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Abstract As flood inundation risk maps have become a

central piece of information for both urban and risk man-

agement planning, also a need to assess the accuracies and

uncertainties of these maps has emerged. Most maps show

the inundation boundaries as crisp lines on visually

appealing maps, whereby many planners and decision

makers, among others, automatically believe the bound-

aries are both accurate and reliable. However, as this study

shows, probably all such maps, even those that are based

on high-resolution digital elevation models (DEMs), have

immanent uncertainties which can be directly related to

both DEM resolution and the steepness of terrain slopes

perpendicular to the river flow direction. Based on a

number of degenerated DEMs, covering areas along the

Eskilstuna River, Sweden, these uncertainties have been

quantified into an empirically-derived disparity distance

equation, yielding values of distance between true and

modeled inundation boundary location. Using the inunda-

tion polygon, the DEM, a value representing the DEM

resolution, and the desired level of confidence as inputs in a

new-developed algorithm that utilizes the disparity dis-

tance equation, the slope and DEM dependent uncertainties

can be directly visualized on a map. The implications of

this strategy should benefit planning and help reduce high

costs of floods where infrastructure, etc., have been placed

in flood-prone areas without enough consideration of map

uncertainties.

Keywords 1D hydraulic modeling � River flood
inundation � Uncertainty � Quantile regression �
Geographical information systems (GIS) � Digital elevation
model (DEM)

1 Introduction

1.1 Background

Hydraulic modeling of river floods has received a signifi-

cant boost during the last 10 years; not only thanks to

improved computers and hydraulic modeling software, but

also to the capabilities and user-friendliness of geographi-

cal information systems (GIS). During the same period,

new legislation, such as EU’s flood directive, demands that

flood risks are incorporated into risk and management

plans, and together, this has led to production of numerous

flood risk maps. Although these maps may have been

produced by professionals who are aware of the different

inaccuracies and uncertainties underlying the maps, they

are often used by people who have little or no experience of

neither hydraulic nor digital elevation modeling. Further-

more, as these maps tend to form the basis for many

decisions in spatial and physical planning of the built

environment, there is a need for tools that can communi-

cate the intrinsic uncertainties always present in the maps.

There are different types of uncertainties involved in

flood risk mapping (see e.g. Pappenberger et al. 2008 and

Merwade et al. 2008, for general treatise on this subject).

The most immediate is which model to be used (e.g.

Wagener and Gupta 2005), but in practice, the most com-

monly treated uncertainty is which magnitude of flow to

use for a certain flood return period. This can be handled by

running the model with different water discharges and
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thereby get a range of flood inundation areas. Other ways

of treating uncertainty is through Monte Carlo simulations,

i.e., feeding the model with slightly varied input of all input

parameters, and where the large number of output maps in

turn can be related to flood prediction uncertainty on how

accurate the modeled results are (e.g. Apel et al. 2008).

Obviously, specific objects and parameters in the hydraulic

model can also influence the accuracy of the produced

results. For example Koivumäki et al. (2010) studied the

effects of buildings in the model, Pappenberger et al.

(2006) looked at the effects of boundary conditions and

bridges, and Cook and Merwade (2009) and Castellarin

et al. (2009) treated the effects of cross-section location

and spacing. As the hydraulic modeling usually involves

calibration against a previous flood event, the importance

of roughness is also widely known. By varying river bed

and floodplain roughness values in a range that theoreti-

cally can be expected, minimum and maximum extents of

the flooded area can be modeled. Although modelers have

acknowledged the implications of roughness for a long

time, it is not until recent years that any efforts have been

made to see how much this type of uncertainty affects the

results (see e.g. Pappenberger et al. 2005; Werner et al.

2005; Casas et al. 2006; Schumann et al. 2007; Wilson and

Atkinson 2007; Brandt 2009; Warmink et al. 2013; Wu in

press). This is probably due to the type of uncertainty

which earlier has been considered the main constraint for

successful modeling, viz. the quality of the digital elevation

model (DEM).

1.2 Previous research on delineation uncertainties

related to DEMs

Before the advent of LiDAR, the results from hydraulic

models, which could be based on detailed surveyed cross

sections, were overlain on DEMs of poor resolution. In

Sweden, e.g., up to only a couple of years ago, the only

elevation database of national coverage has been Lantmä-

teriet’s (the Swedish mapping, cadastral and land regis-

tration authority) with 50 m cell resolution (other countries

have had similar resolutions). Very rarely, there have been

DEMs of higher quality available. Due to the poor quality

of the elevation models, in Sweden all such maps were

given a notification that they should not be used for

detailed planning. Hence, there have been some studies

with the specific objective to study how the quality of

DEMs affects the accuracy of inundation boundary delin-

eation from 1D hydraulic models, which end products are

water levels at each modeled cross section. By comparing

these modeled levels with measured levels, several studies

have shown that the accuracy of predicting correct levels is

surprisingly high, irrespectively of the quality of DEM (e.g.

