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Abstract

Multi-Armed Bandits (MAB) constitute the most fundamental model for
sequential decision making problems with an exploration vs. exploitation
trade-off. In such problems, the decision maker selects an arm in each round
and observes a realization of the corresponding unknown reward distribution.
Each decision is based on past decisions and observed rewards. The objective
is to maximize the expected cumulative reward over some time horizon by
balancing exploitation (arms with higher observed rewards should be selected
often) and exploration (all arms should be explored to learn their average
rewards). Equivalently, the performance of a decision rule or algorithm can be
measured through its expected regret, defined as the gap between the expected
reward achieved by the algorithm and that achieved by an oracle algorithm
always selecting the best arm.

This thesis investigates stochastic and adversarial combinatorial MAB
problems, where each arm is a collection of several basic actions taken from
a set of d elements, in a way that the set of arms has a certain combinatorial
structure. Examples of such sets include the set of fixed-size subsets, match-
ings, spanning trees, paths, etc. These problems are specific forms of online
linear optimization, where the decision space is a subset of d-dimensional hy-
percube. Due to the combinatorial nature, the number of arms generically
grows exponentially with d. Hence, treating arms as independent and apply-
ing classical sequential arm selection policies would yield a prohibitive regret.
It may then be crucial to exploit the combinatorial structure of the problem
to design efficient arm selection algorithms.

As the first contribution of this thesis, in Chapter 3 we investigate com-
binatorial MABs in the stochastic setting and with Bernoulli rewards. We
derive asymptotic (i.e., when the time horizon grows large) lower bounds on
the regret of any algorithm under bandit and semi-bandit feedback. The pro-
posed lower bounds are problem-specific and tight in the sense that there
exists an algorithm that achieves these regret bounds. Our derivation lever-
ages some theoretical results in adaptive control of Markov chains. Under
semi-bandit feedback, we further discuss the scaling of the proposed lower
bound with the dimension of the underlying combinatorial structure. For the
case of semi-bandit feedback, we propose ESCB, an algorithm that efficiently
exploits the structure of the problem and provide a finite-time analysis of its
regret. ESCB has better performance guarantees than existing algorithms, and
significantly outperforms these algorithms in practice.

In the fourth chapter, we consider stochastic combinatorial MAB problems
where the underlying combinatorial structure is a matroid. Specializing the
results of Chapter 3 to matroids, we provide explicit regret lower bounds
for this class of problems. For the case of semi-bandit feedback, we propose
KL-OSM, a computationally efficient greedy-based algorithm that exploits the
matroid structure. Through a finite-time analysis, we prove that the regret
upper bound of KL-OSM matches the proposed lower bound, thus making it the
first asymptotically optimal algorithm for this class of problems. Numerical
experiments validate that KL-OSM outperforms state-of-the-art algorithms in
practice, as well.
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In the fifth chapter, we investigate the online shortest-path routing prob-
lem which is an instance of combinatorial MABs with geometric rewards. We
consider and compare three different types of online routing policies, depend-
ing (i) on where routing decisions are taken (at the source or at each node),
and (ii) on the received feedback (semi-bandit or bandit). For each case, we
derive the asymptotic regret lower bound. These bounds help us to under-
stand the performance improvements we can expect when (i) taking routing
decisions at each hop rather than at the source only, and (ii) observing per-link
delays rather than end-to-end path delays. In particular, we show that (i) is
of no use while (ii) can have a spectacular impact. For source routing under
semi-bandit feedback, we then propose two algorithms with a trade-off be-
tween computational complexity and performance. The regret upper bounds
of these algorithms improve over those of the existing algorithms, and they
significantly outperform state-of-the-art algorithms in numerical experiments.

Finally, we discuss combinatorial MABs in the adversarial setting and
under bandit feedback. We concentrate on the case where arms have the same
number of basic actions but are otherwise arbitrary. We propose CombEXP,
an algorithm that has the same regret scaling as state-of-the-art algorithms.
Furthermore, we show that CombEXP admits lower computational complexity
for some combinatorial problems.
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Chapter 1

Introduction

This thesis investigates online combinatorial optimization problems in stochastic
and adversarial settings under bandit feedback. The term bandit feedback signi-
fies the relation of this class of problems to the multi-armed bandit (henceforth,
MAB) problems, which constitute an important class of sequential optimization
problems. MAB problems were introduced in the seminal paper by Robbins [1] in
1952 to study the sequential design of experiments1. In the classical MAB problem,
a decision maker has to repeatedly select an arm from a finite set of arms. After
selecting an arm, she observes a realization of the corresponding unknown reward
distribution. Each decision is based on past decisions and observed rewards. The
objective is to maximize the expected cumulative reward over some time horizon by
balancing exploitation and exploration: arms with higher observed rewards should
be selected often whilst all arms should be explored to learn their average rewards.
Equivalently, the performance of the decision maker (or algorithm) can be mea-
sured through its expected regret, defined as the gap between the expected reward
achieved by the algorithm and that achieved by an oracle algorithm always selecting
the best arm.

This setup, often referred to as classical stochastic MAB problem in the lit-
erature, was studied by Lai and Robbins [3], where they proved a lower bound
scaling as Ω(log(T )) on the regret after T rounds. The constant in the lower bound
scales as K, the number of arms. This lower bound indeed provides a fundamen-
tal performance limit that no policy can beat. Lai and Robbins also constructed
policies for certain distributions and showed that they asymptotically achieve the
lower bound. Namely, these policies have regret upper bounds growing at most as
O(log(T )) where the constant is the same as in the lower bound.

Four decades after the seminal work of Robbins [1], Auer et al. [4] introduced the
adversarial (non-stochastic) MAB problem, in which no statistical assumption on
the generation of the rewards is made. Indeed the reward sequences are arbitrary,
as if they were generated by an adversary. Auer et al. established a lower bound
growing at least as Ω(

√
T ) on the regret in which the constant scales as

√
K. Later,

1The first algorithm for MAB problems, however is due to Thompson [2] which dates back to
1933.
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2 Introduction

it was shown in [5] that a regret upper bound scaling as
√
TK log(K) is achievable

in this case. Namely, the regret upper bound of the proposed algorithm in [5]
matches the lower bound of [4] up to a logarithmic factor.

Since its introduction, the MAB framework has served as the best model for
studying the tradeoff between exploration and exploitation in sequential decision
making in both adversarial and stochastic settings. MAB problems have found
applications in many fields as diverse as sequential clinical trials [6], communication
systems [7, 8], economics [9, 10], recommendation systems [11, 12], learning to rank
[13], to name a few.

1.1 Problem Statement and Objectives

1.1.1 Online Combinatorial Optimization under Bandit
Feedback

The focus of this thesis is on online combinatorial problems with linear objectives.
Such combinatorial problems are specific forms of online linear optimization as
studied in, e.g., [14, 15, 16, 17], where the decision space is a subset of d-dimensional
hypercube {0, 1}d. In the literature, this problem is also known as combinatorial
bandit or combinatorial MAB 2. In the adversarial setting, it is sometimes referred
to as the combinatorial prediction game.

The setup may be concretely described as follows: The set of arms M is an
arbitrary subset of {0, 1}d, such that each of its elements M is a subset of at most
m basic actions taken from [d] = {1, . . . , d}. Arm M is identified with a binary
column vector (M1, ...,Md)>. In each round n ≥ 1, a decision maker selects an
arm M ∈M and receives a reward M>X(n) =

∑d
i=1MiXi(n). The reward vector

X(n) ∈ Rd+ is unknown. After selecting an arm M in round n, the decision maker
receives some feedback. We are interested in two types of feedback:

(i) Semi-bandit feedback 3 under which after round n, for all i ∈ {1, . . . , d}, the
component Xi(n) of the reward vector is revealed if and only if Mi = 1.

(ii) Bandit feedback under which only the reward M>X(n) is revealed.

Based on the feedback received up to round n − 1, the decision maker selects
an arm for the next round n, and she aims to maximize her cumulative expected
reward over a given time horizon consisting of T rounds.

We consider two instances of combinatorial bandit problems, depending on how
the sequence of reward vectors is generated. In the stochastic setting, for all i ∈
{1, . . . , d}, (Xi(n))n≥1 are i.i.d. with unknown distribution. The reward sequences
may be arbitrarily correlated across basic actions. In the adversarial setting, the

2In this thesis, we will use the terms ‘online combinatorial optimization’, ‘combinatorial MAB’,
and ‘combinatorial bandit’, interchangeably,

3The term ‘semi-bandit feedback’ was introduced by Audibert et al. [18]. Note that this type
of feedback is only relevant for combinatorial problems.
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sequence of vectors X(n) is arbitrarily selected from [0, 1]d by an adversary at the
beginning of the experiment4.

The objective is to identify a policy, amongst all feasible policies, maximizing
the cumulative expected reward over T rounds. The expectation is here taken with
respect to randomness in the rewards (in the stochastic setting) and possible ran-
domization in the policy. Equivalently, we aim at designing a policy that minimizes
regret, where the regret of policy π is defined by:

Rπ(T ) = max
M∈M

E[
T∑
n=1

XM (n)]− E[
T∑
n=1

XMπ(n)(n)].

The notion of regret quantifies the performance loss due to the need for learning
the average rewards of the various arms.

1.1.2 Objectives
In combinatorial MAB problems, one could apply classical sequential arm selection
policies, developed in e.g. [19, 5], as if arms would yield independent rewards. Such
policies would have a regret asymptotically scaling as |M| log(T ) and

√
|M|T in

the stochastic and adversarial settings, respectively. However, since the number of
arms |M| grows exponentially with d, the number of basic actions, treating arms
as independent would lead to a prohibitive regret. In contrast to classical MAB
studied by Lai and Robbins [3] where the random rewards from various arms are
independent, in combinatorial MAB problems, the rewards of the various arms are
inherently correlated, since arms may share the basic actions. It may then be
crucial to exploit these correlations, i.e., the structure of the problem to speed up
the exploration of sub-optimal arms. This in turn results in the design of efficient
arm selection policies which have a regret scaling as C log(T ) where C is much
smaller than |M|. Similarly, in the adversarial setting, exploiting the underlying
combinatorial structure allows us to design policies with a regret scaling as

√
CT

with C being much smaller than |M|.
The sought objectives in this thesis may be formalized as follows:

• Stochastic setting: We seek two primary objectives in the stochastic settings.
Firstly, we would like to study the asymptotic (namely when T grows large)
regret lower bounds for policies with bandit and semi-bandit feedbacks. Such
lower bounds provide fundamental performance limits that no policy can beat.
Correlations significantly complicate the derivation and the expression of the
regret lower bounds. To derive such bounds, we use the techniques presented
in Graves and Lai [20] to study the adaptive control of Markov chains with
unknown transition probabilities. Study of such lower bounds is of great im-
portance as they provide insights into the design of arm selection policies

4This type of adversary is referred to as oblivious adversary. The case of adaptive adversary,
which conditions the reward at each round on the history of plays, will not be addressed here.
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being capable of exploiting the combinatorial structure of the problem. Sec-
ondly, we would like to propose arm selection policies whose performance
approaches the proposed lower bounds.

• Adversarial setting: Our focus in the adversarial setting is on the case where
all arms consist of the same number m of basic actions in the sense that
‖M‖1 = m, ∀M ∈ M. The set of arms is otherwise arbitrary. For this
case, lower bounds on the regret have been established for both bandit and
semi-bandit feedbacks by Audibert et al. [21]. The state-of-the-art policies,
however, either achieve a sub-optimal regret or are complicated to implement.
Precisely speaking, the best existing algorithms for the case of bandit feedback
suffer from both drawbacks: Firstly, their regret upper bounds are off the
lower bound by a factor of

√
m. Secondly, they are complicated to implement

and may suffer from precision issues which may in turn result in a cumulative
time complexity that is super-linear in T . Our aim is to propose arm selection
policies with reduced computational complexity while attaining at most the
same regret as that of state-of-the-art policies.

1.2 Motivating Examples

Combinatorial MAB problems can be used to model a variety of applications. Here,
we provide two examples to motivate the proposed algorithms and their analyses
provided in subsequent chapters. The first example considers dynamic spectrum
access in wireless systems whereas the second one concerns shortest-path routing
in multihop networks.

1.2.1 Dynamic Spectrum Access
As the first motivating example, we consider a dynamic spectrum access scenario as
studied in [22]. Spectrum allocation has attracted considerable attention recently,
mainly due to the increasing popularity of cognitive radio systems. In such systems,
transmitters have to explore spectrum to find frequency bands free from primary
users. The fundamental objective here is to devise an allocation that maximizes the
network-wide throughput. In such networks, transmitters should be able to select a
channel that (i) is not selected by neighbouring transmitters to avoid interference,
and (ii) offers good radio conditions.

Consider a network consisting of L users or links indexed by i ∈ [L] = {1, . . . , L}.
Each link can use one of the K available radio channels indexed by j ∈ [K]. Inter-
ference is represented as an interference graph G = (V,E) 5 where vertices are links
and edges indicate interference among links. More precisely, we have (i, i′) ∈ E if
links i and i′ interfere, i.e., these links cannot be simultaneously active. A spectrum
allocation is represented as an allocation matrix M ∈ {0, 1}M×K , where Mij = 1 if
and only if user i transmitter uses channel j. Allocation M is feasible if (i) for all i,

5In some works, interference graph is referred to as conflict graph.
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the corresponding transmitter uses at most one channel, i.e.,
∑
j∈[K]Mij ≤ 1; (ii)

two interfering links cannot be active on the same channel, i.e., for all i, i′ ∈ [L],
(i, i′) ∈ E implies for all j ∈ [K], MijMi′j = 0 6. LetM be the set of all feasible
allocation matrices. In the following we denote by F = {F`, ` ∈ [f ]} the set of
maximal cliques of the interference graph G. We also introduce F`i ∈ {0, 1} such
that F`i = 1 if and only if link i belongs to the maximal clique F`. An example of
an interference graph along with a feasible allocation is shown in Figure 1.1.ch. 1 ch. 2 ch. 3 

link 1 link 2 link 3 link 4 link 5 
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(a)
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Figure 1.1: Spectrum allocation in a wireless system with 5 links and 3 channels:
(a) interference graph (b) an example of a feasible allocation.

We consider a time slotted system, where the duration of a slot corresponds to
the transmission of a single packet. We denote by Xij(n) the number of packets
successfully transmitted during slot n when user i selects channel j for transmission
in this slot and in absence of interference. Depending on the ability of transmitters
to switch channels, we consider two settings. In the stochastic setting, the number
of successful packet transmissions Xij(n) on link i and channel j are independent
over i and j, and are i.i.d. across slots n. The average number of successful
packet transmissions per slot is denoted by E[Xij(n)] = θij , and is supposed to be
unknown initially. Xij(n) is a Bernoulli random variable of mean θij . The stochastic
setting models scenarios where the radio channel conditions are stationary. In the
adversarial setting, Xij(n) ∈ [0, 1] can be arbitrary (as if it was generated by an
adversary), and unknown in advance. This setting is useful to model scenarios
where the duration of a slot is comparable to or smaller than the channel coherence
time. In such scenarios, we assume that the channel allocation cannot change at
the same pace as the radio conditions on the various links, which is of interest in
practice, when the radios cannot rapidly change channels.

6This model assumes that the interference graph is the same over the various channels. This
assumption, however, can be relaxed.
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If the radio conditions on each (user, channel) pair were known, the problem
would reduce to the following combinatorial optimization problem:

max
M∈M

∑
i∈[L],j∈[K]

XijMij (1.1)

subject to:
∑
j∈[K]

Mij ≤ 1, ∀i ∈ [L],

∑
i∈[L]

F`iMij ≤ 1, ∀` ∈ [f ], j ∈ [K],

Mij ∈ {0, 1}, ∀i ∈ [L], j ∈ [K]. (1.2)

Problem (1.1) is indeed a coloring problem of the interference graph G, which
is shown to be NP-complete for general interference graphs. In contrast, if all
links interfere each other (i.e., no two links can be active on the same channel), a
case referred to as full interference, the above problem becomes an instance of a
Maximum Weighted Matching in a bipartite graph (vertices on one side correspond
to users and vertices on the other side to channels; the weight of an edge, i.e., a
(user, channel) pair, represents the radio conditions for the corresponding user and
channel). As a consequence, it can be solved in strongly polynomial time [23].

In practice, the radio conditions on the various channels are not known a priori,
and they evolve over time in an unpredictable manner. We model our sequential
spectrum allocation problem as a combinatorial MAB problem. The objective is
to identify a policy maximizing over a finite time horizon T the expected number
of packets successfully transmitted. Equivalently, we aim at designing a sequential
channel allocation policy that minimizes the regret of policy π. Let XM (n) denote
the total number of packets successfully transmitted during slot n under allocation
M ∈M, i.e.,

XM (n) =
∑
i∈[L]

∑
j∈[K]

MijXij(n).

Then the regret is defined as

Rπ(T ) = max
M∈M

E[
T∑
t=1

XM (n)]− E[
T∑
t=1

XMπ(n)(n)],

where Mπ(n) denotes the allocation selected under policy π in time slot n. The
expectation is here taken with respect to the possible randomness in the stochastic
rewards (in the stochastic setting) and in the probabilistic successively selected
channel allocations. The notion of regret indeed quantifies the performance loss
due to the need for learning radio channel conditions. Spectrum sharing problems
similar to this have been recently investigated in [8, 7, 24, 25, 26].
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1.2.2 Shortest-Path Routing
Shortest-path routing is amongst the first instances of combinatorial MAB problems
considered in the literature, e.g., in [27, 28, 29]. As our second example, we consider
shortest-path routing in the stochastic setting as studied in [30, 31].

Consider a network whose topology is modeled as a directed graph G = (V,E)
where V is the set of nodes and E is the set of links. Each link i ∈ E may,
for example, represent an unreliable wireless link. Without loss of generality, we
assume that time is slotted and that one slot corresponds to the time to send a
packet over a single link. At time t, Xi(t) is a binary random variable indicating
whether a transmission on link i at time t is successful. (Xi(t))t≥1 is a sequence
of i.i.d. Bernoulli variables with initially unknown mean θi. Hence if a packet is
sent on link i repeatedly until the transmission is successful, the time to complete
the transmission (referred to as the delay on link i) is geometrically distributed
with mean 1/θi. Let θmin = mini∈E θi > 0, and let θ = (θi, i ∈ E) be the vector
representing the packet successful transmission probabilities on the various links.
We consider a single source-destination pair (u, v) ∈ V 2, and denote byM⊆ {0, 1}d
the set of loop-free paths from u to v in G, where each path M ∈ M is a d-
dimensional binary vector; for any i ∈ E, Mi = 1 if and only if i belongs to M .
Hence, for any M ∈M, the length of path M is ‖M‖1 =

∑
i∈EMi.

We assume that the source is fully backlogged (i.e., it always has packets to
send), and that the parameter θ is initially unknown. Packets are sent successively
from u to v over various paths to estimate θ, and in turn to learn the path M?,
namely the path whose average delay is minimal. After a packet is sent, we assume
that the source gathers some feedback from the network (essentially per-link or
end-to-end delays) before sending the next packet. If θ were known, one would
choose the path M? given by

M? ∈ arg min
M∈M

∑
i∈E

Mi

θi
. (1.3)

Our objective is to design and analyze online routing strategies, i.e., strategies
that take routing decisions based on the feedback received for the packets previously
sent. Depending on the received feedback (per-link or end-to-end path delay), we
consider two different types of online routing policies: (i) Source routing with end-to-
end (bandit) feedback in which the path used by a packet is determined at the source
based on the observed end-to-end delays for previous packets, and (ii) source routing
with per-link (semi-bandit) feedback, where the path used by a packet is determined
at the source based on the observed per-link delays for previous packets. LetDM (n)
denote the end-to-end delay of the n-th packet if it is sent over path M . The goal
is to design online routing policies that minimize the regret up to the N -th packet
defined as:

Rπ(N) = E[
N∑
n=1

DMπ(n)(n)]− min
M∈M

E[
N∑
n=1

DM (n)],
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Chapter Combinatorial Structure Reward
Chapter 3 Generic Bernoulli
Chapter 4 Matroid Bernoulli
Chapter 5 Generic Geometric
Chapter 6 Generic (with fixed cardinality) Adversarial

Table 1.1: A summary of the chapters in this thesis

whereMπ(n) is the path chosen by policy π for the transmission of the n-th packet.
Here, the expectation is taken with respect to the random link transmission results
and possible randomization in the policy π. The regret quantifies the performance
loss due to the need to explore sub-optimal paths to learn the path with minimum
delay.

1.3 Thesis Outline and Contributions

Here we present the outline and contributions of this thesis in detail as well as the
relation to the corresponding publications. Table 1.1 summarizes the organization
of the chapters.

Chapter 2: Background

This chapter is devoted to the overview of some results and algorithms on classical
MAB problems in both stochastic and adversarial settings. In the stochastic setting,
we study regret lower bounds and provide an overview of well-known algorithms
for stochastic bandits. Similarly, in the adversarial setting we overview important
algorithms along with their performance guarantees.

Chapter 3: Stochastic Combinatorial MABs: Bernoulli Rewards

In chapter 3, we consider stochastic combinatorial MAB with Bernoulli rewards.
We derive tight and problem-specific lower bounds on the regret of any admissible
algorithm under bandit and semi-bandit feedbacks. Our derivation leverages the
theory of optimal control of Markov chains with unknown transition probabilities.
These constitute the first lower bounds proposed for generic combinatorial MABs
in the literature. In the case of semi-bandit feedback, we further discuss scaling
of the lower bound with the dimension of the underlying combinatorial structure.
Furthermore, we propose ESCB, an algorithm that efficiently exploits the structure
of the problem, and provide a finite-time analysis of its regret. ESCB has better
performance guarantee than existing algorithms and significantly outperforms these
algorithms in practice as confirmed by our numerical experiments. We then present
the Epoch-ESCB algorithm to alleviate the computational complexity of ESCB.

The chapter is based on the following publications:
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• Marc Lelarge, Alexandre Proutiere, and M. Sadegh Talebi, “Spectrum Bandit
Optimization,” in Information Theory Workshop (ITW), 2013.

• Richard Combes, M. Sadegh Talebi, Alexandre Proutiere, and Marc Lelarge,
“Combinatorial Bandits Revisited,” in Advances in Neural Information Pro-
cessing Systems 28 (NIPS), 2015.

Chapter 4: Stochastic Matroid MABs
In Chapter 4, we consider stochastic combinatorial MABs where the underlying
combinatorial structure is a matroid. We provide asymptotic regret lower bounds,
which are specialization of the lower bounds in Chapter 3 to the case of matroids.
In contrast to the lower bounds of Chapter 3, the results of Chapter 4 are explicit.
To the best of our knowledge, this is the first explicit performance limit for the
problem considered. In the case of semi-bandit feedback, we propose KL-OSM, which
is a computationally efficient algorithm working based on the greedy algorithm.
Hence, KL-OSM is capable of exploiting the matroid structure. Through a finite-time
analysis, we prove that the regret upper bound of KL-OSM matches the proposed
lower bound, and hence it is asymptotically optimal. This algorithm constitutes
the first optimal algorithm for matroid bandits in the literature.

The chapter is based on the following work:

• M. Sadegh Talebi and Alexandre Proutiere, “An Optimal Algorithm for Stochas-
tic Matroid Bandit Optimization,” submitted to International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), 2016.

Chapter 5: Stochastic Combinatorial MABs: Geometric Rewards
In Chapter 5, we study combinatorial MAB problems with geometrically distributed
rewards, which is motivated by the shortest-path routing as discussed in Section
1.2.2. We consider several scenarios that differ in where routing decisions are made
and in the feedback available when making the decision. Leveraging similar tech-
niques as in Chapter 3, for each scenario, we derive a tight asymptotic lower bound
on the regret that has to be satisfied by any online routing policy. For the case of
source routing, namely when routing decisions are determined at the source node,
we then propose two algorithms: GeoCombUCB-1 and GeoCombUCB-2. Moreover, we
improve the regret upper bound of KL-SR [30]. These algorithms exhibit a trade-off
between computational complexity and performance. Moreover, the regret upper
bounds of these algorithm improve over those of state-of-the-art algorithms. Nu-
merical experiments also validated that these policies outperform state-of-the-art
algorithms.

The chapter is based on the following work:

• M. Sadegh Talebi, Zhenhua Zou, Richard Combes, Alexandre Proutiere, and
Mikael Johansson, “Stochastic Online Shortest Path Routing: The Value of
Feedback,” submitted to IEEE Transaction on Automatic Control.
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Chapter 6: Adversarial Combinatorial MABs
Chapter 6 investigates adversarial combinatorial MAB problems under bandit feed-
back. The focus of that chapter is on the case where all arms consist of the same
number of basic actions. We propose the CombEXP algorithm, an OSMD-type al-
gorithm, and provide a finite-time analysis of its regret. As our analysis shows,
CombEXP has the same regret scaling as state-of-the-art algorithms. Furthermore,
we present an analysis of the computational complexity of CombEXP showing that
it has lower computational complexity than state-of-the-art algorithms for some
problems of interest. The presented computational complexity analysis extends in
an straightforward manner to class of OSMD-type algorithms and hence could be of
independent interest.

The chapter is based on the following publication:

• Richard Combes, M. Sadegh Talebi, Alexandre Proutiere, and Marc Lelarge,
“Combinatorial Bandits Revisited,” in Advances in Neural Information Pro-
cessing Systems 28 (NIPS), 2015.

Chapter 7: Conclusions and Future Work
This chapter draws some conclusions and provides some directions for the future
work.

Appendices
The thesis is concluded with two appendices. The first appendix overviews several
important concentration inequalities whereas the second one outlines some impor-
tant properties of the Kullback-Leibler divergence. The results in both appendices
prove useful for the analyses in the various chapters of this thesis.



Chapter 2

Background

In this section we give an overview of the various results for stochastic and adver-
sarial MABs.

2.1 Stochastic MAB

The multi-armed bandit (MAB) problem was introduced in the seminal paper by
Robbins [1] to study the sequential design of experiments. The first bandit algo-
rithm, however, dates back to a paper by Thompson [2] in 1933. In this section we
give an overview of lower bounds for stochastic MAB. It is followed by an overview
of various algorithms developed.

The classical stochastic MAB is formalized as follows. Let us assume that
we have K ≥ 2 arms. Successive plays of arm i generates the reward sequence
(Xi(n))n≥1. For any i, the sequence of rewards (Xi(n))n≥1 is drawn i.i.d. from a
parametric distribution ν(θi), where θi ∈ Θ is a parameter initially unknown to the
decision maker. We let µ(θ) denote the expected value of ν(θ) for any θ ∈ Θ. We
assume that the rewards are independent across various arms.

A policy or algorithm π is a sequence of random variables Iπ(1), Iπ(2), . . . all
taking values from [K] such that {Iπ(n) = i} ∈ Fn for all i ∈ [K] and n ≥
0. Let Π be the set of all feasible policies. The objective is to identify a policy
in Π maximizing the cumulative expected reward over a finite time horizon T .
The expectation is here taken with respect to randomness in the rewards and the
possible randomization in the policy. Equivalently, we aim at designing a policy
that minimizes regret, where the regret of policy π ∈ Π is defined by:

Rπ(T ) = max
i∈[K]

E[
T∑
n=1

Xi(n)]− E[
T∑
n=1

XIπ(n)(n)].

For any i ∈ [K] introduce ∆i = maxj∈[K] µ(θj) − µ(θi). Moreover, let tπi (n)
denote the number of times arm i is selected up to round n under policy π, i.e.,

11
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tπi (n) =
∑n
s=1 1{Iπ(s) = i}. Then, the regret Rπ(T ) can be decomposed as follows:

Rπ(T ) =
∑
i∈[K]

∆iE[tπi (T )].

2.1.1 Lower Bounds on the Regret
In this subsection we present lower bounds on the regret for stochastic MAB prob-
lems. The first lower bound was proposed by Lai and Robbins in their seminal
paper [3]. They consider a simple parametric case, in which Θ ⊂ R. Namely, the
distribution of the rewards of a given arm is parameterized by a scalar parameter.
To state their result, we first define the concept of uniformly good rules.

Definition 2.1 ([3]). A policy is uniformly good if for all θ ∈ Θ, the regret satisfies
Rπ(T ) = o(Tα) for any α > 0.

Let i? be an optimal arm, namely µ(θi?) = maxi∈[K] µ(θi). For the case of
distributions parameterized by a single parameter, Lai and Robbins show that the
number of times that a sub-optimal arm i is pulled by any uniformly good policy
π satisfies:

lim inf
T→∞

E[tπi (T )]
log(T ) ≥

1
KL(ν(θi), ν(θi?)) ,

where KL(p, q) is the Kullback-Leibler divergence between the distributions p and
q.1 From the regret decomposition rule described above, it then follows that the
regret satisfies:2

lim inf
T→∞

Rπ(T )
log(T ) ≥

∑
i:∆i>0

∆i

KL(θi, θi?) .

This result indeed defines the asymptotic optimality criterion: an algorithm π
is said to be asymptotically optimal if the following holds for any θ ∈ Θ:

lim sup
T→∞

Rπ(T )
log(T ) ≤

∑
i:∆i>0

∆i

KL(θi, θi?) .

Lai and Robbins’ lower bound was generalized in subsequent works, e.g., [33,
34, 35]. Extension to multiple play, i.e. the case where multiple arms are pulled
at the same time, is addressed by Anantharam et al. [33, 34]. Let us assume that
arms are enumerated such that µ(θ1) ≥ µ(θ2) ≥ · · · > µ(θm+1) ≥ · · · ≥ µ(θK)
and that at each round, m arms are played. Anantharam et al. [33] show that the
regret of any uniformly good rule π satisfies:

lim inf
T→∞

Rπ(T )
log(T ) ≤

K∑
i=m+1

µ(θm)− µ(θi)
KL(θi, θm) .

1With some abuse of notation, hereafter we write KL(θ, θ′) to indicate KL(ν(θ), ν(θ′)).
2A simplified proof of this result can be found in [32, Chapter 1].
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Furthermore, [34] investigates the case when multiple arms are played and rewards
are generated from an aperiodic and irreducible Markov chain with a finite state
space.

These results were also extended and generalized by Burnetas and Katehakis
[35] to distributions that rely on multiple parameters, and by Graves and Lai [20]
to a more general framework of adaptive control of Markov chains.

Regret Lower Bound for Adaptive Control of Markov Chains

Graves and Lai [20] study adaptive control algorithms for controlled Markov chains
with unknown transition probabilities. The Markov chain is assumed to have a
general state space and its transition probabilities are parameterized by an unknown
parameter belonging to compact metric space. The framework of Graves and Lai
generalizes those of Lai and Robbins [3], Anantharam et al. [34], and Burnetas
and Katehakis [35], and plays a pivotal role in derivation of lower bound on the
regret for various problems in this thesis. Here, we give an overview of this general
framework.

