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Populärvetenskaplig

sammanfattning

En stor utmaning i biologisk forskning idag är att bestämma vilken effekt olika

mutationer har p̊a proteinbinding. Vissa mutationer p̊a viktiga proteiner som

m̊aste fungera för v̊art välm̊aende kan resultera i allvarliga konsekvenser, i värsta

fall medfödda eller uppkomna genetiska defekter som begränsar möjligheter till

ett normalt liv. Att bättre kunna förutse vilken effekt mutationer har p̊a pro-

teinbindning kan till exempel ge oss möjlighet att förutse vilka konsekvenser en

mutation kan ha p̊a olika hälsotillst̊and och bidra med möjligheten att snabbare

hitta lämpliga medicinska behandlingar.

I den här rapporten studeras ett modellsystem för proteinbindning, nämligen

tv̊a typer av protein som finns i bakterier och deltar i intracellulär signallering.

Vi använder oss av tv̊a olika metoder för att förutse vilka mutationer som har

en destruktiv effekt p̊a signalleringsfunktionen.

Den första metoden best̊ar i att genomföra virtuella mutationer med hjälp

av datormjukvara p̊a ett protein och sedan hitta en sannolik biologisk konforma-

tion genom att flexiblilisera omr̊adet kring mutationerna och minimera den fria

energin. Flexibiliseringen undviker stora energiförändringar som uppkommer

när mutationerna genomförs.

Den andra metoden baseras p̊a massiva mängder av proteinsekvensinforma-

tion fr̊an olika bakterier. Genom att räkna antal aminosyror som förekommer

i olika positioner i alla sekvenser kan vi bestämma statistiska modeller för vad

som händer när en aminosyra muteras till en annan, och till och med när flera

aminosyror blivit muterade samtidigt. Anledningen till att det är viktigt att

mutera flera aminosyror samtidigt är att tv̊a mutationer tillsammans sällan ger

upphov till den förväntade summan av de enskilda mutationerna.

Slutsatserna fr̊an studien är att:

• Bindningsenergi mellan proteiner är en bestämmande faktor för bevarad

funktionalitet efter mutation hos det studerade proteinsystemet



• Metoderna kan klassificera vissa av mutationerna som har neutral (icke-

destruktiv) effekt

• Den strukturbaserade metoden har bättre möjlighet att urskilja muta-

tioner som är mer olika, medan den sekvensbaserade metoden i hög grad

är begränsad till att förutse effekten av vissa typer av mutationer.

• Den sekvensbaserade metoden har bättre förm̊aga att prediktera en neu-

tral (icke-destruktiv) effekt av mutationerna p̊a förm̊agan att överföra fos-

fatgrupper
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Chapter 1

Introduction

The use of computational methods has become a great aid in the understanding

of processes and mechanisms in structural biology and have become an integral

part of the research environment. Statistical models requiring large amounts

of data for sufficient predictive power and simulations too computationally ex-

pensive to handle 10 years ago are routinely being used to improve the un-

derstanding of observations in widely different fields ranging from evolutionary

processes to mechanisms of action in enzymatic reactions. The advances have

contributed to understanding of systems now very obvious to be critical to var-

ious disease states, typical examples being the understanding of how G-protein

coupled receptors, tyrosine kinases and neuronal ion channels are involved in

various forms of cancer and neurodegenerative diseases. In addition, the ad-

vances have allowed for a better understanding of how we can redesign proteins

in order to achieve specific outcomes, improving our understanding of principles

in protein engineering.

Protein engineering holds potential in a range of different applications in

industry and health, from improving efficiency and safety in the production

of consumer chemicals to design of therapies and fundamental understanding of

biological mechanisms. An improvement in the systematic generation of variants

can aid in achieving the specific goals in protein engineering quicker and more

cost-effectively.

