi x ≤ αi (i = 1, . . . ,m), bTi x = βi (i = 1, . . . , p)}.

We will show that in this case the GCQ is satisfied in every feasible point, and thus
every local minimum of (3.2) is a KKT point.

To this end, let us denote the feasible set of (3.2) by Z, and define the following
index sets for all (x∗, y∗) ∈ Z:

Ia(x
∗) := {i ∈ {1, . . . ,m} | aTi x∗ = αi},

I0(x
∗) := {i ∈ {1, . . . , n} | x∗

i = 0},
I±0(x

∗, y∗) := {i ∈ {1, . . . , n} | x∗
i �= 0, y∗i = 0},

I00(x
∗, y∗) := {i ∈ {1, . . . , n} | x∗

i = 0, y∗i = 0},
I0+(x

∗, y∗) := {i ∈ {1, . . . , n} | x∗
i = 0, y∗i ∈ (0, 1)},

I01(x
∗, y∗) := {i ∈ {1, . . . , n} | x∗

i = 0, y∗i = 1}.
Note that the two index sets I0(x

∗) and I±0(x
∗, y∗) form a partition of the set

{1, . . . , n}, whereas I0(x
∗) itself gets partitioned into the three subsets I00(x

∗, y∗),
I0+(x

∗, y∗), and I01(x
∗, y∗).

For all subsets I ⊆ I00(x
∗, y∗) we define the restricted feasible sets

(4.1)

ZI :=
{
(x, y) ∈ R

n × R
n | ∀i=1,...,m aTi x ≤ αi,

∀i=1,...,p bTi x = βi,
eTy ≥ n− κ,

∀i∈I0+(x∗,y∗)∪I01(x∗,y∗)∪I xi = 0, yi ∈ [0, 1],
∀i∈I±0(x∗,y∗)∪(I00(x∗,y∗)\I) yi = 0

}
.

Then we can rewrite the set Z locally around a feasible point (x∗, y∗) as follows.
Proposition 4.1. Let (x∗, y∗) ∈ Z and the sets ZI for I ⊆ I00(x

∗, y∗) be defined
in (4.1). Then the following statements hold:

(a) (x∗, y∗) ∈ ZI for all I ⊆ I00(x
∗, y∗).

(b) For all r > 0 sufficiently small

Z ∩Br(x
∗, y∗) =

( ⋃
I⊆I00(x∗,y∗)

ZI

)
∩Br(x

∗, y∗).
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Proof. Statement (a) follows directly from the definition of the sets ZI . Hence we
have to prove only (b). By definition ZI ⊆ Z for all I ⊆ I00(x

∗, y∗). This implies

Z ∩Br(x
∗, y∗) ⊇

( ⋃
I⊆I00(x∗,y∗)

ZI

)
∩Br(x

∗, y∗).

Now consider an arbitrary element (x, y) ∈ Z ∩ Br(x
∗, y∗). Then x ∈ X and eT y ≥

n− κ. For all r > 0 sufficiently small, i ∈ I0+(x
∗, y∗) ∪ I01(x

∗, y∗) implies yi ∈ (0, 1]
and thus xi = 0. Analogously, we get xi �= 0 and thus yi = 0 for all i ∈ I±0(x

∗, y∗).
Now define I := {i ∈ I00(x

∗, y∗) | xi = 0}. Due to the feasibility of (x, y), this implies
yi ∈ [0, 1] for all i ∈ I and yi = 0 for all i ∈ I00(x

∗, y∗) \ I. Thus, we have proven
(x, y) ∈ ZI , and consequently the opposite inclusion holds as well.

This result can be used to replace the tangent cone TZ(x
∗, y∗) and its polar cone

TZ(x
∗, y∗)∗ by unions and intersections of simpler cones.
Lemma 4.2. Let (x∗, y∗) ∈ Z and the sets ZI for I ⊆ I00(x

∗, y∗) be defined in
(4.1). Then the tangent cone and its polar satisfy the following equations:

(a) TZ(x
∗, y∗) =

⋃
I⊆I00(x∗,y∗) TZI (x

∗, y∗).
(b) TZ(x

∗, y∗)∗ =
⋂

I⊆I00(x∗,y∗) TZI (x
∗, y∗)∗.

Proof. Let r > 0 be sufficiently small such that Proposition 4.1 holds. Then
statement (a) follows from

TZ(x
∗, y∗) = TZ∩Br(x∗,y∗)(x

∗, y∗)
= T(⋃

I⊆I00(x∗,y∗) ZI

)
∩Br(x∗,y∗)

(x∗, y∗)

= T⋃
I⊆I00(x∗,y∗) ZI

(x∗, y∗)

=
⋃

I⊆I00(x∗,y∗)

TZI (x
∗, y∗),

where the first and third equations follow from the fact that the tangent cone, by
definition, depends only on the local properties around (x∗, y∗); the second equality
comes from Proposition 4.1; while the final identity is again a direct consequence of
the definition of the tangent cone, taking into account that we have the union of only
finitely many sets here. Statement (b) is then a direct application of [2, Theorem
3.1.9] to the nonempty cones TZI (x

∗, y∗).
To verify GCQ, we now have to calculate the polar cones TZI (x

∗, y∗)∗ and their
intersection TZ(x

∗, y∗)∗. However, since the sets ZI are polyhedral convex, calculating
the polar cones TZI (x

∗, y∗)∗ is straightforward.
Lemma 4.3. Let (x∗, y∗) ∈ Z and the sets ZI for I ⊆ I00(x

∗, y∗) as in (4.1).
(a) For all I ⊆ I00(x

∗, y∗) we have

TZI (x
∗, y∗)∗ =

{
(wx, wy) ∈ R

n × R
n |wx =

∑
i∈Ia(x∗) λiai +

∑p
i=1 μibi +

∑n
i=1 γiei,

wy = δe+
∑n

i=1 νiei,
∀i∈Ia(x∗) λi ≥ 0,
δ ≤ 0 and δ = 0 if eTy∗ > n− κ,
∀i∈I0+(x∗,y∗) νi = 0,
∀i∈I νi ≤ 0,
∀i∈I01(x∗,y∗) νi ≥ 0,
∀i∈I±0(x∗,y∗)∪(I00(x∗,y∗)\I) γi = 0

}
.
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(b) The polar cone TZ(x
∗, y∗)∗ is given by

TZ(x
∗, y∗)∗ =

{
(wx, wy) ∈ R

n × R
n | wx =

∑
i∈Ia(x∗) λiai +

∑p
i=1 μibi +

∑n
i=1 γiei,

wy = δe+
∑n

i=1 νiei,
∀i∈Ia(x∗) λi ≥ 0,
δ ≤ 0 and δ = 0 if eTy∗ > n− κ,
∀i∈I0+(x∗,y∗) νi = 0,
∀i∈I00(x∗,y∗) γi = 0, νi ≤ 0,
∀i∈I01(x∗,y∗) νi ≥ 0,
∀i∈I±0(x∗,y∗) γi = 0

}
.