Consider a controlled Markov chain (Xn)n≥0 on a finite state space S with a
control set U . The transition probabilities given control u ∈ U are parameterized
by θ taking values in a compact metric space Θ: The probability to move from state
x to state y given the control u and the parameter θ is p(x, y;u, θ). The parameter θ
is not known. The decision maker is provided with a finite set of stationary control
laws G = {g1, . . . , gK}, where each control law gj is a mapping from S to U : When
control law gj is applied in state x, the applied control is u = gj(x). It is assumed
that if the decision maker always selects the same control law g, the Markov chain
is then irreducible with stationary distribution πgθ . Now the reward obtained when
applying control u in state x is denoted by r(x, u), so that the expected reward
achieved under control law g is:

µθ(g) =
∑
x∈S

r(x, g(x))πgθ (x).

Given θ, an optimal control law is optimal if its expected reward is

max
g∈G

µθ(g) := µ?θ.

Letting
J(θ) = {j ∈ [K] : µθ(gj) = µ?θ},

the set of optimal stationary control laws is {gj , j ∈ J(θ)}. Of course when the
optimal stationary law is unique, J(θ) is a singleton. Now the objective of the
decision maker is to sequentially select control laws so as to maximize the expected
reward up to a given time horizon T . The performance of a decision scheme can
be quantified through the notion of regret which compares the expected reward to
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that obtained by always applying the optimal control law:

R(T ) = Tµ?θ − E[
T∑
n=1

r(Xn, un)] =
∑

g∈G:µθ(g)<µ?
θ

(µ?θ − µθ(g))E[tg(T )]

In order to state the lower bound on the regret of a uniformly good (adaptive
control) rule, we first introduce some concepts. For control law g ∈ G, the Kullback-
Leibler information number is defined by

Ig(θ, λ) =
∑
x

∑
y

log p(x, y; g(x), θ)
p(x, y; g(x), λ)p(x, y; g(x), θ)πgθ (x).

Next we introduce the notion of bad parameter set. Let us decompose Θ into L
subsets {Θj , j ∈ [L]}, such that for any θ ∈ Θj , gj is the stationary control law,
i.e.,

Θj = {θ ∈ Θ : µθ(gj) = max
g∈G

µθ(g)}.

Then the set of bad parameters, denoted by B(θ), is

B(θ) =
{
λ ∈ Θ : λ /∈

⋃
j∈J(θ)

Θj and Igj (θ, λ) = 0,∀j ∈ J(θ)
}
.

Indeed, B(θ) is the set of bad parameters that are statistically indistinguishable
from θ under optimal control laws {gj , j ∈ J(θ)}.

An adaptive control rule φ is a sequence of random variables I(1), I(2), . . . that
belong to G such that {I(n) = g} ∈ Fn for all g ∈ G and n ≥ 0. An adaptive control
rule φ is said to be uniformly good if for all θ ∈ Θ, we have that R(T ) = O(log(T ))
and S(T ) = o(log(T )), where S(T ) denotes the number of switchings between
successive control laws such that both are not optimal, up to round T .

The following theorem asserts that under certain regularity conditions, the re-
gret of any uniformly good rule admits the asymptotic lower bound of (c(θ) +
o(1)) log(T ).

Theorem 2.1 ([20, Theorem 1]). For every θ ∈ Θ and for any uniformly good
algorithm φ,

lim inf
T→∞

R(T )
log(T ) ≥ c(θ),

where

c(θ) = inf
{ ∑
j /∈J(θ)

xj(µ? − µ(gj)) : xj ∈ R+, inf
λ∈B(θ)

∑
j /∈J(θ)

xjI
gj (θ, λ) ≥ 1

}
.
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Algorithm 2.1 Index policy using index ξ
for n ≥ 1 do

Select arm I(n) ∈ arg maxi∈[K] ξi(n).
Observe the rewards, and update ti(n) and θ̂i(n), ∀i ∈ [K].

end for

We remark that c(θ) is the optimal value of a linear semi-infinite program (LSIP)
[36]. Hence, in general it is difficult to compute though in some cases deriving
explicit solution is possible.

Theorem 2.1 indicates that within the T first rounds, the total amount of draw
of a sub-optimal control lawM should be of the order of x?M log(T ) where x?M is the
optimal solution of the presented optimization problem. Graves and Lai present
policies that achieve this objective, but they are unfortunately extremely difficult
to implement in practice. Indeed, these policies require to solve, in each round, a
linear semi-infinite program which might be computationally expensive.

2.1.2 Algorithms

In this section we present the most important algorithms for the stochastic MAB
problem.

Upper Confidence Bound Index Policies

Most of the algorithms we present here are upper confidence bound index policies, or
index policies for short, whose underlying idea is to select the arm with the largest
(high-probability) upper confidence bound for the expected reward. To this end,
an index policy maintains an index function for each arm, which is a function of the
past observations of this arm only (e.g., the empirical average reward, the number
of draws, etc.). The index policy then simply consists in selecting the arm with the
maximal index at each round. Algorithm 2.1 shows the pseudo-code of a generic
index policy that relies on index function ξ.

An index policy relies on constructing an upper confidence bound for the ex-
pected reward of each arm3 in a way that µi ∈ [µ̂i(n) − δi(n), µ̂i(n) + δi(n)] with
high probability, where µ̂i is the empirical average reward of arm i. A sub-optimal
arm will be selected if δi(n) is large or if µ̂i(n) is large. Observe that δi(n) quickly
decreases if arm i is sampled sufficiently. Moreover, the number of times that i
is selected and µ̂i(n) is badly estimated is finite. Hence it is expected that after
sampling sub-optimal arms sufficiently, the index policy will select the optimal arm
most of the time.

Index policies were first introduced in the seminal work of Gittin [37] for the
MABs in Bayesian setting. For non-Bayesian stochastic MAB problems, the first
index policy was introduced by Lai and Robbins [3]. This policy constitutes the first

3Of course, for loss minimization we are interested in lower confidence bounds.
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asymptotically optimal algorithm for the classic MAB problem. Lai and Robbins’
algorithm was very complicated; hence it motivated developments of simpler index
policies; see, e.g., [38, 19, 39, 40, 41]. Agrawal [38] proposed simple index policies in
explicit form for some distributions such as Bernoulli, Poisson, Gaussian, etc. He
further showed that these policies are asymptotically optimal and achieveO(log(T ))
regret.

The UCB1 Algorithm [19]. It wasn’t until the paper by Auer et al. [19] that a
finite-time analysis of index policies was presented. Auer et al. consider rewards
drawn from distributions with (known) bounded supports. Without loss of gener-
ality assume that the support of rewards is [0, 1]. Under this assumption, Auer et
al. propose the following index

bi(n) = µ̂i(n) +

√
α log(n)
ti(n) .

Originally, Auer et al. chose α = 2. To simplify the presentation, in what follows
we assume that the first arm i = 1 is the unique optimal arm. In the following
theorem, we present a regret upper bound for UCB1 for α = 3/2. 4

Theorem 2.2 ([19]). The regret under π =UCB1 satisfies

Rπ(T ) ≤ 6
∑
i>1

log(T )
∆i

+ Kπ2

6 +
∑
i>1

4
∆i
.

We provide a proof of this result in the appendix. Observe that UCB1 achieves a
sub-optimal regret in view of Lai and Robbins’ lower bound since kl(θi, θ1) > 2∆2

i .

The KL-UCB Algorithm [39]. The KL-UCB algorithm is an optimal algorithm
for stochastic MABs with bounded rewards proposed by Garivier and Cappé [39].
KL-UCB relies on the following index:

bi(n) = max{q ∈ Θ : ti(n)kl(θ̂i(n), q) ≤ log(n) + c log(log(n))}.

The following theorem provides the regret bound of KL-UCB.

Theorem 2.3 ([39]). The regret under π =KL-UCB satisfies

Rπ(T ) ≤ (1 + ε)
∑
i>1

∆i

kl(θi, θ1) log(T ) + C1 log(log(T )) + C2(ε)
T β(ε) ,

4Auer et al. originally provided the following regret upper bound for UCB1:

R(T ) ≤ 8
∑
i>1

log(T )
∆i

+
(

1 +
π2

3

)∑
i>1

∆i.
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where C1 is a positive constant and where C2(ε) and β(ε) denote positive functions
of ε. Hence,

lim sup
T→∞

Rπ(T )
log(T ) ≤

∑
i>1

∆i

kl(θi, θ1) .

It is noted that the regret upper bound of KL-UCB matches the lower bound of
Burnetas and Katehakis [35].

Using Variance Estimates: The UCB-V Algorithm [40]. Incorporating vari-
ance estimates into index function allows to have superior algorithms. One such
index policy is UCB-Tuned [19], for which no theoretical guarantee is proposed.
Audibert et al. [40] proposed UCB-V (UCB with Variance estimates) index which
incorporates variance estimates (empirical variance) in the index. UCB-V index is
defined as

θ̂i(n) +

√
2αVi(n) log(n)

ti(n) + 3α log(n)
ti(n) ,

where Vi(n) is the empirical variance of arm i up to round n:

Vi(n) = 1
ti(n)

ti(n)∑
n=1

(Xi(n)− θ̂i(n))2.

Let σ2
i denote the variance of arm i. It is shown that UCB-V achieves the following

regret upper bound [40]:

RUCB−V(T ) ≤ 10
(∑
i>1

σ2
i

∆i
+ 2
)

log(T ).

The Thompson Sampling Algorithm

Thompson Sampling was proposed by Thompson [2] in 1933. It wasn’t until very
recently, however, that its regret analysis was presented by Agrawal and Goyal
[42, 43] and Kaufmann et al. [44].

In contrast to previously described index policies, Thompson Sampling belongs
to the family of randomized probability matching algorithms and selects an arm
based on posterior samples. The underlying idea in Thompson Sampling is to as-
sume a prior distribution on the parameters of the reward distribution of every
arm. Then at any time step, Thompson Sampling plays an arm according to its
posterior probability of being the best arm. Algorithm 2.2 presents the pseudo-code
of Thompson Sampling for the case of Bernoulli distributed rewards, for which the
appropriate prior distribution is the Beta distribution (see, e.g., [43] for details).

The first regret analysis for Thompson Sampling was proposed by Agrawal and
Goyal [42]. Later, Kaufmann et al. [44] improved this regret analysis and proved
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Algorithm 2.2 Thompson Sampling
Initialization: For each arm i ∈ [K] set Si = 0, Fi = 0.
for n ≥ 1 do

For each arm i, sample zi(n) from Beta(Si + 1, Fi + 1).
Play arm I(n) = arg maxi∈[K] zi(n) and receive the reward XI(n).
if XI(n) = 1 then
Set SI(n) = SI(n) + 1.

else
Set FI(n) = FI(n) + 1.

end if
end for

the asymptotic optimality of Thompson Sampling for classical stochastic MABs.
Optimality of Thompson Sampling was also addressed by Agrawal and Goyal [43]
with a different regret analysis. In the following theorem, we provide the regret
upper bound for Thompson Sampling with Beta priors.

Theorem 2.4 ([43, Theorem 1]). The regret under Thompson Sampling using Beta
Priors satisfies:

R(T ) ≤ (1 + ε)
∑
i>1

∆i

kl(θi, θ1) log(T ) + C(ε, θ1, . . . , θK),

where C(ε, θ1, . . . , θK) is a problem-dependent constant independent of T . In par-
ticular, C(ε, θ1, . . . , θK) = O(Kε−2).

2.2 Adversarial MAB

In this section we consider another variant of MAB problems called adversarial,
also known as non-stochastic, MAB problem introduced by Auer et al. [4]. The
term non-stochastic comes from the fact the no statistical assumption on the reward
sequence is made. Indeed, the rewards are arbitrary as if they were generated by
an adversary.

In their paper [4], Auer et al. propose Exp3 (EXPonential-weight algorithm
for EXPloration and EXPlotation) for the non-stochastic MAB problem. Algo-
rithm 2.3 presents the pseudo-code of Exp3. The design of EXP3 is indeed inspired
by the Hedge algorithm of Freund and Schapire [45], which itself is based on the
multiplicative weight algorithm5 of [47] and aggregating strategies of Vovk [48].

Auer et al. establish a regret of O(T 2/3) for Exp3 and a lower bound of Ω(
√
T )

for the adversarial MAB problem. It wasn’t until the final version of their work
in [5] that they show Exp3 achieves O(

√
KT log(K)) and hence is optimal up to a

logarithmic factor.
5Multiplicative weight algorithm has a plethora applications in various domains of optimization

and algorithm design beyond online learning. We refer to the survey paper by Arora et al. [46].
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Algorithm 2.3 Exp3 [5]
Initialization: Set wi(1) = 1 for i = 1, . . . ,K.
for n ≥ 1 do

For i = 1, . . . ,K set

pi(n) = (1− γ) wi(n)∑K

j=1 wj(n)
+ γ

K
.

Choose arm I(n) from the probability distribution p(n).
Play arm I(n) and observe the reward XI(n)(n).
Compute the estimate reward vector X̃i(n) = Xi(n)

pi(n) 1{I(n) = i}
For i = 1, . . . ,K set wi(n+ 1) = wi(n)eγX̃i(n)/K .

end for

The following theorem provides the regret guarantee for the expected regret of
Exp3.

Theorem 2.5 ([5, Theorem 3.1]). For any T ≥ 1, assume that Exp3 is run with
parameter γ = min

(
1,
√

K log(K)
(e−1)T

)
. Then

R(T ) ≤ 2
√
e− 1

√
TK log(K).

Several variants of the Exp3 algorithm have also been proposed in [5]. One
of the variants is Exp3.p, which attains a regret guarantee that holds with high-
probability. We note that Theorem 2.5 implies that Exp3 has O(

√
KT log(K))

regret. The following theorem from [5] establishes a lower bound on the regret
signifying the tightness of the result of Theorem 2.5.

Theorem 2.6 ([5, Theorem 5.1]). We have that:

inf supR(T ) ≥ 1
20
√
KT,

where sup is taken over all set of K distributions on [0, 1] and inf is taken over all
policies.

This lower bound implies that for any algorithm there exists a choice of reward
sequence such that the expected regret is at least 1

20
√
KT . Therefore, Exp3 achieves

a regret which is optimal up to a logarithmic factor. Finally, we mention that
Audibert and Bubeck [49] propose an algorithm, called MOSS, whose upper bound
scales as O(

√
KT ) which matches the abovementioned lower bound.

2.A Proof of Theorem 2.2

Proof. Let T > 0. First we derive an upper bound for the expected number of plays
of any sub-optimal arm i up to round T . Fix i > 1 and consider round n when arm
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i is selected. Either the index of the best arm underestimates the average reward
of this arm, or the average reward of arm i is badly estimated, or the number of
times arm i is played is not sufficient.

For any n ≥ 1, introduce the following events: An = {b1(n) < µ1} and Bn,i =
{I(n) = i, µ̂i(n)− µi ≥ ∆i/2}. Note that

{I(n) = i} ⊂ An ∪Bn,i ∪ ({I(n) = i} ∩An ∩Bn,i)

Define `i = 6
∆2
i

log(T ). Next we show that

{I(n) = i} ∩An ∩Bn,i ⊆ {ti(n) < `i}.

Consider n such that An and Bn,i occur and arm i is selected. It then follows that

µi + ∆i

2 +

√
3 log(T )
2ti(n) > bi(n) ≥ b1(n) ≥ µ1,

which further implies that ti(n) < 6 log(T )
∆2
i

. Hence, {I(n) = i} ⊂ An∪Bn,i∪{ti(n) <
`i}, and consequently

E[ti(T )] = E[
T∑
n=1

1{I(n) = i}] ≤ `i +
T∑
n=1

(P[An] + P[Bn,i]).

Note that
∑
n≥1 P[Bn,i] ≤ 4/∆2

i on the account of Corollary A.2. Moreover,

P[An] = P[µ1 − µ̂1(n) >
√

1.5 log(n)/ti(n)]

=
n∑
s=1

P[µ1 − µ̂1,s >
√

1.5 log(n)/s, ti(n) = s]

≤
n∑
s=1

P[µ1 − µ̂1,s >
√

1.5 log(n)/s] ≤ ne−3 log(n) = 1
n2 ,

where the last line follows from Hoeffding inequality (Theorem A.2). Here µ̂1,s
denotes the empirical average reward of arm 1 when it is sampled s times. Thus∑T
n=1 P[An] ≤

∑
n≥1 n

−2 = π2/6. Putting these together, we obtain

E[ti(T )] ≤ 6
∆2
i

log(T ) + π2

6 + 4
∆2
i

.

Finally,

R(T ) =
∑
i>1

∆iE[ti(T )] ≤
∑
i>1

6
∆i

log(T ) +
∑
i>1

4
∆i

+ Kπ2

6 ,

which concludes the proof.



Chapter 3

Stochastic Combinatorial MABs:
Bernoulli Rewards

This chapter, which constitutes the core part of this thesis, investigates combina-
torial MABs with Bernoulli rewards. We first derive lower bounds on the regret to
determine the fundamental performance limit of these problems under bandit and
semi-bandit feedback. Our derivation leverages the theory of optimal control of
Markov chains as studied by Graves and Lai [20]. In contrast to Lai and Robbins’
lower bound, which has a closed-form expression, the derivation and the expression
of regret lower bounds for generic combinatorial bandit problems are complicated
due to correlation between the rewards of the various actions. We then propose
ESCB, an algorithm working under semi-bandit feedback, and provide upper bounds
on its regret. This upper bound constitutes the best regret guarantee that has been
proposed in the literature for the problem considered.

This chapter is based on the publications [50] and [22]. It is organized as follows:
Section 3.1 outlines contributions of the chapter and provides an overview of related
works. Section 3.2 describes the model and objectives. In Section 3.3, we derive
lower bounds on the regret under semi-bandit and bandit feedback. In Section
3.4 we present the ESCB algorithm and provide a finite-time analysis of its regret.
We provide simulation results in Section 3.5. Finally, Section 3.6 summarizes the
chapter. All proofs are presented in the appendix.

3.1 Contributions and Related Work

In this chapter we make the following contributions:

(a) We derive asymptotic (as the time horizon T grows large) regret lower bounds
satisfied by any algorithm under semi-bandit and bandit feedback (Theorems 3.1
and 3.3). These lower bounds are problem-specific and tight: there exists an al-
gorithm that attains the bound on all problem instances, although the algorithm
might be computationally expensive. To our knowledge, such lower bounds have
not been proposed in the case of stochastic combinatorial bandits. The dependency

21
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in m and d of the lower bounds is unfortunately not explicit. For semi-bandit feed-
back, we further provide a simplified lower bound (Theorem 3.2) and derive its
scaling in (m, d) in specific examples.

(b) In the case of semi-bandit feedback, we propose ESCB (Efficient Sampling for
Combinatorial Bandits), an algorithm whose regret scales at most asO(

√
md

∆min
log(T ))

(Theorem 3.6), where ∆min denotes the expected reward difference between the best
and the second-best arm. ESCB assigns an index to each arm. Our proposed indexes
are the natural extensions of KL-UCB and UCB indexes defined for unstructured
bandits [39, 19]. We present numerical experiments for some specific combinatorial
problems, which show that ESCB significantly outperforms existing algorithms.

3.1.1 Related Work
Previous contributions on stochastic combinatorial MABs mainly considered semi-
bandit feedback. Most of these contributions focused on specific combinatorial
structures, e.g., fixed-size subsets [33, 51], matroids [52, 53], or permutations [26,
54]. Generic combinatorial problems were investigated in [55], [56], and [57]. Gai
et al. [55] propose LLR, a variant of the UCB algorithm which assigns index to basic
actions. Gai et al. [55] establish a loose regret bound of O(m

3d∆max
∆min

log(T )) for
LLR, where ∆max denotes the expected reward difference between the best and the
worst arm. Chen et al. [56] present a general framework for combinatorial opti-
mization problems in the semi-bandit setting that covers a large class of problems.
Under mild regularity conditions, their proposed framework also allows for non-
linear reward functions. The proposed algorithm, CUCB, is a variant of UCB that
assigns index to basic actions. For linear combinatorial problems, CUCB achieves
a regret O( m

2d
∆min

log(T )), which improves over the regret bound of LLR by a factor
of m∆max/∆min. For linear combinatorial problems, Kveton et al. [57] improve
the regret upper bound of CUCB1 to O( md

∆min
log(T )). However, the constant in the

leading term of this regret bound is fairly large. They also derive another regret
bound scaling as O(m

4/3d
∆min

log(T )) with better constants2. Our algorithms improve
over LLR and CUCB by a multiplicative factor of (at least)

√
m. The performance

guarantees of these algorithms are presented in Table 3.1.
In spite of specific lower bound examples, regret lower bounds, which hold for

all problem instances, have not been reported in existing works so far. Such specific
results are mainly proposed to examine the tightness of regret bounds. For instance,
to prove that a regret of O( md

∆min
log(T )) cannot be beaten, Kveton et al. [57]

artificially create an instance of the problem where the rewards of the basic actions
of the same arm are identical, or in other words, they consider a classical bandit
problem where the rewards of the various arms are either 0 or equal to m. This
does not contradict our regret bounds scaling as O(

√
md

∆min
log(T )) since we assume

independence among the rewards of various basic actions.
1In [57], the proposed algorithm is CombUCB1, which is essentially identical to CUCB.
2A similar regret scaling for the case of matching problem is provided independently in [54].
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Algorithm Regret

LLR [55] O
(
m3d∆max

∆2
min

log(T )
)

CUCB [56] O
(
m2d
∆min

log(T )
)

CombUCB1 (CUCB) [57] O
(
m4/3d
∆min

log(T )
)

CombUCB1 (CUCB) [57] O
(
md

∆min
log(T )

)
ESCB (Theorem 3.6) O

( √
md

∆min
log(T )

)
Table 3.1: Regret upper bounds for stochastic combinatorial bandits under semi-
bandit feedback.

Linear combinatorial MABs may be viewed as linear optimization over a polyhe-
dral set. Dani et al. [17] consider stochastic linear optimization over compact and
convex sets under bandit feedback. They propose algorithms with regret bounds
which scale as O(log3(T )) and hold with high probability. We stress, however, that
Dani et al. [17] assume thatM is full rank and therefore, their algorithms are not
applicable to all classes ofM.

Finally, we mention that some studies addressed combinatorial MABs under
Markovian rewards in the semi-bandit feedback setting. While generic problems
are investigated by Tekin et al. [58], most of existing works focused on specific
problems, e.g., fixed-size subsets [34] and permutations [59, 25].

3.2 Model and Objectives

We consider MAB problems where each arm M is a subset of at most m basic
actions taken from [d] = {1, . . . , d}. For i ∈ [d], Xi(n) denotes the reward of
basic action i in round n. For each i, the sequence of rewards (Xi(n))n≥1 is i.i.d.
with Bernoulli distribution with mean θi. Rewards are assumed to be independent
across actions. We denote by θ = (θ1, . . . , θd)> ∈ Θ = [0, 1]d the vector of unknown
expected rewards of the various basic actions.

The set of armsM is an arbitrary subset of {0, 1}d, such that each of its elements
M has at most m basic actions. Arm M is identified with a binary column vector
(M1, . . . ,Md)>, and we have ‖M‖1 ≤ m, ∀M ∈ M. At the beginning of each
round n, an algorithm or policy π, selects an arm Mπ(n) ∈ M based on the arms
chosen in previous rounds and their observed rewards. The reward of arm Mπ(n)
selected in round n is XMπ(n)(n) =

∑
i∈[d]M

π
i (n)Xi(n) = Mπ(n)>X(n).

We consider both semi-bandit and bandit feedbacks. Under semi-bandit feed-
back and policy π, at the end of round n, the outcome of basic actions Xi(n) for
all i ∈ Mπ(n) are revealed to the decision maker, whereas under bandit feedback,
Mπ(n)>X(n) only can be observed. Let Πs and Πb be respectively the set of all
feasible policies with semi-bandit and bandit feedback. The objective is to identify
a policy in Πs and Πb maximizing the cumulative expected reward over a finite time
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horizon T . The expectation is here taken with respect to randomness in the rewards
and the possible randomization in the policy. Equivalently, we aim at designing a
policy that minimizes regret, where the regret of policy π is defined by:

Rπ(T ) = max
M∈M

E[
T∑
n=1

XM (n)]− E[
T∑
n=1

XMπ(n)(n)].

Finally, we denote by µM (θ) = M>θ the expected reward of arm M , and let
M?(θ) ∈M, orM? for short, be any arm with maximum expected reward: M?(θ) ∈
arg maxM∈M µM (θ). In what follows, to simplify the presentation, we assume that
M? is unique. We further define: µ?(θ) = M?>θ, ∆min = minM 6=M? ∆M where
∆M = µ?(θ)− µM (θ), and ∆max = maxM (µ?(θ)− µM (θ)).

3.3 Regret Lower Bounds

3.3.1 Semi-bandit Feedback
Given θ, define the set of parameters that cannot be distinguished from θ when
selecting action M?(θ), and for which arm M?(θ) is sub-optimal:

Bs(θ) = {λ ∈ Θ : λi = θi, ∀i ∈M?(θ), µ?(λ) > µ?(θ)}.

Let kl(u, v) be the Kullback-Leibler divergence between Bernoulli distributions of
respective means u and v, i.e., kl(u, v) = u log(u/v) + (1− u) log((1− u)/(1− v)).
We derive a regret lower bound valid for any uniformly good algorithm in Πs. The
proof of this result relies on a general result on controlled Markov chains due to
Graves and Lai [20], which was described in Chapter 2.

Theorem 3.1. For all θ ∈ Θ, for any uniformly good policy π ∈ Πs,

lim inf
T→∞

Rπ(T )
log(T ) ≥ cs(θ), (3.1)

where cs(θ) is the optimal value of the optimization problem:

inf
x≥0

∑
M∈M

xM∆M (3.2)

subject to:
d∑
i=1

kl(θi, λi)
∑
M∈M

xMM ≥ 1, ∀λ ∈ Bs(θ). (3.3)

Observe first that optimization problem (3.10) is a semi-infinite linear program
[36] which can be solved for any fixed θ, but its optimal value is difficult to compute
explicitly. Determining how cs(θ) scales as a function of the problem dimensions
d and m is not obvious. Also note that (3.10) has the following interpretation:
Assume that (3.10) has a unique solution x?. Then any uniformly good algorithm
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must select action M at least x?M log(T ) times over the T first rounds. From [20],
we know that there exists an algorithm which is asymptotically optimal, so that its
regret matches the lower bound of Theorem 3.1. However this algorithm suffers from
two problems: It is computationally infeasible for large problems since it involves
solving (3.10) T times. Furthermore, the algorithm has no finite-time performance
guarantees, and numerical experiments suggest that its finite-time performance on
typical problems is rather poor. Further remark that ifM is the set of singletons
(classical bandit), Theorem 3.1 reduces to the Lai and Robbins’ bound [3] and if
M is the set of fixed-size subsets (bandit with multiple plays), Theorem 3.1 reduces
to the lower bound derived in [33]. Finally, Theorem 3.1 can be generalized in a
straightforward manner for when rewards belong to a one-parameter exponential
family of distributions (e.g., Gaussian, Exponential, Gamma, etc.) by replacing kl
by the appropriate divergence measure.

A Simplified Lower Bound

We now study how the coefficient cs(θ) in our proposed regret lower bound scales as
a function of the problem dimensions d and m. To this aim, we present a simplified
regret lower bound.

Definition 3.1. Given θ, we say that a set H ⊂M\M? has property P (θ) iff, for
all (M,M ′) ∈ H2, M 6= M ′ we have (M \M?) ∩ (M ′ \M?) = ∅.

Theorem 3.2. Let H be a maximal (inclusion-wise) subset of M satisfying the
property P (θ). Define β(θ) = minM 6=M?

∆M

|M\M?| . Then:

cs(θ) ≥
∑
M∈H

β(θ)
maxi∈M\M? kl

(
θi,

1
|M\M?|

∑
j∈M?\M θj

) .
Corollary 3.1. Let θ ∈ [a, 1]d for some constant a > 0 and M be such that
each arm M ∈ M,M 6= M? has at most k sub-optimal basic actions. Then:
cs(θ) = Ω(|H|/k).

Theorem 3.2 provides explicit regret lower bound and Corollary 3.1 states that
cs(θ) has to scale at least with the size of H. As will be discussed next, for most
combinatorial structures, |H| is proportional to d−m, which implies that in these
cases one cannot obtain a regret smaller than O((d−m)∆−1

min log(T )). This result
is intuitive since d−m is the number of parameters not observed when selecting the
optimal arm. The algorithm proposed below has a regret of O(d

√
m∆−1

min log(T )),
which is acceptable since typically,

√
m is much smaller than d.

Next we examine Theorem 3.2 for some concrete classes ofM.

Matchings. In the first example, we assume thatM is the set of perfect match-
ings in the complete bipartite graph Km,m, with |M| = m! and d = m2. A maximal
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(a) M? (b) (c) (d) (e) (f) (g)

Figure 3.1: Matchings in K4,4: (a) The optimal matching M?, (b)-(g) Elements of
H.

(a) M? (b) (c) (d) (e) (f) (g)

Figure 3.2: Spanning trees in K5: (a) The optimal spanning tree M?, (b)-(g)
Elements of H.

subset H of M satisfying property P (θ) can be constructed by adding all match-
ings that differ from the optimal matching by only two edges, see Figure 3.1 for
illustration in the case of m = 4. Here |H| =

(
m
2
)
and thus, |H| scales as d−m.

Spanning trees. Consider the problem of finding the minimum spanning tree in
a complete graph KN . This corresponds to lettingM be the set of all spanning trees
in KN , where |M| = NN−2 (Cayley’s formula). In this case, we have d =

(
N
2
)

=
N(N−1)

2 , which is the number of edges of KN , and m = N −1. A maximal subset H
ofM satisfying property P (θ) can be constructed by composing all spanning trees
that differ from the optimal tree by one edge only, see Figure 3.2. In this case, H
has d−m = (N−1)(N−2)

2 elements.

3.3.2 Bandit Feedback

Now we consider the case of bandit feedback. Consider M ∈ M and introduce for
all k = 0, 1, . . . ,m:

ψMθ (k) =
∑

A⊆M,|A|=k

∏
i∈A

θi
∏

i∈M\A

(1− θi). (3.4)
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For two sets of parameters θ, λ ∈ Θ, we define the KL information number under
arm M as:

IM (θ, λ) =
m∑
k=0

ψMθ (k) log ψ
M
θ (k)
ψMλ (k)

. (3.5)

Now we define the set of bad parameters for a given θ, i.e. parameters for which
arm M?(θ) is sub-optimal yet the distribution of the reward of the optimal arm
M?(θ) is the same under θ or λ:

Bb(θ) =
{
λ ∈ Θ : {λi, i ∈M?} = {θi, i ∈M?}, µ?(λ) > µ?(θ)

}
.

It is important to observe that in the definition of Bb(θ), the equality {λi, i ∈
M?} = {θi, i ∈ M?} is a set equality, i.e., order does not matter (e.g., if M? =
(0, 1, 1, 0)>, the equality means that either θ2 = λ2; θ3 = λ3 or θ2 = λ3; θ3 = λ2).
The slight difference between the definitions of Bb(θ) and Bs(θ) comes from the
difference of feedback (bandit vs. semi-bandit). It is also noted that the set of bad
parameters in the case of bandit feedback contains that of semi-bandit feedback,
i.e., Bs(θ) ⊂ Bb(θ).

