
http://www.diva-portal.org

Postprint

This is the accepted version of a paper published in Information and Software Technology. This
paper has been peer-reviewed but does not include the final publisher proof-corrections or journal
pagination.

Citation for the original published paper (version of record):

Jabangwe, R., Šmite, D., Hessbo, E. (2015)

Distributed Software Development in an Offshore Outsourcing Project: A Case Study of Source

Code Evolution and Quality: Distributed Software Development in an Offshore Outsourcing

Project.

Information and Software Technology

http://dx.doi.org/10.1016/j.infsof.2015.12.005

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-11449

Noname manuscript No.
(will be inserted by the editor)

Distributed Software Development in an Offshore
Outsourcing Project: A Case Study of Source Code
Evolution and Quality

Ronald Jabangwe · Darja Šmite · Emil
Hessbo

the date of receipt and acceptance should be inserted later

Abstract Context: Offshore outsourcing collaborations can result in distributed de-
velopment, which has been linked to quality-related concerns. However, there are few
studies that focus on the implication of distributed development on quality, and they
report inconsistent findings using different proxies for quality. Thus, there is a need
for more studies, as well as to identify useful proxies for certain distributed contexts.
The presented empirical study was performed in a context that involved offshore
outsourcing vendors in a multisite distributed development setting.

Objective: The aim of the study is to investigate how quality changes during evo-
lution in a distributed development environment that incurs organizational changes
in terms of number of companies involved.

Method: A case study approach is followed in the investigation. Only post-release
defects are used as a proxy for external quality due to unreliable defect data found
pre-release such as those reported during integration. Focus group meetings were
also held with practitioners.

Results: The results suggest that practices that can be grouped into product,
people, and process categories can help ensure post-release quality. However, post-
release defects are insufficient for showing a conclusive impact on quality of the
development setting. This is because the development teams worked independently
as isolated distributed teams, and integration defects would help to better reflect on
the impact on quality of the development setting.

Conclusions: The mitigation practices identified can be useful information to
practitioners that are planning to engage in similar globally distributed develop-
ment projects. Finally, it is important to take into consideration the arrangement
of distributed development teams in global projects, and to use the context to iden-

Blekinge Institute of Technology,
SE-371 79 Karlskrona, Sweden
Tel.: +46 455 38 50 00
Fax: +46 455 38 50 57

Ronald Jabangwe E-mail: ronald.jabangwe@bth.se ·
Darja Šmite E-mail: darja.smite@bth.se ·
Emil Hessbo E-mail: emil.hessbo@gmail.com

2 Ronald Jabangwe et al.

tify appropriate proxies for quality in order to draw correct conclusions about the
implications of the context. This would help with providing practitioners with well-
founded findings about the impact on quality of globally distributed development
settings.

Keywords Offshore Outsourcing · Distributed Development · Global Software
Development · Software Quality · Case Study

1 Introduction

Offshore outsourcing is a sourcing strategy in which a company contracts part or
all of the development or maintenance activities to an external company that is
located in another country (an offshore vendor) (Šmite et al., 2014; Oshri et al.,
2011; Pfannenstein and Tsai, 2004). Such development environments often result
in nontrivial, difficult to manage distributed development collaborations (Colomo-
Palacios et al., 2014; Šmite et al., 2014), much more demanding than those formed
by outsourcing within the same national boundaries (Rottman and Lacity, 2006;
Oshri et al., 2011). What is perhaps more worrisome is that distributed development
is infamous for failures, including failures of delivering quality software (Moe et al.,
2014; Dibbern et al., 2008).

Almost half of the projects in industry are said to fail to realize benefits, like
cost savings, because of inadequate planning of, for example, knowledge transfer and
communication between onshore and offshore sites, and not taking into consideration
the complexities that come with offshore outsourcing ventures (Fabriek et al., 2008;
Iacovou and Nakatsu, 2008). Such statistics are troubling given the astronomical
amount of money, which range in the billions of US-dollars, that has been associated
with offshore outsourcing projects over the last decade (Schaaf, 2004; Lacity et al.,
2008; Oshri et al., 2011). There are also indications that distributed software devel-
opment affects quality (Bird and Nagappan, 2012), though the number of research
studies, especially based on in-depth analyses with an empirical focus, is scarce (Mar-
ques et al., 2012), and reported results are contradicting. Thus, there is a need for
more empirical studies on distributed development (da Silva et al., 2010; Marques
et al., 2012) as well as to better understand the possible source of contradicting
results reported in literature. This will help with providing better support to prac-
titioners with well-founded evidence that they can use to make informed decisions
about current or future globally distributed projects.

The studied case can be characterized as a distributed outsourcing project with
development teams located in separate countries (offshore outsourcing). The context
consists of multiple locations involved in development activities, which is a charac-
teristic that is uncommon in studies on global projects (Bilal Raza and Clear, 2013).
The number of vendors involved in development activities also changes whilst the
product evolves. This makes it an interesting case for understanding how quality
changes in such environments. An evolutionary view of quality is used to help with
the investigation. The study reveals that the case company successfully ensured post-
release quality, and the key practices that contributed to the success are presented.
However, because of lack of reliable integration defects, and because the development
teams at each vendor worked independently, the impact on quality of the distributed
setting and organizational changes is unclear. In such a case, integration defects

Distributed Software Development in an Offshore Outsourcing Project 3

would be needed to better understand the impact on quality of the development
setting. The study, thus, reveals the importance of understanding the nature of the
distributed development context, and using appropriate measures as quality proxies
in order to derive correct conclusions about the context.

Given that there are very few empirical studies that investigate GSD contexts
and their implication on quality (Nguyen-Duc et al., 2015), this study is a valuable
addition within the research area. The contribution of this study can be summarized
as follows:

• The study provides an empirical investigation into the links between organiza-
tional changes and quality in a distributed development environment. Despite
many pessimistic views (often of speculative nature), empirical results from this
paper show that it is possible to achieve good post-release software product qual-
ity when outsourcing development to two offshore vendors,

• Based on the qualitative analysis, the paper further describes practices that can
help ensure post-release quality when working with offshore vendors.

• In addition, the study demonstrates that valid conclusions regarding the implica-
tions of distributed development on quality require selection of appropriate mea-
sures as proxy for quality and careful attention to the context of the distributed
development environments. For example, the current investigation failed to reli-
ably conclude whether distributed development resulted in any quality changes
due to the lack of pre-release defect data traceable to the concrete vendors.
The remainder of this paper is structured as follows. Related work is described

in Section 2. Section 3 begins with the research question, and then further details
the studied case and context, and the research approach followed. Section 4 presents
the results, discussed in Section 5. Threats to validity and limitations of the study
are described in Section 6. Section 7 concludes the paper with the summary of the
major findings and an outline of future work.

2 Related Work

2.1 Offshore Outsourcing and Distributed Development

Offshore outsourcing is one of various sourcing scenarios, often studied under the
research umbrella of global software development (GSD) (Verner et al., 2012; Šmite
et al., 2014). However, studies on their effect on quality is scarce (Verner et al., 2012).
Studies on offshore outsourcing collaborations generally focus on vendor selection,
e.g., (Khan et al., 2009), while some studies focus specifically on the relationships
between the outsourcing company and the vendor (Ali and Khan, 2014; Alsudairi
and Dwivedi, 2010).

Risks and success factors are well documented in GSD literature as shown in
various reviews of empirical studies, e.g., (Verner et al., 2012),(Gomes and Marczak,
2012) and (Nurdiani et al., 2011). The areas of concern when engaging in offshore
work include communication and coordination breakdown (Damian et al., 2007; Ia-
covou and Nakatsu, 2008), vendor competency and attrition (Moe et al., 2014),
cultural differences (Krishna et al., 2004; Winkler et al., 2008), and building and
maintaining trust and rapport between sites (Babar et al., 2007; Moe and Šmite,
2008; Jalali et al., 2010). These areas are also said to pose a great risk in achieving
desired quality goals (Kannabiran and Sankaran, 2011).

4 Ronald Jabangwe et al.

Offshore outsourcing collaborations can result in distribution of teams or team
members (Šmite, 2014). Quality concerns emerge even stronger in such development
settings in comparison to single-site or collocated development teams (Carmel and
Tjia, 2005). This is because large geographical and temporal distance can complicate
collaborations and hinder effective communication (Herbsleb and Mockus, 2003).
Because of this issue, and many other challenges faced in distributed development
projects (da Silva et al., 2010), it is important to take note of the possible effects on
quality of the development settings.