Proof. (a) The set ZI is polyhedral convex for all index sets I ⊆ I00(x
∗, y∗) and

can be written as

ZI =
{
(x, y) ∈ R

n × R
n | ∀i=1,...,m (ai, 0)

T (x, y) ≤ αi,
∀i=1,...,p (bi, 0)

T (x, y) = βi,
(0, e)T (x, y) ≥ n− κ,

∀i∈I0+(x∗,y∗)∪I01(x∗,y∗)∪I (ei, 0)
T (x, y) = 0,

∀i∈I0+(x∗,y∗)∪I01(x∗,y∗)∪I (0, ei)
T (x, y) ≥ 0,

∀i∈I0+(x∗,y∗)∪I01(x∗,y∗)∪I (0, ei)
T (x, y) ≤ 1,

∀i∈I±0(x∗,y∗)∪(I00(x∗,y∗)\I) (0, ei)
T (x, y) = 0

}
.

The polar cone TZI (x
∗, y∗)∗(= NZI (x

∗, y∗)) can thus be calculated using, e.g., [25,
Theorem 6.46], which, after some simplification, leads to the formula stated here.

(b) Let us denote the set on the right-hand side of the equation by W . By Lemma
4.2, we know TZ(x

∗, y∗)∗ =
⋂

I⊆I00(x∗,y∗) TZI (x
∗, y∗)∗. Since W ⊆ TZI (x

∗, y∗)∗ for

all I ⊆ I00(x
∗, y∗), this implies W ⊆ TZ(x

∗, y∗)∗. Now consider an arbitrary element
(wx, wy) ∈ TZ(x

∗, y∗)∗. Choosing I = ∅, we can conclude (wx, wy) ∈ TZ∅(x
∗, y∗)∗.

Consequently, wx can be written as wx =
∑

i∈Ia(x∗) λiai+
∑p

i=1 μibi+
∑n

i=1 γiei with

λi ≥ 0 for all i ∈ Ia(x
∗) and γi = 0 for all i ∈ I±0(x

∗, y∗) ∪ I00(x
∗, y∗). If instead we

choose I = I00(x
∗, y∗), we can write wy as wy = δe+

∑n
i=1 νiei with δ ≤ 0 and δ = 0

if eTy∗ > n−κ, νi = 0 for all i ∈ I0+(x
∗, y∗), νi ≤ 0 for all i ∈ I00(x

∗, y∗), and νi ≥ 0
for all i ∈ I01(x

∗, y∗). Consequently, (wx, wy) ∈ W . Since (wx, wy) ∈ TZ(x
∗, y∗)∗ was

chosen arbitrarily, this implies the missing inclusion.
Note that statement (b) is true only because there are no restrictions in ZI de-

pending on x and y at the same time.
Now it remains to calculate the linearization cone LZ(x

∗, y∗) and the correspond-
ing polar cone LZ(x

∗, y∗)∗.
Lemma 4.4. Let (x∗, y∗) ∈ Z be arbitrarily given. Then the polar cone of

LZ(x
∗, y∗) is given by

LZ(x
∗, y∗)∗ =

{
(wx, wy) ∈ R

n × R
n | wx =

∑
i∈Ia(x∗) λiai +

∑p
i=1 μibi +

∑n
i=1 γiei,

wy = δe+
∑n

i=1 νiei,
∀i∈Ia(x∗) λi ≥ 0,
δ ≤ 0 and δ = 0 if eTy∗ > n− κ,
∀i∈I0+(x∗,y∗) νi = 0,
∀i∈I00(x∗,y∗) γi = 0, νi ≤ 0,
∀i∈I01(x∗,y∗) νi ≥ 0,
∀i∈I±0(x∗,y∗) γi = 0

}
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Proof. By the definition of the linearization cone, we get

LZ(x
∗, y∗) =

{
(dx, dy) ∈ R

n × R
n | ∀i∈Ia(x∗) aTi dx ≤ 0,

∀i=1,...,p bTi dx = 0,
eTdy ≥ 0 if eTy∗ = n− κ,

∀i∈I0+(x∗,y∗) (dx)i = 0,
∀i∈I00(x∗,y∗) (dy)i ≥ 0,
∀i∈I01(x∗,y∗) (dx)i = 0, (dy)i ≤ 0,
∀i∈I±0(x∗,y∗) (dy)i = 0

}
.

Since LZ(x
∗, y∗) is polyhedral convex, the corresponding polar cone can again be

calculated using [25, Theorem 6.46], which leads to the given representation.
Using Lemmas 4.3 and 4.4, we immediately see TZ(x

∗, y∗)∗ = LZ(x
∗, y∗)∗; i.e.,

GCQ is satisfied in any feasible point (x∗, y∗) ∈ Z, and thus local minima of the
reformulated problem (3.2) are KKT points.

Corollary 4.5. Let (x∗, y∗) ∈ Z be an arbitrary feasible point of (3.2). Then
GCQ holds in (x∗, y∗).

Note that Example 1 essentially implies that we cannot expect stronger CQs (like
the LICQ, MFCQ, or ACQ) to hold.

We also want to stress that Corollary 4.5 points out a significant difference be-
tween our class of problems and the closely related mathematical programs with com-
plementarity constraints (MPCC), which are optimization problems of the form

min
z

f(z) s.t. gi(z) ≤ 0 ∀i = 1, . . . ,m,

hi(z) = 0 ∀i = 1, . . . , p,

Gi(z) ≥ 0, Hi(z) ≥ 0, Gi(z)Hi(z) = 0 ∀i = 1, . . . , n,

with continuously differentiable functions f, gi, hi, Gi, Hi : R
n → R. If, for example,

the set X from (1.1) is given, without loss of generality, in the standard form X =
{x | Ax = b, x ≥ 0}, then our relaxed problem (3.2) is a special case of an MPCC.
However, a counterexample in Scheel and Scholtes [27] shows that GCQ may not hold
for MPCCs although all functions gi, hi, Gi, Hi are linear. The reason that we are
able to prove the satisfaction of GCQ has to do with the very special structure of our
relaxed program, where the two classes of variables x and y are combined only by
the complementarity-type constraint, whereas there are no other joint constraints; cf.
also the comment after the proof of Lemma 4.3.

4.2. Nonlinear constraints. Here we consider the case where the set X is not
(necessarily) polyhedral convex, i.e.,

(4.2) X = {x ∈ R
n | gi(x) ≤ 0 (i = 1, . . . ,m), hi(x) = 0 (i = 1, . . . , p)}

with continuously differentiable functions gi, hi : R
n → R. In the subsequent discus-

sion, we use the same index sets as in the linear case with the exception of Ia(x
∗),

which is replaced by

Ig(x
∗) = {i ∈ {1, . . . ,m} | gi(x∗) = 0}.

The nonlinear case is much more delicate since it turns out that GCQ may not be
satisfied. This is illustrated by the following example.

Example 4. Consider the convex, but not polyhedral convex, set

X := {x ∈ R
2 | x2

1 + (x2 − 1)2 ≤ 1}
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410 O. P. BURDAKOV, C. KANZOW, AND A. SCHWARTZ

and f(x) = x1 + x2
2. See Figure 3. When we choose κ = 1, the unique global solution

of the cardinality-constrained problem (1.1) is x∗ = (0, 0). Since ‖x∗‖0 = 0 < κ, the
corresponding y∗ is not uniquely determined. If we choose y∗ = (0, 1), then (x∗, y∗)
is a global solution of the relaxed problem (3.2). However, one easily verifies that it
is not a KKT point of (3.2), and thus GCQ cannot be satisfied in (x∗, y∗).

Note that other pairs such as (x∗, ỹ) with ỹ = (1, 1) are KKT points of (3.2).