Casas et al. 2006; Yacoub and Sanner 2006; Brandt 2009).

Only with poor DEMs (i.e., cell sizes bigger than 10–25 m)

together with steep river slopes, or abrupt slope change, the

water levels may deviate significantly between modeled

and real conditions (Brandt 2009). However, when it comes

to the spatial extent, which is important when the inunda-

tion extents are transferred to maps, high-resolution DEMs

of high quality may also produce inaccurate results.

An early attempt to look at spatial deviations was done

by Zhang and Montgomery (1994) on two areas in the

USA. They gridded spot elevation data to DEMs of 2, 4,

10, 30, and 90 m resolution. They noticed that better res-

olution than 10 m lead to improved modeling results.

However, the best two DEMs did not produce any signif-

icant improvements; most probably due to the catchments

being characterized by moderately to steep terrain gradi-

ents. Later, Werner (2001) used laser altimetry data for a

reach of the river Saar in Germany. The original cell res-

olution was 2.5 m, which then was aggregated by averag-

ing neighboring cell values to cell sizes of 5, 10, and 25 m.

He concluded that a cell resolution of 10 m indicated the

break when flood extents started to deviate significantly.

When the modeled areas are big, high-resolution DEMs

usually contain enormous amounts of data. Therefore, it is

of interest to see how much the original laser data can be

filtered, without losing predictability performance. For an

area around Leith Creek, North Carolina, Omer et al.

(2003) looked at the angle a between two surveyed data

points (Fig. 1). If a pre-determined angle is exceeded, the

point will be preserved, but if it is not exceeded it will be

removed from the dataset. In this way the number of points

will be reduced, leading to less computer storage, faster

analysis times, but also a DEM of poorer quality. The

original dataset had ca 0.0288 points/m2, equivalent to

5.89 m cell size. By testing different threshold values of a,
their recommendation is that a should be less than 4�,
which in their case represented about 38 % of the original

number of points, i.e., ca 0.0111 points/m2, equivalent to

9.50 m cell sizes.

Another study was undertaken by Casas et al. (2006).

They looked at an area next to the Ter River, Spain, and

tested different DEMs ranging from 1 to 4 m in cell size.

The DEMs were derived from laser altimetry data, GPS

Fig. 1 Angle used to determine if point should be filtered away or

kept in the DEM (cf. Omer et al. 2003)
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surveyed data, 5 m contour data (scale 1:5000), as well as

combinations between them, together with or without

bathymetric data. They concluded that for a 500 m3/s

discharge, the 4 m resolution DEM yielded inundated area

differences up to 7.3 %. However, if higher discharges

were used (3000 m3/s), the differences were reduced to

2.6 %. Therefore they argued that coarser resolution will

have less consequence in floodplain areas.

Raber et al. (2007) looked at Reedy Fork Creek, North

Carolina, and started with laser altimetry data with a mean

point distance of 1.35 m, which later were filtered in sev-

eral steps down to 9.64 m. By comparing statistics over the

modeled inundated areas, they concluded that it is enough

with 4 m mean point spacing. For better DEMs they did not

see any significant differences between the model results.

Cook and Merwade (2009) studied the Brazos River,

Texas, and Strouds Creek, North Carolina, for different

resolutions (laser altimetry data of 3 m for Brazos River

and 6 m for Strouds River, as well as 10 and 30 m USGS

data for both rivers) combined with different qualities of

cross-section resolutions. Although their research focus

was on inundated area differences, they did notice that for

the smaller Strouds River (with a width of 9.5 m during

normal conditions) the average width of a modeled flood

where 25 % wider when poor DEMs were used. Similarly,

the larger Brazos River’s (with a width of 175 m during

normal conditions) average width was 5 % wider. This

effect was doubled when laser altimetry data were inte-

grated in the cross-section profiles.

1.3 Aim and objectives

Nowadays flood risk maps are usually based on DEMs with

quite high quality. In Sweden, a new national elevation

dataset of 2 m resolution is under production, and thanks to

the detailed appearance of the maps, many users as well as

hydraulic modelers tend to put high confidence in them and

consider the results to be very accurate, i.e., with a flood-

boundary position accuracy of just one or two raster cells.