A number of studies link distribution with a decrease in quality, for example,
(Bird and Nagappan, 2012), (Ramasubbu and Balan, 2007) and (Cataldo and Herb-
sleb, 2011). Bird and Nagappan (2012) have studied two open source systems, Eclipse
and Firefox, and found that the number of pre-release defects can increase as a conse-
quence of developing components distributedly. Ramasubbu and Balan (2007) have
also linked distributed development with a decrease in quality based on an analysis
of customer reported issues during acceptance testing at a large multinational cor-
poration working with India and US. Similarly, Cataldo and Herbsleb (2011) found
that the possibility of integration failures was higher for geographically distributed
feature teams than in a setting with collocated teams.

There are, however, other studies that report on opposing results in terms of the
link between distribution and software quality. Spinellis (2006), who assessed coding
style and defects, found negligible effect on quality associated with geographical dis-
persion. Similarly, Bird et al. (2009) analyzed post-release defects and internal source
code measures, i.e., cyclomatic complexity and code churn measures, and found little
difference in quality when comparing collocated and distributed teams working on
Windows Vista. However, the distribution here was mainly within the same country.
Sutherland et al. (2009) found no observable negative effect on quality when shifting
from collocated to distributed development. In that study by Sutherland et al. the
distributed development setting consisted of cross-functional scrum teams, and each
team had team members that were dispersed across multiple locations.

The differences in research results can be explored by the variation in the context
in which the studies are carried out, and the data used to measure quality. Studies
discussed above contain teams distributed in relative proximity - different buildings
or cities, as studied by Bird et al. (2009) versus large geographic separation as stud-
ied by, e.g., Ramasubbu and Balan (2007). Also, different number of sites involved
in distributed development has been studied. Notably, Spinellis (2006) and Bird and
Nagappan (2012) studied open source systems, which is a special case of distributed
development. The implications of open source research results for commercial de-
velopment is, however, often debated. Finally, since most of the studies focus on a
single proxy for software quality (pre-release defects, post-release defects or customer
reported defects), the versatile view of quality changes, and the use of an appropriate
quality proxy in certain distributed contexts, is another potential research direction.

2.2 Measuring Distribution and Quality

Related studies are summarized in Table 1. The differences in the proxies for quality
are alarming. Although many studies aim at evaluating the impact of distributed
development on quality, the differences in the measures used as proxies for software
quality, and the differences in the GSD contexts make it hard to relate the cor-

Distributed Software Development in an Offshore Outsourcing Project 5

Table 1: Summary of Studies on Distributed Development and Quality

Study Study aim in
relation to
distributed de-
velopment and
quality

Proxy for
quality

Distributed de-
velopment con-
text

Findings

Bird
and Na-
gappan
(2012)

Level of distribu-
tion (in terms of
geographical and
organizational lo-
cations in an OSS
system) and its
relationship with
failures

Pre- and
post-
release
defects

OSS (FIRE-
FOX and
ECLIPSE)

Geographically
distributed
modules have
more defects

Ramasubbu
and
Balan
(2007)

The extent to
which dispersion
affects software
quality

Post-
release
defects
(accep-
tance
tests done
by cus-
tomers)

Dispersed team
members

Dispersion in-
directly affects
conformance
quality

Cataldo
and
Herbsleb
(2011)

Impact of the
organization of
feature teams on
quality in a GSD
context

Defects
reported
during in-
tegration

Dispersed team
members

The likelihood
of integration
failures in-
creases when
engineers are
geographically
distributed

Spinellis
(2006)

Effect of geo-
graphical disper-
sion on quality

Code
style and
defects
(unclear
if pre-
or post-
release)

Open-source
software
(FreeBSD)

Dispersion has
negligible effect
on quality

Bird
et al.
(2009)

Comparing
distributed de-
velopment and
collocated devel-
opment

Post-
release
failures

Dispersed team
members (most
of the work
performed by
developers in
different build-
ings, in the
same location)

Negligible
difference in
failures when
comparing
work per-
formed in a
distributed
manner ver-
sus collocated
work

Sutherland
et al.
(2009)

The effect of
transitioning
from collocated
teams to dis-
tributed teams
on quality

Pre-
release
defects

Dispersed team
members

No observable
negative effect
on defect rate
as a result of
transitioning
from collocated
to distributed
teams

6 Ronald Jabangwe et al.

responding conclusions. In addition, our studied case consisted of isolated teams,
which is an alternative distributed development context to dispersed teams that are
commonly explored in the related studies. However, be it dispersed or distributed
teams, there is a clear need to better understand the usefulness of different measures
of quality for GSD studies, and the way these measures are obtained and linked to
GSD settings.

The organization of the development setting plays a significant role on quality
(Nagappan et al., 2008). Changes in the development setting can also negatively im-
pact quality (Jabangwe and Šmite, 2012). In addition to finding a decrease in quality
from using distributed development, Mockus (2010) found that changes in the orga-
nization of development work had a negative effect on quality. Apart from a change
in number of companies involved, a handover of project management responsibili-
ties to an offshore location is another change that occurred in the present studied
case. In a previous study Jabangwe et al. (2014) investigated the implications of a
handover to an offshore location belonging to the same company after a long period
of distributed development, and observed a negligible link of the change with qual-
ity. The study piloted comprehensive data analysis and focused on collecting quality
measures, defects and internal source code measures (e.g., the complexity measure,
(McCabe, 1976)). The present empirical study continues to assess quality through a
number of different measures when the offshore location is an external company.

In summary, during the evolution of the product used in this present empirical
study there were notable organizational changes. This involved distributed devel-
opment among a customer company and two offshore vendors, a termination of
collaboration with one of the vendors and a final handover of responsibilities to the
remaining vendor. The study was motivated by the company’s interest in obtaining
empirical evidence pertaining to how the product’s quality varied across releases, as
well as understanding the implications on quality of both the distributed develop-
ment setting and the organizational changes.

In the context of GSD, decisions that result in organizational changes can be
traced to five decisions of why, what, how, when and where to source (Šmite et al.,
2013). In other words, these organizational changes typically relate to the variations
in the sourcing strategies, such as outsourcing through a relocation of development
from internal personnel to external vendors (Carmel and Tjia, 2005; Oshri et al.,
2011), changes in the number of vendors, vendor changes and backsourcing (Moe
et al., 2014). The organizational changes in the present paper pertain to outsourcing
of responsibilities to offshore vendors and the changes in the number of offshore
vendors involved in development and maintenance activities during the evolution of
a software product.

3 Research Methodology

The research is driven by the following question: RQ: How does software quality
vary in relation to organizational changes in a distributed development environment
for an evolving product?

Quality is a versatile concept that can be viewed from different perspectives. In
this study we first analyze post-release defects as a reliability indicator that is an
important quality characteristic as suggested in the ISO/IEC-25010 (2010) standard.
A “defect” is also used, in this study, as a generic term to refer to a fault or failure.

Distributed Software Development in an Offshore Outsourcing Project 7

A fault is linked to an error that is caused by human-action, e.g., misunderstanding
system requirements, which can in turn result in a system failure (ISO/IEC/IEEE-
24765, 2010). In practice, we have collected defect data that includes all issues re-
ported by the customers after the release of the product, from which we extracted
only those defects that required fixes/changes in the source code. This means that
issues that were not linked to a problem in the source code, such as user documen-
tation mistakes, were excluded. Second, we analyze source code measures that have
been linked to reliability indicators (Jabangwe et al., 2015). We also use commit data
and the number of features added across releases, which are linked to how quality
vary for evolving products, and are analyzed in the study to better understand the
changes in quality. The context of the studied case is presented in Section 3.1, and
the data collection and analysis procedure is described in Section 3.2.

3.1 Case Description and Context

Details regarding the studied product and the company that originated the develop-
ment are first presented in this section. This is followed by details on the course of
organizational changes that resulted in various forms of multisite distributed devel-
opment settings.

3.1.1 Company and Product Overview

The name of the case company and the products used throughout this study will
remain anonymous at the request of the company. The case company, from hereon,
referred to as ZCo, was founded in 1996 and its ownership has evolved over the past
few years through mergers and re-branding. ZCo develops online games. Since its
creation in 1996, it has been one of the most successful and innovative companies
for online/virtual gaming in Sweden. As of end of 2013 the company powered over
100 popular gaming websites. The company headquarters is located in Sweden, and
the site is referred to as ZCo-SE.