In the following theorem, we derive an asymptotic regret lower bound. This
bound is different than that derived in Theorem 3.1, due to the different nature of
the feedback considered. Comparing the two bounds may indicate the price to pay
by restricting the set of policies to those based on bandit feedback only.

Theorem 3.3. For all θ ∈ Θ, for any uniformly good policy π ∈ Πb,

lim inf
T→∞

Rπ(T )
log(T ) ≥ cb(θ), (3.6)

where cb(θ) is the optimal value of the optimization problem:

inf
x≥0

∑
M∈M

xM∆M (3.7)

subject to:
∑
M∈M

xMI
M (θ, λ) ≥ 1, ∀λ ∈ Bb(θ). (3.8)

The variables xM ,M ∈ M solving (3.7) have the same interpretation as that
given previously in the case of semi-bandit feedback. Similarly to the lower bound
of Theorem 3.1, the above lower bound is implicit. In this case, it is however much
more complicated to see how cb(θ) scales with m and d, and we let if for future
work.

Remark 3.1. Of course, we know that cb(θ) ≥ cs(θ), since the lower bounds we
derive are tight and getting semi-bandit feedback can be exploited to design smarter
arm selection policies than those we can devise using bandit feedback (i.e., Πb ⊂ Πs).



28 Stochastic Combinatorial MABs: Bernoulli Rewards

3.4 Algorithms

Next we present ESCB, an algorithm for the case of semi-bandit feedback that relies
on arm indexes as in UCB1 [19] and KL-UCB [39].

3.4.1 Indexes
ESCB relies on arm indexes. In general, an index of arm M in round n, say ξM (n),
should be defined so that ξM (n) ≥ M>θ with high probability. Then as for UCB1
and KL-UCB, applying the principle of “optimism in face of uncertainty”, a natural
way to devise algorithms based on indexes is to select in each round the arm with the
highest index. Under a given algorithm, at time n, we define ti(n) =

∑n
s=1Mi(s)

the number of times basic action i has been sampled. The empirical mean reward
of action i is then defined as θ̂i(n) = (1/ti(n))

∑n
s=1Xi(s)Mi(s) if ti(n) > 0 and

θ̂i(n) = 0, otherwise. We define the corresponding vectors t(n) = (ti(n))i∈[d] and
θ̂(n) = (θ̂i(n))i∈[d].

The indexes we propose are functions of the round n and of θ̂(n). Our first
index for arm M , referred to as bM (n, θ̂(n)) or bM (n) for short, is an extension of
KL-UCB index. Let f(n) = log(n)+4m log(log(n)). bM (n, θ̂(n)) is the optimal value
of the following optimization problem:

max
q∈Θ

M>q (3.9)

subject to:
∑
i∈M

ti(n)kl(θ̂i(n), qi) ≤ f(n).

As we show later, bM (n) may be computed efficiently using a line search procedure
similar to that used to determine KL-UCB index.

Our second index cM (n, θ̂(n)) or cM (n) for short is a generalization of the UCB1
and UCB-Tuned indexes:

cM (n) = M>θ̂(n) +

√√√√f(n)
2

(
d∑
i=1

Mi

ti(n)

)

Note that, in the classical bandit problems with independent arms, i.e., whenm = 1,
bM reduces to the KL-UCB index (which yields an asymptotically optimal algorithm)
and cM reduces to the UCB-Tuned index [19]. The next theorem provides generic
properties of our indexes. An important consequence of these properties is that the
expected number of times where bM?(n, θ̂(n)) or cM?(n, θ̂(n)) underestimate µ?(θ)
is finite, as stated in the corollary below.

Theorem 3.4. (i) For all n ≥ 1, M ∈ M and τ ∈ [0, 1]d, we have bM (n, τ) ≤
cM (n, τ). (ii) There exists Cm > 0 depending on m only such that, for all M ∈M
and n ≥ 2:

P[bM (n, θ̂(n)) ≤M>θ] ≤ Cmn−1(log(n))−2.
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Corollary 3.2. We have:∑
n≥1

P[bM?(n, θ̂(n)) ≤ µ?] ≤ 1 + Cm
∑
n≥2

n−1(log(n))−2 <∞.

Statement (i) in the above theorem is obtained combining Pinsker and Cauchy-
Schwarz inequalities. The proof of statement (ii) is based on a concentration in-
equality on sums of empirical KL-divergences proven in [60] (see Appendix A). It
enables to control the fluctuations of multivariate empirical distributions for ex-
ponential families. It should also be observed that indexes bM (n) and cM (n) can
be extended in a straightforward manner to the case of continuous linear bandit
problems, where the set of arms is the unit sphere and one wants to maximize the
dot product between the arm and an unknown vector. bM (n) can also be extended
to the case where reward distributions are not Bernoulli but lie in an exponential
family (e.g. Gaussian, Exponential, Gamma, etc.), replacing kl by a suitably cho-
sen divergence measure. A close look at cM (n) reveals that the indexes proposed
in [56], [57], and [55] are too conservative to be optimal in our setting: there the
“confidence bonus”

∑d
i=1

Mi

ti(n) was replaced by (at least) m
∑d
i=1

Mi

ti(n) . Note that
[56], [57] assumed that the various basic actions are arbitrarily correlated, while we
assume independence among basic actions.

3.4.2 Index Computation
While the index cM is explicit, bM is defined as the optimal value of an optimization
problem. We show that it may be computed by a simple line search. For λ ≥ 0,
w ∈ [0, 1] and v ∈ N, define:

g(λ,w, v) = 1
2

(
1− λv +

√
(1− λv)2 + 4wvλ

)
.

Fix n, M , θ̂(n) and t(n). Define I = {i : Mi = 1, θ̂i(n) 6= 1}, and for λ > 0, define:

F (λ) =
∑
i∈I

ti(n)kl(θ̂i(n), g(λ, θ̂i(n), ti(n))).

Theorem 3.5. If I = ∅, bM (n) = ‖M‖1. Otherwise:
(i) λ 7→ F (λ) is strictly increasing, and F (R+) = R+.
(ii) Define λ? as the unique solution to F (λ) = f(n). Then

bM (n) = ‖M‖1 − |I|+
∑
i∈I

g(λ?, θ̂i(n), ti(n)).

Theorem 3.5 shows that bM can be computed using a line search procedure
such as bisection, as this computation amounts to solving the nonlinear equation
F (λ) = f(n), where F is a strictly increasing function. The proof of Theorem 3.5
follows from KKT conditions and the convexity of the KL-divergence (see Appendix
B).
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Algorithm 3.1 ESCB
for n ≥ 1 do

Select arm M(n) ∈ arg maxM∈M ξM (n).
Observe the rewards, and update ti(n) and θ̂i(n), ∀i ∈M(n).

end for

3.4.3 The ESCB Algorithm
The pseudo-code of ESCB is presented in Algorithm 3.1. We consider two variants
of the algorithm based on the choice of the index ξM : ESCB-1 when ξM = bM
and ESCB-2 if ξM = cM . In practice, ESCB-1 outperforms ESCB-2, as verified by
numerical results in Section 3.5. Introducing ESCB-2 is however instrumental in
the regret analysis of ESCB-1 (in view of Theorem 3.4 (i)). The following theorem
provides a finite-time analysis of our ESCB algorithms. The proof of this theorem
borrows some ideas from the proof of [57, Theorem 3].

Theorem 3.6. The regret under algorithms π ∈ {ESCB-1, ESCB-2} satisfies for any
time horizon T :

Rπ(T ) ≤ 16d
√
m

∆min
(log(T ) + 4m log(log(T ))) + 4dm3

∆2
min

+ C ′m,

where C ′m ≥ 0 does not depend on θ, d, and T . As a consequence Rπ(T ) =
O(d
√
m∆−1

min log(T )) when T →∞.

ESCB with time horizon T has a complexity of O(|M|T ) as neither bM nor cM
can be written as M>y for some vector y ∈ Rd. Assuming that the offline (static)
combinatorial problem is solvable in O(V (M)) time, the complexity of CUCB in [56]
and [57] after T rounds is O(V (M)T ). Thus, if the offline problem is efficiently
implementable, i.e., V (M) = O(poly(d)), CUCB is efficient, whereas ESCB is not
since |M| may generically have exponentially many elements. Next, we provide an
extension to ESCB, which we may call Epoch-ESCB, that attains almost the same
regret as ESCB while enjoying much lower computational complexity.

3.4.4 Epoch-ESCB: An Algorithm with Lower Computational
Complexity

Epoch-ESCB algorithm works in epochs of varying lengths. Epoch k comprises
rounds {Nk, . . . , Nk+1 − 1}, where Nk+1 (and thus the length of the k-th epoch) is
determined at time n = Nk, i.e. at the start of the k-th epoch. The Epoch-ESCB al-
gorithm simply consists in playing the arm with the maximal index at the beginning
of every epoch, and playing the current leader (i.e., the arm with the highest empir-
ical average reward) in the rest of rounds. If the leader is the arm with the maximal
index, the length of epoch k will be set twice as long as the previous epoch k − 1,
i.e., Nk+1 = Nk + 2(Nk − Nk−1). Otherwise, it will be set to 1. In contrast to
ESCB, Epoch-ESCB computes the maximal index infrequently, and more precisely
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(almost) at an exponentially decreasing rate. Thus, one might expect that after T
rounds, the maximal index will be computed O(log(T )) times. The pseudo-code of
Epoch-ESCB is presented in Algorithm 3.2.

Algorithm 3.2 Epoch-ESCB
Initialization: Set k = 1 and N0 = N1 = 1.
for n ≥ 1 do

Compute L(n) ∈ arg maxM∈MM M>θ̂(n).
if n = Nk then
Select arm M(n) ∈ arg maxM∈M ξM (n).
if M(n) = L(n) then
Set Nk+1 = Nk + 2(Nk −Nk−1).

else
Set Nk+1 = Nk + 1.

end if
Increment k.

else
Select arm M(n) = L(n).

end if
Observe the rewards, and update ti(n) and θ̂i(n),∀i ∈M(n).

end for

We assess the performance of Epoch-ESCB through numerical experiments in
Section 3.5, and leave the analysis of its regret as a future work. These experiments
corroborate our conjecture that the complexity of Epoch-ESCB after T rounds will
be O(V (M)T + log(T )|M|). Compared to CUCB, the complexity is penalized by
|M| log(T ), which may become dominated by the term V (M)T as T grows large.

3.5 Numerical Experiments

In this section, we compare the performance of ESCB against existing algorithms
through numerical experiments for some classes ofM. When implementing ESCB,
we replace f(n) by log(n), ignoring the term proportional to log(log(n)), as is done
when implementing KL-UCB in practice.

Experiment 1: Matching

In our first experiment, we consider the matching problem in complete bipartite
graph K5,5, which corresponds to d = 52 = 25 and m = 5. We also set θ such that
θi = a if i ∈ M?, and θi = b otherwise, with 0 < b < a < 1. In this case the lower
bound in Theorem 3.1 becomes cs(θ) = m(m−1)(a−b)

2kl(b,a) .
Figure 3.3(a)-(b) depicts the regret of various algorithms for the case of a = 0.7

and b = 0.5. The curves in Figure 3.3(a) are shown with a 95% confidence interval.
We observe that ESCB-1 has the lowest regret. Moreover, ESCB-2 significantly
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Figure 3.3: Regret of various algorithms for matchings with a = 0.7 and b = 0.5.

outperforms CUCB and LLR, and its regret is close to that of ESCB-1. Moreover, we
observe that the regret of Epoch-ESCB is quite close to that of ESCB-2.

Figures 3.4(a)-(b) presents the regret of various algorithms for the case of a =
0.95 and b = 0.3. The difference compared to the former case is that ESCB-1
significantly outperforms ESCB-2. The reason is that in the former case, mean
rewards of the most of the basic actions were close to 1/2, for which the performance
of UCB-type algorithms are closer to their KL based counterparts. On the other
hand, when mean rewards are not close to 1/2, there exists a significant performance
gap between ESCB-1 and ESCB-2. Comparing the results with the ‘lower bound’
curve, we highlight that ESCB-1 gives close-to-optimal performance in both cases.
Furthermore, similar to previous experiment, Epoch-ESCB attains a regret whose
curve is almost indistinguishable from that of ESCB-2.

The number of epochs in Epoch-ESCB vs. time for the two examples is displayed
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Figure 3.4: Regret of various algorithms for matchings with a = 0.95 and b = 0.3.

in Figure 3.5(a)-(b), where the curves are shown with 95% confidence intervals. We
observe that in both cases, the number of epochs grows at a rate proportional to
log(n)/n at round n. Since the number of times Epoch-ESCB computes the index cM
is equal to the number of epochs, these curves suggest that the computational com-
plexity of index computations in Epoch-ESCB after n rounds scales as |M| log(n).

Experiment 2: Spanning Trees

In the second experiment, we consider spanning trees problem described in Section
3.3.1 for the case of N = 5. In this case, we have d =

(5
2
)

= 10, m = 4, and
|M| = 53 = 125. We generate parameter θ uniformly at random from [0, 1]10.
Figure 3.6 portrays the regret of various algorithms with 95% confidence intervals,
for a case with ∆min = 0.54. The results show that our algorithms outperform CUCB
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Figure 3.5: Number of epochs in Epoch-ESCB vs. time for Experiment 1 and 2 (%95
confidence interval).

and LLR.

3.6 Summary

In this chapter we investigated stochastic combinatorial MABs with Bernoulli re-
wards. We derived asymptotic regret lower bounds for both bandit and semi-bandit
feedback. The proposed lower bounds are not explicit, and hence we further ex-
amined the scaling in terms of the dimension of the decision space for the case
of semi-bandit feedback. We then proposed the ESCB algorithm and provided a
finite-time analysis of its regret. ESCB achieves lower regret compared to state-of-
the-art algorithms and outperforms these algorithms in practice. We also proposed
Epoch-ESCB which has lower computational complexity than ESCB. The regret anal-
ysis of Epoch-ESCB is much more complicated than that of ESCB, and hence is let
for future work.
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Figure 3.6: Regret of various algorithms for spanning trees with N = 5 and ∆min =
0.54.

3.A Proof of Theorem 3.1

Proof. To derive regret lower bounds, we apply the techniques used by Graves and
Lai [20] to investigate efficient adaptive decision rules in controlled Markov chains3.

The parameter θ takes values in [0, 1]d. The Markov chain has values in S =
{0, 1}d. The set of controls corresponds to the set of feasible actions M, and the
set of control laws is alsoM. These laws are constant, in the sense that the control
applied by control law M ∈M does not depend on the state of the Markov chain,
and corresponds to selecting action M . The transition probabilities are given as
follows: for all x, y ∈ S,

p(x, y;M, θ) = p(y;M, θ) =
∏
i∈[d]

pi(yi;M, θ),

3See Chapter 2 for a brief summary.
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where for all i ∈ [d], if Mi = 0, pi(0;M, θ) = 1, and if Mi = 1, pi(yi;M, θ) =
θyii (1 − θi)1−yi . Finally, the reward r(y,M) is defined by r(y,M) = M>y. Note
that the state space of the Markov chain is here finite, and so, we do not need to
impose any cost associated with switching control laws (see the discussion on page
718 in [20]).

We can now apply Theorem 1 in [20]. Note that the KL number under action
M is

IM (θ, λ) =
∑
i∈[d]

Mikl(θi, λi).

From [20, Theorem 1], we conclude that for any uniformly good rule π,

lim inf
T→∞

Rπ(T )
log(T ) ≥ cs(θ),

where cs(θ) is the optimal value of the following optimization problem:

inf
x≥0

∑
M 6=M?

xM∆M , (3.10)

subject to: inf
λ∈Bs(θ)

∑
Q 6=M?

xQI
Q(θ, λ) ≥ 1. (3.11)

The result is obtained by observing that Bs(θ) =
⋃
M 6=M? Bs,M (θ), where

Bs,M (θ) = {λ ∈ Θ : λi = θi, ∀i ∈M?, µ?(θ) < µM (λ)}.

3.B Proof of Theorem 3.2

Proof. The proof proceeds in three steps. In the subsequent analysis, given the
optimization problem P, we use val(P) to denote its optimal value.

Step 1. In this step, first we introduce an equivalent formulation for problem
(3.10) above by simplifying its constraints. We show that constraint (3.11) is equiv-
alent to:

inf
λ∈Bs,M (θ)

∑
i∈M\M?

kl(θi, λi)
∑
Q∈M

QixQ ≥ 1, ∀M 6= M?.

Observe that:∑
Q6=M?

xQI
Q(θ, λ) =

∑
Q6=M?

xQ
∑
i∈[d]

Qikl(θi, λi) =
∑
i∈[d]

kl(θi, λi)
∑
Q6=M?

QixQ.
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Fix M 6= M?. In view of the definition of Bs,M (θ), we can find λ ∈ Bs,M (θ) such
that λi = θi,∀i ∈ ([d] \M) ∪M?. Thus, for the r.h.s. of the M -th constraint in
(3.11), we get:

inf
λ∈Bs,M (θ)

∑
Q6=M?

xQI
Q(θ, λ) = inf

λ∈Bs,M (θ)

∑
i∈[d]

kl(θi, λi)
∑
Q 6=M?

QixQ

= inf
λ∈Bs,M (θ)

∑
i∈M\M?

kl(θi, λi)
∑
Q

QixQ,

and therefore problem (3.10) can be equivalently written as:

cs(θ) = inf
x≥0

∑
M 6=M?

∆MxM , (3.12)

subject to: inf
λ∈Bs,M (θ)

∑
i∈M\M?

kl(θi, λi)
∑
Q

QixQ ≥ 1, ∀M 6= M?. (3.13)

Next, we formulate an LP whose value gives a lower bound for cs(θ). Define
λ̂(M) = (λ̂i(M), i ∈ [d]) with

λ̂i(M) =
{ 1
|M\M?|

∑
j∈M?\M θj if i ∈M \M?,

θi otherwise.

Clearly λ̂(M) ∈ Bs,M (θ), and therefore:

inf
λ∈Bs,M (θ)

∑
i∈M\M?

kl(θi, λi)
∑
Q

QixQ ≤
∑

i∈M\M?

kl(θi, λ̂i(M))
∑
Q

QixQ,

Then, we can write:

cs(θ) ≥ inf
x≥0

∑
M 6=M?

∆MxM (3.14)

subject to:
∑

i∈M\M?

kl(θi, λ̂i(M))
∑
Q

QixQ ≥ 1, ∀M 6= M?. (3.15)

For any M 6= M? introduce: gM = maxi∈M\M? kl(θi, λ̂i(M)). Now we form P1
as follows:

P1: inf
x≥0

∑
M 6=M?

∆MxM (3.16)

subject to:
∑

i∈M\M?

∑
Q

QixQ ≥
1
gM

, ∀M 6= M?. (3.17)

Observe that cs(θ) ≥ val(P1) since the feasible set of problem (3.14) is contained
in that of P1.
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Step 2. In this step, we formulate an LP to give a lower bound for val(P1). To
this end, for any sub-optimal basic action i ∈ [d], we define zi =

∑
M MixM .

Further, we let z = (zi, i ∈ [d]). Next, we represent the objective of P1 in terms of
z, and give a lower bound for it as follows:

∑
M 6=M?

∆MxM =
∑

M 6=M?

xM
∑

i∈M\M?

∆M

|M \M?|

=
∑

M 6=M?

xM
∑

i∈[d]\M?

∆M

|M \M?|
Mi

≥ min
M 6=M?

∆M

|M \M?|
·
∑

i∈[d]\M?

∑
M ′ 6=M?

M ′ixM ′

= min
M 6=M?

∆M

|M \M?|
·
∑

i∈[d]\M?

zi

= β(θ)
∑

i∈[d]\M?

zi.

Then, defining

P2: inf
z≥0

β(θ)
∑

i∈[d]\M?

zi

subject to:
∑

i∈M\M?

zi ≥
1
gM

, ∀M 6= M?,

yields: val(P1) ≥ val(P2).

Step 3. Introduce a set H satisfying property P (θ) as stated in Section 4. Now
define

Z =
{
z ∈ Rd+ :

∑
i∈M\M?

zi ≥
1
gM

, ∀M ∈ H
}
,

and

P3: inf
z∈Z

β(θ)
∑

i∈[d]\M?

zi.

Observe that val(P2) ≥ val(P3) since the feasible set of P2 is contained in Z. The
definition of H implies that

∑
i∈[d]\M? zi =

∑
M∈H

∑
i∈M\M? zi. It then follows

that

val(P3) =
∑
M∈H

β(θ)
gM
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≥
∑
M∈H

β(θ)
maxi∈M\M? kl(θi, λ̂i(M))

=
∑
M∈H

β(θ)
maxi∈M\M? kl

(
θi,

1
|M\M?|

∑
j∈M?\M θj

) .
The proof is completed by observing that: cs(θ) ≥ val(P1) ≥ val(P2) ≥ val(P3).

3.C Proof of Corollary 3.1

Proof. Fix M 6= M?. For any i ∈M \M?, we have:

kl
(
θi,

1
|M \M?|

∑
j∈M?\M

θj

)
≤ 1
|M \M?|

∑
j∈M?\M

kl (θi, θj) (By convexity of kl)

≤ 1
|M \M?|

∑
j∈M?\M

(θi − θj)2

θj(1− θj)

≤ 1
|M \M?|

∑
j∈M?\M

(1− θj)2

θj(1− θj)

≤ 1
|M \M?|

∑
j∈M?\M

(
1
θj
− 1
)

≤ 1
minj∈M?\M θj

− 1

≤ 1
a
− 1,

where the second inequality follows from the inequality kl(p, q) ≤ (p−q)2

q(1−q) for all
(p, q) ∈ [0, 1]2. Moreover, we have that

β(θ) = min
M 6=M?

∆M

|M \M?|
≥ ∆min

maxM |M \M?|
= ∆min

k
.

Applying Theorem 3.2, we get:

cs(θ) ≥
∑
M∈H

β(θ)
maxi∈M\M? kl

(
θi,

1
|M\M?|

∑
j∈M?\M θj

) ≥ a∆min

k(1− a) |H|,

which gives the required lower bound and completes the proof.

3.D Proof of Theorem 3.3

Proof. The parameter θ takes values in [0, 1]d. The Markov chain has values in
S = {0, . . . ,m}. The set of controls corresponds to the set of armsM, and the set
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of control laws is alsoM. The probability that the reward under arm M is equal
to k is then ψMθ (k) defined in (3.4), and so:

p(k′, k;M, θ) = ψMθ (k), ∀k, k′ ∈ S.

From [20, Theorem 1], we conclude that for any uniformly good rule π,

lim inf
T→∞

Rπ(T )
log(T ) ≥ cb(θ),

where cb(θ) is the optimal value of the following optimization problem:

cb(θ) = inf
x≥0

∑
M 6=M?

xM∆M , (3.18)

subject to: inf
λ∈Bb(θ)

∑
Q6=M?

xQI
Q(θ, λ) ≥ 1, (3.19)

where IQ(θ, λ) is defined in (3.5). This concludes the proof.

3.E Proof of Theorem 3.4

Proof. First statement:
Consider q ∈ Θ, and apply Cauchy-Schwarz inequality:

M>(q − θ̂(n)) =
d∑
i=1

√
ti(n)(qi − θ̂i(n)) Mi√

ti(n)

≤

√√√√ d∑
i=1

Miti(n)(qi − θ̂i(n))2

√√√√ d∑
i=1

Mi

ti(n) .

By Pinsker’s inequality, for all (p, q) ∈ [0, 1]2 we have 2(p− q)2 ≤ kl(p, q) so that:

M>(q − θ̂(n)) ≤
√

1
2
∑
i∈M

ti(n)kl(θ̂i(n), qi)

√√√√ d∑
i=1

Mi

ti(n) .

Hence,
∑
i∈M ti(n)kl(θ̂i(n), qi) ≤ f(n) implies:

M>q = M>θ̂(n) +M>(q − θ̂(n)) ≤M>θ̂(n) +

√√√√f(n)
2

d∑
i=1

Mi

ti(n) = cM (n),

so that, by definition of bM (n), we have bM (n) ≤ cM (n).
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Second statement:
If
∑
i∈M ti(n)kl(θ̂i(n), θi) ≤ f(n), then by definition of bM (n) we have bM (n) ≥

M>θ. Therefore, using Lemma A.4, there exists Cm such that for all n ≥ 2 we
have:

P[bM (n) < M>θ] ≤ P[
∑
i∈M

ti(n)kl(θ̂i(n), θi) > f(n)] ≤ Cmn−1(log(n))−2,

which concludes the proof.

3.F Proof of Theorem 3.6

Proof. To prove Theorem 3.6, we borrow some ideas from the proof of [57, Theo-
rem 3].

For any n ∈ N, s ∈ Rd, and M ∈ M define hn,s,M =
√

f(n)
2
∑d
i=1

Mi

si
, and

introduce the following events:

Gn =
{∑
i∈M?

ti(n)kl(θ̂i(n), θi) > f(n)
}
,

Hi,n = {Mi(n) = 1, |θ̂i(n)− θi| ≥ m−1∆min/2}, Hn = ∪di=1Hi,n,

Fn = {∆M(n) ≤ 2hT,t(n),M(n)}.

Then the regret can be bounded as:

Rπ(T ) = E[
T∑
n=1

∆M(n)] ≤ E[
T∑
n=1

∆M(n)(1{Gn}+ 1{Hn})] + E[
T∑
n=1

∆M(n)1{Gn, Hn}]

≤ mE[
T∑
n=1

(1{Gn}+ 1{Hn})] + E[
T∑
n=1

∆M(n)1{Gn, Hn}],

since ∆M(n) ≤ m.
Next we show that for any n such thatM(n) 6= M?, it holds that Gn ∪Hn ⊂ Fn.

Recall that cM (n) ≥ bM (n) for any M and n (Theorem 3.4). Moreover, if Gn
holds, we have

∑
i∈M? ti(n)kl(θ̂i(n), θi) ≤ f(n), which by definition of bM implies:

bM?(n) ≥M?>θ. Hence we have:

1{Gn, Hn, M(n) 6= M?} = 1{Gn, Hn, ξM(n)(n) ≥ ξM?(n)}

≤ 1{Hn, cM(n)(n) ≥M?>θ}

= 1{Hn, M(n)>θ̂(n) + hn,t(n),M(n) ≥M?>θ}

≤ 1{M(n)>θ + ∆M(n)/2 + hn,t(n),M(n) ≥M?>θ}
= 1{2hn,t(n),M(n) ≥ ∆M(n)}
≤ 1{2hT,t(n),M(n) ≥ ∆M(n)}
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= 1{Fn},

where the second inequality follows from the fact that eventGn implies: M(n)>θ̂(n) ≤
M(n)>θ + ∆min/2 ≤M(n)>θ + ∆M(n)/2.

Hence, the regret is upper bounded by:

Rπ(T ) ≤ mE[
T∑
n=1

1{Gn}] +mE[
T∑
n=1

1{Hn}] + E[
T∑
n=1

∆M(n)1{Fn}].

We will prove the following inequalities: (i) E[
∑T
n=1 1{Gn}] ≤ m−1C ′m, with

C ′m ≥ 0 independent of θ, d, and T , (ii) E[
∑T
n=1 1{Hn}] ≤ 4dm2∆−2

min, and (iii)
E[
∑T
n=1 ∆M(n)1{Fn}] ≤ 16d

√
m∆−1

minf(T ).
Hence as announced:

Rπ(T ) ≤ 16d
√
m∆−1

minf(T ) + 4dm3∆−2
min + C ′m.

Inequality (i): An application of Lemma A.4 gives

E[
T∑
n=1

1{Gn}] =
T∑
n=1

P[
∑
i∈M?

ti(n)kl(θ̂i(n), θi) > f(n)]

≤ 1 +
∑
n≥2

Cmn
−1(log(n))−2 ≡ m−1C ′m <∞.

Inequality (ii): Fix i and n. Define s =
∑n
n′=1 1{Hn′,i}. Observe that Hn′,i

implies Mi(n′) = 1, hence ti(n) ≥ s. Therefore, applying [61, Lemma B.1], we have
that

∑T
n=1 P[Hn,i] ≤ 4m2∆−2

min. Using the union bound:
∑T
n=1 P[Hn] ≤ 4dm2∆−2

min.

Inequality (iii): Let ` > 0. For any n introduce the following events:

Sn = {i ∈M(n) : ti(n) ≤ 4mf(T )∆−2
M(n)},

An = {|Sn| ≥ `},
Bn = {|Sn| < `, [∃i ∈M(n) : ti(n) ≤ 4`f(T )∆−2

M(n)]}.

We claim that for any n such that M(n) 6= M?, we have Fn ⊂ (An∪Bn). To prove
this, we show that when Fn holds and M(n) 6= M?, the event An ∪Bn cannot
happen. Let n be a time instant such that M(n) 6= M? and Fn holds, and assume
that An ∪Bn = {|Sn| < `, [∀i ∈M(n) : ti(n) > 4`f(T )∆−2

M(n)]} happens. Then Fn
implies:

∆M(n) ≤ 2hT,t(n),M(n) = 2
√
f(T )

2

√√√√ ∑
i∈[d]\Sn

Mi(n)
ti(n) +

∑
i∈Sn

Mi(n)
ti(n)
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< 2
√
f(T )

2

√
m

∆2
M(n)

4mf(T ) + |Sn|
∆2
M(n)

4`f(T ) < ∆M(n), (3.20)

where the last inequality uses the observation that An ∪Bn implies |Sn| < `.
Clearly, (3.20) is a contradiction. Thus Fn ⊂ (An ∪Bn) and consequently:

T∑
n=1

∆M(n)1{Fn} ≤
T∑
n=1

∆M(n)1{An}+
T∑
n=1

∆M(n)1{Bn}. (3.21)

To further bound the r.h.s. of the above, we introduce the following events for any
i:

Ai,n = An ∩ {i ∈M(n), ti(n) ≤ 4mf(T )∆−2
M(n)},

Bi,n = Bn ∩ {i ∈M(n), ti(n) ≤ 4`f(T )∆−2
M(n)}.

It is noted that:∑
i∈[d]

1{Ai,n} = 1{An}
∑
i∈[d]

1{i ∈ Sn} = |Sn|1{An} ≥ `1{An},

and hence: 1{An} ≤ 1
`

∑
i∈[d] 1{Ai,n}. Moreover 1{Bn} ≤

∑
i∈[d] 1{Bi,n}. Let

each basic action i belong to Ki sub-optimal arms, ordered based on their gaps as:
∆i,1 ≥ · · · ≥ ∆i,Ki > 0. Also define ∆i,0 =∞. Plugging the above inequalities into
(3.21), we have
T∑
n=1

∆M(n)1{Fn} ≤
T∑
n=1

d∑
i=1

∆M(n)

`
1{Ai,n}+

T∑
n=1

d∑
i=1

∆M(n)1{Bi,n}

=
T∑
n=1

d∑
i=1

∆M(n)

`
1{Ai,n, M(n) 6= M?}

+
T∑
n=1

d∑
i=1

∆M(n)1{Bi,n, M(n) 6= M?}

≤
T∑
n=1

d∑
i=1

∑
k∈[Ki]

∆i,k

`
1{Ai,n, M(n) = k}

+
T∑
n=1

d∑
i=1

∑
k∈[Ki]

∆i,k
1{Bi,n, M(n) = k}

≤
d∑
i=1

T∑
n=1

∑
k∈[Ki]

∆i,k

`
1{i ∈M(n), ti(n) ≤ 4mf(T )(∆i,k)−2, M(n) = k}

+
d∑
i=1

T∑
n=1

∑
k∈[Ki]

∆i,k
1{i ∈M(n), ti(n) ≤ 4`f(T )(∆i,k)−2, M(n) = k}
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≤ 8df(T )
∆min

(m
`

+ `
)
,

where the last inequality follows from Lemma 3.1, which is proven next. The proof
is completed by setting ` =

√
m.