Various types of computational methods are being specifically employed to

elucidate the effect of mutation on interactions between biomolecules. Here, we

focus on two different methods which both promises to do this, one sequence

based and one structure based. Sequence based methods focus on the analysis of

the biological sequences of biopolymers; DNA, RNA and protein, while structure

based methods, not surprisingly, take protein structure into account. This is

often performed using simulations in an attempt to capture dynamics which are

11



important to function. These structural simulations can demand accurate time-

integration algorithms and are often computationally very expensive. Together,

these sequence based and structure based methods can be used to approach

questions of functional importance with a massive temporal range, from rapid

movements of interfacial amino acids in the case of structural simulations to

evolutionary time for sequence methods.

This study focuses on characterizing a protein (PhoQ) with critical im-

portance to intracellular prokaryotic signalling using a combined sequence and

structure computational approach. This protein belongs to the Two-component

regulatory system in which the two components are a sensor and an effector

protein, between which a phosphotransfer reaction takes place. These proteins

are of specific interest in protein engineering due to the very general prospects

of redesigning intracellular pathways. Two proxies of the retained functionality

of this transfer reaction upon mutation are characterized in order to predict the

effect of mutation on the interface. Predicting the effect of mutation accurately

will serve as a first step in very general surface redesign in order to remodel

intracellular signalling pathways in prokaryotes in various ways, for example

in redesigning specificity, modulating transient binding strength or specifically

disrupting binding to one component while retaining binding to another in the

case of branched pathways.

1.1 Specific Aims

This study aims to predict which of 160 000 mutated variants (representing all

204 possible substitutions at 4 residue positions) of a certain histidine kinase,

PhoQ, remain functional in their ability to perform phosphotransfer to its Two-

component signalling partner PhoP. This is performed using a sequence-based

method, Direct Coupling Analysis (DCA) [1], and a structure-based method,

Zone Equilibration of Mutants (ZEMu) [2], which ultimately evaluates binding

affinity. Another related aim is to evaluate whether the methods have predictive

biases.
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1.2 Limitations of the study

The project is restricted to the evaluation of the ability to predict functionality

of variants of PhoQ in the PhoQ/PhoP phosphotransfer reaction as this system

has data available sufficient for the method validation. However, the results are

likely to be transferrable to other systems, as both ZEMu and DCA have been

validated for other purposes (eg. ∆∆G and structure prediction) on a variety

of protein complexes in prior published work [1–5].

1.3 Thesis structure

Chapter 2 Explains the biological two-component regulatory system which

was used and its biological significance. Explains the computational meth-

ods which were used and some background about their development and

use in other settings. Explains the generation of the dataset on which the

methods were applied.

Chapter 3 Describes the design of the computational methods as classifiers.

Describes the results of using the classifiers on the dataset.

Chapter 4 Outlines the impact of the work and suggests further improve-

ments to the method, areas of application, and current shortcomings of

the method.

13



Chapter 2

Background

2.1 Two-component Signalling system

While there are many examples of biological signalling systems, some are more

modular (in terms of component exchangeability) and reused than others. Sig-

nalling systems with exchangeable components provide ideal examples of sys-

tems which can be engineered and made fit to a wide range of purposes. The

Two-component regulatory system (TCS) is one of these widely used modular

signalling systems, commonly consisting of two components; a histidine kinase

(HK) which senses input of various in modality (ion concentration, pressure,

light, oxygen level), and a response regulator (RR) which transmits the signal

to some effector mechanism, commonly transcription of a gene. This section

will discuss some aspects of the TCS which are especially interesting in light of

this thesis, namely the signalling mechanism, previous attempts to redesign the

system, and recent efforts of exhaustively mapping the effects of mutations in a

crucial interface between HK and RR.

2.1.1 The signalling mechanism in TCS

The signalling mechanism in TCS is highly modular with exchangeable parts.