The product studied is referred to as PLAY. PLAY is one of many online gaming
products developed by ZCo. Though it has been developed since the 90s, the history
of the product studied is from 2008. This is when the company started systematically
collecting data in Subversion1, a source code version control system, and JIRA2, a
defect tracking system. PLAY is marketed as a single online gaming solution, but it
comes with multiple games integrated within it. The core source code components of
PLAY are developed using the object-oriented programming language C++. Imple-
mentation of games is mostly done through scripting in XRS files. The latest major
release for PLAY contains over two millions lines of code (LOC) in C++ and over
900 KLOC in XRS files.

3.1.2 Evolution of Work Distribution and Organization

Over the years ZCo was involved in two offshore outsourcing collaborations for de-
veloping PLAY. Prior to 2008, the headquarters site of ZCo in Sweden, ZCo-SE,

1 Information about Subversion can be found on: https://subversion.apache.org/
2 Information about JIRA can be found on https://www.atlassian.com/software/jira

8 Ronald Jabangwe et al.

contracted work to a Ukrainian site of an external company, referred to as YCo-
UKR. In 2008, ZCo hired another external company located in India to take part in
development activities, referred to as XCo-IN. In relation to development method-
ologies, Scrum-of-Scrums was followed, with isolated scrum teams that is similar to
the description by Sutherland et al. (2009). Both vendors, YCo-UKR and XCo-IN,
had their own scrum teams and scrum masters, who reported to the scrum master
at ZCo-SE. The evolution of work distribution for PLAY can be divided into three
phases based on the contracts with the vendors, which is described below.

Phase I (2008 until end of 2009): ZCo maintained two separate contracts
with two outsourcing vendors. ZCo-SE was responsible for developing and maintain-
ing the core system of PLAY, i.e., architecture for games integrated within PLAY
and the platform for PLAY. YCo-UKR and XCo-IN were each primarily involved in
developing and maintaining separate sets of games that were integrated into PLAY.
In terms of the approximate number of employees involved in the development activ-
ities, ZCo-SE had 14, XCo-IN had 10, and YCo-UKR had approximately five. Each
company had its own local team lead that reported to the team lead at ZCo-SE.
Involvement of XCo-IN was terminated towards the end of 2009.

Phase II (2010): In this period, YCo-UKR was the only remaining offshore
outsourcing vendor. ZCo-SE involvement was only focused on the core system of
PLAY, i.e., architecture for games integrated within PLAY and the platform for
PLAY. As YCo-UKR developers gained more product knowledge, their involvement
spread to the core components, architecture and platform of PLAY, and full respon-
sibility over all game development. ZCo-SE and YCo-UKR each only had one team
involved in development and maintenance activities, with approximately seven and
eight employees, respectively. The team lead in YCo-UKR reported to the team lead
in ZCo-SE.

Phase III (2011 onwards): Project responsibilities were gradually relocated
to YCo-UKR in 2011 in accordance with a contract agreement. This is referred to
as a handover. YCo-UKR had one team with approximately 10 employees involved
in developing and maintaining PLAY. They had their own team lead that reported
to ZCo-SE. Product responsibilities, i.e., requirements analysis and release planning,
remained at ZCo-SE. In relation to development activities, involvement of ZCo-SE
was reduced to supporting YCo-UKR. Thus, the third phase can be characterized
as single-site or collocated development.

The organizational changes during the evolution of PLAY are summarized in
Figure 1.

3.2 Data Collection and Analysis

Using definitions provided by Runeson et al. (2012), the present empirical investiga-
tion is characterized as a single case study. This research approach was used because
the study is done retrospectively and requires recollection of events from many years
back. There is also a need to use more than one source of data so as to increase
validity of the study. Collection and analysis of quantitative data are presented in
this section.

Distributed Software Development in an Offshore Outsourcing Project 9

2008 2009 2010 2011 2012 2013

Phase 1 Phase 2 Phase 3

Development and
maintenance tasks

Project management
responsibility

Product management
responsibility

ZCo-SE

YCo-UKR

XCo-IN

1 games team of 7

1 core/platform team of 7

Product management

Project management

1 game team of 5

1 game team of 10

Project management

1 game and core/
platform team of 8 1 game and core/platform team of 10

1 game team of 4
1 core/platform
team of 4

1 tool team of 2

ZCo-!
SE

YCo-!
UKR

XCo-!
IN

Legend:

ZCo-!
SE

YCo-!
UKR

YCo-!
UKR

Development and
maintenance locations

Multisite development
3 locations

Multisite development
2 locations

Co-located development
1 location

Fig. 1: PLAY Evolution and Organizational Changes

3.2.1 Quantitative Data

Between 2008 and 2013 there were 132 versions of PLAY released, and this included
14 evolutionary releases and 118 maintenance releases. Evolutionary releases con-
tained new features or new games. Maintenance releases contained primarily fixes
for issues found in the evolutionary releases during both internal testing activities
and those reported by customers. Quantitative data collected from the releases in-
cluded: source code measures for C++ and XRS files, defect data, features added,
and commit activity data. Defect data is used as an indicator of external quality.
Data about features added and commit activity are also included in the quantitative
data analysis because they are critical to product modification activities that result
in the evolution of a product. Source code measures are included because they quan-
tify internal properties that are linked to external quality (ISO/IEC/IEEE-24765,
2010; Jabangwe et al., 2015).

Source code measures: Two measures that quantify size and complexity prop-
erties were extracted from all releases because they have been evaluated and found
to be good indicators of quality-related concerns (Jabangwe et al., 2015). LOC (lines
of code), a size measure, was extracted from C++ components and XRS files. LOC
is a simple count of all the executable lines of code. This measure was selected
because of its simplicity and understandability. Herraiz and Hassan (2012) argues
that simple size measures can reveal sufficient size related information from source
code, and the information may not necessarily differ from that revealed by more
complex size measures. RFC (response for a class), a complexity measure was ex-

10 Ronald Jabangwe et al.

tracted from C++ components. It is from a set of measures proposed by Chidamber
and Kemerer (1994). RFC is the set of methods in a class and the set of methods
that can be invoked by a method within that class (Chidamber and Kemerer, 1994;
El-Emam, 2002). The complexity measure, churned LOC were computed for XRS
files by summing total changed LOC and inserted total LOC for each release. High
values for RFC and churned LOC are indicators of fault-prone releases (Chidamber
and Kemerer, 1994; Jabangwe et al., 2015). Understand tool3, a commercial source
code analysis tool, was used to extract source code measures from C++ components.
Measures for XRS files were extracted using the text analysis tool Araxis Merge4.

Defect data: Defects collected in this study are those reported post-release. For
the purpose of this study a defect can be defined as any issue that caused the system
performance to deviate from how it is expected to perform according to system
requirements (ISO/IEC/IEEE-24765, 2010), with the prerequisite that they required
changes to the source code artifacts as a solution. This meant that non-source code
related defects, such as documentation defects, were excluded. The purpose was to
make sure that all data was linked to the evolution of the source code artifacts, and
thus maintaining consistency of the type of data analyzed in the study.

Feature added: The number of features added to each release were collected
from JIRA. The number of features added is a counting measure. In the context of
this study, a feature is defined according to ISO/IEC/IEEE-24765 (2010).

Commit data: Commit activity for source code releases were extracted from
Subversion. Each commit was mapped to the appropriate release. The developer that
made the commit was mapped to their respective companies. Essentially, the number
of commits were counted per company.

3.2.2 Analysis of Quantitative Data

The first two authors who were not involved in the development of PLAY indepen-
dently performed the analysis. The goal of this analysis was to identify patterns and
unusual trends in the data. These were then discussed in a joint meeting and a final
list of changes and time frames of interest were noted down for discussion at the
case company in focus group meetings. Statistical analysis methods and graphical
representations were used in the analysis of the quantitative data.

Visualization: Analysis of commit data, source code measures, defect data and
number of features added across releases was done using descriptive statistics and
populating the data into graphical representations of line graphs and bar charts.
Line graphs are used for source code measures, which are aggregated per release.
Bar charts are used for defect data, features added data, and commit activity data,
and they are both aggregated at the release level.

Defects and features were separated and visualized by their criticality levels. For
defects, the range from critical to low is determined by its effect on the system
performance and reliability, e.g., whether it causes system failure or it is a trivial
issue with a current workaround. For features the criticality is linked to business
values and it is determined by its importance to, and demand from, customers.