Lemma 3.1. Let C > 0 be a constant independent of n. Then for any i such that
Ki ≥ 1:

T∑
n=1

Ki∑
k=1

1{i ∈M(n), ti(n) ≤ C(∆i,k)−2, M(n) = k}∆i,k ≤ 2C
∆min

.

Proof. We have:
T∑
n=1

Ki∑
k=1

1{i ∈M(n), ti(n) ≤ C(∆i,k)−2, M(n) = k}∆i,k

=
T∑
n=1

Ki∑
k=1

k∑
j=1

1{i ∈M(n), ti(n) ∈ (C(∆i,j−1)−2, C(∆i,j)−2], M(n) = k}∆i,k

≤
T∑
n=1

Ki∑
k=1

k∑
j=1

1{i ∈M(n), ti(n) ∈ (C(∆i,j−1)−2, C(∆i,j)−2], M(n) = k}∆i,j

≤
T∑
n=1

Ki∑
k=1

Ki∑
j=1

1{i ∈M(n), ti(n) ∈ (C(∆i,j−1)−2, C(∆i,j)−2], M(n) = k}∆i,j

≤
T∑
n=1

Ki∑
j=1

1{i ∈M(n), ti(n) ∈ (C(∆i,j−1)−2, C(∆i,j)−2], M(n) 6= M?}∆i,j

≤ C

∆i,1 +
Ki∑
j=2

C((∆i,j)−2 − (∆i,j−1)−2)∆i,j

≤ C

∆i,1 +
∫ ∆i,2

∆i,Ki

Cx−2dx ≤ 2C
∆i,Ki

≤ 2C
∆min

,

which completes the proof.

3.G Proof of Theorem 3.5

Proof. We recall the following facts about the KL-divergence kl, for all p ∈ [0, 1]:

(i) q 7→ kl(p, q) is strictly convex on [0, 1] and attains its minimum at p, with
kl(p, p) = 0.

(ii) Its derivative with respect to the second parameter q 7→ kl′(p, q) = q−p
q(1−q) is

strictly increasing on (p, 1).
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(iii) For p < 1, we have kl(p, q) →
q→1−

∞ and kl′(p, q) →
q→1−

∞.

Consider M and n fixed throughout the proof. Define I = {i ∈M : θ̂i(n) 6= 1}.
Consider q? ∈ Θ the optimal solution of optimization problem:

max
q∈Θ

M>q

subject to:
∑
i∈M

ti(n)kl(θ̂i(n), qi) ≤ f(n),

so that bM (n) = M>q?. Consider i 6∈M , thenM>q does not depend on qi and from
(i) we get qi = θ̂i(n). Now consider i ∈ M . From (i) we get that 1 ≥ q?i ≥ θ̂i(n).
Hence q?i = 1 if θ̂i(n) = 1. If I is empty, then q?i = 1 for all i ∈ M , so that
bM (n) = ‖M‖1.

Consider the case where I 6= ∅. From (iii) and the fact that
∑
i∈M ti(n)kl(θ̂i(n), q?i ) <

∞ we get θ̂i(n) ≤ q?i < 1. From the Karush-Kuhn-Tucker (KKT) conditions, there
exists λ? > 0 such that for all i ∈ I:

1 = λ?ti(n)kl′(θ̂i(n), q?i ).

For λ > 0 define θ̂i(n) ≤ qi(λ) < 1 as a solution to the equation:

1 = λti(n)kl′(θ̂i(n), qi(λ)).

From (i) we have that λ 7→ qi(λ) is uniquely defined, strictly decreasing, and
θ̂i(n) < qi(λ) < 1. From (iii) we get that qi(R+) = [θ̂i(n), 1]. Define the function:

F (λ) =
∑
i∈I

ti(n)kl(θ̂(n), qi(λ)).

From the reasoning below, F is well defined, strictly increasing, and F (R+) =
R+. Therefore, λ? is the unique solution to F (λ?) = f(n), and q?i = qi(λ?).
Furthermore, replacing kl′ by its expression we obtain the quadratic equation:

qi(λ)2 + qi(λ)(λti(n)− 1)− λti(n)θ̂i(n) = 0.

Solving for qi(λ), we obtain that qi(λ) = g(λ, θ̂i(n), ti(n)), which concludes the
proof.





Chapter 4

Stochastic Matroid Bandits

In this chapter we study stochastic combinatorial MAB problems where the under-
lying combinatorial structure is a matroid. Given a set of basic actions E (called
ground set), a matroid is a pair (E, I) with some I ⊂ 2E such that I is an indepen-
dence system (i.e., it is closed under subset) and satisfies the so-called augmentation
property (see Definition 4.1 for a precise definition). This sub-class of combinatorial
MABs, often referred to as matroid bandits [52], considers weighted matroids where
each element of E is assigned a weight (its average reward). Each arm is then a
basis (i.e., an inclusion-wise maximal element of I) of the matroid. The weight of
various basic actions are fixed and a priori unknown. The decision maker aims at
learning the maximum weight basis by sequentially selecting various arms. Hence,
at each round she faces a linear optimization problem under a matroid constraint.

Linear optimization over matroid bases is a sub-class of matroid optimization
problems. These latter problems have been investigated extensively, e.g. in [62,
63, 64], and are of special interests in the area of combinatorial optimization both
theoretically and practically: Firstly, because matroid structures occur naturally in
many problems with practical applications. Secondly, optimization over matroids is
relatively easy. In particular, linear optimization over matroid bases is proven to be
greedily solvable. More precisely, a well-known result in combinatorial optimization
states that an independence system is a matroid if and only if the Greedy algorithm,
described in Section 4.2, leads to a maximum weight basis; see, e.g., [62].

Matroid theory brings a two-fold advantage in the corresponding bandit opti-
mization problems: Firstly, it is possible to devise computationally efficient algo-
rithms that, in most cases, select arms greedily. Secondly, the corresponding regret
analysis is usually more tractable. Despite such advantage, lack of optimal algo-
rithms for matroid bandits in the literature is evident. Here we provide a sequential
arm selection algorithm, KL-OSM, and prove its asymptotic optimality.

This chapter is based on the joint work [65]. Here is an organization of this
chapter: Section 4.1 discusses the motivation for bandit optimization over matroids
through more examples and outlines contributions of the chapter. Section 4.2 gives
an overview of matroid definitions and Section 4.3 describes the model and formu-
lates the problem. In Section 4.4, we present regret lower bounds for the case of

47
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bandit and semi-bandit feedbacks. In Section 4.5, we present KL-OSM, our proposed
algorithm for matroid bandits under semi-bandit feedback, and provide a finite-
time analysis of its regret. Section 4.6 presents our numerical examples. Finally,
Section 4.7 summarizes the chapter. All proofs are presented in the appendix.

4.1 Motivation and Contributions

Matroid structures occur naturally in many problems with practical applications
ranging from bidding in ad exchange [66], product search [67], task assignment
in crowdsourcing [68], leader selection in multi-agent systems [69, 70], and a vari-
ety of engineering applications. Hence, matroid constraints are quite natural for
combinatorial problems that arise in these applications. For example, assume that
the elements of ground set E are categorized into L disjoint categories. A natural
requirement for some applications is to force to choose at most one element from
each category. In the context of product search, each category might be a specific
brand, whereas for news aggregation, a category may correspond to a news domain.
We are interested in finding a subset M ⊂ E while maximizing the total reward
such that at most one element from each category belongs to M . This constraint
forms a partition matroid constraint. Another natural type of constraint is to have
cardinality constraint on the set M , which is related to a uniform matroid. An-
other notable instance of matroid constraints appears in the problem of finding
the minimum-weight spanning tree in a graph, which arises in various engineering
disciplines. The selection of leaders in leader-follower multi-agent systems is yet
another engineering application in which matroid constraints arise.

4.1.1 Contributions

We make the following contributions for matroid bandits:

(a) We derive asymptotic (as the time horizon T grows large) lower bounds on the
regret, satisfied by any algorithm (Theorem 4.2 and Theorem 4.3). The proposed
lower bounds are tight and problem-dependent. Similarly to the lower bounds in
previous chapters, we leverage the theory of optimal control of Markov chains with
unknown transition probabilities. However, the lower bound here for the case of
semi-bandit feedback is explicit. To the best of our knowledge, this is the first
time that such an explicit fundamental performance limit is presented for matroid
bandits.

(b) We propose KL-OSM (KL-based Efficient Sampling for Matroid), which is a
greedy-based index policy that maintains a KL-UCB index for each basic action.
Hence, it is provably computationally efficient assuming access to an independence
oracle (see Section 4.2 for a precise definition). Through a finite-time analysis
(Theorem 4.4), we show that KL-OSM attains a regret (asymptotically) growing as
the proposed lower bound in Theorem 4.2. Hence, it is asymptotically optimal. To
our best knowledge, this is the first optimal algorithm for this class of combinatorial
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MABs. Moreover, the regret upper bound of KL-OSM (Theorem 4.4) beats that of
existing algorithms. Numerical experiments for some specific matroid problems
show that KL-OSM significantly outperforms existing algorithms in practice, as well.

4.1.2 Related Work
Despite tractability of linear optimization over matroid structures, corresponding
combinatorial MABs have not been well addressed so far. The underlying struc-
ture in bandits with multiple plays (i.e., when M is the set of fixed-size subsets)
is a uniform matroid, and hence [33, 34, 51] have indeed addressed specific ma-
troid bandits. MABs with generic matroid structures were investigated in [52, 53].
The proposed algorithm, called OMM, is a UCB-type policy relying on the Greedy
algorithm. OMM achieves a regret scaling at most as O( d−m∆min

log(T )). The depen-
dence of this bound on (d,m) is tight and cannot be improved. We remark that all
these works addressed problems with semi-bandit feedback. Furthermore, none of
these studies provide regret lower bound. Only in [52] through a specific problem
instance, the authors show that the regret upper bound of OMM is order-optimal.

4.2 Matroid Structure

In this section we give a formal definition of matroids and state some useful related
results. More details can be found in, e.g., [71, 23].

Definition 4.1. Let E be a finite set and I ⊂ 2E. The pair G = (E, I) is called a
matroid if the following conditions hold:

(i) ∅ ∈ I.

(ii) If X ∈ I and Y ⊆ X, then Y ∈ I.

(iii) If X,Y ∈ I with |X| > |Y |, then there is some element ` ∈ X \ Y such that
Y ∪ {`} ∈ I.

The set E is usually referred to as the ground set and the elements of I are called
the independent sets. Any system satisfying conditions (i) and (ii) in Definition 4.1
is called an independence system. Condition (iii) is referred to as the augmentation
property. Any (inclusion-wise) maximal independent set is called a basis for matroid
G. In other words, if X ∈ I is a basis for G, then X ∪ {`} /∈ I for all ` ∈ E \X.

Proposition 4.1 ([71]). Let G = (E, I) be a matroid. Then

(i) all bases of G have the same cardinality,

(ii) for all bases X,Y of G, if ` ∈ X \ Y , then there exists k ∈ Y \X such that
(X \ `) ∪ {k} is a basis for G. 1

1For any set X and element `, by a slight abuse of notation, we write X \ ` to imply X \ {`}.
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(iii) for all bases X,Y of G, if ` ∈ X \ Y then there exists k ∈ Y \ X such that
(Y \ k) ∪ {`} is a basis for G.

The common cardinality of bases of G is referred to as rank of G. For any
X ∈ I, we let A(X) denote the set of elements of the ground set that can augment
X such that the resulting set remains independent:

A(X) =
{
` : ` /∈ X, X ∪ {`} ∈ I

}
.

Next we provide some examples of matroids.

Uniform matroid. Let E be a set with cardinality d. Given a positive integer
m ≤ d, the uniform matroid of rank m is Um,d = (E, I) where I is the collection
of subsets of E with at most m elements, i.e.,

I = {X ⊆ E : |X| ≤ m}.

Hence, every subset of E with cardinality m is a basis for the uniform matroid
Um,d.

Partition matroid. Let E be a finite set. Assume that {Ei}i∈[l] is a partition
of E, i.e., Ei, i ∈ [l] are disjoint sets and ∪i∈[l]Ei = E. For some given parameters
k1, . . . , kl, define

I = {X ⊆ E : |X ∩ Ei| ≤ ki, ∀i ∈ [l]}.

Then (E, I) is a partition matroid of rank
∑
i∈[l] ki. 2

Linear matroid. Let F be a field and E ⊂ Fk be a finite set of vectors. Let

I = {H ⊆ E : H is linearly independent over F}.

Then G = (E, I) is a linear matroid.

Graphic matroid. Given an undirected graph G = (V,H) (that may contain
loops), define

I = {F ⊆ H : (V, F ) is a forest}.

Then, it can be shown that G(G) = (H, I) is a matroid, referred to as graphic
matroid. Every spanning forest of the graph G is indeed a basis for matroid G(G).

2In some papers, the notion of partition matriod is defined with ki = 1 for every i ∈ [l].
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4.2.1 Weighted Matroids

For any ` ∈ E, let w` denote the weight assigned to `. Finding a maximum-weight
independent set of G is then defined as finding a set X ∈ I which maximizes∑
`∈X w`:

max
X∈I

∑
`∈X

w`. (4.1)

It is noted that the optimal solution to this problem is necessarily a basis of G. The
above problem can be solved efficiently by the Greedy algorithm [71], which works
based on the following greedy principle: At each step, add an element (that is not
chosen so far) with the largest weight so that the resulting set remains independent.
The pseudo-code of Greedy is shown in Algorithm 4.1.

Algorithm 4.1 Greedy [71]
Sort weights wi, i ∈ E. Denote the new ordering by a bijection k : E → E:

wk(1) ≥ wk(2) ≥ · · · ≥ wk(d).

X ← ∅
for i = 1, . . . , d do

if k(i) ∈ A(X) then
X ← X ∪ {i}

end if
end for

As a matter of fact, Greedy leads to an optimal solution of problem (4.1) only
if M is the set of bases of a matroid, as stated in the following theorem which is
due to Edmonds [62].

Theorem 4.1 ([23, Theorem 40.1]). Let I be a nonempty collection of subsets of
a set E, closed under subsets. Then the pair (E, I) is a matroid if and only if for
each weight function w : E → R+ the Greedy algorithm leads to a set I ∈ I of
maximum weight.

Let us assume that testing whether a given subset of the ground set E is in-
dependent would take O(h(d)) time for some function h. Noting that sorting can
be carried out in O(d log(d)) time, we observe that the time complexity of Greedy
is O(d log(d) + dh(d)). In some computational models, it is assumed that an al-
gorithm has access to an independence oracle, that is a routine returning whether
X ∈ I or not for any given X ⊂ E. Under the independence oracle model, the
Greedy algorithm has a time complexity of O(d log(d)). In words, a maximum-
weight independent set of a matroid can be found in strongly polynomial time in
the independence oracle model ([23, Corollary 40.1]). It is also noted that the
independence oracle allows computing the rank of any X ∈ E.
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4.3 Model and Objectives

Consider a finite set of basic actions E = {1, . . . , d} and a matroid G = (E, I),
of rank m. We consider a combinatorial MAB problem, where each arm M is a
basis of G. We letM denote the set of arms, i.e., the collection of all bases of G.
Each armM is identified with a binary column vector (M1, . . . ,Md)>, and we have
‖M‖1 = m, ∀M ∈ M since G is of rank m. Time proceeds in rounds. For i ∈ E,
Xi(n) denotes the random reward of basic action i in round n. For each i, the
sequence (Xi(n))n≥1 is i.i.d. with Bernoulli distribution of mean θi. The reward
sequences across various basic actions may be correlated as considered in [56, 57].
We denote by θ = (θ1, . . . , θd)> ∈ Θ = [0, 1]d the vector of unknown expected
rewards of the various basic actions.

At the beginning of each round n, an algorithm or policy π, selects an arm
Mπ(n) ∈ M based on the arms chosen in previous rounds and their observed
rewards. The reward of arm Mπ(n) selected in round n is

XMπ(n)(n) =
∑
i∈E

Mπ
i (n)Xi(n) = Mπ(n)>X(n).

Let Πs and Πb be the set of all feasible policies with semi-bandit and bandit feed-
back, respectively. The objective is to identify a policy π, which maximizes the
cumulative expected reward over a finite time horizon T . Here the expectation is
understood with respect to randomness in the rewards and the possible randomiza-
tion in the policy. Equivalently, we aim at designing a policy that minimizes regret,
where the regret of policy π is defined by:

Rπ(T ) = max
M∈M

E[
T∑
n=1

XM (n)]− E[
T∑
n=1

XMπ(n)(n)].

Finally, we denote by µM (θ) = M>θ the expected reward of arm M , and let
M?(θ) ∈M, or M? for short, be any arm with maximum expected reward:

M?(θ) ∈ arg max
M∈M

µM (θ).

To simplify the presentation in subsequent analysis, we assume that the elements
of θ are distinct, and hence the optimal arm M? is unique. We further define:
µ?(θ) = M?(θ)>θ, and ∆min = minM 6=M? ∆M , where ∆M = µ?(θ)− µM (θ).

4.4 Regret Lower Bound

In this section, we present regret lower bounds under the assumption that the
reward sequences across basic actions are independent. Our derivations rely on the
results presented in Chapter 3.
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Figure 4.1: An example for the set Ki in the case of graphic matroids: Edges shown
with solid line correspond to optimal actions. Two sub-optimal actions are shown
in dashed line, where K3 = {1, 2} and K6 = {1, 2, 5}.

4.4.1 Semi-Bandit Feedback

In order to present a regret lower bound for any uniformly good policy in Πs, we
introduce mapping σθ : E \M? →M? with

σθ(i) = argmin
j∈Ki

θj , ∀i ∈ E \M?,

where Ki = {` ∈M? : i ∈ A(M? \ `)}. For brevity, we will refer to σθ by σ. Figure
4.1 shows an example of Ki for the case of graphic matroids.

By Proposition 4.1, we have that Ki 6= ∅ for any i /∈ M?. Moreover, for any
i /∈ M?, if ` ∈ Ki, then θ` > θi. We show this claim by contradiction: Assume
this does not hold, namely θ` < θi since θ comprises distinct elements. Consider
M ′ = (M? \ `) ∪ {i}. Then, by Proposition 4.1, M ′ ∈M. Moreover,

µM ′(θ)− µ?(θ) =
∑
k∈M ′

θk −
∑
k∈M?

θk = θi − θ` > 0,

which contradicts the optimality of M?. Hence, θ` > θi for any ` ∈ Ki.
The next theorem provides a regret lower bound for the policies in Πs, which

may be viewed as the specialization of Theorem 3.1 for the case of matroids.

Theorem 4.2. For all θ ∈ Θ and for any uniformly good algorithm π ∈ Πs,

lim inf
T→∞

Rπ(T )
log(T ) ≥

∑
i∈E\M?

θσ(i) − θi
kl(θi, θσ(i))

.

Remark 4.1. When the underlying matroid is a uniform matroid, the problem
reduces to MAB with multiple plays as studied in [33, 51]. Assume that actions are
enumerated such that θ1 ≥ θ2 ≥ . . . θm > · · · ≥ θd. Then M? = {1, 2, . . . ,m} and
σ(i) = m for all i /∈ M?. Hence, the regret lower bound of Theorem 4.2 reduces to
the lower bound of Anantharam et al. [33].
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For the case of semi-bandit feedback, a specific lower bound example for the
case of partition matroid is presented in Kveton et al. [52] to support the claim
that regret scaling of O( d−m∆min

log(T )) is tight. Our result is consistent with their
result. Moreover, contrary to their lower bound, ours presented in Theorem 4.2 is
problem-dependent and tight, i.e. it holds for any parameter θ and any matroid G,
and cannot be improved.

4.4.2 Bandit Feedback

Now we provide a lower bound on the regret of any uniformly good policy in Πb.

Theorem 4.3. For all θ ∈ Θ and for any uniformly goods algorithm π ∈ Πb,

lim inf
T→∞

Rπ(T )
log(T ) ≥

∑
i∈E\M?

θσ(i) − θi
maxM :i∈M IM (θ, ζi) ,

where ζi is a vector of parameters defined as ζij = θj if j 6= i, and ζii = θσ(i).

The above theorem is indeed an specialization of Theorem 3.3 for the case of
matroids.

4.5 The KL-OSM Algorithm

Next we present KL-OSM, which is a natural extension of KL-UCB [39] to matroid ban-
dits. The necessary notations are collected as follows: At time n, we define ti(n) =∑n
s=1Mi(s) the number of times basic action i has been sampled. At time n, we

define the empirical mean reward of action i as θ̂i(n) = (1/ti(n))
∑n
s=1Xi(s)Mi(s)

if ti(n) > 0 and θ̂i(n) = 0 otherwise.
Our algorithm is an index policy relying on KL-UCB index [39] maintained for

each basic action. More precisely, the index of basic action i in round n is denoted
by ωi(n) and defined as:

ωi(n) = max
{
q ∈ [θ̂i(n), 1] : ti(n)kl(θ̂i(n), q) ≤ f(n)

}
,

with f(n) = log(n) + 3 log(log(n)).
In each round n ≥ 1, the KL-OSM algorithm simply consists in computing indexes

ωi(n) for all i and then selecting an arm M(n) by solving

M(n) ∈ arg max
M∈M

∑
i∈M

ωi(n),

using the Greedy algorithm. The pseudo-code of KL-OSM is given in Algorithm 4.2.
The following theorem gives an upper bound on the regret of KL-OSM.
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Algorithm 4.2 KL-OSM
for n ≥ 1 do

Select M(n) ∈ argmaxM∈M
∑

i∈M ωi(n) using Greedy.

Play M(n), observe the rewards, and update ti(n) and θ̂i(n), ∀i ∈M(n).
end for

Theorem 4.4. For any ε > 0, there exists positive constants C1, C2(ε), and β(ε)
such that the regret under algorithm π =KL-OSM satisfies:

Rπ(T ) ≤
∑

i∈E\M?

θσ(i) − θi
kl(θi, θσ(i))

(1 + ε) log(T ) + (d−m)
(
C1 log(log(T )) + C2(ε)

T β(ε)

)
.

Hence,

lim sup
T→∞

Rπ(T )
log(T ) ≤

∑
i∈E\M?

θσ(i) − θi
kl(θi, θσ(i))

.

Comparing the regret bound of Theorem 4.4 with that of Theorem 4.2, we
observe that for the case of Bernoulli rewards, KL-OSM is asymptotically optimal.
Next we compare KL-OSM and OMM [52] in terms of their regret upper bounds. OMM
achieves a regret upper-bounded by

R(T ) ≤
∑

i∈E\M?

16
∆min,i

log(T ) +O(1),

where for any sub-optimal i: ∆min,i = minj∈E\M? |θi − θj |. Note that by Pinsker’s
inequality, kl(θi, θσ(i)) ≥ 2(θi − θσ(i))2 ≥ 2∆2

min,i. Hence, the regret upper bound
for KL-OSM is better than that of OMM. The numerical experiment in the next section
also shows that KL-OSM outperforms OMM in practice and in some cases the difference
is significant.

4.5.1 Implementation
The KL-OSM algorithm finds a basis with the maximum index using Greedy, whose
time complexity under independence oracle model is O(d log(d)). We also remark
that the computation of index ωi(n) amounts to finding the roots of a strictly
convex and increasing function in one variable (since z 7→ kl(p, z) is an increasing
function for z ≥ p). Hence, ωi(n) can be computed straightforwardly by a simple
line search such as bisection. Therefore, the time complexity of KL-OSM after T
rounds is O(dT log(d)).

4.6 Numerical Experiments

We briefly illustrate the performance under the KL-OSM algorithm for the case of
spanning trees in the complete graphK5. In this case, there are d = 10 basic actions
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Figure 4.2: Regret of various algorithms for spanning trees

and by Cayley’s formula, there are 53 spanning trees or arms. Depending on the
way the parameter θ is chosen, we consider two scenarios. In the first scenario,
parameter θ is chosen such that θi=0.8 if i ∈ M? and θi = 0.6 otherwise, whereas
in the second one, θ is drawn uniformly at random from [0, 1]10.

Figures 4.2 and 4.3 present the regret vs. time horizon under KL-OSM and OMM for
the two scenarios. In these figures, the curve in red represents the lower bound of
Theorem 4.2. We observe that in both scenarios, KL-OSM significantly outperforms
OMM. The curves in Figures 4.2(b) and 4.3(b) show that the slope of the regret of
KL-OSM is becoming identical to that the ‘lower bound’ curve when the number
of rounds grows large. In words, these results imply that the regret of KL-OSM is
growing at the same rate of the ‘lower bound’ curve in the long run, thus verifying
the asymptotic optimality of KL-OSM.
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Figure 4.3: Regret of various algorithms for spanning trees

4.7 Summary

In this chapter we investigated combinatorial bandits where arms are bases of a
matroid. We provided explicit regret lower bounds under semi-bandit and bandit
feedbacks. These results were specializations of Theorem 3.1 and Theorem 3.3 for
the case of matroids. In the case of semi-bandit feedback, we presented KL-OSM and
provided its finite-time regret analysis. Our analysis shows that KL-OSM is an
asymptotically optimal algorithm as its regret upper bound matches the proposed
lower bound. We also provided numerical experiments to validate superiority of
KL-OSM over existing algorithms in practice.
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4.A Proof of Theorem 4.2

Proof. Recalling Theorem 3.1, the regret of any uniformly good policy π ∈ Πs for
any θ ∈ Θ satisfies

lim inf
T→∞

Rπ(T )
log(T ) ≥ cs(θ),

where cs(θ) is the optimal value of the following problem:

inf
x≥0

∑
M∈M

∆MxM (4.2)

subject to:
∑
M∈M

xM
∑
i∈E

Mikl(θi, λi) ≥ 1, ∀λ ∈ Bs(θ),

with Bs(θ) = {λ ∈ Θ : λi = θi,∀i ∈ M?(θ), µ?(λ) > µ?(θ)}. From the proof of
Theorem 3.1, recall that problem (4.2) can be equivalently written as

inf
x≥0

∑
M 6=M?

∆MxM , (4.3)

subject to: inf
λ∈Bs,M (θ)

∑
i∈M\M?

kl(θi, λi)
∑
Q∈M

QixQ ≥ 1, ∀M 6= M?,

where, for any M 6= M?

Bs,M (θ) = {λ ∈ Θ : λi = θi,∀i ∈M?(θ), µ?(θ) < M>λ}.

Fix i ∈ E \M?. LetM (i) = {i}∪M? \σ(i). Proposition 4.1 implies thatM (i) ∈M.
Figure 4.4 portrays an instance of {M (i), i ∈ E \ M?} for the case of graphic
matroids. We may simplify the l.h.s. of the constraint corresponding to arm M (i)

as follows:

inf
λ∈Bs,M(i) (θ)

∑
j∈M(i)\M?

kl(θj , λj)
∑
Q

QjxQ = inf
λ∈Bs,M(i) (θ)

kl(θi, λi)
∑
Q

QixQ

= inf
λ∈Θ:λi>θσ(i)

kl(θi, λi)
∑
Q

QixQ

= kl(θi, θσ(i))
∑
Q

QixQ,

where the first equality follows from M (i) \M? = {i}. Hence, M (i)-th constraint
in problem (4.3) may be equivalently written as∑

Q

QixQ ≥
1

kl(θi, θσ(i))
.
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(a) M? (b) (c) (d) (e) (f) (g)

Figure 4.4: Spanning trees in K5: (a) The optimal spanning tree M?, (b)-(g) M (i).

LetM− =M\ ({M?} ∪ {M (i), i ∈ E \M?}). It then follows that

cs(θ) = inf
x≥0

∑
M∈M

∆MxM (4.4)

subject to:
∑
Q6=M?

QixQ ≥
1

kl(θi, θσ(i))
, ∀i ∈ E \M?,

inf
λ∈Bs,M (θ)

∑
Q∈M

xQ
∑
i∈E

Qikl(θi, λi) ≥ 1, ∀M ∈M−.

Let τM : E → E be a bijection defined as follows: If i ∈M \M?, then τM (i) = j
for some j ∈ Ki. Otherwise, τM (i) = i. We have:

∆M =
∑
i∈M

(θτM (i) − θi) =
∑

i∈M\M?

(θτM (i) − θi)

=
∑

i∈E\M?

Mi(θτM (i) − θi) ≥
∑

i∈E\M?

Mi(θσ(i) − θi).

Hence, introducing zi =
∑
M MixM for any i ∈ E \M?, we obtain:∑

M

xM∆M ≥
∑
M

xM
∑
i/∈M?

Mi(θσ(i) − θi) =
∑
i/∈M?

(θσ(i) − θi)zi.

As a result, defining

P1: inf
z≥0

∑
i∈E\M?

(θσ(i) − θi)zi

subject to: zi ≥
1

kl(θi, θσ(i))
, ∀i ∈ E \M?,

yields: cs(θ) ≥ val(P1). The proof is completed by observing that

val(P1) =
∑

i∈E\M?

θσ(i) − θi
kl(θi, θσ(i))

.
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4.B Proof of Theorem 4.3

Proof. Recall from Theorem 3.3 that the regret of any uniformly good policy π ∈ Πb
for any θ ∈ Θ satisfies

lim inf
T→∞

Rπ(T )
log(T ) ≥ cb(θ),

where cb(θ) is the optimal value of the optimization problem:

inf
x≥0

∑
M∈M

∆MxM (4.5)

subject to:
∑

M 6=M?

xMI
M (θ, λ) ≥ 1, ∀λ ∈ Bb(θ),

and Bb(θ) is the set of bad parameters that cannot be distinguished from true
parameter θ when selecting arm M?(θ), and for which arm M?(θ) is sub-optimal:

Bb(θ) =
{
λ ∈ Θ : {λi, i ∈M?} = {θi, i ∈M?}, µ?(λ) > µ?(θ)

}
.

We argue that µ?(λ) > µ?(θ) implies that there exists at least one sub-optimal
action i with λi > θσ(i). Hence, we decompose Bb(θ) into sets where in each set,
action i is better than action σ(i) under λ. For any i /∈M?, define

Ai(θ) =
{
λ : {λ`, ` ∈M?} = {θ`, ` ∈M?}, λi > θσ(i)

}
.

Then, Bb(θ) =
⋃
i/∈M? Ai(θ) and problem (4.5) reads

cb(θ) = inf
x≥0

∑
M

xM∆M (4.6)

subject to: inf
λ∈Ai(θ)

∑
M 6=M?

xMI
M (θ, λ) ≥ 1, ∀i /∈M?.