0 1
x1

1

x2 X

1

Fig. 3. Illustration of Example 4.

The previous example shows that, for nonlinear sets X (even if X is convex and
satisfies the Slater condition), we have to deal with another stationary concept than
the usual KKT conditions. This more suitable stationary concept is the M-stationary
part of the subsequent definition.

Definition 4.6. Let (x∗, y∗) be feasible for the relaxed program (3.2). Then
(x∗, y∗) is called the following:

(a) S-stationary (S = strong) if there exist multipliers λ ∈ R
m, μ ∈ R

p, and
γ ∈ R

n such that the following conditions hold:

∇f(x∗) +
m∑
i=1

λi∇gi(x
∗) +

p∑
i=1

μi∇hi(x
∗) +

n∑
i=1

γiei = 0,

λi ≥ 0, λigi(x
∗) = 0 ∀i = 1, . . . ,m,

γi = 0 ∀i s.t. y∗i = 0.

(b) M-stationary (M = Mordukhovich) if there exist multipliers λ ∈ R
m, μ ∈ R

p,
and γ ∈ R

n such that the following conditions hold:

∇f(x∗) +
m∑
i=1

λi∇gi(x
∗) +

p∑
i=1

μi∇hi(x
∗) +

n∑
i=1

γiei = 0,

λi ≥ 0, λigi(x
∗) = 0 ∀i = 1, . . . ,m,

γi = 0 ∀i s.t. x∗
i �= 0.

The terminology used in the previous definition is similar to the one in the MPEC-
setting. Note that the only difference in the two definitions is that S-stationarity
requires γi = 0 for all indices i such that y∗i = 0, whereas M-stationarity says that
this has to hold only for those indices i where x∗

i �= 0 (recall that the feasibility
of (x∗, y∗) then implies y∗i = 0), but M-stationarity does not require anything for
the multipliers γi for the biactive indices where we have x∗

i = 0 and y∗i = 0; hence
M-stationarity is a weaker condition than S-stationarity.
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Of course, the definitions of S- and M-stationarity are completely unmotivated so
far. As for S-stationarity, the following result simply says that this is just a reformu-
lation of the standard KKT conditions.

Proposition 4.7. Let (x∗, y∗) be feasible for the relaxed program (3.2) with X
defined by (4.2). Then (x∗, y∗) is a stationary point of (3.2), i.e., satisfies the usual
KKT conditions, if and only if (x∗, y∗) is an S-stationary point.

Proof. Let (x∗, y∗) be a stationary point of (3.2). Then there exist Lagrange
multipliers λ, μ, ρ, γ̃, ν+, ν− such that the following KKT conditions hold:

∇f(x∗) +
m∑
i=1

λi∇gi(x
∗) +

p∑
j=1

μj∇hj(x
∗) +

n∑
i=1

γ̃iy
∗
i ei = 0,

−δe+

n∑
i=1

γ̃ix
∗
i ei +

n∑
i=1

(
ν+i − ν−i

)
ei = 0,

λi ≥ 0, λigi(x
∗) = 0 ∀i = 1, . . . ,m,

δ ≥ 0, δ
(
eT y∗ − n+ κ

)
= 0,

ν+i ≥ 0, ν+i (y∗i − 1) = 0 ∀i = 1, . . . , n,

ν−i ≥ 0, ν−i y∗i = 0 ∀i = 1, . . . , n.

Setting γi := γ̃iy
∗
i , it is easy to see that (x∗, y∗) is an S-stationary point.

Conversely, assume that (x∗, y∗) is S-stationary with some corresponding multi-
pliers λ, μ, γ. Then define

γ̃i :=

{ γi

y∗
i

if y∗i > 0,

0 if y∗i = 0.

The definition of S-stationarity then implies γi = γ̃iy
∗
i for all i = 1, . . . , n. Therefore,

setting δ := 0, ν+i := 0, ν−i := 0 (for example), it follows immediately that (x∗, y∗)
together with these multipliers satisfies the above KKT conditions.

Hence S-stationarity is just a different way of writing down the KKT conditions
of the relaxed problem. Note, however, that the transformation of the corresponding
multipliers is not necessarily unique when going from S-stationarity to the KKT con-
ditions. This has to be expected since the Lagrange multipliers corresponding to the
KKT conditions are typically not unique (since LICQ and even MFCQ are violated),
whereas the multipliers from the S-stationary conditions are obviously unique under
a suitable (and obvious) linear independence assumption; see CC-LICQ below.

M-stationarity may be viewed as a slightly weaker concept than S-stationarity (as
noted above) and hence a weaker optimality condition than the usual KKT conditions.
More precisely, the M-stationarity conditions are exactly the KKT conditions of the
following tightened nonlinear program TNLP(x∗):

min
x

f(x) s.t. g(x) ≤ 0, h(x) = 0, xi = 0 (i ∈ I0(x
∗)).

Obviously, a local minimizer x∗ of the original problem (1.1) is also a local minimizer
of TNLP(x∗) and thus an M-stationary point under suitable CQs (see below).

M-stationarity will occur in our subsequent section where it is shown that our
relaxation method converges to an M-stationary point. We want to close this section
with another aspect that is of some interest: S-stationarity is an optimality measure
that depends both on x and y, whereas M-stationarity depends on x only. Hence
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M-stationarity may be viewed as an optimality measure of the original cardinality-
constrained problem (1.1) (which is a problem in the x-variables only), whereas S-
stationarity involves the somewhat artificial y-components. In particular, this allows
us to say that a vector x∗ itself (and not a pair (x∗, y∗)) is an M-stationary point of
the original problem (1.1).

Let us go back to Example 4, where (x∗, y) with any feasible y-component is
a global solution of the relaxed problem (3.2). Applying the previous stationarity
concepts, we see that x∗ is an M-stationary point. However, (x∗, y) is S-stationary
only if we pick the “right” y-components such as ỹ, whereas choosing the “wrong”
y-component such as y∗ can destroy S-stationarity.

We next want to introduce some problem-tailored CQs for the optimization prob-
lem with cardinality constraints. Again, we may try to follow the idea that our relaxed
program (3.2) is closely related to MPCCs. Indeed, also for nonlinear constraints, we
may assume that all variables xi are nonnegative. Then the relaxed program (3.2)
becomes a special instance of an MPCC, and this, in principle, allows us to apply suit-
able MPCC-tailored constraint qualifications also to the program (3.2). However, it
turns out that these MPCC-tailored conditions, though being relaxations of standard
CQs, are still too strong in our case: In all feasible points (x, y) ∈ Z with ‖x‖0 = κ,
we have yi ∈ {0, 1} and |xi|+ yi �= 0 for all i = 1, . . . , n as well as eT y = n−κ. Thus,
we have at least n+1 active constraints in (x, y) and the corresponding gradients are
(0,±ei)

T (i = 1, . . . , n) and (0, e). This implies that MPCC-LICQ and MPCC-MFCQ
are violated in all such points.

We are therefore urged to take into account the particular structure of the relaxed
cardinality problem (3.2) in order to define CQs that are better suited to this program.
To this end, let (x∗, y∗) be a feasible point of the relaxed program (3.2), and consider
again the tightened NLP TNLP(x∗). We then say that (x∗, y∗) satisfies a CQ for the
relaxed problem (3.2) when x∗ satisfies the corresponding standard CQ for TNLP(x∗).
This leads to the following definition for CC-CPLD. (The stronger CQs CC-LICQ,
CC-MFCQ, and CC-CRCQ can be defined analogously.)