3 Information on the Understand tool can be found on the website:
http://www.scitools.com/

4 Information on the Araxis Merge tool can be found on the website:
http://www.araxis.com/merge/index.en

Distributed Software Development in an Offshore Outsourcing Project 11

Statistical analysis: A correlation analysis was performed to investigate the
relation between the defect data (the proxy for quality) and the other measures
collected: size measures, complexity measures, features added, and commit data. For
this analysis a simple count of number of features add per release was used. Commits
were aggregated at the company level to get the number of companies involved per
release as a proxy for capturing the organizational changes. The measure of the
number of people that did commits was excluded from the analysis because at one of
the vendors it was not representative of the individuals that actually were involved
in implementation activities.

A test for normality in the quantitative data was performed using the Shapiro-
Wilk test, which is a powerful normality test (Razali and Wah, 2011). This was done
to narrow down the choice of appropriate statistical methods, i.e., parametric or
nonparametric statistical methods. For large datasets, Razali and Wah (2011) found
it to be more powerful than some of the common normality tests like Kolmogorov-
Smirnov and Anderson-Darling. All statistical analyses were performed using the
IBM SPSS Statistics tool version 225.

3.2.3 Qualitative Data

Results of the quantitative data analysis were reviewed and discussed at the case
company (ZCo-SE) in focus group meetings. A focus group meeting is an efficient
method for collecting rich data because it is an open-ended discussion with a group
that consists of experts or knowledgeable individuals on a particular topic (Robson,
2011). Since it is a retrospective study, focus group meetings enabled the participants
to help each other recollect events and practices from the past. This in turn triggered
and stimulated deeper discussions.

There were two focus group meetings held at the case company. In the first focus
group meeting, there was one employee from YCo-UKR and four were from ZCo-SE.
The second focus group meeting had three employees from ZCo-SE only.

In the first focus group meeting, the quantitative data analysis results were pre-
sented and discussed. The aim was to get insights and explanations pertaining to
factors that contributed to changes in data over time. The visualizations of the
quantitative data were presented during the focus group meetings. Each visualiza-
tion contained markings of periods with unchanging data values between releases as
well as increases and decreases between releases. The aim was to discuss the possi-
ble reasons for the changes and the lack of changes from the point of view of the
participants of the focus group. Thus, opinions and additional context information
pertaining to the history of the development were collected. Two researchers led the
first focus group meeting. The first author guided the discussions, whilst the second
author took notes. The second meeting was led solely by the first author, and it was
mainly used to gather factors that had an influence on patterns in the quantitative
data. The third author (a team lead at ZCo at the time of this study) participated
in both meetings as the lead company representative.

Each meeting lasted for approximately three hours. Both meetings were recorded
with the permission from the participants, as recommended by Robson (2011). The

5 Details about the SPSS tool can be found on: http://www-
01.ibm.com/software/analytics/spss/

12 Ronald Jabangwe et al.

recordings enabled the authors to crosscheck the meeting notes and to verify the con-
text in which remarks by the focus group participants were made. The participants
expressed generally similar reflections and explanations for changes in quantitative
data across releases.

During the focus group meetings, release notes, defect reports, and other product
documentation were used to get deeper insights and explanations about the trends
in the quantitative data and the evolution of the product. There were also email
exchanges with the third author before and after the meetings to discuss and clarify
details about the product and the quantitative data.

3.2.4 Analysis of Qualitative Data

Reflections from the focus group meetings: The approach followed in the
analysis of reflections from the focus group meetings can be compared to content
analysis (Robson, 2011). The reflections were examined to identify practices in the
development context that were linked to patterns and trends in the quantitative data,
and were implemented to alleviate quality issues during evolution. The practices were
then characterized into three critical factors, product, people and process, that were
proposed by Šmite and Wohlin (2011).

4 Results and Analysis

A presentation of the results that addresses the research question is provided in this
section. Data from the 14 evolutionary releases is shown in the visualizations, and
all 132 releases are used in the statistical correlation analysis.

4.1 Visualizations and Correlation analysis

Figure 2 shows visualizations of data per evolutionary release in the following order:
commit activity data, defect data, number of features added, source code measures
for C++ components, and source code measures for the XRS scripting files. The
actual values are not shown in the figure for confidentiality reasons. Phases described
in Section 3.1.2 are highlighted in the figure.

An important observation is that the period of involvement of outsourcing com-
panies according to the contracting agreements does not directly coincide with the
time frame of the commit activity across releases. For example, given the contractual
agreements at the company as described for Phases I in Section 3.1.2, the expectation
was to find employees from three companies for Phase I making commits between
R1 and R7. However, Figure 2 shows that the releases with three companies involved
are R6 and R12. Company representatives explained that this was because develop-
ment work from certain locations was often integrated in later releases. However, this
observation meant that, commit activity data captures organizational changes that
may influence quality that is not evident from Phase information, which is based on
period of contractual agreements.

As part of the study we had planned to also compare the differences in how
quality changes between the period with distributed development and the period
with collocated development, which is the more traditional setting. However, from

Distributed Software Development in an Offshore Outsourcing Project 13

Phase I Phase II Phase III

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

R1# R2# R3# R4# R5# R6# R7# R8# R9# R10# R11# R12# R13# R14#

RFC"

LOC"

Measures for C++ Components

0"

100"

200"

300"

400"

500"

600"

700"

800"

R1# R2# R3# R4# R5# R6# R7# R8# R9# R10# R11# R12# R13# R14#

Low#

Medium#

High#

Cri;cal#

Number of Defects

0"

10"

20"

30"

40"

50"

60"

70"

80"

90"

100"

R1# R2# R3# R4# R5# R6# R7# R8# R9# R10# R11# R12# R13# R14#

Low"

Medium"

High"

Cri:cal"

Number of Features Added

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

R1# R2# R3# R4# R5# R6# R7# R8# R9# R10# R11# R12# R13# R14#

Total"
XRS"LOC"

Churned"
XRS"LOC"

Measures for XRS Components

0"

5"

10"

15"

20"

25"

R1# R2# R3# R4# R5# R6# R7# R8# R9# R10# R11# R12# R13# R14#

XCo0IN#

YCo0UKR#

ZCo0SE#

Commit Activity

Fig. 2: Visualizations of Changes in Measures

14 Ronald Jabangwe et al.

analyzing the commit data shown in Figure 2 it can be observed that the period
with distributed development is much longer and there are more releases, i.e., 13
evolutionary releases, than when the period with collocated development, which only
has one evolutionary release. Therefore this huge difference in number of releases
would make for an unfair comparison.

The source code measures shown in Figure 2 are normalized for both C++ and
XRS files so as to show the trend in size and complexity measures across release.
Complexity of core components (RFC from C++ components) and XRS files has
a unique pattern (immediate ups and downs) across releases. Release notes suggest
refactoring activities were often done to manage complexity, which could be linked to
the unusual patterns. However, there are no discernible differences between patterns
across releases with changes in number of companies making commits.

Apart from the source code measures shown in Figure 2, there were four other
measures that were collected but were excluded from the analysis: number of classes,
weighted method per class (WMC) (Chidamber and Kemerer, 1994), depth of inher-
itance (DIT) (Chidamber and Kemerer, 1994) and ratio-comment-to-code measure.
The complexity measures, number of classes and WMC, correlated with the size
measure LOC, which indicates that the measures captured redundant trends. Re-
lated studies have made similar observations regarding the redundancy of size and
complexity measures, e.g., (Gyimóthy et al., 2005; Singh et al., 2010). Therefore,
number of classes and WMC were excluded because they did not provide any added
value for the analysis or conclusions. The inheritance measure, DIT, and the ratio-
comment-to-code measure were excluded because they were relatively stable and
did not significantly deviate across releases. A review of related studies that investi-
gate the links between source code measures and quality also highlighted that DIT
does not show any significant relation to quality characteristics such as reliability
(Jabangwe et al., 2015).

Company representatives mentioned that the increase and decrease of defects
across releases under each phase could be better explained by the changes in features
added rather than the development setting or the organizational changes between
Phase I-III. Figure 2 appears to support their notion as there appears to be a similar
trend between the number of defects and features added across releases. For example.
the figure shows that the largest number of defects reported is for release R8, and a
manual analysis of release notes that was performed together with an expert at the
company confirmed that release R8 came with some of the most complex games.

Correlation analysis was then performed to assess the link between the changes
in defect data and the internal source code measures, number of companies involved,
and features added during the evolution of PLAY. The number of companies is based
on the activity, which captures the organizational changes in terms of development
activities across releases. According to the results from the Shapiro-Wilk normal-
ity test, shown in Table 5 in Appendix A.1, all data variables are not normally
distributed, i.e., total defects, RFC, LOC (for both C++ and XRS files), churned
LOC for XRS files, number of companies, and features added. This suggests that
nonparametric statistical methods are appropriate for these data variables.