Consider ζi with ζii = θσ(i) and ζij = θj for j 6= i. Since ζi ∈ Ai(θ), we have

inf
λ∈Ai(θ)

∑
M 6=M?

xMI
M (θ, λ) ≤

∑
M

xMI
M (θ, ζi)

=
∑
M

MixMI
M (θ, ζi)

≤ max
M :i∈M

IM (θ, ζi)
∑
M

MixM .

Hence, problem (4.6) is lower bounded as follows:

cb(θ) ≥ inf
x≥0

∑
M

xM∆M (4.7)
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subject to: max
M :i∈M

IM (θ, ζi)
∑
M

MixM ≥ 1, ∀i /∈M?.

Recall from the proof of Theorem 4.2 that
∑
M xM∆M ≥

∑
i∈E\M?(θσ(i)−θi)zi.

Hence, problem (4.7) is further lower bounded as

cb(θ) ≥ inf
z≥0

∑
i∈E\M?

(θσ(i) − θi)zi

subject to: zi ≥
1

maxM :i∈M IM (θ, ζi) , ∀i /∈M
?,

which further gives

cb(θ) ≥
∑

i∈E\M?

θσ(i) − θi
maxM :i∈M IM (θ, ζi)

and concludes the proof.

4.C Proof of Theorem 4.4

Proof. Let T > 0. Consider round n whereM(n) 6= M? is selected by the algorithm
π =KL-OSM. Then, there exists a bijection τn : M(n) → M? such that: τn(i) = i
if i ∈ M? ∩M(n). Otherwise, τn(i) = j for some j ∈ Ki. The bijection τn simply
maps the sub-optimal basic actions of M(n) to the corresponding ones in M? that
are not chosen by the algorithm at round n. It then follows that for any i ∈ E:

1{Mi(n) = 1} =
∑
j∈Ki

1{Mi(n) = 1, τn(i) = j}

and that
∑
j∈Ki 1{τn(i) = j} ≤ 1 since τn is a bijection. An example of bijection

τn for the case of graphic matroids is shown in Figure 4.5. It should be noted that
τn may not be unique.

For any i, j ∈ E, define ∆j,i = θj−θi. Then, the regret under policy π=KL-OSM is
upper bounded as:

Rπ(T ) ≤ E[
T∑
n=1

∆M(n)] = E[
T∑
n=1

∑
i∈E\M?

∆τn(i),i1{Mi(n) = 1}]

= E[
∑

i∈E\M?

T∑
n=1

∑
j∈Ki

∆j,i1{Mi(n) = 1, τn(i) = j}].

Let i ∈ E \M?. We use the following decomposition:

1{Mi(n) = 1, ωi(n) ≥ ωτn(i)(n)} ≤ 1{ωτn(i)(n) < θτn(i)}
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Figure 4.5: An example of bijection τn for the case of graphic matroids. In this
case: τn(1) = 1, τn(3) = 2, τn(4) = 4, τn(6) = 5.

+ 1{Mi(n) = 1, ωi(n) ≥ θτn(i)}.

Hence,

T∑
n=1

∑
j∈Ki

∆j,i1{Mi(n) = 1, τn(i) = j} ≤
T∑
n=1

∑
j∈Ki

∆j,i1{τn(i) = j, ωj(n) < θj}

+
T∑
n=1

∑
j∈Ki

∆j,i1{Mi(n) = 1, τn(i) = j, ωi(n) ≥ θj},

and therefore,

E[
∑

i∈E\M?

T∑
n=1

∑
j∈Ki

∆j,i1{Mi(n) = 1, τn(i) = j}

≤ E[
∑

i∈E\M?

T∑
n=1

∑
j∈Ki

1{τn(i) = j, ωj(n) < θj}]

+ E[
∑

i∈E\M?

T∑
n=1

∑
j∈Ki

∆j,i1{Mi(n) = 1, τn(i) = j, ωi(n) ≥ θj}],

since ∆j,i ≤ 1.
We prove that there exist positive constants C1, C2(ε), and β(ε) such that

E[
∑

i∈E\M?

T∑
n=1

∑
j∈Ki

1{τn(i) = j, ωj(n) < θj}] ≤ (d−m)C1 log(log(T )), (4.8)

E[
∑

i∈E\M?

T∑
n=1

∑
j∈Ki

∆j,i1{Mi(n) = 1, τn(i) = j, ωi(n) ≥ θj}]
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≤ (1 + ε)
θσ(i) − θi

kl(θi, θσ(i))
log(T ) + (d−m)C2(ε)

T β(ε) . (4.9)

Hence, we get the announced result:

Rπ(T ) ≤ E[
∑

i∈E\M?

T∑
n=1

∑
j∈Ki

∆j,i1{Mi(n) = 1, τn(i) = j}]

≤
∑

i∈E\M?

(1 + ε) log(T )
θσ(i) − θi

kl(θi, θσ(i))
+ (d−m)

(
C2(ε)
T β(ε) + C1 log(log(T ))

)
.

Inequality (4.8):
Fix j ∈ Ki. By the concentration inequality in [39, Theorem 10], we have

P[ωj(n) < θj ] ≤ df(n) log(n)ee1−f(n),

and hence following the same steps as in the proof of [39, Theorem 2], we ob-
serve that there exists constant C1 ≤ 7 such that E[

∑T
n=1 1{ωj(n) < θj}] ≤

C1 log(log(T )). It then follows that

∑
j∈Ki

E[
T∑
n=1

1{τn(i) = j, ωj(n) < θj}] ≤ C1(log(log(T )))

since τn for any n is a bijection. As a result:

∑
i/∈M?

∑
j∈Ki

E[
T∑
n=1

1{τn(i) = j, ωj(n) < θj}] ≤ (d−m)C1(log(log(T ))).

Inequality (4.9):
For x, y ∈ [0, 1], introduce kl+(x, y) = kl(x, y)1{x < y}. Fix j ∈ Ki. Observe that
the event ωi(n) ≥ θj implies that kl+(θ̂i(n), θj) ≤ kl(θ̂i(n), ωi(n)) = f(n)/ti(n).

We let θ̂i,s denote the empirical average of rewards of action i when it is selected
s times. Hence we obtain:

T∑
n=1

1{Mi(n) = 1, τn(i) = j, ωi(n) ≥ θj}

≤
T∑
n=1

1{Mi(n) = 1, τn(i) = j, ti(n)kl+(θ̂i(n), θj) ≤ f(n)}

=
T∑
n=1

n∑
s=1

1{Mi(n) = 1, τn(i) = j, ti(n) = s, skl+(θ̂i,s, θj) ≤ f(n)}

≤
T∑
n=1

n∑
s=1

1{Mi(n) = 1, τn(i) = j, ti(n) = s, skl+(θ̂i,s, θj) ≤ f(T )}
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=
T∑
s=1

1{skl+(θ̂i,s, θj) ≤ f(T )}
T∑
n=s

1{Mi(n) = 1, τn(i) = j, ti(n) = s}.

We therefore get

E[
T∑
n=1

∑
j∈Ki

∆j,i1{Mi(n) = 1, τn(i) = j, ωi(n) ≥ θj}]

≤ E[
∑
j∈Ki

T∑
s=1

∆j,i1{skl+(θ̂i,s, θj) ≤ f(T )}
T∑
n=s

1{Mi(n) = 1, τn(i) = j, ti(n) = s}].

(4.10)

From [39, Lemma 8], we have that for any j ∈ Ki:

E[
T∑
s=1

∆j,i1{skl+(θ̂i,s, θj) ≤ f(T )}] ≤ (1 + ε)∆j,i log(T )
kl(θi, θj)

+ C2(ε)
T β(ε) .

Combining this with (4.10), we get

E[
T∑
n=1

∑
j∈Ki

∆j,i1{Mi(n) = 1, τn(i) = j, ωi(n) ≥ θj}]

≤
∑
j∈Ki

(
(1 + ε)∆j,i log(T )

kl(θi, θj)
+ C2(ε)
T β(ε)

)

× E[
T∑
n=s

1{Mi(n) = 1, τn(i) = j, ti(n) = s}]

≤
(

max
j∈Ki

(1 + ε)∆j,i log(T )
kl(θi, θj)

+ C2(ε)
T β(ε)

)
× E[

∑
j∈Ki

T∑
n=s

1{Mi(n) = 1, τn(i) = j, ti(n) = s}]

≤ max
j∈Ki

(1 + ε)∆j,i log(T )
kl(θi, θj)

+ C2(ε)
T β(ε) ,

where in the last inequality, we used the fact that

∑
j∈Ki

T∑
n=s

1{Mi(n) = 1, τn(i) = j, ti(n) = s} ≤ 1

since τn is a bijection for any n. Lemma 4.1, proven at the end of this section,
implies that

max
j∈Ki

∆j,i

kl(θi, θj)
=

θσ(i) − θi
kl(θi, θσ(i))

,
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which gives

E[
T∑
n=1

∑
j∈Ki

∆j,i1{Mi(n) = 1, τn(i) = j, ωi(n) ≥ θj}] ≤ (1 + ε) log(T )
θσ(i) − θi

kl(θi, θσ(i))
+ C2(ε)
T β(ε) .

This completes the proof of inequality (4.9) and hence concludes the proof.

4.D Proof of Supporting Lemmas

We prove the following lemma about the KL-divergence of two Bernoulli distribu-
tions.

Lemma 4.1. Let j? = argminj:θj>θi θj. Then:

max
j:θj>θi

θj − θi
kl(θi, θj)

= θj? − θi
kl(θi, θ?j ) . (4.11)

Proof. We prove the lemma by contradiction. Assume that j? is not the maximizer
of (4.11), namely there exists some k 6= j? such that θk > θi and

θj? − θi
kl(θi, θj?) <

θk − θi
kl(θi, θk) , (4.12)

or equivalently,

θj? − θi
θk − θi

<
kl(θi, θj?)
kl(θi, θk) ≤ 1.

Letting α = θj?−θi
θk−θi , we may write θj? = αθk + (1 − α)θi. Observe that α ∈ (0, 1).

Convexity of z 7→ kl(p, z) for any p implies that

kl(θi, θj?) ≤ (1− α)kl(θi, θi) + αkl(θi, θk) = αkl(θi, θk),

and thus

θj? − θi
kl(θi, θj?) ≥

α(θk − θi)
αkl(θi, θk) ,

which contradicts (4.12). Thus, j? is the maximizer of (4.11) and the proof is
concluded.





Chapter 5

Stochastic Combinatorial MABs:
Geometric Rewards

In this chapter we study online shortest-path routing problems as introduced in
Chapter 1, which fall in the class of combinatorial MAB problems. Here we con-
sider instances of these problems with geometrically distributed rewards. We con-
sider two types of routing: source routing in which the path is determined at the
source and hop-by-hop routing, where routing decisions are taken at intermediate
nodes. Using the machinery of Chapter 3, we derive lower bounds on the regret.
We consider three algorithms for this class of problems and provide upper bounds
on their regret. These upper bounds are the best one proposed so far in the liter-
ature for combinatorial MABs with geometric rewards. We also provide numerical
experiments, which show that our algorithms outperform existing ones.

This main part of this chapter is based on the work [72] and is organized as
follows: Section 5.1 outlines our contributions in this chapter and discusses related
works. Section 5.2 describes the network model, feedback models, and objectives.
In Section 5.3, we present regret lower bounds for various types of feedbacks. In
Section 5.4, we present routing policies for the case of source routing with semi-
bandit feedback along with their regret analysis. Section 5.5 presents numerical
experiments. In Section 5.6, we give a brief summary of the materials presented in
this chapter. All proofs are provided in the appendix.

5.1 Contributions and Related Work

We make the following contributions for stochastic online shortest-path routing
problem:

(a) We derive tight asymptotic (when the number of packets N grows large) regret
lower bounds. The two first bounds concern source routing policies under bandit
and semi-bandit feedback, respectively, whereas the third bound is satisfied by any
hop-by-hop routing policy. As it turns out, the regret lower bounds for source
routing policies with semi-bandit feedback and that for hop-by-hop routing policies

67
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Algorithm Regret Complexity Implementation

CUCB [56] O
(

dm2

∆minθ4
min

log(N)
)

O(|V |d) Distributed

GeoCombUCB-1 (Theorem 5.5) O
(

d
√
m

∆minθ3
min

log(N)
)

O(|M|) Centralized

GeoCombUCB-2 (Theorem 5.5) O
(

d
√
m

∆minθ3
min

log(N)
)

O(|M|) Centralized

KL-SR (Theorem 5.6) O
(

dm
∆minθ3

min
log(N)

)
O(|V |d) Distributed

Table 5.1: Comparison of various algorithms for shortest-path routing under semi-
bandit feedback.

are identical, indicating that taking routing decisions hop by hop does not bring
any advantage. On the contrary, the regret lower bounds for source routing policies
with bandit and semi-bandit feedback can be significantly different, illustrating the
importance of having information about per-link delays.

(b) In the case of semi-bandit feedback, we propose two online source routing poli-
cies, namely GeoCombUCB-1 and GeoCombUCB-2. Geo refers to the fact that the
delay on a given link is geometrically distributed, Comb stands for combinatorial,
and UCB (Upper Confidence Bound) indicates that these policies are based on the
same “optimism in face of uncertainty” principle as the celebrated UCB1 algorithm
designed for classical MAB problems [19]. Moreover, we improve the regret upper
bound of KL-SR [30] to O( dm

∆minθ3
min

log(N))1, where m denotes the length (number
of links) of the longest path in the network from the source to the destination,
θmin is the success transmission probability of the link with the worst quality, and
∆min is the minimal gap between the average end-to-end delays of the optimal and
of a sub-optimal path. We further show that the regret under GeoCombUCB-1 and
GeoCombUCB-2 scales at most as O( d

√
m

∆minθ3
min

log(N)). Our routing policies strike
an interesting trade-off between computational complexity and performance, and
exhibit better regret upper bounds than that of the CUCB algorithm [56], which
was, to our knowledge, the best online shortest-path routing algorithm. The regret
guarantees of various algorithms and their computational complexity are summa-
rized in Table 5.1. Finally we conduct numerical experiments, showing that our
routing policies perform significantly better than CUCB.

The analysis presented in this chapter can be easily extended to more general
link models, provided that the (single-link) delay distributions are taken within
one-parameter exponential families of distributions.

1This improves over the regret upper bound scaling as O( ∆maxdm
3

∆minθ3
min

log(N)) derived in [30].
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5.1.1 Related Work

We summarize existing results for generic stochastic combinatorial bandits that
could be applied to online shortest-path routing. In [56], the authors present CUCB,
an algorithm for generic stochastic combinatorial MAB problems under semi-bandit
feedback. When applied to the online routing problem, the best regret upper bound
for CUCB presented in [56] scales as O( dm2

∆minθ4
min

log(N)) (see Appendix 5.F for de-
tails). This upper bound constitutes the best existing result for our problem, where
the delay on each link is geometrically distributed. It is important to note that most
proposed algorithms for combinatorial bandits [55, 57, 50] deal with bounded re-
wards, i.e., here bounded delays, and are not applicable to geometrically distributed
delays.

Stochastic online shortest-path routing problems have been addressed in [73,
31, 74]. Liu and Zhao [73] consider routing with bandit (end-to-end) feedback
and propose a forced-exploration algorithm with O(d3m log(N)) regret in which a
random barycentric spanner2 path is chosen for exploration. He et al. [31] consider
routing under semi-bandit feedback, where the source chooses a path for routing
and a possibly different path for probing. Our model coincides with the coupled
probing/routing case in their paper, for which they derive an asymptotic lower
bound on the regret growing logarithmically with time. As we shall see later, their
lower bound is not tight.

Finally, it is worth noting that the papers cited above considered source routing
only. To the best of our knowledge, the present work is the first to consider online
routing problems with hop-by-hop decisions. Such a problem can be formulated
as a classical Markov Decision Process (MDP), in which the states are the packet
locations and the actions are the outgoing links of each node. However, most studies
considered MDP problem under stricter assumptions than ours and/or targeted
different performance measures. For these problems, Burnetas and Katehakis [35]
derive the asymptotic lower bound on the regret and propose an optimal index
policy. Their result can be applied only to the so-called ergodic MDP [75], where
the induced Markov chain by any policy is irreducible and consists of a single
recurrent class. In hop-by-hop routing, however, the policy that routes packets
on a fixed path results in a Markov chain with reducible states that are not in
the chosen path. Algorithms for general MDPs with logarithmic regret were also
proposed in, e.g., [76, 77]. Nevertheless, these algorithms perform badly when
applied to hop-by-hop routing due to loosely constructed confidence intervals, and
the asymptotic performance bounds were not studied.

2A barycentric spanner is a set of paths from which the delay of all other paths can be
computed as its linear combination with coefficients in [−1, 1] [27].
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Policy Set Routing Type Feedback
Πb Source routing Bandit
Πs Source routing Semi-bandit
Πh Hop-by-hop Semi-bandit

Table 5.2: Various policy sets for online shortest path routing.

5.2 Model and Objectives

5.2.1 Network Model
We consider a network modeled as a directed graph G = (V,E) where V is the set
of nodes and E is the set of links. Each link i ∈ E may, for example, represent an
unreliable wireless link. Let d be the cardinality of E. Without loss of generality,
we assume that time is slotted and that one slot corresponds to the time to send
a packet over a single link. At time t, Xi(t) is a binary random variable indicating
whether a transmission on link i at time t is successful. (Xi(t))t≥1 is a sequence
of i.i.d. Bernoulli variables with initially unknown mean θi. Hence if a packet is
sent on link i repeatedly until the transmission is successful, the time to complete
the transmission (referred to as the delay on link i) is geometrically distributed
with mean 1/θi. Let θmin = mini∈E θi > 0, and let θ = (θi, i ∈ E) be the vector
representing the packet successful transmission probabilities on the various links.
We consider a single source-destination pair (u, v) ∈ V 2, and denote byM⊆ {0, 1}d
the set of loop-free paths from u to v in G, where each path M ∈ M is a d-
dimensional binary vector; for any i ∈ E, Mi = 1 if and only if i belongs to M .
Hence, for any M ∈ M, the length of path M is ‖M‖1 =

∑
i∈EMi. We let m

denote the maximum length of the paths in M, i.e., m = maxM∈M ‖M‖1. For
brevity, in what follows, for any binary vector z, we write i ∈ z to denote zi = 1.
Moreover, we use the convention that z−1 = (z−1

i )i.

5.2.2 Objectives and Feedback
We assume that the source is fully backlogged (i.e., it always has packets to send),
and that the parameter θ is initially unknown. Packets are sent successively from
u to v over various paths to estimate θ, and in turn to learn the path M? with
the minimum average delay: M? ∈ argminM∈M

∑
i∈M

1
θi
. After a packet is sent,

we assume that the source gathers some feedback from the network (essentially
per-link or end-to-end delays) before sending the next packet.

We consider and compare three different types of online routing policies, de-
pending (i) on where routing decisions are taken (at the source or at each node),
and (ii) on the received feedback (per-link or end-to-end path delay). These policy
sets are defined below:

• Policy Set Πb: The path used by a packet is determined at the source based
on the observed end-to-end delays for previous packets. More precisely, for
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the n-th packet, let Mπ(n) be the path selected under policy π, and let
Dπ(n) denote the corresponding end-to-end delay. Then Mπ(n) depends on
Mπ(1), . . . ,Mπ(n− 1), Dπ(1), . . . , Dπ(n− 1).

• Policy Set Πs: The path used by a packet is determined at the source based on
the observed per-link delays for previous packets. In other words, under policy
π, Mπ(n) depends on Mπ(1), . . . ,Mπ(n−1), (hπi (1), i ∈Mπ(1)), . . . , (hπi (n−
1), i ∈Mπ(n−1)), where hπi (k) is the delay experienced on link i for the k-th
packet (if this packet uses link i at all).

• Policy Set Πh: Routing decisions are taken at each node in an adaptive man-
ner. At a given time t, the packet is sent over a link selected based on all
successes and failures observed on the various links before time t.

Table 5.2 lists different policy sets for the three types of online routing policies
considered. In the case of source routing policies (in Πb ∪Πs), if a transmission on
a given link fails, the packet is retransmitted on the same link until it is successfully
received (per-link delays are geometric random variables). On the contrary, in the
case of hop-by-hop routing policies (in Πh), the routing decisions at a given node can
be adapted to the observed failures on a given link. For example, if transmission
attempts on a given link failed, one may well decide to switch link and select a
different next-hop node.

The regret Rπ(N) of policy π up to the N -th packet is the expected difference
of delays for the N first packets under π and under the policy that always selects
the best path M? for transmission:

Rπ(N) = E[
N∑
n=1

Dπ(n)]−Nµ?(θ),

where Dπ(n) denotes the end-to-end delay of the n-th packet under policy π. More-
over, µ?(θ) = argminM∈M µM (θ) where µM (θ) =

∑
i∈M

1
θi

is the average packet
delay through path M given link success rates θ, and the expectation E[·] is taken
with respect to the random transmission outcomes and possible randomization in
the policy π. For any pathM ∈M, define ∆M = µM (θ)−µ?(θ) = (M−M?)>θ−1.
Furthermore, let ∆min = min∆M 6=0 ∆M .

5.3 Regret Lower Bounds

In this section, we provide fundamental performance limits satisfied by any online
routing policy in Πb, Πs, or Πh. By comparing these performance limits, we can
quantify the potential performance improvements taking routing decisions at each
hop rather than at the source only, and observing per-link delays (semi-bandit
feedback) rather than end-to-end delays (bandit feedback).
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5.3.1 Source Routing with Semi-Bandit (Per-Link) Feedback

Consider routing policies in Πs that make decisions at the source, but have in-
formation on the individual link delays. Let KLG(u, v) denote the KL-divergence
between two geometric random variables with parameters u and v:

KLG(u, v) :=
∑
k≥1

u(1− u)k−1 log u(1− u)k−1

v(1− v)k−1 .

The next theorem provides the regret lower bound for online routing policies in
Πs.

Theorem 5.1. For all θ and for any uniformly good policy π ∈ Πs,

lim inf
N→∞

Rπ(N)
log(N) ≥ cs(θ),

where cs(θ) is the optimal value of the following optimization problem:

inf
x≥0

∑
M 6=M?

∆MxM (5.1)

subject to: inf
λ∈Bs(θ)

∑
M 6=M?

xM
∑
i∈M

KLG(θi, λi) ≥ 1. (5.2)

with Bs(θ) = {λ : λi = θi, ∀i ∈M?, minM∈M µM (λ) < µ?(θ)}.

Proof of the above theorem is quite similar to that of Theorem 3.1 and is omitted.

Remark 5.1. The asymptotic lower bound proposed in [31] has a similar expression
to ours, but the set Bs(θ) is replaced by

B′s(θ) =
⋃
i∈E
{λ : λj = θj ,∀j 6= i, min

M∈M
µM (λ) < µ?(θ)}.

It is noted that B′s(θ) ⊂ Bs(θ), which implies that the lower bound derived in [31] is
smaller than ours. In other words, we propose a regret lower bound that improves
that in [31], and moreover, our bound is tight (it cannot be improved further).

We note that the lower bound of Theorem 5.1 is unfortunately implicit. Hence,
it could be interesting to see how it scales as a function of the problem dimensions
d and m. Below we consider a particular instance of routing problem in which
the underlying topology is a grid. This instance demonstrates that the machinery
developed in Chapter 3 to simplify the lower bound of Theorem 3.1 may prove
inapplicable for routing problems.
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(a) (b)

(c) (d) (e)

Figure 5.1: Routing in a grid: (a) Grid topology with source (red) and destination
(blue) nodes, (b) Optimal path M?, (c)-(e) Elements of H.

Routing in a grid. Consider routing in anN -by-N directed grid, whose topology
is shown in Figure 5.1(a), where the source (resp. destination) node is shown in
red (resp. blue). HereM is the set of all

(2N−2
N−1

)
paths with m = 2(N − 1) edges.

We further have d = 2N(N − 1). In this example, elements of any maximal set
H satisfying P (θ), defined in Chapter 3, do not cover all sub-optimal links. For
instance, for the grid shown in Figure 5.1(a), there are 6 links that do not appear
in any arm in H. Moreover, one may easily prove that in this case, |H| scales as N
rather than N2 = d.

5.3.2 Source Routing with Bandit Feedback

We now consider routing policies in Πb. Denote by ψMθ (k) the probability that the
delay of a packet sent on path M is k slots. The end-to-end delay is the sum of
several independent random geometric variables. Assuming θi 6= θj for i 6= j, we
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have for all k ≥ ‖M‖1 [78]:

ψMθ (k) =
∑
i∈M

( ∏
j∈M,j 6=i

θj
θj − θi

)
θi(1− θi)k−1,

i.e., the path delay distribution is a weighted average of the individual link delay
distributions where the weights can be negative but always sum to one.

The next theorem provides the fundamental performance limit of online routing
policies in Πb.

Theorem 5.2. For all θ and for any uniformly good policy π ∈ Πb,

lim inf
N→∞

Rπ(N)
log(N) ≥ cb(θ),

where cb(θ) is the optimal values of the following optimization problem:

inf
x≥0

∑
M∈M

xM∆M (5.3)

subject to: inf
λ∈Bb(θ)

∑
M 6=M?

xM

∞∑
k=‖M‖1

ψMθ (k) log ψ
M
θ (k)
ψMλ (k)

≥ 1,

with

Bb(θ) :=
{
λ : {λi, i ∈M?} ={θi, i ∈M?}, min

M∈M
µM (λ) < µ?(θ)

}
.

Similarly to the case of Bernoulli rewards in Chapter 3, we know that cb(θ) ≥
cs(θ), since the lower bounds we derive are tight and getting semi-bandit feedback
can be exploited to design smarter routing policies than those we can devise using
bandit feedback (i.e., Πb ⊂ Πs).

5.3.3 Hop-by-hop Routing
Finally, we consider routing policies in Πh. These policies are more involved to
analyze as the routing choices may change at any intermediate node in the network,
and they are also more complex to implement. Surprisingly, the next theorem states
that the regret lower bound for hop-by-hop routing policies is the same as that
derived for strategies in Πs (source routing with semi-bandit feedback). In other
words, we cannot improve the performance by taking routing decisions at each hop.

Theorem 5.3. For all θ and for any uniformly good rule π ∈ Πh,

lim inf
N→∞

Rπ(N)
log(N) ≥ ch(θ) = cs(θ).
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Figure 5.2: Line Topology

For the proof of this theorem, we refer to [72]. As shown in [20, Theorem 2],
the asymptotic regret lower bounds derived in Theorems 5.2-5.1-5.3 are tight in the
sense that one can design actual routing policies achieving these regret bounds (al-
though these policies might well be extremely complex to compute and impractical
to implement). Hence from the fact that cb(θ) ≥ cs(θ) = ch(θ), we conclude that:

• The best source routing policy with semi-bandit feedback asymptotically
achieves a lower regret than the best source routing policy with bandit feed-
back;

• The best hop-by-hop routing policy asymptotically obtains the same regret
as the best source routing policy with semi-bandit feedback.

5.3.4 Line Networks
We now consider shortest-path routing in a line network whose topology is shown
in Figure 5.2. Define

I = {F ⊂ E : every pair of elements in F share at most one vertex}.

It can be easily verified that G(G) = (E, I) is a matroid, and that each basis of G
is a path between the left-most and the right-most vertices of G. As a consequence,
we have the following lower bound on the regret of any uniformly good policy in
Πs in line networks:

Corollary 5.1. For all θ ∈ Θ and for any uniformly good policy π ∈ Πs in line
networks,

lim inf
N→∞

Rπ(N)
log(N) ≥

∑
i∈E\M?

1
KLG(θi, θσ(i))

(
1
θi
− 1
θσ(i)

)
.

The proof of this result is similar to that of Theorem 4.2; it is thus omitted.

5.4 Algorithms

In this section, we present online routing policies for semi-bandit feedback, which
are simple to implement and yet approach the performance limits identified in the
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Index Type Computation Algorithm
bM Path Line search GeoCombUCB-1
cM Path Explicit GeoCombUCB-2
ωi Edge Line search KL-SR

Table 5.3: Summary of indexes.

previous section. We further analyze their regret and show that they outperform
existing algorithms. To present our policies, we introduce additional notations.
Under a given policy, we define si(n) as the number of packets routed through link
i before the n-th packet is sent. Let ti(n) be the total number of transmission
attempts (including retransmissions) on link i before the n-th packet is sent. We
define θ̂i(n) the empirical success rate of link i estimated over the transmissions of
the (n− 1) first packets; namely θ̂i(n) = si(n)/ti(n) if ti(n) > 0 and θ̂i(n) = 0 oth-
erwise. We define the corresponding vectors t(n) = (ti(n))i∈E , s(n) = (si(n))i∈E ,
and θ̂(n) = (θ̂i(n))i∈E .

5.4.1 Path Indexes
The proposed policies rely on indexes attached to individual paths. Next we in-
troduce two indexes used in our policies. They depend on the round, i.e., on the
number n of packets already sent, and on the estimated link parameters θ̂(n). The
two indexes and their properties (i.e., in which policy they are used, and how one
can compute them) are summarized in Table 5.3. Let n ≥ 1 and assume that n-th
packet is to be sent. The indexes are defined as follows.

The first index, denoted by bM (n, θ̂(n)) for path M ∈ M, or for short bM (n),
is motivated by the index defined in Chapter 3 and is defined as the optimal value
of the following optimization problem:

inf
u∈(0,1]d

M>u−1

subject to:
∑
i∈M

ti(n)kl(θ̂i(n), ui) ≤ f1(n),

where f1(n) = log(n) + 4m log(log(n)).
The second index is denoted by cM (n, θ̂(n)), or for short cM (n), and explicitly

defined for path M ∈M as:

cM (n) = M>θ̂(n)−1 −
√
f1(n)

2
∑
i∈M

1
si(n)θ̂i(n)3

.

The next theorem provides generic properties of the two indexes bM and cM .

Theorem 5.4. (i) For all n ≥ 1, M ∈ M, and λ ∈ (0, 1]d, we have bM (n, λ) ≥
cM (n, λ). (ii) There exists a constant Km > 0 depending on m only such that, for
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Algorithm 5.1 GeoCombUCB

for n ≥ 1 do
Select path M(n) ∈ argminM∈M ξM (n) (ties are broken arbitrarily), where

ξM (n) = bM (n) for GeoCombUCB-1, and ξM (n) = cM (n) for GeoCombUCB-2.
Collect feedbacks on links i ∈M(n), and update θ̂i(n) for i ∈M(n).

end for

all M ∈M and n ≥ 2:

P[bM (n, θ̂(n)) ≥M>θ] ≤ Kmn
−1(log(n))−2.

Corollary 5.2. We have:∑
n≥1

P[bM?(n, θ̂(n)) ≥ M?>θ−1] ≤ 1 +Km

∑
n≥2

n−1(log(n))−2 := K ′m <∞.

5.4.2 The GeoCombUCB Algorithm

We present two routing policies, referred to as GeoCombUCB-1 and GeoCombUCB-2,
respectively. For the transmission of the n-th packet, GeoCombUCB-1 (resp. GeoCombUCB-2)
selects the path M with the lowest index bM (n) (resp. cM (n)). The pseudo-code
of GeoCombUCB-1 and GeoCombUCB-2 algorithms is presented in Algorithm 5.1.

