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Abstract
Fraud is a threat that most online service providers must
address in the development of their systems to ensure an
efficient security policy and the integrity of their revenue.
Amadeus, a Global Distribution System providing a trans-
action platform for flight booking by travel agents, is tar-
geted by fraud attempts that could lead to revenue losses
and indemnifications.

The objective of this thesis is to detect fraud attempts
by applying machine learning algorithms to bookings repre-
sented by Passenger Name Record history. Due to the lack
of labelled data, the current study presents a benchmark
of unsupervised algorithms and aggregation methods. It
also describes anomaly detection techniques which can be
applied to self-organizing maps and hierarchical clustering.

Considering the important amount of transactions per
second processed by Amadeus back-ends, we eventually
highlight potential bottlenecks and alternatives.
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Chapter 1

Introduction

1 Context

1.1 Amadeus

Amadeus is the leading Global Distribution System (GDS) competing with Sabre
and Galileo. This company has built a platform connecting together the travel
industry agents in order to facilitate the distribution of travel products and services
through IT solutions. Their customers include travel agencies, airlines, airports,
hotels, railway companies, cruise lines and car rental companies.

As an IT provider, Amadeus can host the data of travel companies and dis-
tribute their content to buyers such as travel agencies. Thanks to this intermediary,
companies can extend their market share and benefit from an efficient platform
supporting search, pricing, booking and ticketing.

Therefore, Amadeus customers are divided in the following classes:

• Travel providers: providing the content to sell on the GDS.

• Travel sellers: buying the content distributed by Amadeus and selling it to
end users. Sellers can be travel agents, e.g. agencies selling trip packages to
customers, or ATO/CTO (Airport Travel Operators / City Travel Operators)
who are employees of travel providers selling their own content, e.g. employees
of an Air France office.

• Global Distribution Systems: such as Sabre, performing transactions with
the Amadeus systems when a reservation is made through another GDS and
targets at least one company hosted by Amadeus.

1.2 Passenger Name Record (PNR)

The booking information are stored in a PNR. The reservation stored can belong
to multiple passengers, as long as they all have the same itinerary. It is not limited
to one segment (e.g. we can store several flights). This data structure is divided in
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multiple envelopes. An envelope describes a list of changes (addition of a passenger,
ticketing...) applied to a PNR, and is created when a user commits the changes he
has made. The information contained by a PNR include but are not limited to:

• Record Locator (RLOC): PNR identifier

• Passengers information: name, contact...

• Segments: origin, destination, flight ID, departure and arrival date...

• Services: additional luggage, seat, special meal...

• Frequent traveler cards

• Tickets: segment ID, fare

• Payments: type, credit card number...

Due to the complexity of a GDS, different kinds of fraud attempts may occur
during one of the many processes provided.

2 Problem
Thanks to the feedback provided by its content provider customers, Amadeus has
identified a few misuses and fraud profiles. Those fraud attempts are carried out
by some users in order to gain access to undeserved advantages, perform
prohibited actions or receive unmerited incentives1.

Examples of fraud attempts are:

• Time limit churning: by taking advantage of various functionalities, agents
are able to lock the booking of a seat for an unlimited time without issuing
and paying a ticket. This gives them the possibility to offer an unlimited
reflection period to their customers without the usual price increase.

• Frequent flyer abuse: abusive use of frequent flyer cards to be granted
higher privileges.

• Flooding

Those fraud attempts threaten the image and revenue integrity of Amadeus and
travel providers.

Despite the knowledge of some fraud types and since fraud attempts can evolve
and appear with software updates, Amadeus wants to avoid the use of hard coded
rules.

Eventually, the company suspects the existence of unknown fraud attempts tar-
geting its systems and no labelled data is available for the prototype.

1Incentive: fee paid by Amadeus to travel agents in order to incite them to use Amadeus instead
of another GDS.
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3 Objective
Due to the absence of a labelled dataset and the important amount of time needed
to build such a dataset, the aim of this Master thesis is to study and develop a
fraud detection prototype based on unsupervised machine learning algorithms.

Using unsupervised techniques, the prototype should detect new types of
fraud attempts that were unknown to Amadeus if such attempts exist.

Therefore and since the company wants to avoid the use of hard coded rules, the
system built should automatically compute boundaries between regular PNRs and
fraudulent ones. To do so, the prototype will detect outlying PNRs by comparing
each PNR to a sufficient number of PNRs.

Figure 1: Prototype concept

This study will finally highlight the possible bottlenecks of its approach and
benchmark and recommend the best algorithms to use in terms of quality and
computational efficiency.

4 Constraints
As previously mentioned, a strong constraint lies in the absence of labelled data.

One must also consider a few figures in the development of this prototype. On
average of 3.7 million bookings are performed each day on the targeted systems,
but 20 to 30 millions of PNR envelopes are created each day with a usual peak of
600 PNR transactions per second.

If the quality of the results of the fraud detection engine is convincing, a prod-
uct could be developed and made available to travel providers. No study has been
made yet regarding the expected number of providers subscribing to this product
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though performances will be a key decision factor. Therefore, the performances of
the prototype must be carefully benchmarked.

One way to reduce the computational cost and to improve the stability of the
results would be to use models which can be stored and for which streaming pre-
dictions could be applied. Doing so would also free us from the heavy computation
and storage of a distance matrix.

If no constraints were specified regarding the languages used for the implemen-
tation of the prototype, care must be taken that those do not impact too much the
computation time.
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Chapter 2

Theory

1 Machine learning

Machine learning is a field of artificial intelligence describing algorithms which are
able to learn from data and therefore adapt their behaviour. This field is divided
into three categories.

In supervised learning algorithms build a model during a training phase in
which they receive input data and the corresponding output data. Datasets for
which each input data is mapped to an expected class label or value are called
labelled. Once they have been trained, those algorithms should subsequently be
able to predict accurate outputs using unseen input data only. The aim of those
algorithms is thus to learn an accurate way to match input data to output data.

Reinforcement learning targets the learning of a decision process by present-
ing to the algorithm an environment in which it can perform a set of actions leading
to a final reward.

Unsupervised learning makes use of unlabelled data by trying to achieve
various goals. One may look for hidden patterns, try to cluster similar data points
together or even seek outliers in a dataset.

Since no labelled data were provided for the current study, we are interested in
the last category. Considering that a majority of the data should not be fraudulent,
we aim at finding anomalies in our dataset, i.e. data points which are significantly
different from the others, also called outliers. If the dataset is big enough and the
frauds in minority, we can expect those outliers to be either frauds, misuses or very
rare use cases.

Outliers may also be generated by system malfunctions and therefore contain
invalid or extreme values. Based on the critical nature of the information stored in
PNRs and the number of users of the Amadeus GDS, we will assume that the data
retrieved is reliable. If not, the outliers detected will still highlight potential system
malfunctions and thus provide a valuable feedback to Amadeus.
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Figure 1 shows an example of outlier which lies far from the average behaviour
of the dataset computed by linear regression.

Figure 1: Outlier

1.1 DBSCAN
The Density-Based Spatial Clustering of Applications with Noise (DBSCAN)[4]
algorithm finds clusters of arbitrary shape in large datasets.

This algorithm is quite interesting for the current use case since it claims to
provide relevant clusters even if the dataset contains noise. The noise is a set of
data points that are very different from the other data points, and thus outliers. This
guarantee is valuable to the extent that outliers should not impact the construction
of the clusters which will keep their integrity. However, the best performances are
achieved for clusters of similar density and we cannot assume it for the current data.

As opposed to K-Means[7] which assigns a cluster to each data point, DBSCAN
is able to recognize outliers and do not cluster them. Instead of requiring a number
of clusters, DBSCAN is eventually able to automatically compute any number of
clusters based on the parameters given.

Algorithm

Two parameters are required for this algorithm:

• Eps: maximum distance between two samples for them to be considered in
the same neighborhood

• MinPts: minimum number of samples in the neighborhood of a point in order
to flag the point as a core point, i.e. belonging to a cluster. This number
includes the point itself
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For a point to belong to a cluster, it has to contain at leastMinPts data points in
its neighborhood, including itself, the neighborhood radius being the Eps parameter.
If a point in the neighborhood of the data point already belongs to a cluster, the
current data point is assigned to the existing cluster. Otherwise a new cluster is
created.

Figure 2: Clustering

Figure 2 shows a possible clustering using the DBSCAN algorithm. Depending
on MinPts, Cluster 2 and Cluster 3 can also be marked as outliers. With a smaller
Eps, Cluster 1 could be splitted into multiple clusters and outliers, or could be
merged with Cluster 3 if we used a higher Eps.

This example highlights the difficulty of detecting outliers in a dataset and shows
that a thorough analysis and a good understanding of the functional aspect of the
data are required to efficiently detect frauds. The use of manually defined thresholds
is also a need that must be investigated.

A final parameter required by this algorithm and many others is the distance
used to compute the neighborhood. This study will benchmark the efficiency of
various metrics applied to the DBSCAN algorithm.

Euclidean distance

The Euclidean is the most common metric, also called L2 norm. It is defined as
follows:.

d(u, v) =

√√√√ n∑
i=1

(vi − ui)2 (2.1)
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Mahalanobis distance

The Mahalanobis distance between a vectors ~v = (v1, v2, ..., vn)T and a dataset
having an average vector ~µ = (µ1, µ2, ..., µn)T and a covariance matrix

∑
is defined

in equation 2.2.