Table 2 shows the results of the Spearman correlation analysis, a nonparametric
statistical method. It is important to note that the data used in the correlation
analysis is not grouped by company, location or teams. Number of companies has
a very low correlation with defect data and it is not significant at either 0.01 or
0.05 level. Similar observations can be made for LOC (for both XRS and C++),

Distributed Software Development in an Offshore Outsourcing Project 15

and RFC. Features added has the highest correlation with total defects (with a
correlation of 0.648), and significant at 0.01. In essence, features added explains
more of the variability in the post-release defect data (0.6482 approximately 42%)
than the other measures, in particular, the change in number of companies. This led
us to investigate the practices employed to mitigate the influence of the development
setting on the patterns in post-release defects.

Table 2: Spearman Correlation Results (∗∗ Correlation is significant at the 0.01 level;
∗ Correlation is significant at the 0.05 level)

Total
Defects

RFC LOC LOC
XRS

Churned
LOC XRS

Num of
Companies

Features
Added

Total Defects 1.000 -.052 -.004 .050 .532∗∗ .037 .648∗∗

RFC -.052 1.000 .244∗∗ .356∗∗ -.058 −.32∗∗ -.166

LOC -.004 .244 1.000 .885∗∗ .092 −.43∗∗ -.007

LOC XRS .050 .356 .885 1.000 .160∗∗ −.62∗∗ .016

Churned LOC XRS .53∗∗ -.058 .092 .160∗ 1.000 .072 .592∗∗

Num of Companies .037 -.321 -.432 -.624 .072 1.000 .032

Features Added .65∗∗ -.116 -.007 .016 .592 .032 1.000

4.2 Mitigation Practices

An important finding is that independent and well defined development tasks were
partitioned across the geographically distributed companies (e.g., the development of
individual games that would be integrated into each release for PLAY). Essentially,
each development location worked independently, in separate development branches
in Subversion that would later be merged. This formed a distributed context char-
acterized as a multisite distributed development setting with collocated team mem-
bers. This decreased dependencies between the companies, and the need for complex
communication and coordination for task completion between the development lo-
cations. In Phase I and Phase II, a configuration manager that was also a developer
at ZCo-SE, performed all merging and integration activities, while in Phase III this
responsibility was relocated to YCo-UKR as part of the project management respon-
sibility. Company representatives explained that the partitioning was made possible
by the modularity of the system. They explained further that, because of the modu-
lar system structure it was possible for vendors to complete their development tasks
with limited extensive knowledge about the core system components.

Company representatives revealed that sufficient knowledge and competency of
the offshore companies was key during the evolution of the product PLAY. Knowl-
edge transfer activities were carried out at both offshore vendor locations. The strat-
egy applied for YCo-UKR can be characterized as learning by doing. Prior to 2007,
YCo-UKR developed their knowledge about PLAY by taking part in maintenance
activities. Eventually, the company received more complex tasks and started develop-
ing new features, i.e. implementing new games and developing the core components
of PLAY. For XCo-IN knowledge transfer was handled through onsite training and
exchange visits. First, two developers, two testers and a manager from ZCo-SE stayed

16 Ronald Jabangwe et al.

at XCo-IN for about two weeks during which they conducted workshops and other
knowledge transfer activities. Then, a few employees from XCo-IN were temporarily
relocated to ZCo-SE for approximately a month to continue acquiring knowledge
about the product. On their return to XCo-IN they disseminated the knowledge to
the other employees.

Because of YCo-UKR’s long involvement in product development activities, by
the time the handover of project management responsibilities were carried-out, the
offshore location had built-up necessary competencies. In addition, during the han-
dover activities, the sending company ensured that there were sufficient resources
to support the receiving company (i.e., YCo-UKR) during development and main-
tenance activities.

The case company strategically monitored the evolution and quality of the com-
ponents onshore prior to handing over responsibilities offshore in Phase III. It was
uncovered from the focus group meetings that refactoring activities were also often
done in order to manage complexity of the source code. This resulted in the unusual
patterns in the complexity measure, RFC, for the core source code components that
can be observed in Figure 2.

Focus group participants described the development teams at ZCo-SE and YCo-
UKR as relatively stable. However, one of the offshore outsourcing companies, XCo-
IN, faced issues with high employee turnover, which destabilized the competency and
experience level of the team at the company. This is not a peculiar issue in offshoring
projects and it is difficult to eliminate as also discussed by Moe et al. (2014). As a
quality assurance practice to mitigate the effect of attrition on quality, XCo-IN had
dedicated senior company representatives that were responsible for monitoring de-
velopment work and evaluating final source code artifacts developed at the company,
as well as making all commits into Subversion development branches. This served
as a solution to avoid issues that could be attributed to new or novice employees
that continuously joined the team. This also explains the few number of contributors
from the company, XCo-IN, that appears in the commit activity data visualization
shown in Figure 2.

4.3 Overall Observation (RQ1)

Essentially, the visualizations and the correlation analysis results are consistent with
the perspectives from company representatives, with regards to the link in patterns
in the defect data and features added. In general, the expectation was that changes
in the development setting in Phase I, II and III would have a stronger link to
changes in post-release defect data. This is based on the challenging nature of global
projects (Gomes and Marczak, 2012; Kannabiran and Sankaran, 2011), and the large
geographical distance with one of the development locations, which adds to the
difficulties (Herbsleb and Mockus, 2003). This suggests that post-release quality was
ensured.

The practices revealed in Section 4.2 are summarized in Table 3 and they have
been categorized on their relation to people, process and product factors. The phase
in which the practices were mostly implemented is indicated in the table under
“Phase”. It is important to note that these were factors pointed out by company
representatives that attended the focus group meetings, therefore this may not be
an exhaustive list of all practices that were implemented at the case company.

Distributed Software Development in an Offshore Outsourcing Project 17

Table 3: Mitigation Practices

Category Practices Phase

People Low attrition thus stabilizing competency
levels at one of the offshore location.

Phase I,II and III

People Senior company representatives manag-
ing commit activity at offshore location that
had attrition issues.

Phase I and II

People Support from original developers to off-
shore developers when relocating project
management responsibilities.

Phase III

Process Knowledge transfer to improve competen-
cies at offshore locations.

Before and during
Phase I

Process Monitoring the evolution and complex-
ity of the core source code components on-
shore prior to relocating project management
responsibilities offshore.

Phase I and II

Product Modular architecture reduces the need to
have extensive knowledge about each system
component for independent task completion
for isolated teams.

Phase I, II and III

Product Refactoring activities to manage source
code complexity.

Phase I, II and III

Product Strategic task allocation of indepen-
dent development tasks to reduce depen-
dencies between locations by forming isolated
and loosely coupled development teams. This
formed a multisite development setting.

Phase I, II and III

A key finding from the reflections in the focus groups pertains to the nature
of distributed development. The development teams at each location worked inde-
pendently across releases. This suggests that team members were collocated rather
than distributed, even though the development locations were distributed. This es-
sentially means that development teams at each location were working on separate
source code branches. Šmite (2014) refers to this kind of project arrangement as a
“distributed outsourcing project”. In such a case, defects reported during integra-
tion are vital to fully capture the impact on quality of either the distributed setting
or the organizational changes. Unfortunately, they were inconsistently maintained
across releases, and hence were unreliable. Because, post-release defects were ana-
lyzed (as the only reliable quality proxy), the only conclusion that can be made is
about the post-release quality. That is, the studied case appear to have ensured post-
release quality given the challenges posed by offshore outsourcing ventures. But, the

18 Ronald Jabangwe et al.

“impact” on quality of either the distributed setting or the organizational changes
on quality is inconclusive.

5 Discussion

The studied case is an offshore outsourcing software development project, which
consisted of changes in the number of vendors involved whilst the product evolved.
The findings suggests that the onshore company ensured post-release quality despite
the complex multi-site development environment with several organizational changes.
The context and findings of our study are summarized in Table 4. The contents of
the table can be used to compare and contrast our study and related studies that
are summarized in Table 1 from Section 2.

Table 4: Summary of the presented study (compare with Table 1)

Study aim in
relation to
distributed de-
velopment and
quality

Proxy for
quality

Distributed de-
velopment con-
text

Findings

To investigate
how quality
changes during
evolution in
a distributed
development
environment that
incurs organiza-
tional changes in
terms of number
of companies
involved, across
releases.

Post-
release
defects

Distributed
outsourcing
project, which
incurred or-
ganizational
changes in
terms of
number of
outsourcing
companies in-
volved, across
releases.