Definition 4.8. A point x∗ feasible for the cardinality-constrained problem (1.1)
satisfies CC-CPLD if for any subsets I1 ⊆ Ig(x

∗), I2 ⊆ {1, . . . , p}, and I3 ⊆ I0(x
∗)

such that the gradients

∇gi(x) (i ∈ I1) and ∇hi(x) (i ∈ I2), ei (i ∈ I3)

are positively linearly dependent in x = x∗, they are linearly dependent in a neighbor-
hood (in R

n) of x∗.
Thanks to the definition of these CQs via TNLP(x∗), we immediately obtain the

same implications between the CC-CQs as mentioned in section 2 for standard CQs.
Note that it is also possible to define suitable counterparts of ACQ and GCQ. Some
details will indeed be given in a forthcoming paper, but for the purpose of this paper,
these generalizations are not important.

5. Regularization method and its convergence. Having introduced the re-
laxed program (3.2) and taking into account its relation to the cardinality-constrained
optimization problem (1.1), there exist different options for solving the original prob-
lem (1.1). One way would be to apply a branch-and-bound/cut-type strategy to the
corresponding mixed-integer formulation from (3.1). This is probably the only way
which guarantees finding the global optimum, but it is very costly and time-consuming
and therefore not the path we want to follow here.

Alternatively, one may view the relaxed program (3.2) as an ordinary smooth
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optimization problem and apply standard software to this program. However, even
in the case where X is polyhedral convex, the feasible set of the relaxed program
(3.2) is complicated and violates most CQs that are typically required by the existing
algorithms for NLPs. Furthermore, the discussion in the previous section indicates
that the standard software that tries to find KKT points may fail when X is not
polyhedral convex.

We therefore follow a different approach, motivated by similar considerations for
mathematical programs with equilibrium constraints, and solve a sequence of suitably
regularized programs with the idea that each regularized program has better proper-
ties than the relaxed program from (3.2). The particular regularization that we use
here is discussed in section 5.1, and the convergence properties of the corresponding
regularization method are analyzed in section 5.2. Finally, in section 5.3, we discuss
some regularity properties of the regularized subproblems.

5.1. The regularized program. Here we adapt the approach from [18] and
regularize the relaxed program (3.2) in the following way: Define the functions

ϕ(a, b; t) :=

{
(a− t)(b − t) if a+ b ≥ 2t,
− 1

2

[
(a− t)2 + (b− t)2

]
if a+ b < 2t

as well as

ϕ̃(a, b; t) :=

{
(−a− t)(b − t) if − a+ b ≥ 2t,
− 1

2

[
(−a− t)2 + (b − t)2

]
if − a+ b < 2t.

Note that ϕ̃ differs from the mapping ϕ only in a being substituted by −a. We
want to replace the constraints xiyi = 0, 0 ≤ yi ≤ 1, by the inequalities 0 ≤ yi ≤
1, ϕ(xi, yi; t) ≤ 0, and ϕ̃(xi, yi; t) ≤ 0, where t > 0 denotes a suitable parameter.

It can be easily verified that for all t ≥ 0

ϕ(a, b; t) ≤ 0 ⇐⇒ a ≤ t or b ≤ t ⇐⇒ min{a, b} ≤ t.

More precisely, ϕ(·; 0) is an NCP-function; see [30] for more details on such functions.
Since ϕ̃ results from ϕ by replacing a with −a, we have for all t ≥ 0

ϕ̃(a, b; t) ≤ 0 ⇐⇒ −a ≤ t or b ≤ t ⇐⇒ min{−a, b} ≤ t.

Thus, we enlarge the feasible region of the program (3.2); see Figure 4.

−t t
xi

t

1

yi

Fig. 4. Illustration of the regularized feasible set.

Similar to a result from [18], we have the following simple observation.
Lemma 5.1. The two functions ϕ and ϕ̃ are continuously differentiable every-

where with gradients given by

∇ϕ(a, b; t) =

⎧⎪⎪⎨
⎪⎪⎩

(
b− t
a− t

)
if a+ b ≥ 2t,

−
(

a− t
b− t

)
if a+ b < 2t,
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and

∇ϕ̃(a, b; t) =

⎧⎪⎪⎨
⎪⎪⎩

(
t− b
−a− t

)
if − a+ b ≥ 2t,

−
(

a+ t
b − t

)
if − a+ b < 2t,

respectively.
We now consider the following regularized problem NLP(t) of (3.2):

min
x,y

f(x) s.t. gi(x) ≤ 0 ∀i = 1, . . . ,m,

hi(x) = 0 ∀i = 1, . . . , p,

eT y ≥ n− κ,

ϕ(xi, yi; t) ≤ 0 ∀i = 1, . . . , n,

ϕ̃(xi, yi; t) ≤ 0 ∀i = 1, . . . , n,

0 ≤ yi ≤ 1 ∀i = 1, . . . , n,

where t ≥ 0 denotes a suitable parameter. Note here that, in our terminology, we dis-
tinguish between the relaxed problem (3.2) (which results from a standard relaxation
of a mixed-integer problem) and the regularized problem NLP(t) (which, in other
contexts, is also very often called a relaxation).

The regularized problem has some obvious properties which we summarize in the
following result.

Proposition 5.2. Let Z(t) denote the feasible set of the regularized problem
NLP(t), and recall that Z denotes the feasible set of the relaxed program from (3.2).
Then the following statements hold:

(a) Z(t1) ⊆ Z(t2) for all 0 ≤ t1 ≤ t2.
(b) Z ⊆ Z(t) for all t ≥ 0.
(c) Z = Z(t) for t = 0.

5.2. Convergence result. The idea of the regularization method is to solve a
sequence of programs NLP(tk) with tk ↓ 0. Since it is unrealistic that we are able to
solve (in the sense of finding a global minimum) the program NLP(tk), we assume in
the following result only that we have a sequence of KKT points, and we show that
any limit point is an M-stationary point of the relaxed program (3.2) under the rather
weak CC-CPLD condition. The result then, of course, also holds under the stronger
LICQ- and MFCQ-type conditions.

Theorem 5.3. Let {tk} ↓ 0 and {(xk, yk, λk, μk, δk, τk, τ̃k, νk)} be a correspond-
ing sequence of KKT points of NLP(tk) such that (xk, yk) → (x∗, y∗). Assume that the
limit point satisfies CC-CPLD. Then x∗ is an M-stationary point of problem (3.2).