In the following theorem, we provide a finite-time analysis of the GeoCombUCB al-
gorithm.

Theorem 5.5. There exists a constant K ′m ≥ 0 that only depends on m such that
for every δ ∈ (0, 1), the regret under policy π ∈ {GeoCombUCB-1, GeoCombUCB-2}
satisfies for any N :

Rπ(N) ≤ 4(1 + δ)2

(1− δ)5 ·
d
√
mf1(N)

∆minθ3
min

+mθ−1
min

(
K ′m + 2

δ2 min( ∆min
M?>θ−1 , 1)2

∑
i∈E

θ−2
i

)
.

Hence, Rπ(N) = O
(

d
√
m

∆minθ3
min

log(N)
)
when N →∞.

5.4.3 Improved Regret Bound for The KL-SR Algorithm

We now present an improved regret upper bound for the KL-SR algorithm. KL-SR,
initially proposed in [30], relies on an index attached to links. More precisely, for
each link i ∈ E, KL-SR maintains index ωi defined for the n-th packet as:

ωi(n) = min
{1
q

: q ∈[θ̂i(n), 1], ti(n)kl
(
θ̂i(n), q

)
≤ f2(n)

}
,
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Algorithm 5.2 KL-SR

for n ≥ 1 do
Select path M(n) ∈ argmin∈MM>ω(n) (ties are broken arbitrarily).
Collect feedbacks on links i ∈M(n), and update θ̂i(n) for i ∈M(n).

end for

where f2(n) = log(n) + 3 log(log(n)). For the transmission of the n-th packet,
KL-SR selects the path M(n) ∈ argminM∈MM>ω(n), where ω(n) = (ωi(n))i∈E .
The pseudo-code of KL-SR is presented in Algorithm 5.2.

In the following theorem, we provide an improved finite-time analysis of the
KL-SR algorithm.

Theorem 5.6. There exists a constant K ′′ ≥ 0 such that for every δ ∈ (0, 1), the
regret under policy π = KL-SR satisfies for any N :

Rπ(N) ≤ 45(1 + δ)2

(1− δ)5 ·
mdf2(N)
∆minθ3

min
+mθ−1

min

(
K ′′ + 2

δ2 min( ∆min
M?>θ−1 , 1)2

∑
i∈E

θ−2
i

)
.

Hence, Rπ(N) = O
(

md
∆minθ3

min
log(N)

)
when N →∞.

Remark 5.2. Theorem 5.6 holds even when the delays on the various links can be
arbitrarily correlated as considered in [56, 57].

GeoCombUCB and KL-SR have better performance guarantees than existing rout-
ing algorithms. Indeed, as shown in Appendix 5.F, the best regret upper bound for
the CUCB algorithm derived in [56] is

RCUCB(N) = O
(

dm2

∆minθ4
min

log(N)
)
.

We believe that applying the proof techniques presented in [57] (see the proof of
Theorem 5 there), one might provide a regret upper bound for CUCB scaling as
O( dm

∆minθ4
min

log(N)), which still constitutes a weaker performance guarantee than
those of our routing policies. The numerical experiments presented in the next
section will confirm the superiority of GeoCombUCB and KL-SR over CUCB.

5.4.4 Implementation
Next we discuss the implementation of our routing policies and KL-SR, and in
particular propose simple methods to compute the various indexes involved in these
policies. Note first that the path index cM is explicit, and easy to compute. The
link index ωi is also straightforward as it amounts to finding the roots of a strictly
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convex and increasing function in one variable (note that v 7→ kl(u, v) is strictly
convex and increasing for v ≥ u). Hence, the index ωi can be computed by a
simple line search. The path index bM can also be computed using a slightly more
complicated line search, as shown in the following proposition.

For λ > 0, w ∈ [0, 1], and v ∈ N define:

g(λ,w, v) =
λvw − 1 +

√
(1− λvw)2 + 4λv
2λv .

Fix n ≥ 1, M ∈ M, θ̂(n), and t(n). Define I = {i ∈ M : θ̂i(n) 6= 1}, and for
λ > 0, define:

F (λ) =
∑
i∈I

ti(n)kl(θ̂i(n), g(λ, θ̂i(n), ti(n))).

Proposition 5.1. (i) λ 7→ F (λ) is strictly increasing, and F (R+) = R+. (ii) If I =
∅, bM (n) =

∑
i∈EMi. Otherwise, bM (n) =

∑
i∈EMi−|I|+

∑
i∈I g(λ?, θ̂i(n), ti(n)),

where λ? is the unique solution to F (λ) = f1(n).

As stated in Proposition 5.1, λ? can be computed efficiently by a simple line
search, and bM (n) is easily deduced. We thus have efficient methods to compute
the three indexes. To implement our policies, we then need to find in each round,
the path minimizing the index (or the sum of link indexes along the path for
KL-SR). KL-SR can be implemented (in a distributed fashion) using the Bellman-
Ford algorithm, and its complexity is O(|V |d) in each round. GeoCombUCB-1 and
GeoCombUCB-2 are more computationally involved than KL-SR and have complexity
O(|M|) in each round.

A distributed hop-by-hop routing policy

Motivated by the Bellman-Ford implementation of the KL-SR algorithm, we propose
KL-HHR, a distributed routing policy which is a hop-by-hop version of the KL-SR
algorithm and hence belongs to the set of policies Πh. We first introduce the
necessary notations. For any node v ∈ V , we let Mv denote the set of loop-free
paths from node v to the destination. For any time slot τ , we denote by n(τ)
the packet number that is about to be sent or is already in the network. For
any link i, let θ̃i(τ) be the empirical success rate of link i up to time slot τ , that
is θ̃i(τ) = si(n(τ))/t′i(τ), where t′i(τ) denotes the total number of transmission
attempts on link i up to time slot τ . Moreover, with slight abuse of notation,
we denote the index of link i at time τ by ωi(τ, θ̃i(τ)). Note that by definition
t′i(τ) ≥ ti(n) and θ̃i(τ) is a more accurate estimate of θi than θ̂i(n(τ)).

We define Jv(τ) as the minimum cumulative index from node v to the destina-
tion:

Jv(τ) = min
M∈Mv

∑
i∈M

ωi(τ, θ̃i(τ)).
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We note that Jv(τ) can be computed using the Bellman-Ford algorithm. KL-HHR
works based on the following idea: at time τ if the current packet is at node v,
it will be sent to node v′ with (v, v′) ∈ E such that ω(v,v′)(τ, θ̃v(τ)) + Jv′(τ) is
minimal over all outgoing links of node v. The pseudo-code of KL-HHR is given in
Algorithm 5.3.

Algorithm 5.3 KL-HHR for node v
for τ ≥ 1 do
Select link (v, v′) ∈ E, where

v′ ∈ arg min
w∈V :(v,w)∈E

(
ω(v,w)(τ, θ̃v(τ)) + Jw(τ)

)
.

Update index of the link (v, v′).
end for

The regret analysis of KL-HHR is more complicated than that of KL-SR and is
let for future work.

Line Networks

We now revisit the case of line networks. Recall that in a line network, each path
between the left-most and the right-most vertices of G may be seen as a basis of
a matroid. The following corollary shows that KL-SR is an asymptotically optimal
routing policy in line networks:

Corollary 5.3. For any ε > 0, there exist positive constants C1, C2(ε), and β(ε)
such that the regret under algorithm π =KL-SR in line networks satisfies:

Rπ(N) ≤
∑

i∈E\M?

(1 + ε) log(N)
KLG(θi, θσ(i))

(
1
θi
− 1
θσ(i)

)
+ (d−m)

(
mC1

θmin
log(log(N)) + C2(ε)

Nβ(ε)

)
.

For line networks we have that ∆min = mini/∈M?(θ−1
i −θ

−1
σ(i)). Applying Pinsker’s

inequality and Lemma B.3 together give

∑
i∈E\M?

1
θi
− 1

θσ(i)

KLG(θi, θσ(i))
≤

∑
i∈E\M?

1
2θσ(i)(θσ(i) − θi)

≤
∑

i∈E\M?

1
2θ2
σ(i)θi

(
1
θi
− 1
θσ(i)

)−1

≤ 1
2 mini/∈M? θ2

σ(i)
· d−m

∆minθmin
.



5.5. Numerical Experiments 81

Let us consider a problem instance for routing in line networks in which θi =
1,∀i ∈M?. Then,

lim sup
N→∞

RKL-SR(N)
log(N) ≤ d−m

2∆minθmin
,

which implies a regret scaling of O((d−m)∆−1
minθ

−1
min log(N)).

The proof of Corollary 5.3 is similar to that of Theorem 4.4; it is thus omitted.

5.5 Numerical Experiments

In this section, we conduct numerical experiments to compare the performance of
the proposed source routing policies to that of the CUCB algorithm [56] applied to
our online routing problem. The CUCB algorithm is an index policy in Πs (set of
source routing policies with semi-bandit feedback), and selects path M(n) for the
transmission of the n-th packet:

M(n) ∈ arg min
M∈M

∑
i∈M

1
θ̂i(n) +

√
1.5 log(n)/ti(n)

.

We consider a grid network whose topology is depicted in Figure 5.1(a), where the
node in red (resp. blue) is the source (resp. destination). In this network, there
are

(6
3
)

= 20 possible paths from the source to the destination.
In Figure 5.3(a)-(c), we plot the regret against the number of the packets N

under the various routing policies, and for three sets of link parameters θ. For each
set, we choose a value of θmin and generate the values of θi independently, uniformly
at random in [θmin, 1]. The results are averaged over 100 independent runs, and the
95% confidence intervals are shown using the grey area around curves. The three
proposed policies outperform CUCB, and GeoCombUCB-1 yields the smallest regret.
The comparison between GeoCombUCB-2 and KL-SR is more subtle and depends
on the links parameters. KL-SR seems to perform better than GeoCombUCB-2 in
scenarios where ∆min is large.

5.6 Summary

In this chapter we investigated stochastic combinatorial MABs with geometrically
distributed rewards. We derived asymptotic regret lower bounds for source routing
policies under bandit and semi-bandit feedback, and for hop-by-hop routing poli-
cies. We further showed that the regret lower bounds for source routing policies
with semi-bandit feedback and that for hop-by-hop routing policies are identical.
We then proposed two online source routing policies, namely GeoCombUCB-1 and
GeoCombUCB-2, and provided a finite-time analysis of their regret. Moreover, we
improve the regret upper bound of KL-SR [30]. These routing policies strike an
interesting trade-off between computational complexity and performance, and ex-
hibit better regret upper bounds than state-of-the-art algorithms. Furthermore,
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(a) θmin = 0.30, ∆min = 0.15
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(b) θmin = 0.18, ∆min = 0.34
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Figure 5.3: Regret versus number of received packets.
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through numerical experiments we demonstrated that these policies outperform
state-of-the-art algorithms in practice.

5.A Proof of Theorem 5.2

The proof of this theorem is quite similar to that of Theorem 3.3. The following
lemma however is required.

Lemma 5.1. Consider (Xi)i independent with Xi ∼ Geo(θi) and 0 < θi ≤ 1.
Consider (Yi)i independent with Yi ∼ Geo(λi) and 0 < λi ≤ 1. Define X =

∑
iXi

and Y =
∑
i Yi. Then X d=Y if and only if (θi)i = (λi)i up to a permutation3.

Proof. If (θi)i = (λi)i, up to a permutation then X d=Y by inspection. Assume that
X

d=Y . Define zm = mini min(1/(1− θi), 1/(1− λi)). For all z such that |z| < zm
we have E[zX ] = E[zY ] so that∏

i

θi
1− (1− θi)z

=
∏
i

λi
1− (1− λi)z

.

Hence:

PX(z) :=
∏
i

θi(1− (1− λi)z) =
∏
i

λi(1− (1− θi)z) := PY (z).

Both PX(z) and PX(z) are polynomials and are equal on an open set. So they are
equal everywhere, and the sets of their roots are equal {1/(1 − θi), i} = {1/(1 −
λi), i}. Hence, (θi)i = (λi)i up to a permutation as announced.

5.B Proof of Theorem 5.4

Proof. Statement (i): Let M ∈ M, u, λ ∈ (0, 1]d, and s(n) ∈ Rd. Define ti(n) =
si(n)/λi for any i. By convexity of u 7→M>u−1, we have:

M>λ−1 −M>u−1 ≤
∑
i∈M

ui − λi
λ2
i

.

By Cauchy-Schwarz and Pinsker’s inequalities, we have that

∑
i∈M

ui − λi
λ2
i

√
si(n)
si(n) ≤

√∑
i∈M

ti(n)(λi − ui)2

√∑
i∈M

1
si(n)λ3

i

3The symbol d= denotes equality in distribution.
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≤
√∑
i∈M

ti(n)kl(λi, ui)
2

√∑
i∈M

1
si(n)λ3

i

.

Hence,

M>λ−1 −M>u−1 ≤
√∑
i∈M

ti(n)kl(λi, ui)
2

√∑
i∈M

1
si(n)λ3

i

.

Thus,
∑
i∈M ti(n)kl(λi, ui) ≤ f1(n) implies:

M>u−1 ≥M>λ−1 −
√
f1(n)

2
∑
i∈M

1
si(n)λ3

i

= cM (n, λ),

so that, by definition of bM (n, λ), we have bM (n, λ) ≥ cM (n, λ).
Statement (ii): If

∑
i∈M ti(n)kl(θ̂i(n), θi) ≤ f1(n), then we have bM (n) ≤M>θ−1

by definition of bM (n). Therefore, using Lemma A.4, there exists Km such that for
all n ≥ 2 we have:

P[bM (n) > M>θ−1] ≤ P[
∑
i∈M

ti(n)kl(θ̂i(n), θi) > f1(n)] ≤ Kmn
−1(log(n))−2,

which concludes the proof.

5.C Proof of Theorem 5.5

Proof. For any n ∈ N, w ∈ Nd, M ∈M, and λ ∈ (0, 1]d define

hn,w,M,λ =
√
f1(n)

∑
i∈p

1
2wiλ3

i

.

Fix δ ∈ (0, 1) and define ε = δmin(∆min
µ? , 1) with µ? = M?>θ−1. For any n,

introduce the following events:

An =
{∑
i∈M?

ti(n)kl(θ̂i(n), θi) > f1(n)
}
,

Bn,i = {Mi(n) = 1, |θ̂i(n)− θi| ≥ εθi}, Bn =
⋃
i∈E

Bn,i,

Fn = {∆M(n) ≤ (1 + ε)hN,s(n),M(n),(1−ε)θmin1 + εµ?},

where 1 is a vector all of whose elements are one.
Let N > 0. Then the regret can be upper bounded as:

Rπ(N) = E[
N∑
n=1

∆M(n)]
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≤ E[
N∑
n=1

∆M(n) (1{An}+ 1{Bn})] + E[
N∑
n=1

∆M(n)1{An, Bn}]

≤ mθ−1
min

N∑
n=1

(P[An] + P[Bn])] + E[
N∑
n=1

∆M(n)1{An, Bn}],

where the last inequality follows from ∆M(n) ≤ mθ−1
min. Consider n such that

M(n) 6= M?. Next we show that An ∪Bn ⊂ Fn. Recall that cM (n) ≤ bM (n) for
any n and p (Theorem 5.4). Moreover,

∑
i∈M? ti(n)kl(θ̂i(n), θi) ≤ f1(n) implies:

bM?(n) ≤ µ?. For brevity, let us define h(n) = hn,s(n),M(n),θ̂(n) and h′(n) =
hn,s(n),M(n),(1−ε)θmin1. Hence we have:

1{An, Bn, M(n) 6= M?} = 1{An, Bn, ξM(n)(n) ≤ ξM?(n)}
≤ 1{Bn, cM(n)(n) ≤ µ?}
= 1{Bn, M(n)>θ̂(n)−1 − h(n) ≤ µ?}
≤ 1{(1 + ε)−1M(n)>θ−1 − h′(n) ≤ µ?} (5.4)
≤ 1{(1 + ε)−1∆M(n) ≤ h′(n) + εµ?/(1 + ε)}
≤ 1{∆M(n) ≤ hN,s(n),M(n),(1−ε)θmin1 + εµ?}
= 1{Fn},

where in (5.4) we use the fact that Bn implies for any i ∈ M(n): θ̂i(n)−1 <
(1− ε)−1θ−1

i ≤ (1− ε)−1θ−1
min. Hence, the regret is upper bounded by:

Rπ(N) ≤ mθ−1
min

N∑
n=1

(P[An] + P[Bn]) + E[
N∑
n=1

∆M(n)1{Fn}].

We will prove the following inequalities:

(i)
∑N
n=1 P[Bn] ≤ 2

δ2 min(∆min/µ?,1)2

∑
i∈E θ

−2
i ,

(ii) E[
∑N
n=1 ∆M(n)1{Fn}] ≤ 4(1+δ)2

(1−δ)5 d
√
m∆−1

minθ
−3
minf1(N).

Moreover, Corollary 5.2 implies that:
∑N
n=1 P[An] ≤ K ′m, with K ′m depending

only on m. Putting these together, we obtain the announced result

Rπ(N) ≤ 4(1 + δ)2

(1− δ)5 d
√
m∆−1

minθ
−3
minf1(N)

+mθ−1
min

(
K ′m + 2

δ2 min(∆min/µ?, 1)2

∑
i∈E

θ−2
i

)
.

Inequality (i): Fix i and n. Define τ =
∑n
n′=1 1{Bn′,i}. Observe that Bn′,i

implies Mi(n′) = 1, hence si(n) ≥ τ . Therefore, applying [61, Lemma B.1], we
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have that
∑N
n=1 P[Bn,i] ≤ 2ε−2θ−2

i . Applying union bound, we get

N∑
n=1

P[Bn] ≤ 2ε−2
∑
i∈E

θ−2
i = 2

δ2 min(∆min
µ? , 1)2

∑
i∈E

θ−2
i .

Inequality (ii): Let ` > 0. For any n, define U = (1+ε)2f1(N)
(1−ε)3θ3

min
and introduce the

following events:

Sn = {i ∈M(n) : si(n) ≤ mU(∆M(n) − εµ?)−2},
Gn = {|Sn| ≥ `},
Ln = {|Sn| < `, [∃i ∈M(n) : si(n) ≤ `U(∆M(n) − εµ?)−2]}.

We claim that for any n such thatM(n) 6= M?, we have Fn ⊂ (Gn ∪ Ln). To prove
this, we show that when Fn holds and M(n) 6= M?, the event Gn ∪ Ln cannot
happen. Let n be such that M(n) 6= M? and Fn holds, and assume that

Gn ∪ Ln = {|Sn| < `, [∀i ∈M(n) : si(n) > `U(∆M(n) − εµ?)−2]}

happens. Then Fn implies:

∆M(n) ≤ (1 + ε)hN,s(n),M(n),(1−ε)θmin1 + εµ?

= εµ? + (1 + ε)

√
f1(N)

2(1− ε)3θ3
min

√√√√ ∑
i∈M(n)\Sn

1
si(n) +

∑
i∈Sn

1
si(n)

< εµ? + (1 + ε)

√
f1(N)

2(1− ε)3θ3
min

√
m(∆M(n) − εµ?)2

mU
+
|Sn|(∆M(n) − εµ?)2

`U

< εµ? + (1 + ε)

√
f1(N)(∆M(n) − εµ?)2

(1− ε)3θ3
minU

= ∆M(n), (5.5)

where the last inequality follows from the observation thatGn ∪ Ln implies |Sn| < `.
Clearly, (5.5) is a contradiction. Thus Fn ⊂ (Gn ∪ Ln) and consequently:

N∑
n=1

∆M(n)1{Fn} ≤
N∑
n=1

∆M(n)1{Gn}+
N∑
n=1

∆M(n)1{Ln}. (5.6)

To further bound the r.h.s. of the above, we introduce the following events for
any i:

Gi,n = Gn ∩ {i ∈M(n), si(n) ≤ mU(∆M(n) − εµ?)−2},
Li,n = Ln ∩ {i ∈M(n), si(n) ≤ `U(∆M(n) − εµ?)−2}.
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Note that
∑
i∈E 1{Gi,n} = 1{Gn}

∑
i∈E 1{i ∈ Sn} = |Sn|1{Gn} ≥ `1{Gn}, and

hence we have 1{Gn} ≤ 1
`

∑
i∈E 1{Gi,n}. Moreover 1{Ln} ≤

∑
i∈E 1{Li,n}. Sup-

pose each link i belongs to Ki sub-optimal paths, and these sub-optimal paths are
ordered according to the gap between their average delays and µ? as: ∆i,1 ≥ · · · ≥
∆i,Ki > 0. Also define ∆i,0 =∞.

Plugging the above inequalities into (5.6), we obtain
N∑
n=1

∆M(n)1{Fn} ≤
N∑
n=1

∑
i∈E

∆M(n)

(1
`
1{Gi,n}+ 1{Li,n}

)

=
N∑
n=1

∑
i∈E

∆M(n)

(1
`
1{Gi,n, M(n) 6= M?}+ 1{Li,n, M(n) 6= M?}

)

≤
N∑
n=1

∑
i∈E

∑
k∈[Ki]

∆i,k
(1
`
1{Gi,n, M(n) = k}+ 1{Li,n, M(n) = k}

)

≤
∑
i∈E

N∑
n=1

∑
k∈[Ki]

∆i,k

`
1{i ∈M(n), si(n) ≤ mU

(∆i,k − εµ?)2 , M(n) = k}

+
∑
i∈E

N∑
n=1

∑
k∈[Ki]

∆i,k
1{i ∈M(n), si(n) ≤ `U

(∆i,k − εµ?)2 , M(n) = k}

≤
∑
i∈E

N∑
n=1

∑
k∈[Ki]

∆i,k

`
1

{
si(n) ≤ 1

(1− εµ?/∆min)2
mU

(∆i,k)2 , M(n) = k
}

+
∑
i∈E

N∑
n=1

∑
k∈[Ki]

∆i,k
1

{
si(n) ≤ 1

(1− εµ?/∆min)2
`U

(∆i,k)2 , M(n) = k
}

≤ 2Ud
(1− εµ?/∆min)2∆min

(m
`

+ `
)
, (5.7)

where the second last inequality uses the observation that we have for any i and k:

∆i,k − εµ? = ∆i,k(1− εµ?/∆i,k) ≥ ∆i,k(1− εµ?/∆min),

and the last inequality follows from the fact that for any i ∈ E with Ki ≥ 1 and
C > 0 that does not depend on n, we have from Lemma 3.1:

N∑
n=1

Ki∑
k=1

1{si(n) ≤ C(∆i,k)−2, M(n) = k}∆i,k ≤ 2C
∆min

.

Setting ` =
√
m in (5.7) yields
N∑
n=1

∆M(n)1{Fn} ≤
4(1 + ε)2

(1− ε)3(1− εµ?/∆min)2 ·
d
√
mf1(N)

∆minθ3
min

.
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The proof of inequality (iii) is completed by observing that

(1 + ε)2

(1− ε)3(1− εµ?/∆min)2 =

(
1 + δmin(∆min

µ? , 1)
)2

(
1− δmin(∆min

µ? , 1)
)3 (

1− δmin(∆min
µ? , 1) µ?

∆min

)2

≤ (1 + δ)2

(1− δ)3
(

1− δmin(∆min
µ? , 1) µ?

∆min

)2 ≤
(1 + δ)2

(1− δ)5 ,

where the last inequality follows from min(z, 1) ≤ z.

5.D Proof of Theorem 5.6

Proof. The proof leverages some of the ideas in the proof of [57, Theorem 5].
For any n,w ∈ N and λ ∈ (0, 1] define gn,w,λ =

√
f2(n)
2wλ3 . Fix δ ∈ (0, 1) and

define ε = δmin(∆min
µ? , 1) with µ? = M?>θ−1. For any n, introduce the following

events:

An,i = {ti(n)kl(θ̂i(n), θi) > f2(n)}, An =
⋃
i∈M?

An,i

Bn,i = {Mi(n) = 1, |θ̂i(n)− θi| ≥ εθi}, Bn =
⋃
i∈E

Bn,i,

Fn =
{

∆M(n) ≤ (1 + ε)
∑

i∈M(n)

gN,si(n),(1−ε)θmin + εµ?
}
.

Let N > 0. Then the regret satisfies:

Rπ(N) = E[
N∑
n=1

∆M(n)] ≤ E[
N∑
n=1

∆M(n) (1{An}+ 1{Bn})] + E[
N∑
n=1

∆M(n)1{An, Bn}].

Consider n such that M(n) 6= M?. Next we show that An ∪Bn ⊂ Fn. From the
definition of ωi(n), observe that ti(n)kl(θ̂i(n), θi) ≤ f2(n) for any i ∈ M? implies
M?>ω(n) ≤ µ?. Hence we have:

1{An, Bn, M(n) 6= M?} = 1{An, Bn, M(n)>ω(n) ≤M?>ω(n)}
≤ 1{Bn, M(n)>ω(n) ≤ µ?}

≤ 1

{
Bn, M(n)>θ̂(n)−1 −

∑
i∈M(n)

gn,si(n),θ̂i(n) ≤ µ
?
}

(5.8)

≤ 1

{
(1 + ε)−1M(n)>θ−1 −

∑
i∈M(n)

gn,si(n),(1−ε)θmin ≤ µ
?
}
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≤ 1

{
∆M(n) ≤ (1 + ε)

∑
i∈M(n)

gN,si(n),(1−ε)θmin + εµ?
}

= 1{Fn},

where (5.8) follows from Lemma 5.2, proven at the end of this section, and the rest
follows in the similar line as in the proof of Theorem 5.5. Hence, the regret is upper
bounded by:

Rπ(N) ≤ mθ−1
min

N∑
n=1

(P[An] + P[Bn])] + E[
N∑
n=1

∆M(n)1{Fn}]. (5.9)

We will prove the following inequalities:

(i)
∑N
n=1 P[An] ≤ mK ′′ for some constant K ′′,

(ii) E[
∑N
n=1 ∆M(n)1{Fn}] ≤ 45(1+δ)2

(1−δ)5 md∆−1
minθ

−3
minf2(N).

Furthermore, from the proof of Theorem 5.5, we have:

N∑
n=1

P[Bn] ≤ 2
δ2 min(∆min/µ?, 1)2

∑
i∈E

θ−2
i .

Putting these together with (5.9), we obtain the announced result.

Inequality (i): By Lemma A.4, there exists a number K ′ such that for all i and
all n ≥ 2: P[An,i] ≤ K ′n−1(log(n))−2. Therefore:

N∑
n=1

P[An,i] ≤ 1 +K ′
∑
n≥2

n−1(log(n))−2 ≡ K ′′ <∞.

Applying the union bound, we get:
∑N
n=1 P[An] ≤ mK ′′.

Inequality (ii): Let (α`)`≥1 and (β`)`≥0 be decreasing sequences such that (i)
β0 = 1, (ii) α`, β` →`→∞ 0, and (iii)

∑∞
`=1

β`−1−β`√
α`

≤ 1.
For any ` ∈ N and n, define

m`,n = α`(1 + ε)2m2f2(N)
2(1− ε)3θ3

min(∆M(n) − εµ?)2

and introduce the following events:

S`,n = {i ∈M(n) : si(n) ≤ m`,n},

G`,n =
`−1⋂
j=1
{|Sj,n| < βjm} ∩ {|S`,n| ≥ β`m}.
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For any n such that M(n) 6= M?, we claim that Fn ⊂ ∪`≥1G`,n. We prove this
claim by showing that if Fn occurs, then the event ∪`≥1G`,n = ∩`≥1{|S`,n| < mβ`}
does not happen. Observe that occurrence of Fn gives:

∆M(n) ≤ (1 + ε)
∑

i∈M(n)

gN,si(n),(1−ε)θmin + εµ?

= (1 + ε)

√
f2(N)

2(1− ε)3θ3
min

∑
i∈M(n)

1√
si(n)

+ εµ?

< (1 + ε)

√
f2(N)

2(1− ε)3θ3
min

∞∑
`=1

m(β`−1 − β`)√
m`,n

+ εµ?

= (∆M(n) − εµ?)
∞∑
`=1

β`−1 − β`√
α`

+ εµ? ≤ ∆M(n),

where the second inequality follows from the proof of [57, Lemma 3] that relies on
the condition that the event ∪`≥1G`,n happens. The above result is a contradiction.
Hence, Fn ⊆ ∪`≥1G`,n and consequently: 1{Fn} ≤

∑∞
`=1 1{G`,n}.

To provide an upper bound for the r.h.s. of the latter inequality, we introduce
for any i:

Gi,`,n = G`,n ∩ {i ∈M(n), si(n) ≤ m`,n}.

Observe that:∑
i∈E

1{Gi,`,n} = 1{G`,n}
∑
i∈E

1{i ∈ S`,n} = |S`,n|1{G`,n} ≥ mβ`1{G`,n},

and hence:
1{G`,n} ≤

1
mβ`

∑
i∈E

1{Gi,`,n}.

Putting these inequalities together, we obtain

N∑
n=1

∆M(n)1{Fn} ≤
N∑
n=1

∞∑
`=1

∆M(n)1{G`,n}

≤
N∑
n=1

∑
i∈E

∞∑
`=1

∆M(n)

mβ`
1{Gi,`,n, M(n) 6= M?}

≤
N∑
n=1

∑
i∈E

∞∑
`=1

∑
k∈[Ki]

∆i,k

mβ`
1{Gi,`,n, M(n) = k}

≤
N∑
n=1

∑
i∈E

∞∑
`=1

∑
k∈[Ki]

∆i,k

mβ`
1

{
si(n) ≤ α`(1 + ε)2m2f2(N)

2(1− ε)3θ3
min(∆i,k − εµ?)2 , M(n) = k

}
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≤
N∑
n=1

∑
i∈E

∞∑
`=1

∑
k∈[Ki]

∆i,k

mβ`

× 1

{
si(n) ≤ α`(1 + ε)2m2f2(N)

2(1− ε)3θ3
min(∆i,k)2

1
(1− εµ?/∆min)2 , M(n) = k

}
≤ (1 + ε)2

(1− ε)3(1− εµ?/∆min)2
mdf2(N)
∆minθ3

min

∞∑
`=1

α`
β`

≤ (1 + δ)2

(1− δ)5 ·
mdf2(N)
∆minθ3

min

∞∑
`=1

α`
β`
, (5.10)

where the last inequality follows by plugging ε = δmin(∆min
µ? , 1) and using the

inequality (1+ε)2

(1−ε)3(1−εµ?/∆min)2 ≤ (1+δ)2

(1−δ)5 , as derived in the proof of Theorem 5.5.

Similarly to the proof of [57, Theorem 5], we select α` =
(

1−β√
α−β

)2
α` and β` = β`

for all `, with 0 < α < β <
√
α < 1. With this choice of α` and β`, it follows that:

∞∑
`=1

β`−1 − β`√
α`

= (β−1 − 1)
√
α− β

1− β

∞∑
`=1

(
β√
α

)`
= (β−1 − 1)

√
α− β

1− β
β√
α− β

= 1.