Though the
studied case
appears to
have ensured
post-release
quality, the
“impact” on
quality of
either the
distributed
setting or the
organizational
changes on
quality is
inconclusive.

In summary, our case complements the findings from Ramasubbu and Balan
(2007) and Bird et al. (2009) who look at post-release defects, although in contrast
to the focus on dispersed teams versus co-located teams in an insourcing context
we rather explore a distributed setting with multiple outsourcing vendors. As such,
our study appears to be the only case among the outlined related studies that covers
distributed development modularized by design (as opposed to dispersed teams), and
the only outsourcing case (as opposed to insourcing and open source projects). The
findings in terms of quality indicate that the studied case appear to have ensured
post-release quality. Although our findings come from a different context than those

Distributed Software Development in an Offshore Outsourcing Project 19

by Spinellis (2006), Bird et al. (2009) and Sutherland et al. (2009), since we study
distributed teams and not dispersed teams, all of the mentioned cases including ours
can be yet claimed to represent successful global software development projects. And
finally, the results of our qualitative analysis provide an explanation for the achieved
success in terms of post-release quality. We found that, among other reasons that
are summarized in Table 3, strategic task allocation of independent development
tasks across distributed locations and dedicated integration effort helps to address
the possible risks of poor quality.

At first glance it seems as if the findings in the present study is in line with studies
that report a negligible link between distributed development and quality (e.g., by
Spinellis (2006), Sutherland et al. (2009) and by Bird et al. (2009)), and contradicting
those that report otherwise (e.g., by Ramasubbu and Balan (2007), Cataldo and
Herbsleb (2011) and by Bird and Nagappan (2012)). But on closer examination that
would not be an accurate inference, and this is because of differences in GSD contexts
or data used in the analysis.

It can be argued that the contexts in the related work differ considerably. Where
as Sutherland et al. (2009) studied a product developed in a fully distributed scrum
team, the product in the present study can be compared to isolated scrum teams.
In addition, the proxy for quality used by Sutherland et al. (2009) seems to be
those reported pre-release as they are issues reported during iteration, which differs
from the post-release defects used in the present study. Spinellis (2006) also studies
an open source project, which has unique characteristics in comparison to software
development activities performed in traditional office space buildings.

Cataldo and Herbsleb (2011) has shown that integration problems are higher for
dispersed feature teams. Ramasubbu and Balan (2007) also found that distributed
development decreases quality when analyzing pre-release defects. Bird and Nagap-
pan (2012) found similar findings when analyzing both pre-release and post-release
defects. Given, that the present study uses post-release defects, and there are reports
of issues occurring pre-release in distributed projects, it is possible that defects could
have been found during integration and fixed before releasing each version. But this
is not observable from post-release defects. Similar issues can be raised for studies
that do not find a link between distributed development quality when using only
post-release defects in the analysis, e.g., Bird et al. (2009).

Given that in the present study development teams worked independently and
only post-release defects are analyzed, then it can be postulated that the actual im-
pact on quality of the distributed setting or the organizational changes is unclear.
Unfortunately, pre-release and integration defects at the case company were unre-
liable and it was not possible to accurately trace them to source code components
from each development location for each release. As Posnett et al. (2011) points out,
conclusions and inferences drawn made using data that is aggregated at one level are
not directly transferable to other levels. Thus, measures for post-release quality are
not indicative of quality concerns, or lack there of, pre-release or during integration.
In essence the study findings presented do not offer a conclusive indicator of the lack
of impact of either distributed development or organizational changes on quality, but
its the lack of evidence of the impact.

20 Ronald Jabangwe et al.

5.1 Implications for Research

The importance of verifying the accuracy of data with practitioners cannot be over
emphasized. It helps strengthen the validity of study findings. Failure to verify the
accuracy and taking appropriate corrective measures may result in flawed conclu-
sions. At one of the vendor locations in the present study, there were a few selected
employees that were permitted to make commits - this was done for quality assur-
ance purposes. This issue was only found after discussing the data analysis results
with practitioners. The practice may not be uncommon beyond the presented con-
text. The implication is on the correctness of measures extracted from the commit
data that are intended to capture the development activities of source code artifacts,
such as, number of developers, number of contributors, and ownership measures for
source code components. These measures are commonly used in studies that involve
analysis of commit activity, e.g., the study by Bird et al. (2011) and by Kocaguneli
et al. (2013). Thus, there should be emphasis to avoid blindly using measures ob-
tained from data, but to understand the contexts, and to involve practitioners in the
analysis to help verify accuracy of the data.

Because of the different ways in which development teams can collaborate in
GSD, caution should be made when drawing inferences from particular type of data.
In order to determine the effect on quality of distributed development settings, the
data used as a proxy for quality should be aggregated at an appropriate level. As
observed in the present study, development teams can work independently with col-
located team members, and integration defects would have been key for better un-
derstanding the impact on quality. If development team members were distributed
then, in order to better understand the implications on quality, the proxy for quality
measured should be traced to the source code modules that each team develops.
This highlights the importance of using an appropriate quality proxy for certain dis-
tributed development contexts in order to avoid making erroneous inferences, and to
better support practitioners with well-founded evidence.

5.2 Implications for Practice

Practitioners should maintain defect data consistently across releases, especially de-
fects found during key steps in the development activities. This will give a better
reflection of the quality of the software pre- and post-release. The information is
key for getting useful research results that can be used to build a richer repository
of evidence, which can then be used for making better-informed decisions in future
projects.

The importance and usefulness of the mitigation practices that are presented in
this present study have been noted in studies on other GSD contexts as success or
critical factors (e.g., the studies by Moe et al. (2014), Jabangwe et al. (2013), and
by da Silva et al. (2010)). Thus, the findings of this study shows the relevance of
the factors in a distributed development context with offshore outsourcing vendors.
The findings can be valuable input to decision-making structures for GSD projects
similar to the one proposed by Šmite et al. (2013). It is, however, important for
practitioners to compare their own context with the one in this study (described
in Section 3.1) so as to determine the applicability and usefulness of the mitigation
practices in their own specific contexts.

Distributed Software Development in an Offshore Outsourcing Project 21

6 Validity Threats

Empirical studies, such as the one presented, are not impervious to threats to validity.
Validity threats pertains to factors that may affect the outcome of a study (Robson,
2011).

Construct Validity: This is concerned with measuring what is intended to
be measured for the purpose of the study (Robson, 2011). The size measures, LOC
and churned LOC, and the complexity measure, RFC, used in the study have been
empirically evaluated on their link with quality (Jabangwe et al., 2015). LOC and
churned LOC are common and simple size measures, and the theoretical base of
RFC is well described by Chidamber and Kemerer (1994). To ensure consistency,
extraction of these measures was performed using the same static analysis tools, for
all releases. Experts that had knowledge about the evolution of the product at the
case company verified the accuracy of the values for the measures, as well as other
data used throughout this study.

Internal Validity: The retrospective analysis nature of this study makes it sus-
ceptible to historical-types of internal validity threat (Robson, 2011). This pertains
to historical events (e.g., that occurred during product evolution) that may influence
the validity of cause-effect relationships (Robson, 2011). A company representative
with extensive knowledge about the product helped with constructing a time-line
of the products evolution, identifying appropriate releases, as well as isolating and
collecting relevant data. Company documentations and focus group meetings with
those that had extensive knowledge of software development activities or the evolu-
tion of the product were used to capture detailed events and practices that occurred
whilst the product was evolving, and to determine their possible link with changes
in internal and external product measures.

Apart from the historical-types of internal validity threats that this retrospec-
tive study is subject to, another issue is related to the selection of participants of the
focus group meetings. Due to geographic distribution and organizational changes
it was not possible to involve representatives from all sites. Participants included
key employees from ZCo-SE that at the time of investigation were still employed,
but not all employees involved in the evolution could participate. Only the key de-
veloper/project manager from YCo-UKR was involved in one of the meeting, and
none of the employees from XCo-IN participated since their engagement in the co-
llaboration was over at the time of investigation. The implication is that some key
information can be missed that can help to better understand the reasons behind
the changes in quality during evolution for certain releases. However, we believe that
this issue was mitigated by two key characteristics of those involved in the meetings.
First, the participants of the meetings had extensive knowledge about the evolution
of PLAY through their involvement in development and testing activities, design-
ing architecture, and managerial responsibilities. Second, the employees’ that helped
with this study covered diverse and vital roles that were critical to the development
and evolution of PLAY. The overall evaluation of the link between the organizational
changes and the quality is measured quantitatively and is thus not affected by the
selection of focus group participants.