Proof. By construction of the regularization functions ϕ and ϕ̃, the limit point
(x∗, y∗) is feasible for (3.2). Hence x∗ itself is feasible for the cardinality-constrained
optimization problem (1.1). Furthermore, since the KKT conditions hold for each
k ∈ N, there exist multipliers λk, μk, δk, τk, τ̃k, νk such that the following holds:

∇f(xk) +

m∑
i=1

λk
i ∇gi(x

k) +

p∑
i=1

μk
i∇hi(x

k)

+
n∑

i=1

τki ∇xϕ(x
k
i , y

k
i ; tk) +

n∑
i=1

τ̃ki ∇xϕ̃(x
k
i , y

k
i ; tk) = 0,
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−δke +

n∑
i=1

τki ∇yϕ(x
k
i , y

k
i ; tk) +

n∑
i=1

τ̃ki ∇yϕ̃(x
k
i , y

k
i ; tk) +

n∑
i=1

νki ei = 0,

λk
i ≥ 0, gi(x

k) ≤ 0, λk
i gi(x

k) = 0 ∀i = 1, . . . ,m,

hi(x
k) = 0 ∀i = 1, . . . , p,

δk ≥ 0, eT yk − n+ κ ≥ 0, δk(eT yk − n+ κ) = 0,

τki ≥ 0, ϕ(xk
i , y

k
i ; tk) ≤ 0, τki ϕ(x

k
i , y

k
i ; tk) = 0 ∀i = 1, . . . , n,

τ̃ki ≥ 0, ϕ̃(xk
i , y

k
i ; tk) ≤ 0, τ̃ki ϕ̃(x

k
i , y

k
i ; tk) = 0 ∀i = 1, . . . , n,

νki ≥ 0 (i : yki = 1), νki = 0 (i : yki ∈ (0, 1)), νki ≤ 0 (i : yki = 0) ∀i = 1, . . . , n,

where νki denotes the (joint) multiplier of the box constraints 0 ≤ yki ≤ 1.
Using Lemma 5.1, we may rewrite the first two equations as

(5.1)

∇f(xk) +
m∑
i=1

λk
i∇gi(x

k) +

p∑
i=1

μk
i∇hi(x

k) +
n∑

i=1

τki (y
k
i − tk)ei +

n∑
i=1

τ̃ki (tk − yki )ei = 0

and

n∑
i=1

νki ei − δke+

n∑
i=1

τki (x
k
i − tk)ei +

n∑
i=1

τ̃ki (−xk
i − tk)ei = 0,

respectively. Here, we have used the fact that we always have τki ∇xϕ(x
k
i , y

k
i ; tk) =

τki (y
k
i − tk)ei and similarly for the other partial derivative and for the mapping ϕ̃.

This equality comes from the observation that, if ϕ(xk
i , y

k
i ; tk) < 0 is inactive, we have

τki = 0 from the KKT conditions, whereas if ϕ(xk
i , y

k
i ; tk) = 0, we necessarily have

xk
i + yki ≥ 2tk, and the equation follows from Lemma 5.1.

Now, it is easy to see that, for all k ∈ N sufficiently large, we (in particular) have

λk
i > 0 =⇒ gi(x

k) = 0 =⇒ gi(x
∗) = 0

and supp(τk) ∩ supp(τ̃k) = ∅. The latter implies that the multipliers

γk
i :=

⎧⎨
⎩

τki (y
k
i − tk) if i ∈ supp(τk),

τ̃ki (tk − yki ) if i ∈ supp(τ̃k),
0 otherwise

are well defined and, by (5.1), satisfy

(5.2) ∇f(xk) +
m∑
i=1

λk
i∇gi(x

k) +

p∑
i=1

μk
i∇hi(x

k) +
n∑

i=1

γk
i ei = 0.

We claim that, for all i with x∗
i �= 0, we have γk

i = 0 for all k ∈ N sufficiently
large. First, consider the case x∗

i > 0. Then xk
i > tk for all k sufficiently large. If

i ∈ supp(τk), the KKT conditions imply ϕ(xk
i , y

k
i ; tk) = 0, and therefore, in view

of the definition of this mapping, we necessarily get yki = tk which, in turn, yields
γk
i = 0. On the other hand, if i ∈ supp(τ̃k), we have ϕ̃(xk

i , y
k
i ; tk) = 0; hence once

again yki = tk since −xk
i − tk < 0 for all sufficiently large k. This also yields γk

i = 0.
For i �∈ supp(τk)∪ supp(τ̃k), we automatically have γk

i = 0 by definition. In a similar
way, one can treat the case x∗

i < 0, which implies −xk
i > tk for all k sufficiently large,

and the corresponding arguments are then symmetric to the case x∗
i > 0.
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By [29, Lemma A.1], we can assume without loss of generality that the gradients
(including the unit vectors) corresponding to nonvanishing multipliers in (5.2) are
linearly independent. Note that this might change the multipliers {(λk, μk, γk)} but
preserves their signs, and vanishing multipliers remain zero.

We claim that the sequence {(λk, μk, γk)} is bounded. Assume it is unbounded.
Taking a subsequence if necessary, we may assume without loss of generality that the
corresponding normalized sequence converges, say

(λk, μk, γk)

‖(λk, μk, γk)‖2 → (
λ̄, μ̄, γ̄

) �= 0.

Dividing (5.2) by ‖(λk, μk, γk)‖ and taking the limit k → ∞, we then obtain

(5.3)

m∑
i=1

λ̄i∇gi(x
∗) +

p∑
i=1

μ̄i∇hi(x
∗) +

n∑
i=1

γ̄iei = 0

with λ̄i ≥ 0 for all i = 1, . . . ,m and λ̄i = 0 for all i such that gi(x
∗) < 0 (since

then gi(x
k) < 0 for all k sufficiently large and, therefore, λk

i = 0 in view of the
corresponding KKT conditions). Furthermore, for all i with x∗

i �= 0, we have γk
i = 0

for all k sufficiently large in view of the preceding discussion and, therefore, also
γ̄i = 0. Hence, we know λ̄ ≥ 0, supp(λ̄) ⊆ Ig(x

∗), and supp(γ̄) ⊆ I0(x
∗). But then by

CC-CPLD, the positively linearly dependent gradients

{∇gi(x
∗) | i ∈ supp(λ̄)} ∪ {{∇hi(x

∗) | i ∈ supp(μ̄)} ∪ {ei | i ∈ supp(γ̄)}}

would have to remain linearly dependent in a neighborhood of x∗, a contradiction to
the choice of the multipliers {(λk, μk, γk)}.

This shows that the sequence {(λk, μk, γk)} remains bounded. Subsequencing
if necessary, we may therefore assume that (λk, μk, γk) → (λ, μ, γ). Similar to the
previous argument, we then obtain

∇f(x∗) +
m∑
i=1

λi∇gi(x
∗) +

p∑
i=1

μi∇hi(x
∗) +

n∑
i=1

γiei = 0,

λi ≥ 0 (i ∈ Ig(x
∗)), λi = 0 (i /∈ Ig(x

∗)),
γi = 0 (i : x∗

i �= 0);

i.e., x∗ is an M-stationary point.

5.3. Properties of the regularized subproblems. Since we want to solve
the regularized problems NLP(tk) numerically, it would be beneficial to know whether
they inherit properties such as CQs from the original relaxed problem (3.2). In order
to answer this question, we define the following index sets for a t > 0 and (x̂, ŷ)
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feasible for NLP(t):

Iϕ(x̂, ŷ; t) := {i ∈ {1, . . . , n} | ϕ(x̂i, ŷi; t) = 0},
I00ϕ (x̂, ŷ; t) := {i ∈ {1, . . . , n} | x̂i = t, ŷi = t},
I0+ϕ (x̂, ŷ; t) := {i ∈ {1, . . . , n} | x̂i = t, ŷi > t},
I+0
ϕ (x̂, ŷ; t) := {i ∈ {1, . . . , n} | x̂i > t, ŷi = t},
Iϕ̃(x̂, ŷ; t) := {i ∈ {1, . . . , n} | ϕ̃(x̂i, ŷi; t) = 0},
I00ϕ̃ (x̂, ŷ; t) := {i ∈ {1, . . . , n} | x̂i = −t, ŷi = t},
I0+ϕ̃ (x̂, ŷ; t) := {i ∈ {1, . . . , n} | x̂i = −t, ŷi > t},
I−0
ϕ̃ (x̂, ŷ; t) := {i ∈ {1, . . . , n} | x̂i < −t, ŷi = t}.