The HK commonly consists of two parts, an extracellular sensory domain, and

a dimeric intracellular domain which contains the histidine that binds the phos-

phoryl group (DHp), and the domain responsible for phosphorylating the his-

tidine, named after its catalytic activity (CA). The phosphoryl group on the

histidine on the DHp domain is central for transmission of the signal. The re-

sponse regulator in turn consists of a recognition domain (REC), specifically

binding to the DHp domain and an effector domain. The signalling mecha-

nisms itself consists of the sensor recognizing some input signal using the sensor
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domain. This activates the catalytic activity of CA, which performs the phos-

phorylation of DHp, resulting in a phosphorylated DHp domain. Subsequently,

molecular recognition between the DHp in HK and the REC in RR allows for

phosphotransfer to the REC domain. Downstream, the effector can then pro-

ceed with performing its actions. From the understanding of this mechanism

stems a number of opportunities to redesign the system, notable examples be-

ing sensory domain exhange and exchange of residues responsible for HK-RR

recognition in order to rewire specificity.

2.1.2 Previous attempts and limitations in redesigning HK/RR

Some progress to redesign HK/RR has been made by focusing on domain-

domain exchange, an approach used in various forms of protein engineering,

for example in the design of calcium indicator proteins [6–8]. Some attempts

have been successful as evidenced by the demonstration of exchange between

different sensor domains and thus exchange of the sensory modality of the sig-

nalling system[9, 10]. This exchange was performed on a domain basis between

already naturally occuring sensory domains, and does thus not directly suggest

the ease of successfully redesigning specificity between HK and RR. Another

notable study on the exchange of a small number of amino acids at the sites

of interaction between HK and RR has proven that exchange of crucial amino

acids can indeed redesign specificity predictably [11]. There were still severe

limitations in this study in that only known modules from close homologs were

exchanged to demonstrate specificity redesign, and no attempt of exhaustive

sequence mapping was performed. Exhaustive mapping is ultimately needed in

order to fully characterize the molecular recognition between HK and RR.

2.2 Recent attempts to exhaustively character-

ize the interface

Other recent studies have used direct coupling analysis (DCA), a sequence-based

statistical method to infer residue-residue interaction on the TCS systems in the

attempt to predict specificity [3]. These results have only been validated on a

limited scale due to the limited data availability. Finally, in early 2015, the

characterization of retained phosphotransfer ability in a set of 160 000 mutants

of the histidine kinase PhoQ, one member of the TCS family was performed [12].

The study focused on one TCS which involved the PhoQ (HK) and the PhoP

(RR) proteins. This system allows for bacterial sensing and responding to mag-

nesium concentration. Exchanging the native gene transcribed by the native

promoter of the system, pmgrB, to a fluorescent reporter, allowed for screening
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for retained functionality in a model system of E. coli. Site-saturation mutagen-

esis in a number of sites of interest determined from co-evolution and subsequent

flow cytometric profiling of the populations allowed for determination of the 1%

of mutations which had retained phosphotransfer ability. This data finally pro-

vides the possibility of evaluating different computational methods to predict

retained functionality as a first step to predict specificity.

2.3 Making use of co-evolution and structural

protein data

The availability of large amounts of sequence data on TCS and the availability

of separate crystallographic structures for the PhoQ/PhoQ system allows the in-

tegration of methods making use of both types of data. In the following section,

an overview of the two different methods using this information is described.

2.3.1 Co-evolutionary information

One method of quantifying interaction in amino acid pairs between proteins has

been to make use of the concept of co-evolution. The basic idea is that certain

pairs of amino acids tend to occur in a dependent fashion, conditional upon their

pairwise proximity in an interface [13]. Until recently, flaws in the methodol-

ogy of deriving statistics from sequence data have limited the applicability of

methods for generating useful data [13]. However, recent breakthroughs in dis-

entangling so called direct interactions from indirect interactions have allowed

greater predictive ability of actual physical interactions to be made [3]. This

in combination with a greater availability of sequence information continues to

increase the feasibility of leveraging the information provided by co-evolution

sequence methods.