External Validity: This is concerned with the extent of generalizability of a
study (Robson, 2011). In Section 3.1, there is a detailed description of the studied
context to help improve the understanding of the extent of generalizability and va-
lidity of the conclusions that are drawn from the empirical investigation (Petersen

22 Ronald Jabangwe et al.

and Wohlin, 2009). There were also many releases in a relatively short period. This
may not be the case for, for example, telecommunication software systems. Therefore
it is important to evaluate the applicability and usefulness of the reported findings
in other contexts.

GSD contexts differ from case to case, but analytical induction facilitates with
determining the generalizability between cases (Wieringa, 2013). Hence, in this study
we provide an in-depth analysis of a specific case, and carefully describe the context,
and provide clear insights of a particular context. The rationale for doing this is to
make it easier for practitioners and researchers to compare the studied context and
their own context. For example, there may be similarities in the offshoring activities
and team sizes in the presented case with other cases. In such situations, practitioners
may be able to use some or all of our findings as input when making decisions for
their own projects. For researchers, the detailed description of the context can make
it easier for them to compare and synthesize our study findings with other studies
of similar characteristics, and thereby produce stronger evidence that can be useful
to practitioners.

Conclusion Validity: This is concerned with conclusions (Wohlin et al., 2012).
Two actions were taken in order to mitigate this threat. First, two researchers (i.e.,
the first two authors of this paper) independently analyzed the visualizations of the
data, and reached consensus on the observations. Second, all observations and find-
ings were triangulated with employees at the case company through focus group
meetings, and multiple telephone and email exchanges. These employees had ex-
tensive knowledge about the product and its evolution due to their involvement in
development and maintenance activities over long periods, across many releases.

7 Conclusions and Future Work

The context of the studied case is an offshore outsourcing setting, which consists of
globally distributed teams. The data used is from a software product that incurred
organizational changes, in terms of number of vendors involved, whilst it evolved.
The observation made was that the company ensured post-release quality, and prac-
titioners of the studied case company offered similar and supporting observations
during focus group meetings. Among other practices, the following are some that
contributed to the success: reduced dependencies between geographically distributed
teams by allocating independent tasks to each team, knowledge transfer to ensure
sufficient competencies across locations, refactoring activities to manage source code
complexity during evolution.

The study also highlights the importance of taking into consideration the devel-
opment setting when measuring proxies for quality and making inferences about the
development setting. Though the case company ensured post-release quality, simi-
lar observations could not be made about the effect on quality of the development
setting. This is because, given that the distributed teams worked in isolation, it
is possible that integration issues may have occurred, but this cannot be observed
from post-release defects. Therefore, the effect of either the development setting or
the organizational changes on quality could not be sufficiently investigated with just
post-release defects, which was unfortunately the only reliable source of defects avail-
able. Similar concerns can be raised for studies on distributed development reported
in literature that also uses the same proxy (post-release defects) for quality.

Distributed Software Development in an Offshore Outsourcing Project 23

Generally, project arrangements in global software development projects have
implications on how development teams collaborate. There can be distributed teams
with each team working independently but working towards the development of
the same software, or distributed teams can work as virtual teams in which team
members are dispersed across different locations. A possible future work is the for-
mulation of a method for investigating quality for products developed in distributed
development settings that takes into account contextual information linked to the
distinguishing characteristics of such settings. Such a method can help improve con-
sistency in the manner in which studies on distributed development are performed.
Consistency would make it easier to synthesize and compare findings across studies,
and would facilitate with building useful information to support practitioners.

Acknowledgments

This research work is partially supported by the Swedish Knowledge Foundation in
Sweden under the grant 20120200 (2013-2016) and Ericsson Software Research.

24 Ronald Jabangwe et al.

A Appendix

A.1 Shapiro-Wilk Test (Normality Test)

Table 5 shows normality test results. Null hypothesis of the Shapiro-Wilk test is that the data
is normal. Since the p-value for all variables (under column “sign” for Shapiro Wilk) is less
than 0.01 (which is the significance level), we can reject the null hypothesis. Thus, they are
not normally distributed.

Table 5: Shapiro-Wilk Test: Normality Test Results

Statistic df Sig.

Total Defects .392 132 .000

RFC .935 132 .000

LOC .842 132 .000

LOC XRS .922 132 .000

Churned LOC XRS .343 132 .000

Num of Companies .672 132 .000

Features Added .419 132 .000

References

Ali, S. and Khan, S. (2014). Critical success factors for software outsourcing partnership (sop):
A systematic literature review. In Proceedings of the 9th International Conference on Global
Software Engineering, pages 153–162.

Alsudairi, M. A. and Dwivedi, Y. K. (2010). A multi-disciplinary profile of is/it outsourcing
research. Journal of Enterprise Information Management, 23(2):215–258.

Babar, M. A., Verner, J. M., and Nguyen, P. T. (2007). Establishing and maintaining trust
in software outsourcing relationships: An empirical investigation. Journal of Systems and
Software, 80(9):1438 – 1449.

Bilal Raza, S. G. M. and Clear, T. (2013). Topics and treatments in global software engineering
research: A systematic snapshot. In Proceedings of the 8th International Conference on
Evaluation of Novel Approaches to Software Engineering, ENASE’13, pages 85–96.

Bird, C. and Nagappan, N. (2012). Who? where? what? examining distributed development
in two large open source projects. In Proceedings of the 9th IEEE Working Conference on
Mining Software Repositories, pages 237–246.

Bird, C., Nagappan, N., Devanbu, P., Gall, H., and Murphy, B. (2009). Does distributed devel-
opment affect software quality? An empirical case study of Windows Vista. In Proceedings
of the 31st International Conference on Software Engineering, pages 85–93.

Bird, C., Nagappan, N., Murphy, B., Gall, H., and Devanbu, P. (2011). Don’t touch my
code!: Examining the effects of ownership on software quality. In Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software
Engineering, ESEC/FSE ’11, pages 4–14. ACM.

Carmel, E. and Tjia, P. (2005). Offshoring information technology: Sourcing and outsourcing
to a global workforce. Cambridge University Press, Cambridge, UK.

Cataldo, M. and Herbsleb, J. D. (2011). Factors leading to integration failures in global
feature-oriented development: An empirical analysis. In Proceedings of the 33rd Interna-
tional Conference on Software Engineering, pages 161–170, New York, NY, USA. ACM.

Distributed Software Development in an Offshore Outsourcing Project 25

Chidamber, S. R. and Kemerer, C. F. (1994). A metrics suite for object oriented design. IEEE
Transactions on Software Engineering, 20(6):476–493.

Colomo-Palacios, R., Casado-Lumbreras, C., Soto-Acosta, P., Garćıa-Peñalvo, F. J., and Tovar,
E. (2014). Project managers in global software development teams: a study of the effects
on productivity and performance. Software Quality Journal, 22(1):3–19.

da Silva, F., Costa, C., FranÃğa, A., and Prikladinicki, R. (2010). Challenges and solutions
in distributed software development project management: A systematic literature review.
In Proceedings of the 5th International Conference on Global Software Engineering, pages
87–96.

Damian, D., Izquierdo, L., Singer, J., and Kwan, I. (2007). Awareness in the wild: Why
communication breakdowns occur. In Proceedings of the 2nd International Conference on
Global Software Engineering, pages 81–90.

Dibbern, J., Winkler, J., and Heinzl, A. (2008). Explaining variations in client extra costs
between software projects offshored to india. MIS quarterly, pages 333–366.

El-Emam, K. (2002). Object-oriented metrics: A review of theory and practice. In Erdogmus,
H. and Tanir, O., editors, Advances in Software Engineering, pages 23–50. Springer New
York.

Fabriek, M., Brand, M. v. d., Brinkkemper, S., Harmsen, F., and Helms, R. (2008). Reasons
for success and failure in offshore software development projects. In Proceedings of the
European Conference on Information Systems, pages 446–457.

Gomes, V. and Marczak, S. (2012). Problems? we all know we have them. do we have solutions
too? a literature review on problems and their solutions in global software development. In
Proceedings of the 7th International Conference on Global Software Engineering, pages
154–158.

Gyimóthy, T., Ferenc, R., and Siket, I. (2005). Empirical validation of object-oriented metrics
on open source software for fault prediction. IEEE Transactions on Software Engineering,
31(10):897–910.

Herbsleb, J. D. and Mockus, A. (2003). An empirical study of speed and communication in
globally distributed software development. IEEE Transactions on Software Engineering,
29(6):481–494.