DM (~v) =
√

(~v − ~µ)T
∑−1

(~v − ~µ) (2.2)

The Mahalanobis distance between two vectors ~u and ~v is defined in equation
2.3, with

∑
the covariance matrix.

d(~u,~v) =
√

(~u− ~v)T
∑−1

(~u− ~v) (2.3)

This metric can be quite useful in outlier detection since it computes the dis-
tance of each N-dimensional vector (the data points) from the center of the dataset
normalized by the standard deviation of each dimension (the features) and adjusted
for the covariance of those dimensions. By doing so, data points containing extreme
values will be given a high Mahalanobis distance which will allow us to mark them
as outliers.

Yet, since this metric uses means and standard deviations, the quality of the
results may be affected by extreme values impacting those measures.

1.2 MeanShift

MeanShift[3] is a non-parametric clustering algorithm which aims at discovering
groups in datasets of smooth density by finding the maximum of a density function.

Using a kernel function K(xi−x) with x the initial estimate of the maximum of
the density function, MeanShift computes the weight of the data points surrounding
x in order to re-estimate this value. This centroid-based approach will thus compute
the mean of the data points of various regions in the dataset in order to obtain a few
core data points which will be the centroids of our final clusters. A post-processing
step is eventually applied to remove the near-duplicates centroids.

As in DBSCAN, data points far from the centroids can be ignored by the clus-
tering process and thus flagged as outliers.

A bandwidth h is required by the algorithm in order to estimate the density
function (equation 2.4 with xi a data point and k() the kernel) on the dataset using
kernel density estimation (KDE). Note that the bandwidth h can be automatically
selected by an estimation method described in [13], or computed using two manually
defined parameters which are a quantile Q and a number of seeds N . Once the
density function is computed, optimization methods (such as gradient descent) are
used to find the local maxima.

f(x) =
∑
i

K(x− xi) =
∑
i

k

(
||x− xi||2

h2

)
(2.4)
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Based on the description of this algorithm and the proof by MA Carreira-
Perpinan in [2], MeanShift is actually an expectation-maximization algorithm (EM)
when a Gaussian kernel is used and a generalized EM algorithm when a non-
Gaussian kernel is used. Since our experiment will use a Gaussian kernel, the
clusters found are likely to have a globular shape. The EM algorithm is described
in more details in section 1.3.

1.3 Gaussian Mixture Model (GMM)

GMM is a clustering algorithm which computes clusters by fitting a given number
of Gaussians to the dataset and iteratively estimating their parameters. A mixture
of Gaussians is a probability distribution obtained by the weighted sum of K normal
distributions P (x) =

∑K
k=1 πkN (x;µk, σ2

k) where
∑K
k=1 πk = 1 and πk > 0. Param-

eters are computed by optimizing the maximum-likelihood of by the data P (x, h|θ)
with hik the probability of assigning each data point xi to each Gaussian component
of the mixture and θ the Gaussian parameters.

By doing so, each data point has a probability to belong to each Gaussian and
outliers are points having a very low probability to be generated by the K Gaussians.

Figure 3: Mixture of Gaussians

It is similar to K-means since it requires a given number of clusters and guaran-
tees to find a local maximum. However, it gets better to the extent that it provides
a clustering probability for each data point and cluster.

One way to estimate the Gaussian parameters is to use the EM algorithm.
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Expectation-Maximization (EM)

This iterative algorithm starts by initializing the parameters of the K Gaussians
with random values. Those parameters are then updated by repeating the two
following steps:

• E-step: for each Gaussian component, compute the posterior probability
P (hi = k|xi, θ(t)) that xi was generated by this component according to the
current parameters.

• M-step: fit each Gaussian according to the posterior probabilities previously
computed. This is achieved by computing the maximum likelihood of the
parameters.

1.4 One-class SVM

One-class SVM is an extension of Support Vector Machines algorithms which has
been introduced by Schölkopf et al[11] and makes use of unlabelled data in order
to perform unsupervised novelty detection in high-dimensional data. As for SVM,
this algorithm is based on the use of a kernel (linear, polynomial, sigmoid or RBF)
and uses the kernel trick in order to compute the dot product between data points
represented in a high-dimensional space to find a separating hyperplane.

The one-class SVM fits a decision boundary on the entire dataset in order to
have an accurate representation of the data distribution. As for many algorithms,
the decision boundary should fit the data as much as possible without implying
overfitting, hence using a margin and a slack. To do so, a parameter ν is given, rep-
resenting the maximum fraction of training errors and minimum fraction of support
vectors. A parameter γ manually defines a kernel coefficient for the polynomial,
sigmoid and RBF kernels.

The hyperplane is computed by trying to separate all the data points from the
origin of the feature space and maximizing the distance between this hyperplane
and the origin. The result of this computation is a binary function which indicates
whether a data point is inside or outside the boundary containing the training
points.

An example of decision boundary is shown in figure 4 with training and testing
data points.

A possible issue with the application of this algorithm to our use case is that the
data used for the training should not be contaminated by outliers as the decision
boundary may fit them. Since we cannot define a standard pattern for our PNRs
because of the many use cases supported by Amadeus, since many frauds cannot
be detected using a simple filter and since we are also looking for unknown frauds,
this constraint is likely to impact the quality of the results output by the one-class
SVM algorithm.
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Figure 4: Outlier detection using one-class SVM (scikit-learn.org)

1.5 Z-Score and Median absolute deviation (MAD)

Another way to detect outliers is to work on each feature separately instead of
computing distances between high-dimensional vectors. This approach cannot find
correlations between features but has the advantage of being resistant to the curse
of dimensionality.

We can achieve this by assigning an outlying score to each dimension of a data
point ~x = (x1, ..., xm), and then aggregate those scores to obtain the outlyingness of
the feature vector. As we are looking for extreme values even for a single feature, the
aggregation method chosen here is the maximum of the scores: O(~s) = maxmi=1 ~si

Z-Score

The Z-score, also called standard score, of a one-dimensional dataset V is defined in
equation 2.5. It is the number of standard deviations between a value and the mean
of the dataset. For the current study, we will use the absolute value of this score as
described in the equation with µ and sigma the average and standard deviation of
V .

zscore(v) = |v − µ|
σ

(2.5)

Such a score, as illustrated in figure 5, is a good estimation of the outlyingness

11
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of a value. However, this outlier detection method is designed for features having a
normal distribution and could return poor results if the number of outliers or their
value is high enough to significantly impact the mean and standard deviation.

Figure 5: Z-Scores

Median absolute deviation (MAD)

Using the MAD described in equation 2.6 could help us with this issue.

MAD(V ) = median(|V −median(V )|) (2.6)

This measure describes the median of the distance between each data point and
the median of the dataset. It could thus be used to compute a score S showing how
different a value is from the others. This is done in equation 2.7 where the result
is the number of MAD between the median of the dataset and a given value. Note
the similarity between equations 2.5 and 2.7.

The score computed here has the advantage of using the median and the MAD
and thus won’t be affected by the value of the outliers.

S(v) = |v −median(V )|
MAD(V ) (2.7)

Yet and since this score is based on the absolute number of MAD from the
median, this measure is efficient only for datasets having a symmetric distribution.
Indeed, computing the distance from the median on a distribution having for exam-
ple one tail longer than the other would not make much sense. To solve this issue,
we can compute the score using the same previous formula but using two different
MADs.

The first MAD is then computed using only the values less than or equal to the
median. This first MAD will be used when computing the score of a value lower
than the median. To the opposite, the second MAD uses only values higher than
or equal to the median and is used to compute the score for values higher than the
median.
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1.6 Hierarchical clustering

This class of algorithms builds a hierarchy of clusters, the smallest containing a
single data point and the biggest the entire dataset. Depending on the approach,
the algorithm either merges clusters starting with one cluster per data point until
one final cluster remains (agglomerative method), or starts with a single big cluster
and splits it in two clusters at each step until all clusters contain one data point
(divisive method).

For this purpose, the algorithm require a metric to compute the dissimilarity
between the data points, e.g. Euclidean, and a function which can be applied to the
pairwise distances of observations in the different clusters, e.g. Ward’s minimum
variance method[18]. This method states that the two clusters to merge at a given
step are the ones minimizing the increase of total within-cluster variance after the
merging step.

Once the hierarchical clustering has been applied to the data, one must find
outliers in the resulting tree of clusters, also called dendrogram. We mention here
a method detailed in [15]. This method ranks all the data points according to their
outlyingness, which allows us to mark as outliers the data points having a ranking
higher than a given threshold.

The outlyingness O of a data point x is here the maximum score obtained by x
at a merging step i of the algorithm (eq. 2.8 where N is the size of the dataset and
thus N − 1 the number of merging steps of the algorithm). The score s of x at a
step i can be computed according to three different methods detailed below.