Information scores

One specific method to make leverage direct information to determine inter-

action specificity was presented in [1]. This method relies on 1) concatenating

a large number of natively interacting protein pairs (say protein A and protein

B) to a multiple sequence alignment (MSA), such that every concatenated se-

quence will represent one interaction between protein A and B with amino acids

(1→ NA, where NA is number of amino acids in protein A) from protein A and

(NA + 1 → NA + NB) from protein B (See figure 2.1). Performing frequency

counts in a single column in this MSA can give information about conserva-

tion, while performing frequency counts of all possible pairwise columns gives
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information about the co-presence of specific residue pairs.

Mutual information

A common measure of the co-presence of residue pairs has traditionally been

given by mutual information:

MI(i, j) = Pij(si, sj)log(
(Pij(si, sj))

Pi(si)Pj(sj)
) (2.1)

where Pij(si, sj) represents the probability of finding position pair (i,j), (say

4 and 69) for the amino acid pair (si, sj), (say alanine and proline) and Pi(si)

represents the marginal probability distribution over the amino acid si.

The mutual information score suffers from the problem that transitive co-

presence will be included. Stated explicitly, if amino acids x and y are frequently

co-occuring with a third amino acid z, then not only will the mutual information

MI(x,z) and MI(y,z) be high, but MI(x,y) will also be high, even though x and

y might not be in direct contact with each other. In order to eliminate this

artifact, the Direct Information Score is introduced.

Direct information

The Direct Information Score (DIS) mentioned above is calculated by using

methods for eliminating the unwanted indirect interaction between each inter-

protein residue pair (i,j). One of these methods consists of performing a pa-

rameter optimization of the single and pair frequency counts for maximum

entropy under the constraints of fulfilling marginal distribution criteria. Ba-

sically, one of the constraints is that the frequency count of a residue pair (say,

si = A; sj = V ) need to be equal to the marginal distribution of the counts

where (si 6= A; sj 6= V ). Using this method of optimization, one arrives to a 4-

dimensional LxLx20x20 probability matrix (L being the total number of amino

acids in the MSA), P dir
ij , giving direct information conditional of all LxL amino

acid pairs for each position pair (i,j). Using this matrix, one can estimate the

probability that a query sequence will occur: P (A1, ..., AN ) on the basis on the

initial MSA. The method for deriving P dir
ij can be found in detail in previous

work [1].

In order to predict whether a query sequence will interact with a cognate

sequence, the direct information score (DIS) is simply defined as the sum over

all inter-protein position pairs of the sum of the DI for all possible amino acid

pairs. If s represents the entire amino acid sequence, and si represents the

amino acid at position i, the DIS is represented as:
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Figure 2.1: A frequency count from an paired multiple sequence align-
ment. A paired multiple sequence alignment is constructed, here with 5 se-
quences. Every sequence consists of a sequence from a HK/RR pair which
have been determined to be interacting using genomic adjacency. A frequency
count of the amino acid co-presence is illustrated above for the position pair
(NHK , NHK+1). For example, in the enricled positions, we find five different
residue pairs. In these pairs, the HK residues are distributed along rows of the
matrix, while RR residues are distributed along columns.
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DIS =
∑

i∈HK,j∈RR

P dir
ij (si, sj)

(P dir
ij (si, sj))

Pi(si)Pj(sj)
(2.2)

where P dir
ij (si, sj) represents the DI value at position pair (i,j) for the amino

acid pair (si, sj) and Pi(si) represents the marginal distribution over the amino

acid si.

2.3.2 Structural information

Various methods can be used for using structural information in order to say

something about binding affinity. A thorough review of this subject describes

the most successful ones to perform side-chain sampling, evaluation of electro-

static and solvation effects, and consideration of the monomer stability in the

unbound state [14]. The method (ZEMu) used in this study was included in the

evaluation.