Note that, due to the feasibility of (x̂, ŷ), the three index sets I00ϕ (x̂, ŷ; t), I0+ϕ (x̂, ŷ; t),
and I+0

ϕ (x̂, ŷ; t) form a partitioning of the set Iϕ(x̂, ŷ; t). A corresponding observation
holds for the index set Iϕ̃(x̂, ŷ; t).

For all subsets I ⊆ I00ϕ (x̂, ŷ; t) and Ĩ ⊆ I00ϕ̃ (x̂, ŷ; t), we define the NLPs NLP(t, I, Ĩ)
as

min
x,y

f(x) s.t. g(x) ≤ 0, h(x) = 0, eT y ≥ n− κ,

0 ≤ yi ≤ t ∀i ∈ I+0
ϕ (x̂, ŷ; t) ∪ (I00ϕ (x̂, ŷ; t) \ I) ∪ I−0

ϕ̃ (x̂, ŷ; t) ∪ (I00ϕ̃ (x̂, ŷ; t) \ Ĩ),
−t ≤ xi ≤ t, 0 ≤ yi ≤ 1 ∀i ∈ I0+ϕ (x̂, ŷ; t) ∪ I ∪ I0+ϕ̃ (x̂, ŷ; t) ∪ Ĩ ,

ϕ(xi, yi; t) ≤ 0, ϕ̃(xi, yi; t) ≤ 0, 0 ≤ yi ≤ 1, ∀i /∈ Iϕ(x̂, ŷ; t) ∪ Iϕ̃(x̂, ŷ; t).

Let us denote the feasible set of NLP(t) by Z(t), and the feasible set of NLP(t, I, Ĩ)
by Z(t, I, Ĩ). Analogously to Proposition 4.1, one can show that (x̂, ŷ) ∈ Z(t, I, Ĩ) for
all subsets I ⊆ I00ϕ (x̂, ŷ; t) and Ĩ ⊆ I00ϕ̃ (x̂, ŷ; t). Furthermore, there exists a sufficiently
small r > 0 such that

Z(t) ∩Br(x̂, ŷ) =

⎛
⎜⎝ ⋃

I⊆I00
ϕ (x̂,ŷ,t),Ĩ⊆I00

ϕ̃ (x̂,ŷ;t)

Z(t, I, Ĩ)

⎞
⎟⎠ ∩Br(x̂, ŷ)

holds. In fact, due to the preceding observation, it is easy to see that the right-hand
side is included in the left-hand side, and the other direction follows by taking, e.g.,

I := {i ∈ I00ϕ (x̂, ŷ; t) | yi > t} and Ĩ := {i ∈ I00ϕ̃ (x̂, ŷ; t) | yi > t}.

Similar to Lemma 4.2, this implies

TZ(t)(x̂, ŷ) =
⋃

I⊆I00
ϕ (x̂,ŷ;t),Ĩ⊆I00

ϕ̃ (x̂,ŷ;t)

TZ(t,I,Ĩ)(x̂, ŷ),

TZ(t)(x̂, ŷ)
∗ =

⋂
I⊆I00

ϕ (x̂,ŷ;t),Ĩ⊆I00
ϕ̃ (x̂,ŷ;t)

TZ(t,I,Ĩ)(x̂, ŷ)
∗.(5.4)

Using these preparations, we can now prove the main result in this section.
Theorem 5.4. Let (x∗, y∗) be feasible for the relaxed problem (3.2). When CC-

CPLD is satisfied in (x∗, y∗), then there is a t̄ > 0 and an r > 0 such that the
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following holds for all t ∈ (0, t̄]: If (x̂, ŷ) ∈ Br(x
∗) × Br(y

∗), is feasible for NLP(t),
then standard GCQ for NLP(t) holds there.

Proof. Since CC-CPLD holds in (x∗, y∗) and the constraints are continuously
differentiable, there is a neighborhood Br(x

∗) such that the gradients

{∇gi(x) | i ∈ Ig(x
∗)} ∪ {{∇hj(x) | j = 1, . . . , p} ∪ {ei | i ∈ I0(x

∗)}}
satisfy CPLD in every element x̂ ∈ Br(x

∗); i.e., all subsets of these gradients, which
are positively linearly dependent at x̂, remain linearly dependent in a neighborhood
of x̂. Decreasing r > 0 if necessary, we can find a t̄ > 0 such that for all t ∈ (0, t̄] all
elements (x̂, ŷ) ∈ Br(x

∗)×Br(y
∗) feasible for NLP(t) additionally satisfy

Ig(x̂) ⊆ Ig(x
∗) and I0+ϕ (x̂, ŷ, t) ∪ I00ϕ (x̂, ŷ, t) ∪ I0+ϕ̃ (x̂, ŷ, t) ∪ I00ϕ̃ (x̂, ŷ, t) ⊆ I0(x

∗).

Now consider an arbitrary t ∈ (0, t̄] and an arbitrary (x̂, ŷ) ∈ Br(x
∗)×Br(y

∗) feasible
for NLP(t). The point (x̂, ŷ) is then feasible for all NLP(t, I, Ĩ) with I ⊆ I00ϕ (x̂, ŷ; t)

and Ĩ ⊆ I00ϕ̃ (x̂, ŷ; t) (see the discussion preceding this theorem), and the gradients of
the active inequality constraints and the equality constraints at that point are

{{(∇gi(x̂)

0

)∣∣∣∣∣i ∈ Ig(x̂)

}
∪
{(

0

−e

)∣∣∣∣∣if eT ŷ = n− κ

}

∪
{(

0

ei

)∣∣∣∣∣i ∈ I+0
ϕ (x̂, ŷ; t) ∪ (I00ϕ (x̂, ŷ; t) \ I) ∪ I−0

ϕ̃ (x̂, ŷ; t) ∪ (I00ϕ̃ (x̂, ŷ; t) \ Ĩ)
}

∪
{(

ei
0

)∣∣∣∣∣i ∈ I0+ϕ (x̂, ŷ; t) ∪ I

}
∪
{(−ei

0

)∣∣∣∣∣i ∈ I0+ϕ̃ (x̂, ŷ; t) ∪ Ĩ

}

∪
{(

0

ei

)∣∣∣∣∣ŷi = 1

}
∪
{(

0

−ei

)∣∣∣∣∣ŷi = 0

}}

∪
{(∇hj(x̂)

0

)∣∣∣∣∣j = 1, . . . , p

}
.

Since all constraints depend either on x or on y but never on both, we can show
that CPLD for NLP(t, I, Ĩ) is satisfied at (x̂, ŷ) by considering them separately. All
constraints depending on y are linear and therefore satisfy the CPLD condition. The
constraints depending on x, in turn, satisfy CPLD due to the choice of r and t̄.