O(x) = Nmax
i=1

si(x) (2.8)

Linear

In equation 2.9, |g| is the number of data points in the cluster where x belongs at
step i and p() is a function penalizing large groups defined in equation 2.10.

si(x) = i

N − 1 ∗ p(|g|) (2.9)

The penalization function is detailed here, with n the cluster size and 1 ≤ t ≤ N .

p(n) = (1− n− 1
N − 2)1n<t (2.10)

Sigmoid

The sigmoid score is computed as follows, with p() defined in equation 2.12.

si(x) = e
−2 (i−(N−1))2

(N−1)2 ∗ p(|g|) (2.11)
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p(n) = (1− e−4 (n−2t)2

(2t)2 )1n<2t (2.12)

Size difference

Below is the size difference equation, where gy,i and gx,i are the two groups merged
at step i and gx,i is the group which x belongs to.

si(x) = max

(
|gy,i| − |gx,i|
|gy,i|+ |gx,i|

, 0
)

(2.13)

1.7 Hidden Markov Model (HMM)

HMMs are a statistical model introduced by Baum et al.[9]. To explain this concept,
we must first detail what a Markov chain is.

Markov chains

A Markov chain is a directed graph with transition probabilities (fig. 6). For
a system in a given state S, with here S ∈ {r, c, s}, the sum of the transition
probabilities leaving the state is 1.

Figure 6: Markov Chain

Hidden Markov Model

In a HMM, the sequence of vertices of the Markov chain taken by the model over
time is usually unknown, which is why the states are called hidden states. In such
models, each state has its own probability distribution to generate what is called
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an emission. If the states are unknown, we usually know the sequence of emissions
generated by the states, also called observations.

The HMM, described in figure 7 where xi are the hidden states and yi the
observations over time, is thus a Markov process since the sequence of hidden states
over time is represented by a Markov chain. A HMM is hence described by three
matrices:

• Initial distribution: π = P (x0), the vector containing the probability to be in
each hidden state at the step s0

• Transition matrix: A = P (xt+1|xt), transition probabilities between hidden
states

• Emission matrix B = P (yt|xt): probability of generating the observations for
each hidden state

Figure 7: Hidden Markov Model

The hidden Markov models allow us to solve various problems:

1. Compute the probability of a sequence of T observations

2. Given a sequence of observations, find the most probable sequence of hidden
states

3. Train the parameters A, B and π to maximize the probability of a sequence of
observations P (y1:T ). This training requires to specify the number of hidden
states, also called components

HMM training

The training of a HMM is done using the Baum-Welch algorithm[1]. At each step
of this algorithm, we compute

• αt(i) = P (y1:T , xt = i) = bi(yt)
∑N
j=1 ajiαt−1(j) with α1(i) = bi(y1)πi and

2 ≤ t ≤ T (forward algorithm)

• βt(i) = P (yt+1:T |xt = i) =
∑N
j=1 aijbj(yt+1βt+1(j)) with βT (i) = 1 and 1 ≤

t ≤ T − 1 (backward algorithm)
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• The gamma function γt(i) = P (xt = i|y1:T ) ∝ P (xt = i, y1:T ) = αt(i)βt(i)∑
i
αT (i)

according to the forward/backward algorithm

• The digamma function γt(i, j) = P (xt = i, xt+1 = j|y1:T ) = aijbj(yt+1)αt(i)βt+1(j)∑
i
αT (i) ,

with aij and bj(yt+1) probabilities from A and B

A, B and π are eventually estimated using the previous results:

πi = γ1(i)∀i = 1, ..., N

aij =
∑T−1

t=1 γt(i,j)∑T−1
t=1 γt(i)

∀i, j = 1, ..., N

bj(k) =
∑T

t=1,yt=k
γt(i)∑T

t=1 γt(i)
∀i, j = 1, ..., N

(2.14)

Thanks to the previous algorithm, the HMM of a dataset can be trained. For
this, we need our dataset to contain sequences of observations, possibly of different
length, instead of data points belonging to a specific space. This is an entirely
different approach.

Outlier detection

Let’s assume that we have a HMM trained according to the distribution of the
sequences observed in a dataset. Outlier detection corresponds to the first problem
previously mentioned for HMMs.

Therefore, we compute the probability of each action sequence to be generated
by the model under the parameters. This is done in equation 2.15 and requires
a preliminary run of the forward algorithm. Once this is done, we simply flag as
outliers the sequences for which the probability to be generated is lower than a given
threshold.

P (y1:T ) =
N∑
i=1

αT (i) (2.15)

1.8 Self-Organizing Maps (SOM)
A Self-Organizing Map, also called Kohonen Map[5], is a type of neural network
which maps points from an input space to points in an output space. This transfor-
mation keeps the topology of the data by using a set of neurons in the same feature
space fitted to the dataset so that the final topology of the neural network is a good
representation of the data. By doing so, points that were close in the input space
will also be close in the output space.

For an input data point in the high-dimensional feature space, the corresponding
output will be the neuron in the feature space which is the closest to this point.
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Figure 8: Training of a SOM

Using for example a 1-dimensional or 2-dimensional grid topology of the network,
we are able to reduce the dimensionality of the data to one or two dimensions.

On-line algorithm

The conventional on-line algorithm updates the neurons of the network every time
an input vector is given in input. We initialize the neural network with random
values for the weights of the neurons, then a step in the training is done as follows:

1. Select x, a random data point in the dataset

2. Compute the similarity, e.g. the opposite of the Euclidean distance, between
x and the neurons of the network

3. Find the winning node, i.e. the most similar neuron to x

4. Update the weights of the winning node and its neighbors in the output grid
so that they are moved closer to the input pattern

Since there is only one neuron at each step which is the closest to the given point
and since only this neuron and its neighborhood are updated, we call this training a
competitive learning. The neighborhood of a node depends on the network topology
used (see figures 9 and 10) and is not related to the distance between the neurons
in the feature space.

During the training, the size of the neighborhood is progressively reduced, so
that many nodes are updated at the beginning of the algorithm and only a few when
the training reaches its end. The weights of the neighbors hck can be computed
using a Gaussian for which the mean is the winning node, and σ the radius of the
neighborhood in the grid.

To update the weights, we move the winning neuron and its neighbors closer to
the data point. In equation 2.16, wk is an updated neuron in the feature space, xt
the data point randomly selected at step t, η the learning rate and hck a weight
based on the winning node wc, the updated node wk and the neighborhood function.

wk(t+ 1) = wk(t) + ηhck(xt − wk(t)) (2.16)
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In order to improve the convergence of the training algorithm, we apply a decay
function (eq. 2.17, with t the current iteration and T the total number of iterations)
to the neighborhood size σ and to the learning rate η.

decayt(v) = v

1 + t
T

(2.17)

Figures 9 and 10 show examples of SOM structures with an input layer in a 6-
dimensional feature space (on the left) and two possible network topologies (on the
right). The only connections shown are between the input vector and one output
neuron, but each dimension of the input layer is actually connected to every node.

Figure 9: 1-dimensional topology Figure 10: 2-dimensional topology

Batch algorithm

In the previous algorithm, the neurons were updated after the presentation of each
input vector. The batch algorithm[6] updates the network at the end of each epoch
during which N input vectors are presented.

The algorithm still uses a Gaussian neighborhood and a decay function applied
to its standard deviation, but drops the learning rate η. Also, the weights of a given
neuron are now replaced at the end of each epoch by the weighted sum of the input
vectors having their winning node in the neighborhood of the given neuron. The
network is now updated according to equation 2.18 where t0 and tf are the start
and finish of the present epoch, wk(tf ) the weights of the neuron k computed at the
end of the epoch and hck the neighborhood weight.

wk(tf ) =
∑t′=tf
t′=t0 hckxt′∑t′=tf
t′=t0 hck

(2.18)

Once the network has been randomly initialized and t set to 0, the iteration of
each epoch is done according to the folllowing steps:

1. Initialize the numerator and denominator of equation 2.18 to 0

2. For each input vector xt

a) Compute the Euclidean distance between xt and all the neurons wk(t0)
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b) Compute the winning node, which is the closest neuron to xt
c) Update the numerator and denominator of all neurons according to equa-

tion 2.18

d) t = t+ 1

3. Update the weights of all neurons using equation 2.18

This algorithm has a few advantages. Among those, the training is no longer
impacted by the presentation order of the input vectors, which could previously
lead to a stronger influence for the last input vectors presented. Dropping the
learning rate also simplifies the parametrization of the algorithm and avoid a poor
convergence that was obtained when using an inadequate parameter.

Median interneuron distance (MID) matrix

One of the advantages of SOM is to perform dimensionality reduction. However, if
our data can be mapped to a 1 or 2-dimensional network as previously described,
we now have to visualize this network. This can be done by computing the median
interneuron distance matrix.

For a 2-dimensional grid network of MxN neurons, each value of the MxN matrix
is the median of the Euclidean distance between a neuron wi,j and the neurons in
its neighborhood, with 1 ≤ i ≤ M and 1 ≤ j ≤ N . As before, the size of the
neighborhood must be manually defined.

Note that the mean or the maximum of the distance could be used instead of
the median, and that another metric could also be used.

After normalization, we obtain a weight matrix that can be plotted in 2D space.
Each value of this matrix corresponds to a neuron in the network, and values close
to 1 show neurons far from their neighborhood.

Examples of plots can be found in the following section and in the experiment
(section 5.4).

Outlier detection

Once the SOM is trained and the MID matrix computed, outliers can be detected
as detailed in [8].