Herraiz, I. and Hassan, A. E. (2012). Making software – What really works, and why we
believe it, chapter Beyond lines of code: Do we need more complexity metrics?, pages 125–
141. O’Reilly Media.

Iacovou, C. L. and Nakatsu, R. (2008). A risk profile of offshore-outsourced development
projects. Communications of the ACM, 51(6):89–94.

ISO/IEC-25010 (2010). Systems and software engineering – Systems and software Quality Re-
quirements and Evaluation (SQuaRE) – System and software quality models. International
organization for standardization.

ISO/IEC/IEEE-24765 (2010). Systems and software engineering – Vocabulary. International
organization for standardization.

Jabangwe, R., Börstler, J., and Petersen, K. (2014). Handover of managerial responsibilities
in global software development: a case study of source code evolution and quality. Software
Quality Journal, pages 1–28.

Jabangwe, R., Börstler, J., Šmite, D., and Wohlin, C. (2015). Empirical evidence on the link
between object-oriented measures and external quality attributes: A systematic literature
review. Empirical Software Engineering, 20(3):1–54.

Jabangwe, R., Petersen, K., and Šmite, D. (2013). Visualization of defect inflow and resolution
cycles: Before, during and after transfer. In Proceedings of the 20th Asia-Pacific Software
Engineering Conference, volume 1, pages 289–298. IEEE.

Jabangwe, R. and Šmite, D. (2012). An exploratory study of software evolution and quality:
Before, during and after a transfer. In Proceedings of the 7th IEEE International Conference
on Global Software Engineering, pages 41–50.

Jalali, S., Gencel, C., and Šmite, D. (2010). Trust dynamics in global software engineering.
In Proceedings of the 4th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, page 23. ACM.

Kannabiran, G. and Sankaran, K. (2011). Determinants of software quality in offshore
development–an empirical study of an indian vendor. Information and Software Technology,
53(11):1199–1208.

Khan, S. U., Niazi, M., and Ahmad, R. (2009). Critical success factors for offshore software
development outsourcing vendors: A systematic literature review. In Proceedings of the

26 Ronald Jabangwe et al.

4th International Conference on Global Software Engineering Conference, pages 207–216.
IEEE.

Kocaguneli, E., Zimmermann, T., Bird, C., Nagappan, N., and Menzies, T. (2013). Distributed
development considered harmful? In Proceedings of the 35th International Conference on
Software Engineering, pages 882–890. IEEE.

Krishna, S., Sahay, S., and Walsham, G. (2004). Managing cross-cultural issues in global
software outsourcing. Communications of the ACM, 47(4):62–66.

Lacity, M. C., Willcocks, L. P., and Rottman, J. W. (2008). Global outsourcing of back office
services: lessons, trends, and enduring challenges. Strategic Outsourcing: An International
Journal, 1(1):13–34.

Marques, A., Rodrigues, R., and Conte, T. (2012). Systematic literature reviews in distributed
software development: A tertiary study. In Proceedings of the 7th International Conference
on Global Software Engineering, pages 134–143.

McCabe, T. J. (1976). A complexity measure. IEEE Transactions on Software Engineering,
2(4):308–320.

Mockus, A. (2010). Organizational volatility and its effects on software defects. In Proceed-
ings of the 18th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 117–126.

Moe, N. B., Šmite, D., Hanssen, G. K., and Barney, H. (2014). From offshore outsourcing to
insourcing and partnerships: four failed outsourcing attempts. Empirical Software Engi-
neering, pages 1–34.

Moe, N. B. and Šmite, D. (2008). Understanding a lack of trust in global software teams: A
multiple-case study. Software Process Improvement and Practice, 13(3):217–231.

Nagappan, N., Murphy, B., and Basili, V. (2008). The influence of organizational structure
on software quality: An empirical case study. In Proceedings of the 30th International
Conference on Software Engineering, pages 521–530.

Nguyen-Duc, A., Cruzes, D. S., and Conradi, R. (2015). The impact of global dispersion
on coordination, team performance and software quality - a systematic literature review.
Information and Software Technology, 57:277–294.

Nurdiani, I., Jabangwe, R., Šmite, D., and Damian, D. (2011). Risk identification and risk
mitigation instruments for global software development: Systematic review and survey re-
sults. In Proceedings of the 6th International Conference on Global Software Engineering
Workshop, pages 36–41.

Oshri, I., Kotlarsky, J., and Willcocks, L. P. (2011). The handbook of global outsourcing and
offshoring. Palgrave Macmillan, 2nd edition.

Petersen, K. and Wohlin, C. (2009). Context in industrial software engineering research. In
Proceedings of the 3rd ACM-IEEE International Symposium on Empirical Software Engi-
neering and Measurement, pages 401–404.

Pfannenstein, L. L. and Tsai, R. J. (2004). Offshore outsourcing: Current and future effects
on american it industry. Information Systems Management, 21(4):72–80.

Posnett, D., Filkov, V., and Devanbu, P. (2011). Ecological inference in empirical software
engineering. In Proceedings of the 2011 26th IEEE/ACM International Conference on
Automated Software Engineering, pages 362–371, Washington, DC, USA. IEEE Computer
Society.

Ramasubbu, N. and Balan, R. K. (2007). Globally distributed software development project
performance: An empirical analysis. In Proceedings of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineer-
ing, pages 125–134.

Razali, N. M. and Wah, Y. B. (2011). Power comparisons of shapiro-wilk, kolmogorov-smirnov,
lilliefors and anderson-darling tests. Journal of Statistical Modeling and Analytics, 2(1):21–
33.

Robson, C. (2011). Real world research. John Wiley & Sons, West Sussex, UK, 2nd edition.
Rottman, J. W. and Lacity, M. C. (2006). Proven practices for effectively offshoring it work.

Sloan Management Review, 47:56–63.
Runeson, P., Höst, M., Rainer, A., and Regnell, B. (2012). Case study research in software

engineering. John Wiley & Sons, New Jersey, USA.
Schaaf, J. (2004). Offshoring: Globalisation wave reaches services sector. Deutsche Bank

Research. E-conomics, (45).
Singh, Y., Kaur, A., and Malhotra, R. (2010). Empirical validation of object-oriented metrics

for predicting fault proneness models. Software Quality Journal, 18(1):3–35.

Distributed Software Development in an Offshore Outsourcing Project 27

Spinellis, D. (2006). Global software development in the freeBSD project. In Kruchten, P.,
Hsieh, Y., MacGregor, E., Moitra, D., and Strigel, W., editors, Proceedings of the Interna-
tional Workshop on Global Software Development for the Practitioner, pages 73–79.

Sutherland, J., Schoonheim, G., and Rijk, M. (2009). Fully distributed scrum: Replicating
local productivity and quality with offshore teams. In System Sciences, 2009. HICSS’09.
42nd Hawaii International Conference on, pages 1–8. IEEE.

Verner, J., Brereton, O., Kitchenham, B., Turner, M., and Niazi, M. (2012). Systematic
literature reviews in global software development: A tertiary study. In Proceedings of the
16th International Conference on Evaluation Assessment in Software Engineering, pages
2–11.

Šmite, D. (2014). Distributed project management. In Ruhe, G. and Wohlin, C., editors, Soft-
ware project management in a changing world, pages 301–320. Springer Berlin Heidelberg.

Šmite, D. and Wohlin, C. (2011). Strategies facilitating software product transfers. IEEE
Software, 28(5):60–66.

Šmite, D., Wohlin, C., Aurum, A., Jabangwe, R., and Numminen, E. (2013). Offshore insourc-
ing in software development: Structuring the decision-making process. Journal of Systems
and Software, 86(4):1054–1067.

Šmite, D., Wohlin, C., Galviņa, Z., and Prikladnicki, R. (2014). An empirically based ter-
minology and taxonomy for global software engineering. Empirical Software Engineering,
19(1):105–153.

Wieringa, R. (2013). Case study research in information systems engineering: how to generalize,
how not to generalize, and how not to generalize too much. In Proceedings of the 25th
International Conference on Advanced Information Systems Engineering, pages xii–xii.

Winkler, J. K., Dibbern, J., and Heinzl, A. (2008). The impact of cultural differences in offshore
outsourcingâĂŤcase study results from german–indian application development projects.
Information Systems Frontiers, 10(2):243–258.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and Wesslén, A. (2012). Ex-
perimentation in software engineering: An introduction. Springer-Verlag Berlin Heidelberg,
New York, USA.

	Introduction
	Related Work
	Research Methodology
	Results and Analysis
	Discussion
	Validity Threats
	Conclusions and Future Work
	Appendix