Moreover, β0 = 1 and α`, β` →`→∞ 0, so that conditions (i)-(iii) are satisfied.
Furthermore, we have that

∞∑
`=1

α`
β`

=
(

1− β√
α− β

)2 ∞∑
`=1

α`

β`
=
(

1− β√
α− β

)2
α

β − α
,

which gives

N∑
n=1

∆M(n)1{Fn} ≤
(1 + δ)2

(1− δ)5 ·
mdf2(N)
∆minθ3

min
·
(

1− β√
α− β

)2
α

β − α
.

Given the constraint 0 < α < β <
√
α < 1, the r.h.s. of the above inequality is

minimized at (α?, β?) = (0.1459, 0.2360). The proof is concluded by observing that(
1−β?√
α?−β?

)2
α?

β?−α? < 45.

Lemma 5.2. For all n ≥ 1, i, and λ ∈ (0, 1], we have:

ωi(n, λ) ≥ 1
λi
−

√
f2(n)

2si(n)λ3
i

.
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Proof. Let i ∈ E, q ∈ (0, 1], λ ∈ (0, 1]d, and s(n) ∈ Rd. Define ti(n) = si(n)/λi for
any i ∈ E. We have:

1
q
≥ 1
λi
− 1
λ2
i

(q − λi) ≥
1
λi
−

√
(q − λi)2

λ4
i

√
si(n)
si(n)

≥ 1
λi
−
√
ti(n)kl(λi, q)

2

√
1

si(n)λ3
i

,

where the first inequality follows from convexity of q 7→ 1
q and the last one is due

to Pinsker’s inequality. Hence, ti(n)kl(λi, q) ≤ f2(n) implies:

1
q
≥ 1
λi
−

√
f2(n)

2si(n)λ3
i

,

so that by definition of ωi,

ωi(n, λ) ≥ 1
λi
−

√
f2(n)

2si(n)λ3
i

.

5.E Proof of Proposition 5.1

Proof. It is easy to verify that the function F (λ) is strictly increasing. The rest of
the proof follows the similar lines as in the proof of Theorem 3.5. In this case, the
KKT conditions for index bM (n) read:

1
ui2
− λti(n) d

dui
kl(θ̂i(n), ui) = 0,

∑
i∈I

ti(n)kl(θ̂i(n), ui)− f1(n) = 0.

Hence, replacing the derivative of kl by its expression in the first equation, we
obtain the following quadratic equation

u2
i + ui

(
1

λti(n) − θ̂i(n)
)
− 1
λti(n) = 0.

Solving for ui, we obtain ui(λ) = g(λ, θ̂i(n), ti(n)). Plugging ui(λ) into the second
KKT condition yields F (λ) = f1(n). The results then follow directly.

5.F Regret Upper Bound of The CUCB Algorithm

The regret of CUCB satisfies [56, Theorem 1]:

lim sup
N→∞

RCUCB(N)
log(N) ≤ min

f∈F

12d∆min

(f−1(∆min))2 ,
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where

F =
{
f : ∀λ, λ′ ∈ Θ, ∀M ∈M, ∀Λ > 0,(

max
i∈M
|λi − λ′i| ≤ Λ

)
⇒ (|µM (λ)− µM (λ′)| ≤ f(Λ))

}
.

Next we show that the regret upper bound of the GeoCombUCB algorithm is
smaller than that of CUCB. To this end, we claim that

min
f∈F

∆min

(f−1(∆min))2 ≥
√
m

θ3
min∆min

.

The claim is proved as follows. Let f ∈ F , and let Λ > 0. We have that:

f(Λ) ≥ mΛ
θmin(Λ + θmin) .

Indeed, let us take λ = θmin1, λ′ = λ + Λ1, and M of length m. Then, we have
maxi∈M |λi − λ′i| ≤ Λ. Thus,

f(Λ) ≥ |µM (λ)− µM (λ′)| = mΛ
θmin(Λ + θmin) := f0(Λ).

Now we deduce that:

min
f∈F

∆min

(f−1(∆min))2 ≥
∆min

(f−1
0 (∆min))2 = ∆min(

∆minθ2
min

m−∆minθmin

)2 = (m−∆minθmin)2

∆minθ4
min

,

which concludes the proof of the claim. This latter result also verifies thatRCUCB(N) =
O
(

dm2

∆minθ4
min

log(N)
)
as N grows large.





Chapter 6

Adversarial Combinatorial MABs

In this chapter we study adversarial combinatorial MAB problems, namely online
combinatorial problems in which rewards are bounded yet no statistical assumption
on their generation is made. We consider bandit feedback and concentrate on the
case where all arms have the same number of basic actions but are otherwise arbi-
trary. Our main contribution is CombEXP, an OSMD type algorithm, whose regret is
as good as state-of-the-art algorithms, while it has lower computational complexity.

This chapter is based on the work [50], and is organized as follows. Section
6.1 outlines the contributions of this chapter and provides an overview of related
literature on online combinatorial optimization in the adversarial setting. Section
6.2 describes our model and problem formulation. In Section 6.3 we present the
CombEXP algorithm and provide its regret and computational complexity analyses.
Finally, Section 6.4 summarizes the chapter. Proof are presented in the appendix.

6.1 Contributions and Related Work

Consider a set of d basic actions. LetM be an arbitrary subset of {0, 1}d, such that
each of its element M has m basic actions. The main contribution of this chapter
is an algorithm, which we may call CombEXP, for adversarial combinatorial MABs
withM being the set of arms. Under bandit feedback, CombEXP achieves a regret
scaling as

O

√m3T
(
d+ m1/2

λ

)
logµ−1

min

 ,

where µmin = mini∈[d]
1

m|M|
∑
M∈MMi and λ is the smallest nonzero eigenvalue

of the matrix E[MM>] when M is uniformly distributed over M (Theorem 6.1).
For most problems of interest, m(dλ)−1 = O(1) [79] and µ−1

min = O(poly(d/m)),
so that CombEXP has O(

√
m3dT log(d/m)) regret. A known regret lower bound is

Ω(m
√
dT ) [21], so the regret gap between CombEXP and this lower bound scales

95
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at most as m1/2 up to a logarithmic factor. This is the same regret scaling of
state-of-the-art algorithms for these problems.

CombEXP relies on projections using the KL-divergence, which we may not be able
to compute exactly. Nonetheless, we prove that under a carefully chosen precision
for the projection, CombEXP attains the same regret scaling as if the projection
would have been computed exactly (Proposition 6.1). Furthermore, we present
an analysis of the computational complexity of CombEXP (Theorem 6.2) and show
that CombEXP has lower computational complexity than state-of-the-art algorithms
for some problems of interest. The presented computational complexity analysis
extends in an straightforward manner to other OSMD type algorithms and hence
could be of independent interest.

6.1.1 Related Work
Online combinatorial optimization problems in the adversarial setting have been
extensively investigated recently; see [21] and references therein. Here we give an
overview of the most important contributions.

Full Information

Full information setting constitutes the more tractable case for online combinatorial
problems, which is very well understood by now. A known lower bound on the regret
under this feedback model is Ω(m

√
T log(d/m)) [80]. As one of the early instances

of adversarial combinatorial problems, Takimoto and Warmuth [81] studied online
shortest path problem where they propose a computationally efficient algorithm
based on the Hedge algorithm of Freund and Schapire [82]. Kalai and Vempala
[83] consider online linear optimization over a discrete set of arms and propose a
computationally efficient algorithm based on FPL (Follow-the-Perturbed-Leader) for
a more generic problem. Helmbold and Warmuth [84] introduce a computationally
efficient algorithm for learning perfect matchings in the full information setting.
Koolen et al. [80] propose Component Hedge that extends the latter work to generic
combinatorial structures. The work by Koolen et al. has a two-fold importance:
Firstly, it is one of the earliest works that targeted generic combinatorial problems.
Secondly, the proposed algorithm Component Hedge achieves the optimal regret
bound of O(m

√
T log(d/m)).

Semi-Bandit Feedback

The most notable contributions in the semi-bandit setting include [28, 29, 85, 86,
21, 87, 88]. A known regret lower bound in this case scales as Ω(

√
mdT ) [21]. Some

contributions consider specific combinatorial problems. For example, the case of
fixed-size subsets is investigated by Uchiya et al. [86] and Kale et al. [85], where
both propose algorithms with optimal regret bounds up to logarithmic factors. The
latter considers ordered subsets which prove useful in ranking problems. György
et al. [28, 29] study online shortest path problem and propose an algorithm with
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O(
√
dT log(|M|)) regret. Generic problems are investigated in Audibert et al. [21]

and Neu and Bartok [87]. The former proposes OSMD which achieves the optimal
regret boundO(

√
mdT ). The latter presents an FPL-based algorithm, FPL with GR,

which attains a regret O(m
√
dT log(d)). The performance of FPL with GR is worse

than the lower bound by a factor of m1/2 up to a logarithmic factor. Note however,
that when the offline combinatorial optimization is efficiently implementable, FPL
with GR can be run in polynomial time.

Bandit Feedback

The work of Awerbuch and Kleinberg [27] is one of the earliest works that con-
siders shortest-path routing as a particular instance of online linear optimization
under bandit feedback. Their algorithm obtains O∗(T 2/3) against an oblivious ad-
versary. This work is followed by MacMahan and Blum [89], where they provide
an algorithm achieving O∗(T 3/4) but against an adaptive adversary. This result
was further improved by György et al. [28, 29] to a high probability regret guaran-
tee of O∗(T 2/3) against an adaptive adversary. The GeometricHedge algorithm of
Dani et al. [16], which attains a regret of O∗(

√
T ), is the first algorithm with the

optimal scaling in terms of T , thus signifying the sub-optimality of the aforemen-
tioned algorithms. Dani et al. [16] indeed consider online linear optimization over a
d-dimensional compact convex set in the bandit setting and against an oblivious ad-
versary. Bartlett et al. [90] further show that a modified version of GeometricHedge
has a regret O∗(

√
T ) with high probability and also the results holds against an

adaptive adversary.
For generic combinatorial problems, Cesa-Bianchi and Lugosi [79] propose ComBand

and derive a regret upper bound which depends on the structure of the of set of
arms M and the choice of exploration distribution. For most problems of in-
terest1, under uniform exploration, the regret under ComBand is upper-bounded
by O(

√
m3dT log(d/m)). Another algorithm for generic problems is EXP2 with

John’s Exploration (henceforth, EXP2-John), which is proposed by Bubeck et
al. [15]. EXP2-John is an algorithm based on exponential weights with a novel
way of exploration. It achieves a regret of O(m3/2

√
dT log(|M|)) for a discrete set

M⊂ {0, 1}d.
As shown by Audibert et al. [21], for the setup we considered, the problem

admits a minimax lower bound of Ω(m
√
dT ) if d ≥ 2m. This lower bound signi-

fies that ComBand and EXP2-John are off the optimal regret bound by a factor of
m1/2

√
log(d/m). We remark however that if the assumption ‖M‖1 = m,∀M ∈M

is relaxed to ‖M‖1 ≤ m, i.e., when arms can have different number of basic actions,
the regret upper bound of ComBand is tight as it matches a lower bound proposed in
[16] 2. As we show next, for many combinatorial structures of interest (e.g., fixed-

1One notable exception is shortest path routing.
2Suppose that M = {0, 1}d, i.e., M is the entire d-dimensional hypercube. Dani et al. [16]

show that the regret for this choice ofM is lower bounded by κd2√T for some constant κ which
is independent of d. In this case, ComBand has a regret of O(d2√T ) since m = d and λ = 1/4 [79].
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Algorithm Regret
Lower Bound [21] Ω

(
m
√
dT
)
, if d ≥ 2m

ComBand [79] O
(√

m3dT log d
m

(
1 + 2m

dλ

))
EXP2-John [15] O

(√
m3dT log d

m

)
CombEXP (Theorem 6.1) O

(√
m3dT

(
1 + m1/2

dλ

)
logµ−1

min

)
Table 6.1: Regret of various algorithms for adversarial combinatorial bandits with
bandit feedback. Note that for most combinatorial classes of interests, m(dλ)−1 =
O(1) and µ−1

min = O(poly(d/m)).

size subsets, matchings, spanning trees, cut sets), CombEXP yields the same regret
scaling as ComBand and EXP2-John, but with lower computational complexity for a
large class of problems. Table 6.1 summarises known regret bounds.

6.2 Model and Objectives

Given a set of basic actions [d] = {1, . . . , d}, consider a set of arms M such that
every element inM has exactly m basic actions. For i ∈ [d], let Xi(n) denote the
reward of basic action i in round n. We consider an oblivious adversary. Namely, we
assume that the reward vector X(n) = (X1(n), . . . , Xd(n))> ∈ [0, 1]d is arbitrary,
and the sequence (X(n), n ≥ 1) is decided (but unknown) at the beginning of the
experiment. We identify each arm M with a binary column vector (M1, . . . ,Md)>,
and we have ‖M‖1 = m, ∀M ∈M. At the beginning of each round n, an algorithm
or policy π, selects an arm Mπ(n) ∈ M based on the arms chosen in previous
rounds and their observed rewards. The reward of arm Mπ(n) selected in round n
is XMπ(n)(n) = Mπ(n)>X(n).

We consider bandit feedback, where at the end of round n and under policy
π, the decision maker only observes Mπ(n)>X(n). Her objective is to identify a
policy π maximizing the cumulative expected reward over a finite time horizon T ,
or equivalently minimizing the regret defined by:

Rπ(T ) = max
M∈M

E[
T∑
n=1

XM (n)]− E[
T∑
n=1

XMπ(n)(n)].

where the expectation is here taken with respect to the possible randomization in
the policy.

6.2.1 The OSMD Algorithm
In order to have better understanding of the main contribution of this chapter,
namely the CombEXP algorithm, here we describe the Online Stochastic Mirror De-
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scent (OSMD) algorithm [21, 15].
OSMD is based on the mirror descent algorithm of Nemirovski and Yudin [91]

for solving convex optimization problems. The underlying idea of mirror descent is
that instead of performing gradient descent in the primal space, one can perform it
in another space referred to as the dual space (see below for a precise definition).
From an optimization perspective, mirror descent proves very efficient for large-
scale optimization problems as its convergence rate grows logarithmically with the
dimension of the problem [92]. Mirror descent in online learning is of special inter-
est since popular learning algorithms such as online gradient descent [93] and the
weighted majority algorithm [47] can be seen as special cases of mirror descent.

To describe OSMD, we collect some definitions from convex analysis which can
be found in, e.g., [94]. Consider an open convex set D ⊂ Rd and its closure cl(D).
Mirror descent performs gradient descent in a dual space of D. To define a dual
space for D, we next introduce the notion of Legendre functions. A continuous
function F : cl(D)→ R is called Legendre if (i) it is strictly convex and continuously
differentiable on D, and (ii) ‖∇F (x)‖ →x→cl(D)\D ∞. Now, D? = ∇F (D) is called
the dual space of D under F .

To any Legendre function F , we may associate the Bregman divergence DF :
cl(D)×D → R defined by

DF (x, y) = F (x)− F (y)− (x− y)>∇F (y).

It is noted that DF (x, y) ≥ 0 for all x, y since F is convex. Moreover, it is convex
in the first argument. Finally, the Legendre-Fenchel transform of F , denoted by
F ?, is defined by

F ?(y) = sup
x∈cl(D)

(x>y − F (x)).

A result in convex analysis states that Bregman divergence in the primal space
is equivalent to Bregman divergence of the Legendre-Fenchel transform in the dual
space; namely DF (x, y) = DF?(∇F (y),∇F (x)) for all x, y ∈ D (see, e.g., [21,
Lemma 2.1] and [95, Chapter 11]).

As an example consider the function F (x) =
∑d
i=1 xi log(xi) −

∑d
i=1 xi and

D = Rd++. The dual space of D under this choice of F is D? = Rd. Moreover, the
Bregman divergence in this case becomes the generalized KL-divergence:

DF (x, y) =
d∑
i=1

xi log(xi)−
d∑
i=1

xi −
d∑
i=1

yi log(yi) +
d∑
i=1

yi −
d∑
i=1

log(yi)(xi − yi)

=
d∑
i=1

xi log(xi/yi)−
d∑
i=1

(xi − yi).

We are now ready to describe OSMD. The corresponding pseudo-code for loss
minimization problem is presented in Algorithm 6.1. It performs a gradient update
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Algorithm 6.1 OSMD [21]
Initialization: Set x0 ∈ argminx∈conv(M) F (x).

for n ≥ 1 do
Select a distribution pn−1 overM such that

∑
M
pn−1(M)M = xn−1.

Select a random arm M(n) with distribution pn−1 and observe the feedback.
Compute the estimate reward vector X̃(n).
Find wn such that ∇F (wn) = ∇F (xn−1)− ηX̃(n).
Project wn onto conv(M):

xn = arg min
x∈conv(M)

DF (x,wn).

end for

with estimated loss vector in the dual space. Then it projects back the updated
vector onto the primal space.

Audibert et al. [21] originally proposed OSMD for loss minimization under semi-
bandit feedback. They showed that under a suitable choice of Legendre function
F , OSMD achieves a regret O(

√
mdT ) which is minimax optimal.

6.3 The CombEXP Algorithm

In this section we propose the CombEXP algorithm, which is inspired by OSMD de-
scribed in the previous section (see Algorithm 6.1). In order to have better under-
standing of the various steps of the algorithm, we start with the following observa-
tion:

max
M∈M

XM = max
M∈M

M>X

= max
p(M)≥0,

∑
M∈M

p(M)=1

∑
M∈M

p(M)M>X

= max
µ∈conv(M)

µ>X.

We can embedM in the simplex of distributions in Rd by multiplying all the entries
by 1/m. Let P be this scaled version of conv(M).

We propose the CombEXP algorithm as an OSMD type algorithm where the corre-
sponding Legendre function is negative entropy, i.e. F (x) =

∑d
i=1 xi log(xi), and

thus the corresponding Bregman divergence is the KL-divergence. As a result, the
projection step in OSMD reduces to projection using the KL-divergence: By defini-
tion, the projection of a distribution q onto a closed convex set Ξ of distributions
is

p? = arg min
p∈Ξ

KL(p, q),
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Algorithm 6.2 CombEXP

Initialization: Set q0 = µ0, γ =
√

m logµ−1
min√

m logµ−1
min+
√
C(Cm2d+m)T

and η = γC, with

C = λ

m3/2 .

for n ≥ 1 do
Mixing: Let q′n−1 = (1− γ)qn−1 + γµ0.
Decomposition: Select a distribution pn−1 over M such that

∑
M
pn−1(M)M =

mq′n−1.
Sampling: Select a random arm M(n) with distribution pn−1 and incur a reward

Yn =
∑

i
Xi(n)Mi(n).

Estimation: Let Σn−1 = E
[
MM>

]
, where M has law pn−1. Set X̃(n) =

YnΣ+
n−1M(n), where Σ+

n−1 is the pseudo-inverse of Σn−1.

Update: Set q̃n(i) ∝ qn−1(i) exp(ηX̃i(n)), ∀i ∈ [d].
Projection: Set qn to be the projection of q̃n onto the set P using the KL-divergence:

qn = argmin
p∈P

KL(p, q̃n).

end for

where the uniqueness of the minimizer follows from strict convexity of z 7→ KL(z, q).
For a thorough description of projection using the KL-divergence we refer to [96,
Chapter 3].

The pseudo-code of CombEXP is shown in Algorithm 6.2. At each round n, the
projected vector qn−1 of the previous round is mixed with the exploration-inducing
distribution µ0 ∈ P defined as:

µ0
i = 1

m|M|
∑
M∈M

Mi, ∀i ∈ [d].

We remark that qn−1 ∈ P since it is the projection of some vector onto P using
the KL-divergence. As a result, q′n−1 ∈ P. The mixed distribution q′n−1 is then
decomposed to some probability distribution pn−1 over the set of arms M. Of
course, the linear equation system in the decomposition step is always consistent
since q′n−1 ∈ P implies mq′n−1 ∈ conv(M) and hence, there must exist a probability
vector κ such that mq′n−1 =

∑
M κ(M)M . Clearly µ0 defines a distribution over

basic actions [d] that induces uniform distribution overM. Therefore, CombEXP uses
uniform sampling for exploration. After playing a randomly generated arm M(n)
with law pn−1, CombEXP constructs the reward estimate vector X̃(n) and updates
the probability vector qn−1. The resulting vector q̃n does not necessarily belong to
P, and hence it is projected onto P using the KL-divergence. For more details on
the implementation of the various steps, we refer to Section 6.3.2.
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Let λ be the smallest nonzero eigenvalue of E[MM>], whereM is uniformly dis-
tributed overM. Moreover, let µmin = minimµ0

i . The following theorem provides
a regret upper bound for CombEXP.

Theorem 6.1. For all T ≥ 1, we have:

RCombEXP(T ) ≤ 2

√
m3T

(
d+ m1/2

λ

)
logµ−1

min + m5/2

λ
logµ−1

min.

As will be discussed in the next subsection, for most classes of M, we have
µ−1

min = O(poly(d/m)). Furthermore, m(dλ)−1 = O(1) holds for most classes ofM
[79]. For these classes, CombEXP has a regret of O(

√
m3dT log(d/m)), which is a

factor
√
m log(d/m) off the minimax lower bound (see Table 6.1).

6.3.1 Examples
In this subsection, we compare the performance of CombEXP against state-of-the-art
algorithms (refer to Table 6.1 for the summary of regret of various algorithms).

Fixed-size subsets. In this case,M is the set of all d-dimensional binary vectors
with m ones. We have

µmin = min
i

1(
d
m

) ∑
M

Mi =
(
d−1
m−1

)(
d
m

) = m

d
.

Moreover, according to [79, Proposition 12], we have λ = m(d−m)
d(d−1) . When d ≥

2m, the regret of CombEXP becomes O(
√
m3dT log(d/m)), namely it has the same

performance as ComBand and EXP2-John.

Matching. LetM be the set of perfect matchings inKm,m, where we have d = m2

and |M| = m!. We have

µmin = min
i

1
m!
∑
M

Mi = (m− 1)!
m! = 1

m
,

Furthermore, from [79, Proposition 4] we have that λ = 1
m−1 , thus givingR

CombEXP(T ) =
O(
√
m5T log(m)), which is the same as the regret of ComBand and EXP2-John in

this case.

Spanning trees. In our next example, we assume thatM is the set of spanning
trees in the complete graph KN . In this case, we have d =

(
N
2
)
, m = N − 1, and

by Cayley’s formulaM has NN−2 elements. Observe that

µmin = min
i

1
NN−2

∑
M

Mi = (N − 1)N−3

NN−2 ,
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which gives for N ≥ 2

logµ−1
min = log

(
NN−2

(N − 1)N−3

)
= (N − 3) log

(
N

N − 1

)
+ logN

≤ (N − 3) log 2 + log(N) ≤ 2N.

From [79, Corollary 7], we also get λ ≥ 1
N −

17
4N2 . For N ≥ 6, the regret of

ComBand takes the form O(
√
N5T log(N)) since m

dλ < 7 when N ≥ 6. Further,
EXP2-John attains the same regret. On the other hand, we get

RCombEXP(T ) = O(
√
N5T log(N)), N ≥ 6,

namely, CombEXP gives the same regret as ComBand and EXP2-John.

Cut sets. Consider the case whereM is the set of balanced cuts of the complete
graph K2N , where a balanced cut is defined as the set of edges between a set of
N vertices and its complement. It is easy to verify that d =

(2N
2
)
and m = N2.

Moreover,M has
(2N
N

)
balanced cuts and hence

µmin = min
i

1(2N
N

) ∑
M

Mi =
(2N−2
N−1

)(2N
N

) = N

4N − 2 ,

Moreover, by [79, Proposition 9], we have

λ = 1
4 + 8N − 7

4(2N − 1)(2N − 3) , N ≥ 2,

and consequently, the regret of CombEXP becomes O(N4
√
T ) for N ≥ 2, which is

the same as that of ComBand and EXP2-John.

6.3.2 Implementation

We propose to perform the projection step, namely to find the KL projection of q̃
onto P, using interior-point methods [97]3. We also remark that the Decomposition
step can be efficiently implemented using the algorithm of [98].

It might not be possible to exactly compute the projection step of CombEXP in a
finite number of operations. Thus, in round n, this step can be solved up to some
accuracy εn; namely we find qn such that KL(qn, q̃n) ≤ KL(un, q̃n) + εn, where
un = arg minp∈Ξ KL(p, q̃n). Proposition 6.1 shows that for εn = O(n−2 log−3(n)),
the upper bound of the regret will have the same order as if projection was computed
exactly (i.e., εn = 0).

3For a simpler algorithm, we refer to [50]
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Proposition 6.1. Assume that the projection step of CombEXP is solved up to
accuracy εn = O(n−2 log−3(n)) for all n ≥ 1. Then

RCombEXP(T ) ≤ 2

√
2m3T

(
d+ m1/2

λ

)
logµ−1

min + 2m5/2

λ
logµ−1

min.

Theorem 6.2 provides the computational complexity of the CombEXP algorithm
under this choice of accuracy. In particular, it asserts that when conv(M) is de-
scribed by polynomially (in d) many linear equalities/inequalities, CombEXP is effi-
ciently implementable and its running time scales (almost) linearly in T .

Theorem 6.2. Let c (resp. s) be the number of linear equalities (resp. inequalities)
that defines the convex hull ofM. Then, if the projection step of CombEXP is solved
up to accuracy εn = O(n−2 log−3(n)), for all n ≥ 1, CombEXP with time horizon T
has time complexity O(T [

√
s(c+ d)3 log(T ) + d4]).

Proposition 6.1 and Theorem 6.2 easily extend to other OSMD-type algorithms
and thus might be of independent interest.

Remark 6.1. We remark that the time complexity of CombEXP can be reduced
by exploiting the structure of M (see [97, page 545]). In particular, if inequal-
ity constraints describing conv(M) are box constraints, the time complexity of
CombEXP can be improved to O(T [c2

√
s(c+ d) log(T ) + d4]).

Theorem 6.2 signifies that the computational complexity of CombEXP is deter-
mined by the representation of convex hull ofM. In contrast, that of ComBand de-
pends on the complexity of procedures to sample fromM. In turn, ComBand might
have a time complexity that is super-linear in T (we refer to [99, page 217] for
a related discussion). On the other hand, our algorithm is guaranteed to have
O(T log(T )) time complexity (thanks to the efficiency of the interior-point method).
The time complexity of CombEXP is examined next through two examples.

Matching. When M is the set of matchings in Km,m, conv(M) is the convex
hull of all m×m permutation matrices:

conv(M) =
{
Z ∈ Rm×m+ :

m∑
k=1

zik = 1, ∀i ∈ [m],
m∑
k=1

zkj = 1, ∀j ∈ [m]
}
.

This set is referred to as the Birkhoff polytope and indeed is the set of all doubly
stochastic m × m matrices4 [100], since every doubly stochastic matrix living
in Rm×m can be expressed as the convex combination of at most m2 − 2m + 2
permutation matrices. This result is known as Birkhoff-von Neumann Theorem.

4This polytope has also been given other names such as the assignment polytope, the perfect
matching polytope of Km,m, and the polytope of doubly-stochastic matrices [100, page 20].
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In this case, there are c = 2m linear equalities and s = m2 linear inequalities
in the form of box constraints. Using Algorithm 1 in [84], the cost of decomposi-
tion in this case is O(m4). Hence the total time complexity of CombEXP becomes:
O(m5T log(T )) on the account of Remark 6.1. On the other hand, ComBand has a
time complexity of O(m10F (T )) after T rounds for some super-linear function F ,
as it requires to approximate a permanent, requiring O(m10) operations per round.
Thus, CombEXP exhibits much lower computational complexity than ComBand while
achieving the same regret.

Spanning trees. Consider a connected graph G = (V,E) and letM be the set of
all spanning trees in G. The convex hull ofM becomes the spanning tree polytope
[23, Corollary 50.7c], that is

conv(M) =

z ∈ R|E|+ :
∑

i∈E(U)

zi ≤ |U | − 1, ∀U ⊂ V,
∑
i∈E

zi = |V | − 1

 ,

where for any U ⊂ V , E(U) denotes the set of edges whose both endpoints are
in U . This description is indeed a consequence of base polytope description of
matroids due to Edmonds [62], since spanning trees of graph G are bases of the
graphic matroid associated to G. There is only one linear equality (c = 1), but the
number of linear inequalities s grows exponentially with |E|. In particular, when
G = KN , we have NN−2 spanning trees on the account of Cayley’s formula, and
hence s = NN−2 + N(N − 1)/2. Hence, CombEXP does not have polynomial time
complexity in this case. On the other hand, ComBand needs to sample a spanning
tree fromM in each round. Hence, it is not efficient for this case either since there
is no polynomial time sampling scheme for this task.

6.4 Summary

In this chapter we investigated adversarial combinatorial MAB problems under
bandit feedback. We considered oblivious adversary and assumed that all arms have
the same number of basic actions. We presented CombEXP, an OSMD-type algorithm,
and provided its regret analysis and computational complexity. We have shown that
CombEXP achieves a regret that has the same scaling as state-of-the-art algorithms.
Yet it admits lower computational complexity for some problems of interests.

6.A Proof of Theorem 6.1

Proof. We first prove a simple result:

Lemma 6.1. For all x ∈ Rd, we have Σ+
n−1Σn−1x = x, where x is the orthogonal

projection of x onto span(M), the linear space spanned byM.
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Proof. Note that for all y ∈ Rd, if Σn−1y = 0, then we have

y>Σn−1y = E
[
y>MM>y

]
= E

[
(y>M)2] = 0, (6.1)

where M has law pn−1 such that
∑
M Mipn−1(M) = q′n−1(i), ∀i ∈ [d] and q′n−1 =

(1 − γ)qn−1 + γµ0. By definition of µ0, each M ∈ M has a positive probability.
Hence, by (6.1), y>M = 0 for all M ∈ M. In particular, we see that the linear
application Σn−1 restricted to span(M) is invertible and is zero on span(M)⊥,
hence we have Σ+

n−1Σn−1x = x.

Lemma 6.2. We have for any η ≤ γλ

m3/2 and any q ∈ P,

T∑
n=1

q>X̃(n)−
T∑
n=1

q>n−1X̃(n) ≤ η

2

T∑
n=1

q>n−1X̃
2(n) + KL(q, q0)

η
,

where X̃2(n) is the vector that is the coordinate-wise square of X̃(n).

Proof. We have

KL(q, q̃n)−KL(q, qn−1) =
∑
i∈[d]

q(i) log qn−1(i)
q̃n(i) = −η

∑
i∈[d]

q(i)X̃i(n) + logZn,

with

logZn = log
∑
i∈[d]

qn−1(i) exp
(
ηX̃i(n)

)
≤ log

∑
i∈[d]

qn−1(i)
(
1 + ηX̃i(n) + η2X̃2

i (n)
)

(6.2)

≤ ηq>n−1X̃(n) + η2q>n−1X̃
2(n), (6.3)

where we used exp(z) ≤ 1 + z + z2 for all |z| ≤ 1 in (6.2) and log(1 + z) ≤ z for all
z > −1 in (6.3). Later we verify the condition for the former inequality.

Hence we have

KL(q, q̃n)−KL(q, qn−1) ≤ ηq>n−1X̃(n)− ηq>X̃(n) + η2q>n−1X̃
2(n).