This detection starts by identifying outlying neurons, which are neurons lying
far from the other neurons and could have been attracted by dense sets of outliers
such as in figure 11. If such neurons exist, they can be easily identified using the
MID matrix. As you can see in figure 12, outlying neurons have a value in the
MID matrix much higher than the one of the other neurons. We can thus use a
simple threshold or compare those distances to do our selection. The plot of the
MID matrix is a good tool to check the existence of outlying neurons.
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When this is done, outliers are the data points having for winning node an
outlying neuron.

Figure 11: Outlying neurons Figure 12: Median interneuron distance
matrix

Eventually, we consider the case where very few outliers are present in the
dataset or are not dense enough to attract a neuron. In this case, we don’t detect
any outlying neuron but use the quantization error to find the outliers. This
measure is simply the dissimilarity (e.g. distance) between a data point and its
winning node.

Those outliers are detected using a threshold, which can be found using a box
plot showing the QEs of the dataset (section 5.4).

2 Quality assessment

One of the difficulties of unsupervised learning is to measure the quality of the
results output by a model. Here are various ways to interpret those results.

2.1 Silhouette Coefficient

This scoring method can be applied to clustering algorithms. It gives (eq. 2.19) a
score to each sample based on a mean intra-cluster distance a (average dissimilarity
between a sample and the other samples in the cluster) and a mean nearest-cluster
distance b (lowest average dissimilarity between the sample and a cluster which it
does not belong to).

s(x) = b(x)− a(x)
max(a(x), b(x)) (2.19)

The score of all samples is then aggregated, e.g. by taking the average, in a
single score for which 1 indicates very dense clusters far from the others and -1
clustering where samples are likely to be assigned to the wrong clusters.
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2.2 Quantization error

As previously mentioned in section 1.8, the quantization error is usually the distance
between a sample and the closest centroid of a cluster. Hence, we can compute the
mean squared quantization error (MSQE) in equation 2.20 where ci is the centroid
of the closest cluster. This criterion is actually the one used by K-means in its
objective function.

MSQE = E[(xi − ci)2] (2.20)

2.3 Precision, recall and F1 score

Precision and recall are measures widely used in supervised learning where the true
label of each sample is known. Precision allows us to measure the number of
samples that have been correctly classified for a given class divided by the number
of samples predicted in this class. For a binary classification (positive and negative),
samples can be labelled with the right label (true prediction) or the wrong one (false
prediction).

precision = |true positives|
|true positives+ false positives|

(2.21)

The recall is the number of samples that have been correctly classified in a class
divided by the number of samples actually belonging to the class. This shows us
the proportion of samples belonging to a given class which have been labelled as
such.

recall = |true positives|
|true positives+ false negatives|

(2.22)

The F1 score is the harmonic mean of the precision and recall and can be used
to measure the efficiency of a binary classification. It is therefore

F1score = 2 ∗ precision ∗ recall
precision+ recall

(2.23)

3 Ensemble learning

Ensemble learning is a class of machine learning algorithms which combine multiple
learning algorithms (e.g. decision tree, SVM...) in order obtain better predictions
(e.g. boosting, bagging...).

We will restrict this study to a few aggregation operators in order to combine
the results output by the models detailed in the previous section. For each data
point given to an unsupervised algorithm, the operators below aim at aggregating
the corresponding outputs in a single score.
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3.1 Weighted sum
This operator, also called weighted averaging is a simple multi-criteria decision
analysis (MCDA) method consisting in the weighted sum of ai values, with

∑
iwi =

1.

WA(a1, .., an) =
n∑
i=1

wiai (2.24)

3.2 Ordered Weighted Averaging (OWA)
OWA[19] is an non-linear operator based on fuzzy logic. It also relies on a weighted
sum but has the advantage of automatically assigning a weight to each score de-
pending on the rank of the score σi in the sorted list of scores. In equation 2.25, the
weights wi are defined according to a distribution (e.g. Gaussian) and

∑
iwi = 1.

OWA(a1, .., an) =
n∑
i=1

wiaσi (2.25)

3.3 Weighted Ordered Weighted Averaging (WOWA)
An alternative to the OWA operator has been introduced in 1997[17]. It uses a
weight vector W defined as previously according to a distribution and assigns those
weights depending on the score ordering. However, it takes an additional weight
vector p = (p1, ..., pn)in parameter, with

∑
i pi = 1.

WOWA(a1, .., an) =
n∑
i=1

vibi (2.26)

vi is defined in equation 2.27 where f is a non-decreasing function that interpo-
lates the points ( in ,

∑
j≤iwj) together with the point (0, 0). We can observe that

if p = ( 1
n , ...,

1
n) then the WOWA operator returns the same result than the OWA

operator.

vi = f(
∑
j≤i

pσj )− f(
∑
j≤i−1

pσj ) (2.27)
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Chapter 3

Experiment

The Unsupervised Fraud Detection prototype has been implemented according to
the architecture detailed in figures 1 and 3.

Figure 1: Architecture

1 Data collection

1.1 RLOC extraction

The first step to build our dataset is to retrieve a representative list of PNRs. This
is achieved by getting the record locators (RLOCs, PNR identifiers) of all the PNRs
updated on the 02/07/2015.
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This retrieval is done by parsing the logs of an Amadeus system using the UNIX
commands zgrep to decompress and filter 107GB of logs and sed to keep only the
RLOC from the logs filtered.

Since some PNRs can be corrupted because of an invalid state at the end of a
system transaction, we applied a similar process to these logs in order to retrieve
only the corrupted ones.

1.2 Data cleaning and sampling

Using Python scripts, we removed the duplicates from both lists and filtered the
corrupted PNRs, obtaining 6 164 304 unique valid RLOCs.

Due to a limited storage capacity, we uniformly sampled 60 000 RLOCs from
this shuffled list in order to retrieve their content.

1.3 PNR retrieval

PNRs are composed of envelopes, one per committed transaction, describing a his-
tory of actions which is stored in a distributed Oracle database. However, this
history is deleted when the purge date of a PNR is reached, usually a few weeks
after the last flight. Because of this, only 40 183 PNRs were retrieved by our Python
script. This is equivalent to 0.65% of the total number of PNRs updated in one day.

An envelope textually describes the changes applied to a PNR during a trans-
action. It follows the EDIFACT format (see appendix A). In order to maintain the
representativeness of our dataset and since those PNRs were retrieved some days af-
ter parsing the RLOCs, we removed all the envelopes created after July, 2nd (0.42%
of envelopes). The remaining 852 590 envelopes were stored in a MongoDB instance.
This collection has an average of 21 envelopes per PNR and weights 19.11GB after
decompression. It is equivalent to 3.31% of the envelopes created in one day in the
Amadeus GDS.

Querying the database, decompressing the envelopes and storing them in Mon-
goDB allows us to process 1.23 envelope per second (purged PNRs were excluded
from this benchmark). The decompression and insertion are negligible comparing to
the query. The total process lasted about 12 days, which is a very strong limitation
to our use case.

2 Feature extraction

2.1 Feature extraction (Envelope)

Once we have the raw data, those EDIFACT messages must be parsed to extract
relevant information that could allow us to detect suspicious behaviors. We have
built a list of relevant feature with functional experts having a fraud knowledge.
This allowed us to extract 58 features per envelope. 57 of them are mostly counters
applied to the most important aspects of a PNR (passengers, points of sale, travel
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segments (including marriages1, special service requests (SSR), frequent traveler
cards (FQTV) and forms of payment), but can also be timestamps (e.g. creation
date of the envelope).

Those features give a very good grasp of the state of a PNR, but we had to
ignore some information. To overcome this limitation, we also extracted the list of
every action performed in each envelope. This list is a collection of action codes,
given in the same order for each envelope (i.e. they are not given in the same order
they were performed).

Extracting the features has been done using a C++ parser developed by Amadeus.
Extraction and insertion in MongoDB required 12 hours for a collection size of
872MB. It has been computed on a SUSE Linux Enterprise Server 11, using one
core of an Intel(R) Xeon(R) CPU X5690 @ 3.47GHz with a remote MongoDB in-
stance. Network communications through optical fibers is negligible.

The final implementation of this prototype should use a multi-threaded archi-
tecture, possibly distributed. The algorithm is embarrassingly parallel since we can
assign a list of PNRs to each process.

2.2 Feature aggregation (PNR)

According to experts from Amadeus, an envelope often does not contain enough data
to identify a fraud. The entire PNR history is usually required for this purpose,
which is why we must aggregate the features per envelope into a single feature vector
having the same dimension for all PNRs.

During this process counters are often aggregated by taking the value in the
last envelope, the sum, average and standard deviation (some aggregations ig-
nore envelopes where the value is equal to 0). We have also defined ratios (e.g.
final number of segment
sum of added segments ), computed the PNR age or the total number of envelopes.

The aggregation is implemented using a Java MapReduce job running on Hadoop.
We also used an existing MongoDB Connector for Hadoop2 which allows us to use
MongoDB as input and output for our MapReduce job, instead of exporting and
importing our data to/from the Hadoop File System (HDFS).

The MapReduce job starts by splitting the dataset of envelopes into independent
chunks.

The mappers receive a chunk of envelopes as input. They map each envelope
received to a key/value pair, using the RLOC as key and the envelope as value. The
set of key/value pairs built is then sorted and output.

While the map tasks are processed, the framework shuffles the outputs received
and groups by key the values, i.e. the envelopes are grouped by PNR ID.