Zone equilibration of Mutants

The requirement for evaluation of the binding affinity between the PhoQ and

the PhoP was a method with the potential of performing a large number of

flexibilizations rapidly for a small number of mutations. One such method is

the Zone Equilbration of Mutants (ZEMu), described in earlier work [2]. This

method uses an internal coordinate framework which has a number of advan-

tages. It eases multiscale treatment by limiting the degrees of freedom of the

system by means of representing positions as relative lengths and angles instead

of in cartesian coordinates. It also allows for 1) specifying which bonds and an-

gles will be flexible in the simulations and 2) specifying which atoms will have

a physical influence on the flexible elements. This method has been shown to

predict the ∆∆G due to a mutation with a RMSE of ± 1.60 kcal/mol. Zone

Equlibration of Mutants is included in the software package MacroMolecule-

Builder [15], which is freely available. Details on the implementation and use

of this method is described in chapter 3.
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Chapter 3

Evaluation

3.1 Designing the classifier

The classifier contains the two main components already mentioned in the back-

ground, the co-evolutionary approach of finding statistically significant interac-

tions between residues, and the structural approach of minimizing interfacial

energy and subsequently estimating binding affinity. This section details how

the pipeline for the calculation was set up, and design choices made in the pro-

cess. The two figures 3.1 and 3.2 illustrate the design of generation of the scores

for all mutants.

3.1.1 DI score

The DI score was calculated using 30 000 aligned sequences from the PFAM

families HIS KA and Response reg as detailed in previous work [3]. These pairs

were assumed to be in vivo cognate partners, and thus contain information about

the native interactions. In this paradigm, mutual information between the sites

and for each amino acid 2.1 is first calculated, and subsequently a correction for

indirect coupling is performed using an approach of maximum entropy. Further

information about the maximum entropy can be found in the publication [3].

When this correction has been performed, the direct information matrix was

used to evaluate the probability of 160 000 PhoQ mutants interacting with

the still native PhoP protein, purely based on sequence data. This was done

according to the following equation, described further in the background:

DIS =
∑

i∈HK,j∈RR

P dir
ij (si, sj)

(P dir
ij (si, sj))

Pi(si)Pj(sj)
δij (3.1)

The only addition to this model is the Kronecker-delta multiplier (δij , being

20



Figure 3.1: Pipeline for calculating the direct information score. The
first predictor which is a co-evolutionary predictor, is determined using the
scheme above. A collection of cognate pairs in the same protein family (PFAM
:PF00512 and PFAM:PF00072) were used to initially determine the mutual in-
formation between position pairs in the histidine kinase vs. response regulator
sequences. Following this, a method for disentangling direct interactions from
indirect interactions using maximum entropy yield the direct information ma-
trix. For each of the mutated variants, elements in this matrix corresponding to
the hotspot positions are then summed to yield the direct information score, a
scalar quantity with information about the probability of functional interaction
between the variant and PhoP. The data and scripts for performing the initial
analysis was kindly provided by Assistant Professor Faruck Morcos, UT Dallas.
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1 if the amino acids (i and j) are within a distance of 12Å of another, and 0

otherwise.

3.1.2 ZEMu calculation

The pipeline for performing the binding affinity is slightly more involved. It

consists of a number of steps in this case, homology modelling, declashing, In

silico site saturation mutagenesis, equilibration, and finally energy estimation.

Homology modelling

Homology modelling was performed as there was no available co-crystal as of this

writing. A co-crystal or alternatively a homology model of the complex of inter-

est is necessary for performing the equilibration and affinity estimation. Thus,

the sequences of PhoP(UNIPROT:P23836) and PhoQ(UNIPROT:P23837) were

threaded to a respective substructure in a crystallised close homolog (Thermo-

toga maritima, ThkA/TrrA, PDB:3A0R) which was the one giving a struc-

ture comparable to the structures of PhoP and PhoQ in unbound form, using

the MUSTER web server [16]. The one-to-one threading was performed using

Phyre2, giving confidence values of > 99% for the protein to adopt the same

overall fold, and a high-accuracy (2-4Å) core for both PhoQ and PhoP [17].