Generalized Pythagorean inequality (see Theorem 3.1 in [96]) gives

KL(q, qn) + KL(qn, q̃n) ≤ KL(q, q̃n).

Since KL(qn, q̃n) ≥ 0, we get

KL(q, qn)−KL(q, qn−1) ≤ ηq>n−1X̃(n)− ηq>X̃(n) + η2q>n−1X̃
2(n).
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Finally, summing over n gives

T∑
n=1

(
q>X̃(n)− q>n−1X̃(n)

)
≤ η

T∑
n=1

q>n−1X̃
2(n) + KL(q, q0)

η
.

To satisfy the condition for the inequality (6.2), i.e., η|X̃i(n)| ≤ 1, ∀i ∈ [d], we
find the upper bound for maxi∈[d] |X̃i(n)| as follows:

max
i∈[d]
|X̃i(n)| ≤ ‖X̃(n)‖2

= ‖Σ+
n−1M(n)Yn‖2

≤ m‖Σ+
n−1M(n)‖2

≤ m
√
M(n)>Σ+

n−1Σ+
n−1M(n)

≤ m‖M(n)‖2
√
λmax

(
Σ+
n−1Σ+

n−1
)

= m3/2
√
λmax

(
Σ+
n−1Σ+

n−1
)

= m3/2 λmax
(
Σ+
n−1
)

= m3/2

λmin (Σn−1) ,

where λmax(A) and λmin(A) respectively denote the maximum and the minimum
nonzero eigenvalue of matrix A. Note that µ0 induces uniform distribution over
M. Thus by q′n−1 = (1 − γ)qn−1 + γµ0 we see that pn−1 is a mixture of uniform
distribution and the distribution induced by qn−1. Note that, we have:

λmin (Σn−1) = min
‖x‖2=1,x∈span(M)

x>Σn−1x.

Moreover, we have

x>Σn−1x = E
[
x>M(n)M(n)>x

]
= E

[
(M(n)>x)2] ≥ γE [(M>x)2] ,

where in the last inequality M has law µ0. By definition, we have for any x ∈
span(M) with ‖x‖2 = 1,

E
[
(M>x)2] ≥ λ,

so that in the end, we get λmin(Σn−1) ≥ γλ, and hence η|X̃i(n)| ≤ ηm3/2

γλ , ∀i ∈ [d].
Finally, we choose η ≤ γλ

m3/2 to satisfy the condition for the inequality we used in
(6.2).

We have

En
[
X̃(n)

]
= En

[
YnΣ+

n−1M(n)
]

= En
[
Σ+
n−1M(n)M(n)>X(n)

]
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= Σ+
n−1Σn−1X(n) = X(n),

where the last equality follows from Lemma 6.1 and X(n) is the orthogonal projec-
tion of X(n) onto span(M). In particular, for any mq′ ∈ conv(M), we have

En
[
mq′>X̃(n)

]
= mq′>X(n) = mq′>X(n).

Moreover, we have:

En
[
q>n−1X̃

2(n)
]

=
∑
i∈[d]

qn−1(i)En
[
X̃2
i (n)

]
=
∑
i∈[d]

q′n−1(i)− γµ0(i)
1− γ En

[
X̃2
i (n)

]
≤ 1
m(1− γ)

∑
i∈[d]

mq′n−1(i)En
[
X̃2
i (n)

]
= 1
m(1− γ)En

[∑
i∈[d]

M̃i(n)X̃2
i (n)

]
,

where M̃(n) is a random arm with the same law asM(n) and independent ofM(n).
Note that M̃2

i (n) = M̃i(n), so that we have

En
[∑
i∈[d]

M̃i(n)X̃2
i (n)

]
= En

[
X(n)>M(n)M(n)>Σ+

n−1M̃(n)M̃(n)>Σ+
n−1M(n)M(n)>X(n)

]
≤ m2En[M(n)>Σ+

n−1M(n)],

where we used the boundM(n)>X(n) ≤ m. By [79, Lemma 15], En[M(n)>Σ+
n−1M(n)] ≤

d, so that we have:
En
[
q>n−1X̃

2(n)
]
≤ md

1− γ .

Observe that

En
[
q?>X̃(n)− q′>n−1X̃(n)

]
= En

[
q?>X̃(n)− (1− γ)q>n−1X̃(n)− γµ0>X̃(n)

]
= En

[
q?>X̃(n)− q>n−1X̃(n)

]
+ γq>n−1X(n)− γµ0>X(n)

≤ En
[
q?>X̃(n)− q>n−1X̃(n)

]
+ γq>n−1X(n)

≤ En
[
q?>X̃(n)− q>n−1X̃(n)

]
+ γ.

Using Lemma 6.2 and the above bounds, we get with mq? the optimal arm, i.e.
q?(i) = 1

m iff M?
i = 1,

RCombEXP(T ) = E
[ T∑
n=1

mq?>X̃(n)−
T∑
n=1

mq′>n−1X̃(n)
]
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≤ E
[ T∑
n=1

mq?>X̃(n)−
T∑
n=1

mq>n−1X̃(n)
]

+mγT

≤ ηm2dT

1− γ + m logµ−1
min

η
+mγT,

since

KL(q?, q0) = − 1
m

∑
i∈M?

logmµ0
i ≤ logµ−1

min.

Choosing η = γC with C = λ

m3/2 gives

RCombEXP(T ) ≤ γCm2dT

1− γ + m logµ−1
min

γC
+mγT

= Cm2d+m−mγ
1− γ γT + m logµ−1

min
γC

≤ (Cm2d+m)γT
1− γ + m logµ−1

min
γC

.

The proof is completed by setting

γ =

√
m logµ−1

min√
m logµ−1

min +
√
C(Cm2d+m)T

.

6.B Proof of Proposition 6.1

Proof. Recall that un = arg minp∈P KL(p, q̃n) and that qn is an εn-optimal solution
for the projection step, that is

KL(un, q̃n) ≥ KL(qn, q̃n)− εn.

By Lemma B.1 and [96, Theorem 3.1], we have

KL(qn, q̃n)−KL(un, q̃n) ≥ (qn − un)>∇KL(un, q̃n) + 1
2‖qn − un‖

2
1

≥ 1
2‖qn − un‖

2
1,

where we used (qn−un)>∇KL(un, q̃n) ≥ 0, which is due to the first-order optimality
condition for un. Hence KL(qn, q̃n)−KL(un, q̃n) ≤ εn implies that

‖qn − un‖∞ ≤ ‖qn − un‖1 ≤
√

2εn.
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Consider q?, the distribution over P for the optimal arm, i.e. q?(i) = 1
m iff

M?
i = 1. Recall that from the proof of Lemma 6.2, for q = q? we have

KL(q?, q̃n)−KL(q?, qn−1) ≤ ηq>n−1X̃(n)− ηq?>X̃(n) + η2q>n−1X̃
2(n). (6.4)

Generalized Pythagorean Inequality (see [96, Theorem 3.1]) gives

KL(q?, q̃n) ≥ KL(q?, un) + KL(un, q̃n). (6.5)

Let q
n

= mini∈M? qn(i). Observe that

KL(q?, un) =
∑
i∈[d]

q?(i) log q?(i)
un(i)

= − 1
m

∑
i∈M?

logmun(i)

≥ − 1
m

∑
i∈M?

logm(qn(i) +
√

2εn)

≥ − 1
m

∑
i∈M?

logmqn(i)− 1
m

∑
i∈M?

log
(

1 +
√

2εn
q
n

)
≥ − 1

m

∑
i∈M?

logmqn(i)−
√

2εn
q
n

= KL(q?, qn)−
√

2εn
q
n

,

where we used log(1 + z) ≤ z for all z > −1 in the last inequality. Plugging this
into (6.5), we get

KL(q?, q̃n) ≥ KL(q?, qn)−
√

2εn
q
n

+ KL(un, q̃n) ≥ KL(q?, qn)−
√

2εn
q
n

.

Putting this together with (6.4) yields

KL(q?, qn)−KL(q?, qn−1) ≤ ηq>n−1X̃(n)− ηq?>X̃(n) + η2q>n−1X̃
2(n) +

√
2εn
q
n

.

Finally, summing over n gives
T∑
n=1

(
q?>X̃(n)− q>n−1X̃(n)

)
≤ η

T∑
n=1

q>n−1X̃
2(n) + KL(q?, q0)

η
+ 1
η

T∑
n=1

√
2εn
q
n

.

Defining

εn =

(
q
n

logµ−1
min

)2

32n2 log3(n+ 1)
, ∀n ≥ 1,
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and recalling that KL(q?, q0) ≤ logµ−1
min, we get

T∑
n=1

(
q?>X̃(n)− q>n−1X̃(n)

)
≤ η

T∑
n=1

q>n−1X̃
2(n) + logµ−1

min
η

+ logµ−1
min
η

T∑
n=1

√
2

32n2 log3(n+ 1)

≤ η
T∑
n=1

q>n−1X̃
2(n) + 2 logµ−1

min
η

,

where we used the fact
∑
n≥1 n

−1(log(n + 1))−3/2 ≤ 4. We remark that by the
properties of the KL-divergence and since q′n−1 ≥ γµ0 > 0, we have q

n
> 0 at every

round n, so that εn > 0 at every round n.
Using the above result and following the same lines as in the proof of Theorem

6.1, we have

RCombEXP(T ) ≤ ηm2dT

1− γ + 2m logµ−1
min

η
+mγT.

Choosing η = γC with C = λ

m3/2 gives

RCombEXP(T ) ≤ (Cm2d+m)γT
1− γ + 2m logµ−1

min
γC

.

The proof is completed by setting γ =
√

2m logµ−1
min√

2m logµ−1
min+
√
C(Cm2d+m)T

.

6.C Proof of Theorem 6.2

Proof. We calculate the time complexity of the various steps of CombEXP at round
n ≥ 1.

(i) Mixing: This step requires O(d) time.

(ii) Decomposition: Using the algorithm of [98], the vector mq′n−1 may be repre-
sented as a convex combination of at most d+ 1 arms in O(d4) time, so that
pn−1 may have at most d + 1 non-zero elements (observe that the existence
of such a representation follows from Carathéodory Theorem).

(iii) Sampling: This step takes O(d) time since pn−1 has at most d + 1 non-zero
elements.

(iv) Estimation: The construction of matrix Σn−1 is done in time O(d2) since
pn has at most d + 1 non-zero elements and MM> is formed in O(d) time.
Computing the pseudo-inverse of Σn−1 costs O(d3).
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(v) Update: This step requires O(d) time.

(vi) Projection: The projection step is equivalent to solving a convex program
up to accuracy εn = O(n−2 log−3(n)). We use the Interior-Point Method
(Barrier method). The total number of Newton iterations to achieve ac-
curacy εn is O(

√
s log(s/εn)) [97, Chapter 11]. Moreover, the cost of each

iteration is O((d + c)3) [97, Chapter 10], so that the total cost of this step
becomes O(

√
s(c + d)3 log(s/εn)). Plugging εn = O(n−2 log−3(n)) and not-

ing that O(
∑T
n=1 log(s/εn)) = O(T log(T )), the cost of this step is O(

√
s(c+

d)3T log(T )).

Hence the total time complexity after T rounds is O(T [
√
s(c+d)3 log(T ) +d4]),

which completes the proof.



Chapter 7

Conclusions and Future Work

In this chapter, we conclude this thesis by summarizing the main results and propos-
ing some directions for future research.

7.1 Conclusions

In Chapter 3, we investigated stochastic combinatorial MABs with Bernoulli re-
wards. Leveraging the theory of optimal control of Markov chains with unknown
transition probabilities, we derived tight and problem-specific lower bounds on the
regret under bandit and semi-bandit feedback. These bounds are unfortunately
implicit (more precisely, they are optimal values of semi-infinite linear programs).
In the case of semi-bandit feedback, we then investigated how this lower bound
scales with the dimension of M for some problems of interests. We proposed the
ESCB algorithm for the case of semi-bandit feedback and showed that its regret is
growing at most as O(

√
md∆−1

min log(T )). ESCB improves over the state-of-the-art
algorithms proposed for combinatorial MABs in the literature. ESCB is unfortu-
nately computationally expensive. To alleviate its computational complexity, we
proposed Epoch-ESCB, without providing any performance guarantee.

In Chapter 4, we focused on stochastic combinatorial MAB problems in which
the underlying combinatorial structure is a matroid. Specializing the lower bounds
of Chapter 3 to the case of matroids, we provided explicit regret lower bounds.
In particular, the lower bound for the case of semi-bandit feedback extends the
one proposed by Anantharam et al. [33] to the case of matroids. Moreover, for
semi-bandit feedback we proposed KL-OSM, an algorithm based on the KL-UCB in-
dex and the Greedy algorithm. Thus it has polynomial time complexity in the
independence oracle model. Through a finite-time regret analysis, we proved that
KL-OSM achieves a regret (asymptotically) growing as the proposed lower bound
and therefore, it is asymptotically optimal. To our best knowledge, this is the first
optimal algorithm for this class of combinatorial MABs. Numerical experiments
for some specific matroid problems validated that KL-OSM significantly outperforms
existing algorithms.
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In Chapter 5, we studied stochastic online shortest-path routing, which was
formulated as a stochastic combinatorial MAB problem with geometrically dis-
tributed rewards. Three types of routing policies were considered which include
source routing with bandit feedback, source routing with semi-bandit feedback,
and hop-by-hop routing. We presented regret lower bounds for each type of rout-
ing. Our derivations showed that the regret lower bounds for source routing policies
with semi-bandit feedback and that for hop-by-hop routing policies are identical,
indicating that taking routing decisions hop by hop does not bring any advantage.
On the contrary, the regret lower bounds for source routing policies with bandit and
semi-bandit feedback can be significantly different, illustrating the importance of
having semi-bandit feedback. In the case of semi-bandit feedback, we proposed two
source routing policies, namely GeoCombUCB-1 and GeoCombUCB-2, which attain a
regret scaling as O(

√
md∆−1

minθ
−3
min log(N)). Furthermore, we provided an improved

regret bound for KL-SR [30] which grows as O(md∆−1
minθ

−3
min log(N)). These rout-

ing policies strike an interesting trade-off between computational complexity and
performance, and exhibit better regret upper bounds than state-of-the-art algo-
rithms. Numerical experiments also validated that these three policies outperform
state-of-the-art algorithms.

Chapter 6 concerns adversarial combinatorial MAB problems in which all arms
consist of the same numberm of basic actions. The core contribution of that chapter
is CombEXP, which is an OSMD-based algorithm for the case of bandit feedback. For
most problems of interest, CombEXP has a regret ofO(

√
m3d log(d/m)T ). The regret

gap between CombEXP and the minimax lower bound Ω(m
√
dT ) [21] scales at most

as m1/2 up to a logarithmic factor. This is the same regret scaling of state-of-the-
art algorithms for these problems. We presented an analysis of the computational
complexity of CombEXP, which can be extended to other OSMD-based algorithms,
and hence might be of independent interests. In particular, we established that
CombEXP admits lower computational complexity than state-of-the-art algorithms
for some problems of interest.

7.2 Future Work

There are several directions to extend the work carried out in this thesis. Some of
them are outlined next.

Analysis of Thompson Sampling for combinatorial MAB problems. One
intriguing direction for future research is to analyze the performance of Thompson
Sampling for the stochastic combinatorial MAB problems considered. Despite its
popularity in the MAB literature, Thompson Sampling is seldom studied for com-
binatorial problems except for the recent work of Komiyama et al. [51], which
concerns the very simple setting of fixed-size subsets. Regret analysis of Thompson
Sampling for generic combinatorial structures proves quite challenging. Nonethe-
less, it is a promising direction since (i) if the offline problem is polynomial time
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solvable, efficient implementation for Thompson Sampling might exist (because arm
selection can be cast as the same linear combinatorial problem as the offline prob-
lem), (ii) in empirical evaluations Thompson Sampling exhibits superior perfor-
mance than existing algorithms.

Reducing the gap in the regret analysis of ESCB-1. The current regret anal-
ysis of ESCB-1 in Chapter 3 does not seem to be tight. Our simulation experiments
in Chapter 3 suggested that the asymptotic performance of ESCB-1 is close to the
lower bound. Hence, we conjecture that through a more elegant regret analysis,
one may be able to establish an optimal regret order of O((d−m)∆−1

min log(T )) for
ESCB-1.

Nonlinear reward functions. In this thesis we only concentrated on combina-
torial problems with linear objective functions. Nonetheless, a lot of interesting
applications may be cast as combinatorial MABs whose average reward function
is nonlinear. An interesting direction to continue this work is to devise algorithms
for these cases. A particular case of interest is submodular reward functions under
matroid constraints. Numerous applications of combinatorial problems indeed fall
within this framework, e.g., bidding in ad exchange [66], product search [67], leader
selection in leader-follower multi-agent systems [70], coverage problem, influence
maximization [101]. We remark that there is an scarcity of results for stochastic
MAB problems with submodular reward functions in the stochastic setting, though
these problems have received more attention in the adversarial setting [102, 66].

Stochastic combinatorial MABs under full-bandit feedback. Stochastic
combinatorial MABs under bandit feedback have seldom been studied, though the
problem is very well investigated in the adversarial setting. Nonetheless, the ne-
cessity of corresponding policies is evident as bandit feedback makes more sense in
many applications of interest. A notable instance is shortest-path routing, where in
most scenarios, the decision maker has access to the end-to-end (bandit) feedback
rather than per-link (semi-bandit) feedback. In this work, our results for bandit
feedback mainly centered on derivation of regret lower bounds. An interesting di-
rection is to devise algorithms that will work with bandit feedback and analyze
their performance. This task could be much more complicated than the case of
semi-bandit feedback. However, we conjecture that devising such an algorithm for
the case of matroids might be relatively straightforward due to the unimodality of
these structures.

Projection-free algorithms for adversarial combinatorial MABs. The op-
timal algorithm for adversarial combinatorial MABs under semi-bandit feedback is
OSMD [21], which relies on projection with Bregman divergences (see Chapter 6 for
details). Such projections suffer from two drawbacks: Firstly, as our analysis in
Chapter 6 shows, the computational complexity of projection is determined by the
representation of conv(M), i.e., the convex hull of the set of arms. There exist
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concrete examples of M where the number of inequalities representing conv(M)
(and hence, the per round time complexity) is not polynomial in d, yet the cor-
responding offline problem is polynomial time solvable. One such examples of M
is spanning trees (see Chapter 6 for a related discussion). Secondly, projections
often introduce precision issues which in turn make the cumulative computational
complexity (namely, after T rounds) increase super-linearly with T . An intriguing
research direction is to devise an algorithm which is not relying on projection while
it achieves the optimal regret of

√
mdT [21]. We remark that under semi-bandit

feedback and when the offline problem is efficiently solvable, an efficient algorithm
called FPL-GR already appears in [87] whose expected time complexity grows lin-
early with T . However, its worst case time complexity might grows super-linearly
with T and its regret is worse than the lower bound of

√
mdT by a factor

√
m log(d).

We remark that only for the very simple case of fixed-size subsets, an algorithm
with optimal regret and linear (in T ) cumulative time complexity has been provided
[86].

For the case of bandit feedback, state-of-the-algorithms suffer from both afore-
mentioned drawbacks. For example, whenM is the set of spanning trees, neither
CombEXP nor ComBand admit polynomial time complexity. We note that for learning
permutations, Ailon et al. [99] present an algorithm, whose regret is worse than
state-of-the-art by factor of

√
m, yet has a time complexity growing linearly with

T .

Shortest-path routing policies with smaller regret. In Chapter 5, it was
shown that the dependence of the proposed algorithms on θmin and m may not be
tight. In particular, we conjecture that the optimal regret upper bound should grow
at most as O((d−m)∆−1

minθ
−1
min log(N)). As a future direction, we wish to propose

an index policy whose regret upper bound is growing proportional to θ−1
min log(N)

(rather than θ−3
min log(N)). A possible approach to this end could be to employ the

following index, defined similarly to the index cM in Chapter 5:

c′M (n) = M>θ̂(n)−1 −
√
f1(n)

2
∑
i∈M

1
θ̂i(n)si(n)

.

Numerical experiments, however, have shown that the resulting policy would not
exhibit elegant behavior for short packet horizons in all scenarios. Indeed, for some
link parameters, this new policy beats our source routing policies only when N
grows very large. As a future research direction, we would like to remedy this
issue by designing smarter routing policies, which may use warm start phases to
circumvent the aforementioned problem.



Appendix A

Concentration Inequalities

This appendix is devoted to the overview of some important concentration inequal-
ities used in various chapters of this thesis.

Theorem A.1 (Chernoff-Hoeffding Bound). Let X1, . . . , Xn be 0-1 independent
random variables with E[Xi] = pi. Let Y = 1

n

∑n
t=1Xt and µ = E[Y ] = 1

n

∑n
t=1 pi.

Then for all 0 < λ < 1− µ,

P[X ≥ µ+ λ] ≤ e−nkl(µ+λ,µ),

and for all 0 < λ < µ,

P[X ≤ µ− λ] ≤ e−nkl(µ−λ,µ).

Theorem A.2 (Chernoff-Hoeffding Bound). Let X1, . . . , Xn be random variables
with common ranges [0, 1] and such that E[Xt|X1 . . . , Xt−1] = µ. Let Sn =

∑n
t=1Xt.

Then for all a ≥ 0:

P[Sn ≥ nµ+ a] ≤ e−2a2/n,

P[Sn ≤ nµ− a] ≤ e−2a2/n.

The following result from [39] gives the concentration for self-normalized form
of bounded random variables.

Theorem A.3 ([39, Theorem 10]). Let (Xt)t≥1 be a sequence of independent ran-
dom variables bounded in [0, 1] defined on a probability space (Ω,F ,P) with com-
mon expectation µ = E[Xt]. Let Ft be an increasing sequence of σ-fields of F such
that for each t, σ(X1, . . . , Xt) ⊂ Ft and for s > t, Xs is independent from Ft.
Consider a previsible sequence (εt)t≥1 of Bernoulli variables (for all t > 0, εt is
Ft−1-measurable). Let δ > 0 and for every t ∈ [n] let

S(t) =
t∑

s=1
εsXs, N(t) =

t∑
s=1

εs, µ̂(t) = S(t)
N(t) ,
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u(n) = max{q > µ̂(n) : N(n)kl(µ̂(n), q) ≤ δ}.

Then

P[u(n) < µ] ≤ dδ log(n)ee−(δ+1).

The following theorem is a generalization of Theorem A.3 and gives a concen-
tration inequality on sums of empirical KL-divergences.

Theorem A.4 ([60, Theorem 2]). For all δ ≥ K + 1 and n ∈ N we have:

P[
K∑
i=1

Ni(n)kl(µ̂i(n), µi) ≥ δ] ≤
(
dδ log(n)eδ

K

)K
e−δ(K+1).

In particular, the following corollary proves instrumental in the regret analysis
of various algorithms for stochastic combinatorial MABs.

Corollary A.1. There exists a constant CK that only depends on K, such that for
all n ≥ 2 we have:

P[
K∑
i=1

Ni(n)kl(µ̂i(n), µi) ≥ log(n) + 4K log(log(n))] ≤ CKn−1(log(n))−2.

The following lemma proves useful in the proof of various regret bounds through-
out the thesis. It asserts that if a set of instants Λ can be decomposed into a family
of singletons such that the arm i is drawn sufficiently many times, then the number
of times in Λ (in expectations) at which the empirical average reward of i is badly
estimated is finite.

Lemma A.1 ([103, Theorem B.1]). Let i ∈ {1, . . . ,K} and δ > 0. Define Fn
the σ-algebra generated by (Xi(t))1≤t≤n,1≤i≤K . Let Λ ⊂ N be a (random) set of
instants. Assume that there exists a sequence of (random) sets (Λ(s))s≥1 such that
(i) Λ ⊂ ∪s≥1Λ(s), (ii) for all s ≥ 1 and all n ∈ Λ(s), Ni(n) ≥ εs, (iii) |Λ(s)| ≤ 1,
and (iv) the event n ∈ Λ(s) is Fn-measurable. Then, for all δ > 0:

E[
∑
n≥1

1{n ∈ Λ, |µ̂i(n)− µi| ≥ δ}] ≤
1
εδ2 .

The proof of the above lemma leverages a concentration inequality proposed in
[103]. A consequence of the above lemma is the following corollary which states that
the expected number of times at which basic action i is sampled and the empirical
average reward of i exceeds the true mean reward of i by some threshold is finite.
Note that this result holds irrespective of how arm i is chosen. To present the
corollary we let An be the event of sampling basic action i ∈ {1, . . . ,K} at round
n.
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Corollary A.2. For all i ∈ {1, . . . ,K} and all δ > 0:

E[
∑
n≥1

1{An, |µ̂i(n)− µi| ≥ δ}] ≤
1
δ2 .

Proof. Let Λ = {n : 1{An} = 1}. Observe that for each s ∈ N, there exists at most
one time index φs ∈ N such that Ni(φs) = s and φs ∈ Λ, since Ni(n) = Ni(n−1)+1
for all n ∈ Λ. The set Λ is included in ∪s≥1{φs}. The announced result is then a
direct consequence of Lemma A.1 with ε = 1.

We note that a slightly worse bound can be obtained from [43, Lemma 3].





Appendix B

Properties of the KL-Divergence

In this appendix we briefly overview some of the properties of the Kullback-Leibler
divergence (henceforth, the KL-divergence), which prove instrumental throughout
this thesis. The KL-divergence, originally introduced by Kullback and Leibler in
[104], defines a distance measure between two distributions. It has been given
other names such as KL information number, relative entropy, and information
divergence. The KL-divergence is a special case of a larger class of functions referred
to as f -divergence; see e.g. [96] for a through treatment.

The results presented here can be found in, e.g., [105] and [96].

B.1 Definition

Let F and G be two distributions on the same set X with G � F , i.e., G is
absolutely continuous with respect to F . Then, the KL-divergence between F and
G is defined as

KL(F,G) = EF
[
log F (dx)

G(dx)

]
=
∫
X

log F (dx)
G(dx)F (dx),

where F (dx)/G(dx) denotes the Radon-Nikodym derivative of F with respect to
G. KL(F,G) may be derived using densities as well: Let m(dx) be an appropriate
measure. Then,

KL(F,G) =
∫
X

log f(x)
g(x) f(x)m(dx).

We remark that the above expression does not depend on the choice of m(dx).
It is also noted that if G is not absolutely continuous with respect to F , then
KL(F,G) =∞.

In the discrete case, namely when F and G are probability vectors, the above
definition reads

KL(F,G) =
∑
i

Fi log Fi
Gi
,
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with the usual convention where p log p
q is defined to be 0 if p = 0 and +∞ if

p > q = 0. Here we mainly concern the KL-divergence between two discrete
distributions.

B.2 Properties

B.2.1 Non-negativity

The KL-divergence is always non-negative: KL(F,G) ≥ 0 with equality if F (x) =
G(x),∀x ∈ X . Furthermore, the KL-divergence between two probability vectors F
and G is lower bounded as follows:

KL(F,G) ≥ 1
2‖F −G‖

2
1.

This inequality is known as Pinsker’s inequality.

B.2.2 Convexity

The KL-divergence KL(F,G) is convex in both arguments. The following result
states strong convexity of the KL-divergence in the first argument.

Lemma B.1. Let q ∈ Rd++ be a probability vector. Then, the KL-divergence z 7→
KL(z, q) is 1-strongly convex with respect to the ‖ · ‖1 norm.

Proof. To prove the lemma, it suffices to show that for all d-dimensional probability
vectors x, y:

(∇KL(x, q)−∇KL(y, q))>(x− y) ≥ ‖x− y‖21.

We have

(∇KL(x, q)−∇KL(y, q))>(x− y) =
∑
i∈[d]

(
1 + log xi

qi
− 1− log yi

qi

)
(xi − yi)

=
∑
i∈[d]

(1 + log xi − 1− log yi)(xi − yi)

=
(
∇
∑
i∈[d]

xi log xi −∇
∑
i∈[d]

yi log yi
)>

(x− y)

≥ ‖x− y‖21,

where the last inequality follows from strong convexity of the negative entropy
function z 7→

∑
i∈[d] zi log zi with respect to the ‖ · ‖1 norm [106, Proposition 5.1].
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We recall from Chapter 6 that the KL-divergence is a specific case of Breg-
man divergence defined for the negative entropy function. More precisely, for two
probability vectors F,G ∈ Rd++:

KL(F,G) = h(F )− h(G)− (F −G)>∇h(G)

with h(x) =
∑
i xi log xi.

We now state a useful inequality, known as Generalized Pythagorean Inequality,
which is valid for any Bregman divergence. Consider y ∈ Rd and let F ? be the
projection of y onto a convex set Ξ ⊂ Rd using the KL-divergence, i.e.

F ? = argmin
F∈Ξ

KL(F, y).

Then, Generalized Pythagorean Inequality [107] (see also [96, Theorem 3.1]) states
that for all x ∈ Ξ:

KL(x, F ?) + KL(F ?, y) ≤ KL(x, y).

In particular, when Ξ is an affine set, the above inequality holds with equality.

B.2.3 Chain Rule

The next result, referred to as the chain rule for the KL-divergence, may prove
useful when working with the KL-divergence of joint probability distributions.

Theorem B.1 (Chain Rule). For two random variables x, y ∈ X we have:

KL(F (x, y), G(x, y)) = KL(F (x), G(x)) + KL(F (y|x), G(y|x)),

where KL(F (y|x), G(y|x)) = Ex[log(F (y|x)/G(y|x))].

A consequence of this result is that the KL-divergence is additive for independent
random variables.

B.3 The KL-Divergence between Two Bernoulli
Distributions

The KL-divergence between two Bernoulli distributions with respective parameters
p and q, denoted by kl(p, q), is:

kl(p, q) = p log p
q

+ (1− p) log 1− p
1− q .

The function kl is sometimes referred to as the binary relative entropy. The follow-
ing lemma provides bounds for the KL-divergence of Bernoulli distributions.
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Lemma B.2. For any p, q ∈ [0, 1], it holds that

2(p− q)2 ≤ kl(p, q) ≤ (p− q)2

q(1− q) .

We note that the lower bound in this lemma is a consequence of Pinsker’s
inequality.

Next, we present some properties of the function kl(p, q). For all p ∈ [0, 1]:

(i) q 7→ kl(p, q) is strictly convex on [0, 1] and attains its minimum at p, with
kl(p, p) = 0.

(ii) Its derivative with respect to the second parameter q 7→ kl′(p, q) = q−p
q(1−q) is

strictly increasing on (p, 1).

(iii) For p < 1, we have kl(p, q) →
q→1−

∞ and kl′(p, q) →
q→1−

∞.

The following lemma relates the KL-divergence between two geometric distri-
butions to that of corresponding Bernoulli distributions.

Lemma B.3. For any u, v ∈ (0, 1], we have:

KLG(u, v) = kl(u, v)
u

.

Proof. We have:

KLG(u, v) =
∞∑
i=1

u(1− u)i−1 log u(1− u)i−1

v(1− v)i−1

=
∞∑
i=1

u(1− u)i−1 log u
v

+
∞∑
i=1

(i− 1)u(1− u)i−1 log 1− u
1− v

= log u
v

+ 1− u
u

log 1− u
1− v = kl(u, v)

u
.
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