1Marriage: Two segments can be married if they are sold together, i.e. one of them cannot be
sold at the specified fare if bought alone.

2https://github.com/mongodb/mongo-hadoop
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Figure 2: Batch aggregation

Each reducer receives lists of envelopes related to the same RLOCs. For each
RLOC, they sort the corresponding envelopes by envelope number and then apply
aggregation operators (sum, avg,...) to the values in order to build the PNR features.

Using MapReduce jobs allows a very efficient parallelization of our algorithm,
which can be distributed on a cluster for better performances. The MongoDB Con-
nector for Hadoop did not allow us to use secondary sort. This functionality uses
composite keys which in order to sort the values after grouping them by key. By
doing so, we could have sorted the envelopes by creation date before sending them
to the reducers while waiting for the completion of the mappers, this would have
spared us the manual sort processed at the beginning of the reducers.

Feature aggregation is much more efficient than extraction and required only 6
minutes and 32 seconds. The output is a collection of JSON documents weighting
244MB. Each JSON document contains 121 features. One of those features is the
concatenation of the sorted action sequences. The MapReduce job has been exe-
cuted on a single node, using a virtual machine running on LinuxMint 17.4, with 4
hyper-threaded cores of a Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz and a remote
MongoDB instance.

3 Data cleaning

Cleaning the data is the first step of the fraud detection module detailed in figure
3.

When one must implement a data mining workflow, Python is a handy language
which comes with a lot of powerful libraries to manipulate data (pandas3), ap-

3http://pandas.pydata.org
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Figure 3: Fraud detection module architecture

ply machine learning algorithms (scikit-learn4) and visualize statistics (matplotlib5,
seaborn6).

Keeping in mind the need for high performances, we also developed a fraud
detection engine using Spark7, a very efficient and distributed framework providing
APIs in Java, Scala, Python and R to process large-scale data. In Spark, data is
stored in a Resilient Distributed Dataset (RDD) on which parallel methods can be
called.

Since both approaches are interesting, we started with a detailed fraud detec-
tion module including data analysis and benchmarks in python. Once the best
algorithms were selected, we built a scalable and distributed proof of concept using
Spark and Scala.

As previously mentioned, the data retrieved is already very clean and we only
need to apply some adjustments. This cleaning was implemented in Spark and
Python.

3.1 Unknown values

For some PNRs, a specific feature cannot be computed. When this happen, we
replace the unknown value by the feature average.

4http://scikit-learn.org
5http://matplotlib.org/
6http://stanford.edu/~mwaskom/software/seaborn
7http://spark.apache.org
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3.2 Linearly correlated features
Data analysis shows that some features are always 0, which occurs for very rare
actions absent from our dataset. This prevents us from computing the Mahalanobis
provided by scikit-learn.

Those values are an issue since we need to invert the correlation matrix of our
dataset, and such values make our matrix not invertible. We must thus solve the
matrix singularity by removing the linear correlations between the features. Those
correlations could be detected by looking at singular value decomposition (SVD)
and finding values close to 0.

In this implementation, we only match features always equal to 0, which is
enough to remove the linear correlations of our dataset. 9 features match this filter
and are filtered out, leaving 112 remaining features including the action sequence.

3.3 Scaling
To make the time features readable by humans, we convert them from milliseconds
to floating hours.

Ratios usually expressed between 0 and 1 (can be higher than one due to splits
for example) are scaled to percentages usually between 0 and 100.

Eventually, we normalized the data so that the values of all features remain
between 0 and 1.

3.4 Feature redefinition
After some discussions with fraud experts, we removed 33 features related to SSRs,
including 4 linearly correlated. 83 features remain, including the action sequence.

4 Data analysis
This section describes a dataset of 20 000 PNRs uniformly sampled from the initial
dataset of 40 183 PNRs. The size of the dataset had to be reduced due to limited
computational resources, the virtual machine used to run the machine learning
algorithms containing 20GB of RAM (swap included).

Data analysis has been processed in Python using pandas, matplotlib and seaborn.
Statistics and histograms are shown for 111 features (all, except linear correlations),
the other plots are applied to the final list of 82 features (action sequences are not
analyzed here).

4.1 Statistics
A sample of the statistics computed is given below. Average, standard deviation,
minimum, maximum and 5 quantiles are shown. nb_env is the number of envelopes,
the PNR age creation.age is given in hours, seg.add.sum is the number of added
travel segments, fp.add is the number of added forms of payment.
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Feature nb_env creation.age seg.add.sum split fp.add

mean 21.076100 789.528140 4.780950 0.09740 0.863000
std 30.367974 1326.969628 22.846721 0.59811 1.400332
min 1.000000 0.000000 0.000000 0.00000 0.000000
5% 3.000000 0.109139 0.000000 0.00000 0.000000
25% 6.000000 45.538056 2.000000 0.00000 0.000000
50% 13.000000 273.224028 3.000000 0.00000 1.000000
75% 26.000000 856.738056 5.000000 0.00000 1.000000
95% 61.000000 3547.940917 12.000000 1.00000 3.000000
max 1471.000000 50258.785278 2342.000000 27.00000 69.000000

We can definitely observe some strong outliers. While 95% of the PNRs have 61
envelopes or less, one PNR has 1471 envelopes. Similarly, 95% of the PNRs have
been created less than 5 months ago, but one has been created almost 6 years ago.
There is definitely something strange about the purging date of this PNR.

Usually, a few travel segments are added in a PNR, each segment corresponding
for example to a flight. Yet, somebody added 2342 travel segments to a PNR, which
is definitely suspicious.

Eventually, we can observe a surprisingly high number of 69 forms of payment
added.

Those few numbers show that we certainly have frauds and misuses in our
dataset, even if we only took a small sample of the data generated by Amadeus
each day.

4.2 Feature distributions

Figure 4 shows the distribution of some features. Left Y-axes represent the number
of PNRs in the histogram while the right Y-axes show the density of the probability
density functions obtained by kernel density estimations (KDE) using Gaussian
kernels and Scott’s rule[12].

We can also see some extreme values here, e.g. 35 different points of sale updat-
ing a PNR (pos.updater), the PNR created 6 years ago, the one with 1471 envelopes
or a PNR where the final number of tickets is four times higher than the num-
ber of added tickets (seg.tkt.add_ratio), which means that most of the tickets were
cancelled.

4.3 Box-and-whisker plot

The box plot is a useful visualization showing the quartiles (25%, 50%, 75%) of a
set of values using a box. This diagram is completed by lines extending the box and
called whiskers. The length of those lines is 1.5 ∗ IQR, with IQR the interquartile
range defined as IQR = Q3−Q1. Those concepts are shown in picture 5.
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Figure 4: Histogram and probability density function per feature

Figure 5: Box-and-whisker plot - Explanation

Figure 6 shows the box-and-whisker plot of each feature. Values higher than
the extremity of the right whisker are represented by gray diamonds. The 20 000
values of each feature are represented by light blue dots. A log scale is used.

Ratios represent a percentage (can be higher than 100) and some features such
as Feature 1 are only represented by a whisker. This feature has a zero-IQR,
since Q1 = Q3 = 0, thus we should have only extreme values plotted instead of the
whisker. This is a bug in the matplotlib library for which the issue was still opened8

when generating the diagram.

8https://github.com/matplotlib/matplotlib/issues/5331

30

https://github.com/matplotlib/matplotlib/issues/5331


Fi
gu

re
6:

B
ox
-a
nd

-w
hi
sk
er

pl
ot

(2
0
00

0
PN

R
s)

31



4.4 Correlation heatmap

Figure 7 shows the pairwise correlation between the features. The coefficients are
computed according to the Pearson product-moment correlation coefficient defined
in equation 3.1 where Rij is the correlation coefficient between features i and j, and
Cij is the covariance between those features.

Rij = Cij√
Cii ∗ Cjj

(3.1)

Figure 7: Hierarchical clustering applied to feature correlation heatmap

A hierarchical clustering has been applied on the resulting symmetric correlation
matrix. This clustering helps us understand the processes behind the PNRs. We
can for example observe that the number of marriages (segments sold together) is
strongly correlated to the number of segments added.

If needed, this visualization could help us reducing the dimensionality of our
dataset by applying correlation feature selection (CFS).
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4.5 Principal component analysis

PCA[14] is an interesting tool used to reduce the dimensionality of a dataset. When
dealing with high dimensional feature vectors, the relevant data can be expressed us-
ing less dimensions. This is achieved by building the covariance matrix of our dataset
then extracting the principal components defining the output space by computing
the N eigenvectors corresponding the highest eigenvalues.

This transformation could be useful to visualize the data and work on a dataset
of lower dimension, thus less impacted by the curse of dimensionality. A 2D repre-
sentation of our dataset is given in figure 8.

Figure 8: PCA - 2 components

As previously explained, the eigenvectors are computed in order to preserve the
variance in the dataset. As seen in figure 6, some feature with high variance, e.g.
features 8, 9 and 10, will have a strong weight in the transformation from the input
to output space but do not highlight many interesting outliers. To the opposite,
features such as feature 64 having almost always the same values except for some
outliers will be almost ignored by the space transformation.

Because of this, applying PCA would result in an important loss of information
and would prevent us from efficiently detecting outliers. This has been confirmed
by a manual check of some outliers from the PCA representation, where the PNRs
studied were all regular ones.