Declashing

As the PhoQ and PhoP were separately threaded against the close homolog

and subsequently merged into a single model, a stage of residue declashing was

performed in order to avoid subsequent costly structural equilibrations. The

UCSF Chimera package was used to determine which residues were in clashing

relation with each other using standard parameters (van der Waals overlap of

0.6 Å was considered to be a clash), followed by successive equilibrations of 15

ps using only van der Waals force fields in the MacroMoleculeBuilder package

[15]. Declashing was perfomed with flexibility at the clashing sites until no more

clashes were reported.

In silico site saturation mutagenesis

Subsequent to the declashing, the hotspot positions earlier determined to be

especially important in the interaction were mutated to accommodate the full

range of 160 000 (204) structural variants [11].
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Figure 3.2: Pipeline for calculating the ZEMu energy. A number of
methodologies are used to arrive at the final binding energy between the protein
pairs. Initially, a homology model is created by threading to a close homolog.
Subsequently, declashing is performed to reduce the required computation time
in the following equilibration. In silico site saturation mutagenesis is performed
at the hotspot sites which were predetermined from previous experiments. In
the final steps, local equilibration and binding affinity evaluation is performed,
leading to an estimate of the binding affinity, which is used as a proxy for
retained functionality in the 160 000 mutants. The pipeline involved the use of
a number of different software packages due to the heterogeneous requirements.
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Equilibration

Equilibration of the 160 000 variants was performed using the MacroMolecule-

Builder package using standard parameters: 1) Physics zone of 12 Å around

mutated residues and 2) 5-consecutive-residues flexibility zone centered about

each mutation position.

Binding affinity estimation

Finally, the binding affinity for each mutational complex was evaluated using

the empirical force field and software package FoldX [18]. The FoldX package

performs a weighted summation of a number of energy terms in order to evaluate

the binding energy:

∆G = Wvdw∆Gvdw +WsolvH∆GsolvH +WsolvP ∆GsolvP + ∆Gwb+

∆Ghbond + ∆Gel +WmcT∆Smc +WscT∆Ssc

(3.2)

In the equation above, vdw is van der Waals contribution, solvH and solvP

are solvation energies, wb water bridges, el electrostatic contributions, mc a

backbone entropy term, and finally sc a side chain entropy term.

Two ∆G energies are calculated, the one for the wildtype, called ∆Gwt, and

one for the variant, called ∆Gi. While these energies cannot be used directly,

the relative binding affinity between variant i and the wildtype can be used

according to the implementation of FoldX. The relative binding energy is thus

calculated as:

∆∆Gi = ∆Gi −∆Gwt (3.3)

3.2 Technical details on implementation

To achieve sufficient computational power in practice, the current implementa-

tion requires ZEMu to be configured on a high-performance computer cluster

(HPCC), depending on the number of mutants which have to be evaluated. In

this case, the available computational power was limited to calculation of ap-

proximately 10 000 mutants within the scope of the study, using 150 000 CPU

hours (core-hours) on 8-core Opteron 6220 processors running at 3 GHz. Eval-

uation of the direct information score can be performed on a desktop computer

(2.8GHz quad-core Intel Core i5 processor, 16GB RAM) for the set of 30 000

cognate HK/RR pairs within 90 minutes. Due to the higher speed of the DIS

calculation and with knowledge that the DIS is functioning as a predictor, the
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ZEMu evaluation was performed for the top 10 000 DIS mutants in an attempt

to further refine that predictive power.

3.3 Performance on the dataset

In this section, the binding affinities and the DIS data are presented in their

relation to the state of the associated mutant (functional or nonfunctional).

Subsequently, the performance of two suggested classifiers is presented and eval-

uated.

In order to quantitatively evaluate the classifier, the following performance

metrics of the classification of functional vs. non-functional mutants are deter-

mined:

• Receiver operator characteristic of the classifier (specifically area under

the curve)

• Positive likelihood ratio (TPR/FPR) of functional mutants

• Qualitative difference in classification (do the methods predict similar or

different mutants?)