Since CPLD implies ACQ (cf. section 2), we thus have shown that

TZ(t,I,Ĩ)(x̂, ŷ) = LZ(t,I,Ĩ)(x̂, ŷ)

holds for all I ⊆ I00ϕ (x̂, ŷ; t) and Ĩ ⊆ I00ϕ̃ (x̂, ŷ; t). Combining this with (5.4), we obtain

(5.5) TZ(t)(x̂, ŷ)
∗ =

⋂
I⊆I00

ϕ (x̂,ŷ;t),Ĩ⊆I00
ϕ̃ (x̂,ŷ;t)

LZ(t,I,Ĩ)(x̂, ŷ)
∗.

In order to prove that (x̂, ŷ) satisfies GCQ for NLP(t), we have to prove the inclusion
TZ(t)(x̂, ŷ)

∗ ⊆ LZ(t)(x̂, ŷ)
∗. Hence our next step is to calculate the linearization cones
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and their polar cones. For NLP(t), these are (cf. Lemma 5.1)

LZ(t)(x̂, ŷ) =
{
(dx, dy) ∈ R

n × R
n | ∀i∈Ig(x̂) ∇gi(x̂)

Tdx ≤ 0,
∀i=1,...,p ∇hi(x̂)

T dx = 0,
∀i∈I0+

ϕ (x̂,ŷ;t) eTi dx ≤ 0,

∀i∈I0+
ϕ̃ (x̂,ŷ;t) eTi dx ≥ 0,

if eT ŷ = n− κ eTdy ≥ 0,
∀i∈{i|ŷi=1}∪I+0

ϕ (x̂,ŷ;t)∪I−0
ϕ̃ (x̂,ŷ;t) eTi dy ≤ 0,

∀i∈{i|ŷi=0} eTi dy ≥ 0
}

and

LZ(t)(x̂, ŷ)
∗ =

{
(wx, wy) ∈ R

n × R
n | wx =

∑
i∈Ig(x̂)

λi∇gi(x̂) +
p∑

i=1

μi∇hi (x̂) +
n∑

i=1

γiei,

wy = δe+
n∑

i=1

νiei,

∀i∈Ig(x̂) λi ≥ 0,
∀i∈I0+

ϕ (x̂,ŷ;t) γi ≥ 0,

∀i∈I0+
ϕ̃ (x̂,ŷ;t) γi ≤ 0,

∀other i γi = 0,
δ ≤ 0 and δ = 0 if eT ŷ > n− κ,
∀i∈{i|ŷi=1}∪I+0

ϕ (x̂,ŷ;t)∪I−0
ϕ̃ (x̂,ŷ;t) νi ≥ 0,

∀i∈{i|ŷi=0} νi ≤ 0,
∀other i νi = 0

}
.

For NLP(t, I, Ĩ) the cones are

LZ(t,I,Ĩ)(x̂, ŷ) =
{
(dx, dy) ∈ R

n × R
n | ∀i∈Ig(x̂) ∇gi(x̂)

Tdx ≤ 0,

∀i=1,...,p ∇hi(x̂)
Tdx = 0,

∀i∈I0+
ϕ (x̂,ŷ;t)∪I eTi dx ≤ 0,

∀i∈I0+
ϕ̃ (x̂,ŷ;t)∪Ĩ eTi dx ≥ 0,

if eT ŷ = n− κ eTdy ≥ 0,
∀i∈{i|ŷi=1}∪I+0

ϕ (x̂,ŷ;t)∪(I00
ϕ (x̂,ŷ;t)\I) eTi dy ≤ 0,

∀i∈∪I−0
ϕ̃ (x̂,ŷ;t)∪(I00

ϕ̃ (x̂,ŷ;t)\Ĩ) eTi dy ≤ 0,

∀i∈{i|ŷi=0} eTi dy ≥ 0
}

and

LZ(t,I,Ĩ)(x̂, ŷ)
∗ =

{
(wx, wy) ∈ R

n × R
n |wx =

∑
i∈Ig(x̂)

λi∇gi(x̂) +
p∑

i=1

μi∇hi(x̂)+
n∑

i=1

γiei,

wy = δe+
n∑

i=1

νiei,

∀i∈Ig(x̂) λi ≥ 0,
∀i∈I0+

ϕ (x̂,ŷ;t)∪I γi ≥ 0,

∀i∈I0+
ϕ̃ (x̂,ŷ;t)∪Ĩ γi ≤ 0,

∀other i γi = 0,
δ ≤ 0 and δ = 0 if eT ŷ > n− κ,
∀i∈{i|ŷi=1}∪I+0

ϕ (x̂,ŷ;t)∪(I00
ϕ (x̂,ŷ;t)\I) νi ≥ 0,

∀i∈I−0
ϕ̃ (x̂,ŷ;t)∪(I00

ϕ̃ (x̂,ŷ;t)\Ĩ) νi ≥ 0,

∀i∈{i|ŷi=0} νi ≤ 0,
∀other i νi = 0

}
.
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We now put everything together: Let (wx, wy) ∈ TZ(t)(x̂, ŷ)
∗ be arbitrarily given. In

view of (5.5), this implies that the point (wx, wy) also belongs to LZ(t,∅,∅)(x̂, ŷ)∗ and
LZ(t,I00

ϕ (x̂,ŷ;t),I00
ϕ̃ (x̂,ŷ;t))(x̂, ŷ)

∗. Taking into account that γi and νi only occur separately

in the expressions for wx and wy , respectively, this immediately gives (wx, wy) ∈
LZ(t)(x̂, ŷ)

∗. Together, this proves that GCQ for NLP(t) is satisfied at (x̂, ŷ).
Note that, in order to obtain a similar result for the related regularization method

for MPCCs, an LICQ-type condition had to be assumed in [18], whereas here only
CC-CPLD is required.

6. Numerical results. To test the approach presented in this paper, we con-
sider cardinality-constrained problems of the form

min
x

xTQx s.t. μTx ≥ ρ,

eTx ≤ 1,

0 ≤ xi ≤ ui ∀i = 1, . . . , n,

‖x‖0 ≤ κ.

This is a classical portfolio optimization problem where Q and μ are the covari-
ance matrix and mean of n possible assets, respectively, and eTx ≤ 1 is a resource
constraint; see, e.g., [6, 10]. To create test examples, we take the same randomly
generated data Q, μ, ρ, and u which were used by Frangioni and Gentile in [13] and
which are available at their Webpage [14]. This gives us 30 test instances for each of
the three dimensions n = 200, 300, 400. In addition, we consider for every instance
the three cardinality constraints defined by κ = 5, 10, 20 and thus end up with 270
test problems.

We implemented the following three solution strategies in MATLAB: First, we
followed [6] (see also Remark 2, where yi was replaced by 1−yi for an easier comparison
with our approach) and reformulated the cardinality-constrained problem using binary
constraints as

min
x,y

xTQx s.t. μTx ≥ ρ,

eTx ≤ 1,
0 ≤ xi ≤ uiyi ∀i = 1, . . . , n,
yi ∈ {0, 1} ∀i = 1, . . . , n,
eT y ≤ κ.