4.6 Manual fraud detection

In order to evaluate the performances of the unsupervised machine learning algo-
rithms, a set of fraudulent PNRs from our dataset would be interesting.
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Working with fraud experts, we manually investigated some PNRs for which
extreme values were noticed, we defined some inclusion and exclusion rules and
were able to identify some of the most evident known fraudulent samples. For other
frauds, no simple rule could be defined and we had to create lists of RLOCs.

The number of frauds found in 20 000 PNRs is described below.

Fraud Count Percentage
Fraud 2 1 0.005%
Fraud 5 8 0.04%
Fraud 1 3 0.015%
Fraud 3 13 0.065%
Fraud 4 96 0.48%

By identifying frauds, we were also able to study their profile. This can be
achieved by highlighting fraudulent PNRs on a box-and-whisker plot and selecting
features for which those PNRs have only extreme values.

The profile of Fraud 4 is given in figure 9. Blue dots are regular PNRs and green
dots are fraudulent samples. We can see here that features 51, 53, 54 and 56 are
very interesting to identify this fraud.

Figure 9: Fraud profile - Fraud 4
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5 Fraud detection
The algorithms used for fraud detection are described in section 1. All algorithms
are fed with the 82 normalized features of 20 000 PNRs, except HMM which receives
sequences of actions.

The following algorithms were already implemented in scikit-learn for the python
module: DBSCAN, MeanShift, Gaussian Mixture Model, One-class SVM. All of
them return a predicted class ID or −1 if the PNR is an outlier, except the GMM
which returns the log probability under the model.

5.1 Hierarchical clustering
Hierarchical clustering and the corresponding formulas for outlier detection were
called in python using a R package called Data Mining with R[16] (DMWR).

The python module rpy29 has been used to interface R with python.

5.2 Z-Score and Median absolute deviation
Z-Score and MAD were both implemented in python. We explained in section 1.5
the advantages of MAD over Z-Score when scoring a dataset containing outliers.
However, it has been seen in the previous box plots that some features have more
than 50% of identical values. This is an issue since the MAD computed in equation
2.6 and used as denominator in equation 2.7 will be equal to 0.

From here, we could either decide not to apply the MAD, or to use a denomi-
nator of 1 when the MAD is equal to 0, which would flag as outliers all the values
not equal to the median.

We choose to use the Z-Score, which is less resistant to outliers but is not subject
to the previous issue. It allows us to give a score to each feature of each PNR. In
order to obtain a single score per PNR, we use the maximum score obtained for
any feature. The score are then scaled between 0 and 1 to represent a probability.
Log operator is used to spread the values, and we defined that values which are 40
standard deviations are more away from the mean will have an outlier probability
of 100%. Final score is computed according to equation 3.2, with zscore() defined
in equation 2.5.

score(v) = max(min( log(zscore(v))
log(40) , 1), 0) (3.2)

The distribution of the scores in the dataset is given in figure 10.
Note that a score of 10 is already quite suspicious. Without the log operator,

10
40 = 0.25, which is quite a low probability. We now obtain log(10)

log(40) ≈ 0.62. A prob-
ability of one corresponds thus to a Z-Score of 40 or more.

9http://rpy.sourceforge.net
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Figure 10: Z-Score distribution

In our first attempts with Z-Score, we obtained quite a lot of group PNRs. To
refine a bit our results, we ignored 18 features which were systematically returning
regular group PNRs, which leaves us with 64 features for this algorithm.

5.3 Hidden Markov Model

HMMs were trained using the hmmlearn10 Python API. We fed this algorithm with
the concatenation of the action sequences, updating the initial distribution vector
accordingly. The total number of actions used to train the algorithm is 4 675 603,
which gives an average of 233 actions per PNR or 11.1 actions per envelope.

The score returned is the log probability of the action sequence of a PNR under
the trained model. The log operator is required to avoid a loss of information when
multiplying low probabilities between each other, hence quickly approaching 0.

The probability for a sequence to be generated given a model strongly depends
on the sequence length, a long sequence having a small probability to be generated.
The sequence length could be an interesting feature, but it still has a high weight
in the final probability and is already in the feature vectors used by the previous
algorithms. To remove this factor, we can divide the log probability by the length
of the sequence T .

Our experiment benchmarked the HMMs using the log likelihood returned by
the model, and after removing the length factor. After having scored all the PNRs,
we normalize the scores to obtain probabilities between 0 and 1. Normalized log
likelihood is shown in figure 11. Figure 12 shows normalized log likelihood including
length normalization.

10https://github.com/hmmlearn/hmmlearn

36

https://github.com/hmmlearn/hmmlearn


Figure 11: Normalized log likelihoods Figure 12: Normalized log likelihoods pre-
viously divided by sequence lengths

5.4 Self-Organizing Maps

On-line algorithm

On-line SOM were entirely implemented in python. We also implemented the com-
putation of the MID matrix and the outlier detection algorithm. The code respon-
sible for the training of the SOM was later replaced by the MiniSom11 library, also
providing an on-line training.

Figure 13: Initialization Figure 14: 100 000 steps Figure 15: 200 000 steps

Figure 16: 300 000 steps Figure 17: 400 000 steps

11https://github.com/JustGlowing/minisom
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Figures 13 to 17 show the training of the SOM. We have used a 2-dimensional
grid of size 10x10, each step updates the value of the winning node and its neighbor-
hood. 400 000 iterations (equivalent to 20 times the size of the dataset) were used
with an initial learning rate of 0.01 and an initial standard deviation for the neigh-
borhood of σ = 1. The 2D representation of the neural network has been computed
by the multidimensional scaling (MDS) algorithm implemented in scikit-learn.

An example of weights used to update the winning node and its neighbors is
plotted in figure 18 (Gaussian distribution, σ = 1, winning = (4, 4)).

Figure 18: Gaussian neighborhood, σ = 1

The MID matrix of the trained network is plotted in figure 19. It was computed
using the median of the distance with the 8 neighbors of each neuron. Neurons
represented by values close to 1 are far from their neighborhood and will be flagged
as outlying neurons. We have plotted the frauds manually detected during the data
analysis phase on top of their winning node: Fraud 4 (cyan cross), Fraud 5 (purple
triangle), Fraud 2 (red circle), Fraud 3 (green square) and Fraud 1 (blue diamond).

Figure 20 shows a box plot of the quantization error in the dataset, i.e. the
distance between each data point and its winning node. This plot shows some
PNRs lying far from their winning node, thus outliers which are flagged as such.

Figure 19: MID matrix Figure 20: Box plot - Quantization errors
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Distributed batch algorithm

Based on [10], we have implemented a distributed batch training in Scala using
Spark.

Developing a parallel SOM training could have been achieved by either par-
titioning the neural network or splitting the data among the processes. A good
speedup for a network partitioning algorithm would require to assign a sufficient
number of neurons to each process in order to reduce the amount of communication.
Since we use a neural network of 100 neurons, this approach may not be the most
efficient.

Partitioning our dataset into equal chunks is thus likely to give better results.
The on-line training implies a communication step after presenting each input vec-
tor. To the opposite, data partitioning with batch training would only require a
synchronization at the end of each epoch, thus reducing the communication cost
and increasing the speedup.

A distributed batch training has been implemented in Scala using Spark based
on [10]. It follows the MapReduce programming model and each process is assigned
a partition dp of the data.

1. Randomly initialize the weights of the neural network

2. For each epoch

a) Initialize the numerator and denominator of equation 2.18 to 0
b) Map: For each process p

• For each input vector x in dp
– Compute the Euclidean distance between x and all the neurons
wk(t0)

– Compute the winning node, which is the closest neuron to x
– Output the numerator and denominator of all neurons according

to equation 2.18 for x
c) Reduce: Update the weights of all neurons according to equation 2.18

by summing up the output of the Map tasks

The output of the Map tasks is a tuple containing the numerator and denomi-
nator of each neuron. The numerator is a 3-dimensional matrix containing for each
neuron the input vector x multiplied by the neighborhood weight. The denominator
is a 2-dimensional matrix containing the neighborhood weight of each neuron

Figure 21 shows the execution time in seconds required by the training of a
10x10 SOM for 100 epochs and a dataset split into several partitions. This bench-
mark has been performed using local threads on a hyper-threaded quad-core. The
computation time of the outlier detection is negligible.
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A speedup of 1.7 can be observed when using an even number of partitions and
2 threads: S2,2 = T1,1

T2,2
= 550

323 = 1.70 with Tt,p the computation time for t threads and
p partitions. With 3 threads and 3 partitions, we reach S3,3 = T1,1

T3,3
= 550

266 = 2.07.
However, using more threads does not significantly improve the performances. This
may be caused by the increasing amount of communications required or the presence
of other threads (scheduler, memory manager...) managed by Spark consuming
CPU time.

The same amount of computations for the on-line algorithm (100 times the size
of the dataset, hence 2 000 000 on-line iterations) took 1680 seconds, which is 3
times more than the single threaded implementation on Spark. This difference
is probably due to the fact that Scala can be faster than Python and because of
additional threading optimization that may be provided by the framework.

Figure 21: Computation time of the distributed SOM batch training

Figures 22, 23 and 24 show the result of the distributed training.