3.3.1 Description of the data

The change in binding affinity and the DIS have different distributions, and there

is no single straight forward way of determining what is the best classification

procedure to use. What is clear, however, is that a high DIS score and a

ZEMu score around the mean have a higher fraction of functional mutants. A

wilcoxon-rank-sum test for the difference between the means of the functional

and non-functional mutants in the ZEMu data indicates that the shift between

distributions is not equal to zero (p-value < 1 × 10−20, figure 3.3), and the

difference between the means was calculated to be 1.3 ± 0.08 kcal/mol. The DIS

distribution does not show a simple distribution, but the location shift for the

distributions is also determined to be not equal to zero (p-value < 2.2× 10−16,

figure 3.4).

3.3.2 Receiver operating characteristic

The receiver operating characteristic for the evaluation indicates that predict-

ing functional mutants is possible, however not completely satisfactory. The

area-under-curve for the DIS only is 0.69, and for ZEMu (conditional upon the

filtration to the top 10 000 DIS mutants) 0.65 (figure 3.5a). However, looking
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(a) (b)

Figure 3.3: The distribution of the ∆∆G generated from the structural
equilibration. a) Histogram over the distribution depending on whether the
mutant is functional or not. b) normalized stacked histogram for each bin, such
that the proportion of the functional and nonfunctional is shown on the y-axis.

(a) (b)

Figure 3.4: The distribution of the direct information score . a) His-
togram over the DIS distribution depending on whether the mutant is functional
or not. b) Normalized stacked histogram for each bin, such that the proportion
of the functional and nonfunctional is shown on the y-axis.
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(a) ROC - overview (b) ROC - detail

Figure 3.5: Receiving operating characteristic for the different scores.
In general, the DI score outperforms the ZEMu score. AUC(DIS) = 0.69,
AUC(ZEMu) = 0.65. However, both scores perform better than random. Note
that the ZEMu scores are calculated for the mutants with top 10 000 DI score,
implying that the ZEMu score can not be used in isolation.

in the lower-left corner of the curve (figure 3.5b), the maximal positive likeli-

hood ratio value we can achieve with a number of 20 mutants is about 0.3, an

improvement of 30x the prevalence of functional variants in the initial sample.

This is true for both the ZEMu score and the DIS.

3.4 Evaluation of heterogeneity

In order to evaluate whether there was any heterogeneity in the classification,

we developed a method for displaying to what extent the methods perform

differently for certain types of mutant classes.

This was performed as follows: The functional mutants were ranked by their

respective score, DIS or ZEMu score. Each mutant was assigned a class based

on hierarchical clustering of all functional mutants, using the pairwise hamming

string distance between the sequence of amino acids in the mutation positions

as the distance score. As an example, s1 = AV ST , s2 = AV RT would give

a string distance dist(s1, s2) = 1. Finally, the data is visualized by plotting

the cumulative number of mutants within that class above a certain rank, for

all ranks. Using this method, there are essentially three characteristic patterns

present. First, a straight line for a certain class will indicate equal probability

of that class being distributed over the range. Second, an increasing slope for

lower ranks indicates less likelihood of ranking such mutants high. Third, a

decreasing slope indicates a class likely to be ranked high. With this in mind,

we can display how the predictors perform in figure 3.7 for the different classes,

illustrated as sequence logos in figure 3.6. Adding more classes than 4 gave no

further information about the difference in heterogeneity.
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(b) Class 2 - 16%
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(c) Class 3 - 3%
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(d) Class 4 - 21%

Figure 3.6: Sequence logos of the different classes generated using hi-
erarchical clustering of the functional variants. Notice how class 1 and 4
are single amino acid profiles, while class 2 and 3 are multiple profiles. Notice
also the varying prevalence, given by the percentage number in the captions.
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(a) Cumulative predicted classes for the DI score