We tried to solve these mixed-integer problems directly using GUROBI 5.6.2 via the
provided MATLAB interface. GUROBI is a solver specialized in mixed-integer linear
and quadratic optimization problems (see [16]). To avoid serious memory problems
experienced earlier, we set the parameter MIPFocus = 1 for GUROBI to spend more
effort on finding good feasible solutions quickly and less effort on proving optimality.
Additionally, we set TimeLimit = 600 to limit the calculation time to 10 minutes.
This may sound very restrictive, but in our numerical experiments we observed that
GUROBI most often found a good solution within the first 60 seconds and then spent
the remaining time on proving optimality. All computations were performed on a
hyperthreading-enabled computer with six cores, so the 600 seconds correspond to
approximately two hours of computation time.
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Our second approach is based on the relaxed problem (3.2), which in this case is

(6.1)

min
x,y

xTQx s.t. μTx ≥ ρ,

eTx ≤ 1,
0 ≤ xi ≤ ui ∀i = 1, . . . , n,
eT y ≥ n− κ,
xiyi = 0 ∀i = 1, . . . , n,
0 ≤ yi ≤ 1 ∀i = 1, . . . , n.

This problem has orthogonality/complementarity-type constraints. Since it can still
be viewed as a standard nonlinear optimization problem, we applied the TOMLAB ver-
sion of SNOPT to solving (6.1). SNOPT is based on an SQP approach combined with
an augmented Lagrangian merit function [15].

Finally, we implemented the regularization method from the previous section
as well. It replaces the orthogonality condition xiyi = 0 with the two inequalities
ϕ(xi, yi; t) ≤ 0 and ϕ̃(xi, yi; t) ≤ 0. Due to the presence of the constraint xi ≥ 0 in
our test problems, we could ignore the inequality ϕ̃(xi, yi; t) ≤ 0. Nonetheless, it is
still included to make the implementation applicable to more general instances. We
solved the regularized problems NLP(t) iteratively using the TOMLAB version of SNOPT,
beginning with the regularization parameter t0 = 1. In every iteration, we decreased
the regularization parameter by tk+1 = 0.01 tk and used the solution of the previous
iteration as our initial value. We stopped the algorithm if either the regularization
parameter became too small, i.e., tk < 10−8, or the violation of the orthogonality
conditions was sufficiently small, i.e., maxi=1,...,n |xiyi| ≤ 10−6. The feasibility of the
other constraints (all of which are linear) never caused any problems.

We used x0 = (0, . . . , 0)T and y0 = (1, . . . , 1)T as initial values for all three
methods. In the following, the computational results are grouped by n and κ. The
average computation time in seconds and the average orthogonality violation can be
found in Table 1. Here, the orthogonality violation means maxi=1,...,n |xi(1− yi)| for
GUROBI and maxi=1,...,n |xiyi| for the other two approaches. Since the violations of
the linear and box constraints are, if existent, a lot smaller than the violation of the
orthogonality constraint, we choose not to display them.

Table 1

Average computation time T and average orthogonality violation v.

n 200 300 400
κ 5 10 20 5 10 20 5 10 20

GUROBI
T 600.2 600.2 600.1 580.8 598.4 580.8 596.8 600.1 600.1
v 0 0 0 0 0 0 0 0 0

Relaxation
T 0.0608 0.0592 0.0551 0.1743 0.1587 0.1089 0.2499 0.2129 0.1981
v 10−12 10−12 10−12 2 · 10−12 2 · 10−12 2 · 10−12 3 · 10−12 3 · 10−12 3 · 10−12

Regularization
T 1.3562 1.4810 1.9636 3.3107 3.6135 3.8653 7.0481 7.3284 8.0956
v 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6

Figure 5 illustrates the different objective function values found by the three
methods. For every test example, we divided the values found by all three methods
by that found by GUROBI and plotted the resulting factors; hence the GUROBI lines
are normalized to 1. Thus, a value of 10 for the relaxed approach would mean that,
for this example, the relaxed approach found a solution where the objective function
value was 10 times as big as that found by GUROBI. The order in which the results for
the 30 test examples are plotted for each n and κ is chosen such that the normalized
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Fig. 5. Normalized objective function values for all examples.

values obtained for the regularization method are ascending. This way it is easy to
see that, e.g., for n = 200 and κ = 20, the regularization method obtains function
values almost equal to those found by GUROBI in more than 90% of the considered
problems. More detailed results for each test run can be found in the tables given in
the appendix of the preprint version of this paper [8].

If we compare the average computation times, we see that the relaxed approach is
the fastest, followed by the regularized method. Whenever the average computation
time of GUROBI is less than 600 seconds, GUROBI managed to solve one of the 30 test
examples in less than 10 minutes.

The orthogonality constraints also hold. Due to the declaration of yi as a binary
variable, GUROBI produces no measurable violation of the orthogonality. The slightly
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higher orthogonality violation of the regularization method compared to the relaxation
approach is a direct consequence of the fact that we terminated the regularization
method as soon as this violation was at most 10−6. Nonetheless, if we consider the
solutions found by the regularization method and eliminate the κ largest components,
the remaining entries, which should be zero, exceed 10−6 in only 1 out of 270 examples.

The most interesting results are the objective function values in the solutions.
Even though we allowed GUROBI to run only for 600 seconds, it managed to find the
best value in almost all examples. However, when we compare the relaxation and
regularization approaches, we see a huge difference. Whereas the value found by the
relaxation approach is always significantly worse than that found by GUROBI (in more
than 80% of the examples between 2.5 and 14 times as big), the regularization method
performs almost as well as GUROBI. In 71.5% of the examples, it manages to find a
similar (in the sense that the function value is at most 1% worse than the one computed
by GUROBI) or even slightly better value than does GUROBI. In all test examples, the
value is less than 2 times as big as GUROBI’s. Hence, although neither method in
its present implementation can completely keep up with the commercial (global!)
solver GUROBI, the regularization method shows very promising performance, whereas
relaxing the cardinality-constrained problem without additional regularization seems
less successful.

One possible reason for the better results of the regularization method is that
the regularized feasible set is bigger than that of the relaxed problem, and therefore
the method is probably less dependent on the initial value. In order to illustrate this
effect, we consider the problem

min
x

x1 + 10x2 s.t. (x1 − 1
2 )

2 + (x2 − 1)2 ≤ 1, ‖x‖0 ≤ 1.

The feasible set then consists of a part of the x2-axis including the local minimizer
(0, 1− 1

2

√
3)T and the isolated global minimizer (12 , 0)

T . We discretized the rectangle
[−1, 32 ] × [− 1

2 , 2] and started both the relaxation approach and the regularization
method in each of the resulting 441 node points. As expected, the regularization
method converged to the global minimizer in all 441 cases, whereas the relaxation
approach found the global solution only in 204 cases, which is less than 50%.

7. Final remarks. This paper presents an NLP-formulation of the cardinality-
constrained optimization problem. Several theoretical results regarding minima and
stationary points as well as a suitable regularization method are presented. We be-
lieve that the NLP-reformulation given here can be used as the basis for several other
developments for cardinality-constrained problems. Here we mention only two points
that will be part of our future research: First, instead of extending the regularization
scheme from [18] to cardinality constraints, it seems more obvious to apply the regu-
larization from [28] to cardinality constraints. To some extent, this has been done in
the context of sparse optimization problems in [12], for a simple example. We tried
to apply this approach for more general problems but have failed so far due to some
complications with certain Lagrange multipliers. Second, taking into account that
we derived the NLP-reformulation as a relaxation of a mixed-integer problem, there
should be a good chance to use techniques from binary problems in order to get closer
to a global minimum.

Acknowledgment. We would like to thank two anonymous referees for carefully
reading our work and for their helpful suggestions.
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