Figure 22: Spark MID matrix Figure 23: Spark quantization errors
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Figure 24: 40 iterations, σ = 1.8

5.5 Model aggregation
The weighted averaging is simple and has been implemented. The OWA andWOWA
are computed using an internal library of Amadeus.

The weights used for WA and WOWA are the F1-score of each algorithm com-
puted thanks to the known frauds manually detected. All algorithms return either
a binary output (0 if regular or clustered PNR, 1 if outlier) or a probability between
0 and 1. Those scores are aggregated according to the different aggregation opera-
tors to obtain the final scores. By doing so, OWA remains the most unsupervised
approach.
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Chapter 4

Results

This section details the precision and recall of each algorithm and for each known
fraud. This benchmark is processed by tuning the parameters required by the
algorithms in Python. The Spark module has not been benchmarked yet.

Please consider that the precision and recall are measured only by comparing
the manually detected known frauds to the outliers found by the algorithm.

precision = |known frauds correctly flagged as outliers|
|outliers|

(4.1)

recall = |known frauds correctly flagged as outliers|
|known frauds|

(4.2)

Since those measures are based on an incomplete manual labelling and since
we are also interested in discovering new frauds, it is important to note that those
benchmarks only show estimations and that we do not target a precision of 100%.
Such a figure is the objective of supervised learning. Yet, we can use precision and
recall to select the most efficient models and their parameters. Note however that
the proportion of Fraud 4 in the known frauds has an important impact on those
metrics.

1 Unsupervised algorithms

1.1 DBSCAN
DBSCAN has been benchmarked using the Euclidean and Mahalanobis distances.
Parameters are the neighborhood radius (eps) and the minimum number of points
in a cluster (minClusterSize)

Euclidean distance

Figure 1 shows one precision recall curve per minClusterSize. The measurements
for each curve are obtained by using different eps.
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Figure 2 shows the detail of the precision recall curve having the highest F1
score. This diagram contains the recall of each known fraud and the percentage of
outliers.

Figure 1: DBSCAN (Euclidean) Figure 2: DBSCAN (Euclidean) - min-
ClusterSize=55, best F1 score=0.25

We can hardly find a trend in the precision recall plot, except that allowing
clusters containing too few data points will group clouds of outliers together and
thus ignore some known frauds. With a minimum cluster size of 55 and an eps of
0.086, we reach a F1 score of 0.25. This is obtained for a precision of 18.64% and a
recall of 36.36%, where 236 outliers are detected and all the other data points are
clustered together. All the 3 Fraud 1 are found, and we have a good recall on the
Fraud 3. One third of the Fraud 4 are found, but the two other frauds are lost.

Those results could be better, and the part of unknown data outliers may be
too important to be analyzed.

Mahalanobis distance

Figure 3: DBSCAN (Mahalanobis) Figure 4: DBSCAN (Mahalanobis) - min-
ClusterSize=77.5, best F1 score=0.19
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We though that the Mahalanobis distance would allow a more efficient outlier
detection, but its application in the DBSCAN algorithm gives the results depicted
in figures 3 and 4 for which the maximum F1 score reached is only 0.19 (15.31%
precision and 26.15% recall).

This metric is known to be useful for identifying outliers in data following mul-
tivariate normal distributions. However, most of our features have a different kind
of distribution, e.g. exponential, which may be the reason of those worse results.

1.2 MeanShift

MeanShift has been benchmarked with a Gaussian kernel. Figure 5 shows that the
number of seeds used to initialize the algorithm have little influence on the results.

With a maximum F1 score of 0.21 (13.03% precision, 58.68% recall), MeanShift
does not perform better than DBSCAN. Both algorithms must deal with high-
dimensional data which is likely to affect the detection of dense clouds of data
points.

Figure 5: MeanShift Figure 6: MeanShift - n_seeds=100, best
F1 score=0.21

1.3 Gaussian Mixture Model (GMM)

Like MeanShift, GMM targets globular clusters by fitting a mixture of Gaussians to
the dataset. According to the precision recall curves, two Gaussian components are
enough to cluster most of the data points since we reach a F1 score of 0.28 (23.24%
precision, 35.45% recall) with this configuration and a threshold of 193 (outliers are
PNRs having a log probability under the model lower than this threshold).

The precision recall curves are very similar to DBSCAN, but we chose to use
two components where DBSCAN only found one cluster. This representation is
probably more accurate and explains the better performances.
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Figure 7: GMM Figure 8: GMM - n_components=2, best
F1 score=0.28

1.4 One-class SVM

As detailed in the theory section, the one-class SVM is supposed to be trained with
a dataset exempt of unusual behaviors. One of the goal of our final model is to
be able to evolve with new use cases. In addition, even if we wanted to remove
manually labelled frauds from our dataset, unknown frauds could not be discarded.

This is why we did not filter out PNRs from the dataset, making use of the slack
of the one-class SVM to ignore most of the outliers. This experiment showed results
similar to the ones previously obtained, with little influence for the parameter γ.

A F1 score of 0.26 has been reached for a precision of 23.49% and a recall of
28.93%.

Figure 9: One-class SVM Figure 10: One-class SVM - γ=0.07, best
F1 score=0.26
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1.5 Z-Score
Z-Score is a special model since it focuses on the most outlying feature of each data
point and thus ignore all the others. It is also supposed to be applied to Gaussian
distributions.

Nevertheless, a F1 score of 0.29 (33.71% precision, 24.76% recall) was reached for
a threshold of 19.32 (minimum number of standard deviations between the average
and the value for the outliers). Results are still similar to the ones of the previous
algorithms, but using the Z-Score allowed us to easily recognize Fraud 4 and Fraud
3 which have extreme values on some of their features.

Figure 11: Z-Score Figure 12: Z-Score - Best F1 score=0.29

1.6 Hierarchical clustering
The sizeDiff method for hierarchical clustering definitely returns the best results.
We reach a F1 score of 0.35 (27.11% precision, 50.41% recall) for a probability
threshold of 0.91.

Figure 13: Hierarchical clustering Figure 14: Hierarchical clustering -
method=sizeDiff, best F1 score=0.35
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1.7 Hidden Markov Model (HMM)

HMMs returns average results, with a F1 score of 0.26 (24.44% precision, 27.27%
recall) when long sequences are disadvantaged (figures 15 and 16). However, nor-
malizing the probabilities by the length return very poor results (0.06 F1 score,
figures 19 and 18). In this case, Fraud 5 is the most easily fraud found, probably
because of the absence of an action usually performed in most of the PNRs. Yet,
a manual check on the outliers triggered when normalizing by the sequence lengths
showed very rare use cases (car, hotel and cruise bookings) and identified some bots.

Length is not the only factor here, we tried to apply z-score considering only the
number of actions and obtained half-good results. However, we noticed that Fraud
1 and Fraud 4 are indeed PNRs with a usually high number of actions.

Note that results may be improved if the actions were not reordered for each
envelope by the parser.

Figure 15: HMM (log probability) Figure 16: HMM (log probability) -
n_components=13, best F1 score=0.26

Figure 17: HMM (length normalization) Figure 18: HMM (length normalization) -
n_components=15, best F1 score=0.06
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1.8 Self-Organizing Map (SOM)

The two parameters used by SOM to detect outliers are the thresholds applied
to neurons (MID threshold) and PNRs (QE Z-Score threshold). To detect PNRs
lying far from their closest neuron, we applied the threshold to the Z-Score of the
quantization error (Euclidean distance between the PNR and the winning neuron).
The figures below show that a high value for both thresholds is required to have
good results.

Those results are quite good. SOM has a F1 score of 0.42 (27.64% precision,
84.30% recall), detecting 370 outliers with MID threshold = 0.75 and QE Z-Score
threshold = 5.0. This efficient detection can be partly explained by the plot of
the MID matrix which showed that most of the known frauds were projected on
outlying neurons. SOM is also the only algorithm that found Fraud 2.

Figure 19: SOM Figure 20: SOM - QE Z-Score thresh-
old=5.0, best F1 score=0.42

During the training of the model, we have noticed that the quality of the results
could vary, depending on the random initialization of the weights. Increasing the
number of iterations did not solve this local minima issue, so we fixed the seed of
the random generator in order to perform stable benchmarks.

2 Model aggregation
Ensemble learning often gives better results than single weak learners. This is be-
yond doubt for any aggregation operator used below. The weights used for weighted
averaging (WA) and WOWA are the F1 score of the algorithms. Aggregation has
been performed using the three best algorithms we had, namely SOM, hierarchical
clustering and Z-Score. The configuration for which the highest F1 score is reached
has been chosen for SOM and hierarchical clustering. Z-Score does not need any
parameter.

These aggregations get quickly rid of the PNRs which were not considered as
outliers by at least two of the tree algorithms. By increasing the threshold, i.e.
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Figure 21: WA - F1s=0.55 Figure 22: OWA -
F1s=0.57

Figure 23: WOWA -
F1s=0.56

Aggregation operator Best F1 score Precision Recall Outliers Threshold
WA 0.55 39.78 88.43 269 0.482
OWA 0.57 76.39 45.45 72 0.655
WOWA 0.56 74.32 45.45 74 0.689

flagging only the data points having a high outlyingness, we are able to reach a
very good precision for an acceptable recall (more than 45%) and a F1 score of
0.57. If completeness matters, we can also select a lower threshold and still have
about 40% precision for 88% recall.