(b) Cumulative predicted classes for the ZEMu score

Figure 3.7: Score heterogeneity for the different scores. A line with con-
stant slope indicates naivety to rank within the class, while a line with variable
slope indicates that there is a preference (decreasing slope) or dispreference
(increasing slope) over lower rank.
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Chapter 4

Discussion and conclusions

4.1 Discussion

The previous section indicated the feasibility of predicting functional variants

of the histidine kinase PhoQ based on integration of two methods, co-evolution

and Zone equilibration of Mutants. The difference between the means of the

∆∆G values in the functional and nonfunctional populations suggest the use-

fulness of the change in binding energy as a proxy for functionality, which is of

major importance. Succinctly stated, this indicates the fundamental result that

binding affinity is a predictor of functionality in the phosphotransfer reaction.

It is possible to reach a positive likelihood ratio of about 30x the initial preva-

lence of functional mutants using the DI score, and the ZEMu score indicates a

similar performance, however with the caveat that only the mutants performing

best under the DI score could be calculated due to limitations in computational

time.

It is also clear that there is a heterogeneity in the types of mutants which

are predicted by the different methods. The DI score, by design, favors patterns

already found in the co-evolutionary profile leaving out one class prevalent in

the functional variants, while ZEMu is naive to the profile and also captures

functional variants of all classes similarly well. Both methods capture the quite

simple pattern with simply an alanine in the first position.

These results provide valuable insights in the predictability of protein protein

interactions, specifically in the case of TCS systems. However, any protein-

protein complex with a similar amount of sequence data could be analysed

with the co-evolutionary method, and any system where a co-crystal of a close

homolog is available could make use of the ZEMu approach. There are however

limitations to the speed of calculation of the mutants. This could be improved

in a number of ways. One way is to enforce a dynamic convergence criterion

30



for ZEMu, which can result in quicker convergence time of the simulations.

Another attempt to improve on the results for ZEMu calculation could be to

evaluate effects of different methods of protein protein docking on the ZEMu

performance.

The presented results also allow for further discovery of additional suspected

functional mutants, especially as the validation study [11] estimated a 7% false

negative rate in discovery of the functional mutants.

4.2 Further work

Further research in this area should be focused on improving the calculation

speed of the structural equilibration, validating newly found potential functional

mutants, and also evaluating the applicability on other systems to determine

the generality of the approach.

4.3 Conclusions

This study has successfully shown that two different methods, co-evolution with

a DI score, and strucural equilibration using a ZEMu score, are applicable in

predicting functional variants of the histidine kinase PhoQ. In addition, of bio-

logical importance is the fact that there is a significant difference between the

population means (functional vs. nonfunctional) of the change in binding ener-

gies upon mutation for the functional and nonfunctional variants. This suggests

that binding affinity predicts functionality for the phosphotransfer reaction. The

methods show an AUC of 0.69 (DIS) and 0.65 (ZEMu). The positive likelihood

ratio of finding a positive mutant within the top 20 predicted mutants is 0.3, a

30X increase compared to the prevalence in the complete dataset.
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Zhao, Dmitry Korkin, Xiaolei Zhu, Omar N. A. Demerdash, Julie C.

Mitchell, Eiji Kanamori, Yuko Tsuchiya, Haruki Nakamura, Hasup Lee,

Hahnbeom Park, Chaok Seok, Jamica Sarmiento, Shide Liang, Shusuke

Teraguchi, Daron M. Standley, Hiromitsu Shimoyama, Genki Terashi,

Mayuko Takeda-Shitaka, Mitsuo Iwadate, Hideaki Umeyama, Dmitri Be-

glov, David R. Hall, Dima Kozakov, Sandor Vajda, Brian G. Pierce,

Howook Hwang, Thom Vreven, Zhiping Weng, Yangyu Huang, Haotian

Li, Xiufeng Yang, Xiaofeng Ji, Shiyong Liu, Yi Xiao, Martin Zacharias,

Sanbo Qin, Huan-Xiang Zhou, Sheng-You Huang, Xiaoqin Zou, Sameer

33
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