If those three aggregation methods give better results than any single algorithm,
the similarity of their results added to the uncertainty of our measures do not allow
us to rank them with confidence.

3 Self-Organizing Map and Z-Score

Excellent results were obtained using SOM, Z-Score and hierarchical clustering.
However, the last algorithm cannot predict the outlyingness of a PNR which was
not presented during the training since it requires to compute the pairwise distance
between all PNRs. To the opposite, the model trained by SOM and Z-Score can be
stored and thus allows us to make predictions without the need of training. The
representation of a SOM is the two thresholds and the weight matrix describing
the neurons of the neural network, and the Z-Score model is simply a dictionary
containing the average and standard deviation of each feature.

Since one of the goal of our fraud detection prototype is to handle streaming
data, we choose to benchmark the weighted average of the SOM and Z-Score. The
results are plotted in figures 24 and 25.

Hierarchical clustering was excluding many PNRs. By removing this algorithm
from the aggregation, we reach the best and final F1 score of 0.63 (50.75% precision,
83.47% recall). This score is obtained with an aggregation threshold of 0.746, using
an outlying neuron threshold of 0.81 and a QE Z-Score threshold (used by SOM)
of 3.75.

The 20 000 feature vectors are loaded from the database in 1min 15s. If a cache
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Figure 24: SOM & Z-Score Figure 25: SOM & Z-Score - Best F1
score=0.63

is used, only 3s 500ms are needed. The algorithm was trained in 5min 20s 530ms:
30ms for Z-Score and 5 min 20s 500ms for SOM.

The recall per fraud for this configuration is detailed in the table below.

Fraud Proportion Recall
Fraud 1 2/3 66.67
Fraud 3 10/13 76.92
Fraud 2 0/1 0.00
Fraud 5 0/8 0.00
Fraud 4 89/96 92.71

We had a look at the first 16 outliers returned by the algorithm, it is a small
sample but a thorough investigation of each PNR requires some time. 10 of them
were frauds belonging to classes of frauds known by Amadeus. 3 of them were new
types of frauds and one was a rebooking which cannot be differentiated from one
of the known frauds according to the current features. The two others were regular
PNRs corresponding to very unusual use cases including actions never performed
on other PNRs.

To confirm the quality of our result, we have applied the same model to the
remaining 20 183 PNRs excluded from the initial dataset. Those PNRs contain 2
Fraud 1, 8 Fraud 5, 90 Fraud 4, 4 Fraud 2 and 9 Fraud 3. Thanks to the shuffling
and random selection applied to build the training dataset, we can observe a similar
distribution for this testing dataset.

The predictions with the same configuration as previously described showed a
F1 score of 0.49, for a precision of 41.25% and a recall of 60.00% (0% for Fraud 5,
0% for Fraud 1, 25.00% for Fraud 3, 25% for Fraud 2 and 71.59% for Fraud 4). If
the performances are slightly lower than for the training set, they still show that

50



the models trained are not overfitted and could be applied to new PNRs to detect
frauds.

7.32 seconds were required to score the testing dataset, resulting in a prediction
capacity of 2 730 PNRs per second.

Depending on whether the priority is a high precision or the completeness of
the detection, different configurations could also be used based on the benchmarks
plotted.

Distributed implementation
SOM and Z-Score were implemented on Spark. If Z-Score is deterministic and
returns the same results, the distributed SOM reached a F1 score of 0.56 (43.66%
precision, 76.86% recall (100% Fraud 1, 93.75% Fraud 4)). The aggregation of both
algorithms returned a F1 score of 0.66 (55.43% precision, 80.17% recall (100% Fraud
1, 23.08% Fraud 3, 94.76% Fraud 4)).

The distributed implementation is hence faster and at least as efficient.

4 Summary
The best precision recall of each algorithm on the training set, including the final
aggregation, is plotted in figure 26. Triangles show the highest F1 score of each
algorithm.

Figure 26: Outlier
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Algorithm Best F1 score Precision Recall
DBSCAN (Euclidean) 0.25 18.64 36.36
DBSCAN (Mahalanobis) 0.19 15.31 26.45
MeanShift 0.21 13.03 58.68
GMM 0.28 23.24 35.54
One-class SVM 0.26 23.49 28.93
Z-Score 0.29 33.71 24.79
Hierarchical 0.35 27.11 50.41
HMM 0.26 24.44 27.27
SOM 0.42 27.64 84.30
Distributed Z-Score 0.29 33.71 24.79
Distributed SOM 0.56 43.66 76.86
Z-Score & SOM 0.63 50.75 83.47
Distributed Z-Score & SOM 0.66 55.43 80.17
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Chapter 5

Conclusion

This study has benchmarked 8 unsupervised machine learning algorithms using
different metrics and outlier detection techniques. Those algorithms have been ag-
gregated using 3 different operators, which produced a scalable model able to handle
streaming data while performing an efficient fraud detection.

The outliers detected by the final model are sorted according to their outlying-
ness which allows a fast insight of the most critical situations.

The computation time of the overall process has an important bottleneck caused
by the queries made to the database containing the PNR envelopes. These queries
take about 96% of the total time and limit the computational capacity of the pro-
totype.

Most of the remaining time is consumed by the feature extraction, for which a
parallel implementation could be easily provided. The training of the algorithms
requires little time and can be done only once or repeated once a month if needed
(e.g. if new major use cases change the distribution of the features), while the
predictions are very fast.

To facilitate the production launch of the prototype and reduce the computation
time required by the training and predictions, a distributed implementation of the
most efficient algorithm has been provided.

This study performed an estimation of the percentage of fraudulent PNRs for
each known fraud in the Amadeus GDS.

New frauds were discovered, such as the delay of purging date of a PNR, and
new samples of known frauds which were not labelled as such were found by the
prototype.

Eventually, we have seen that Fraud 2 and Fraud 5 have a feature distribution
similar to regular PNRs and are thus hard to detect.
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Chapter 6

Future work

A few points may be improved in the current prototype to build a production ready
product.

First, a faster access to the PNR history must be provided in order to reach a
reasonable number of transactions per second. A subscription to a live feed coupled
with a PNR database dedicated to the targeted markets may by a solution.

The computation time required by the feature extraction could be reduced by
making it parallel and even distributed if needed. With a few processes, this time
will quickly become negligible.

The distributed implementation should be completed with the weighted average
of Z-Score in order to increase the performances on Spark.

Some features should be refined, for example the ones based on timestamps for
which time zones should be retrieved using the IATA code of the corresponding air-
ports or points of sale. Rebookings are sometimes confused with an existing fraud.
Adding a feature in order to differentiate actions made by the Amadeus systems
and external users or systems would improve the results.

This prototype could be redesigned into a product and made available for travel
providers. Applied to PNRs approved by a preliminary supervised prediction, it
would provide data samples to improve the supervised algorithms and raise alerts
for unusual PNRs.

To efficiently recognize fraudulent PNRs based on those alerts, an ergonomic
Web user interface possibly based on a box plot should be developed.

If the prototype detects new types of frauds, the previous plot could help in
selecting features in order to retrieve similar samples.

The figure below shows how reducing the number of features can increase the
detection of Fraud 4 with DBSCAN. The 42 features used are the ones related to
travel segments while the 3 selected features are the ones containing only extreme
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values for Fraud 4. By studying the profile of a fraud, one may thus be able to build
a dataset which could be fed to a supervised algorithm.

Figure 1: Detection of Fraud 4
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Appendix A

Envelope (EDIFACT)

Listing A.1: Envelope (EDIFACT)
UNH+1+PASBCQ: 0 8 : 1 : 1A’&
STX+ACT’&
IMD+NM’&
EMS++ :1++0’&
IRV++++:::2301C6D200000C55’&
BLB+29+E+TIF+AIL INTERRUPT+CANCEL SSR’&
’&
IMD+RF’&
EMS++ :0++0’&
BLB+80+E+LFT++A’&
LFT++OFFICEID’&
SDI+++2015:7:22:8:33 ’&
TID+ATID+1AOFFICEID:4 ’&
UID+DUTYCODE’&
’&
IMD+AP’&
EMS++ :1++0’&
BLB+11+E+LFT+3:AP+1’&
’&
IMD+AIR’&
EMS++ :1++0’&
BLB+353+E+STX+NGI:1∗CAB:T’&
TVL+300715:1930:300715:2250+FRA+HEL+6X+3613:Y+ET’&
SDI+DTB+GMT+2015:7 :22 :8 :33 ’&
SDI+1LG+LOC+2015:7:30 ’&
SDI+KDT+GMT+2015:7 :22 :8 :33 ’&
RPI++NN∗NN’&
STX+CTJ:1 ’&
MSG+1’&
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RCI+6X: ’&
RPI+1+HK’&
RPI++LK’&
APD+733 :0 : : : 4 ’&
SDT+P2 :LDS’&
CTD+C:6X:FR+Y: 0 : I+0’&
UID+91496716:OFFICEID+A’&
SYS++1A:NCE:NCE’&
PRE+FR’&
ABI++:OFFICEID’&
SYS+++DCD 1 0 0’&
UID+:OFFICEID++AGENTSIGN’&
PTD+0’&
’&
[ . . . ]
’&
UNT+76+1’
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