However, there are a few studies available that have shown

that these maps may also suffer severely from DEM-

derived uncertainties, but despite the recognition of the

problem, it seems that practically no attempts have been

made to actually visualize the uncertainties of these maps

(cf. Lim et al. 2016). Considering the fact that there still are

accuracy and uncertainty issues due to the quality of the

DEMs, together with the absence of effective visualization

techniques to represent these issues, the general aim of this

paper is to provide insights into the importance of DEMs

influence on 1D hydraulic modeling. The specific objec-

tives are to produce: (1) a general equation capable of

describing the uncertainties related to the DEM resolution

and the floodplain characteristics, here represented by the

slope perpendicular to the flow direction, and (2) an

algorithm capable of illustrating the uncertainties of flood

boundary mapping, related to the quality of the DEMs.

2 Prior studies of Eskilstuna and Testebo rivers

All previously mentioned studies focus on the DEMs global

resolution, despite the relatively obvious influence of the

local terrain; especially the slope characteristics perpendic-

ular to the flow direction. Where cross sections have steep

slopes, the inundation delineation is more certain than for

cross sections with gentle slopes. Hence, river side areas with

gentle perpendicular slopes call for elevation data of higher

resolution to reduce the uncertainty of inundation extent

delineation (Brandt 2005). This is also supported by Colby

and Dobson (2010) who in their study on rivers in North

Carolina concluded that the ‘‘extent and internal pattern of

flooding in the low-relief coastal plains was found to be

especially sensitive to the representation of terrain’’. There-

fore, a first attempt to look into this problem in detail was

carried out for two areas of Eskilstuna River, Sweden (re-

ported in Brandt 2009): one with relatively steep side slopes

and one with relatively flat side slopes. These areas were

modeled with the 1D hydraulic software HEC-RAS (Hy-

drologic Engineering Center 2008) for a steady state flow of

198 m3/s and tested for inundation boundary delineationwith

several DEMs of varying cell resolution (besides this, that

study also looked at the effect of systematic vertical errors of

the surrounding terrain as well as the relative importance of

errors between roughness and DEM resolution).

The northern investigated area in Eskilstuna River is

2241 m long, consists of two parts with a water power

station in between, and has relatively steep side slopes. The

original point cloud has a point spacing of 1.36 points/m2.

The southern area, on the other hand, is 1731 m long, has

relatively gentle side slopes, and has a point spacing of

1.64 points/m2. This is equivalent to raster DEMs of 0.86

and 0.78 m cell sizes, respectively. These datasets were

then degraded step-by-step through both removal of points

and by introducing random errors in order to fully simulate

higher flight heights in accordance with the scanner

equipment specifications (cf. Klang and Klang 2009, for

full details).

When comparing the modeled river widths (based on

degraded DEMs) with the width considered to be the truth

(based on original point cloud with no introduced errors),

the mean disparity for all cross sections was around 0 m

(less than ±2 m irrespectively of point density or cell size),

except for the poorest DEM of 50 m cell size, where the

mean disparity was ca 16 m. The seemingly good results

were due to cancelling-out effects of the existence of both

negative and positive width differences. Therefore, the
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mean of the absolute disparity values were also calculated.

Then it was clear that the cell resolution negatively affects

the results; not only will poorer resolution give poorer

spatial accuracy (expressed as width disparities), it is also

clear that areas with gentler side slopes have higher width

disparities than do areas with steeper side slopes (Fig. 2).

However, even if there was a general correlation between

slope and width disparity, the width disparity at each cross

section varied quite randomly. Some cross sections showed

no difference between the different DEMs, while other

cross sections for the poorest resolutions differed more than

130 m.

Figure 3a shows the differences between the reference

model and two of the degraded models of 3.83 and 50 m

cell size, as well as the inundated area when the already

existing 50 m DEM (Lantmäteriet’s) is used. Therefore, in

a later study, to get a more robust analysis, about 400

transects were laid out across the river and checked for

disparities between the reference model and the degraded

models (cf. Brandt and Lim 2012). The disparity distances

were then plotted against the river side slope (Fig. 3b).

From this diagram it can be seen that modeled inundation

boundaries can be significantly different from the ‘‘true’’

ones, especially at gentle river side slopes.

A follow up on the Eskilstuna study was done on the

Testebo River, Sweden (Brandt and Lim 2012; also cf. Lim

2009, 2011). Instead of a reference model of high-resolu-

tion laser altimetry data and degenerated DEMs, this area

used reference records of inundation extents from the

1977-year flood, together with laser altimetry data and the

old 50 m DEM from Lantmäteriet as test models. Fur-

thermore, two separate and independent modeling attempts

using the same laser altimetry data were done, one by

Brandt and one by Lim, to also see how much the modeler

will impact the analysis. As can be seen in Fig. 4a there are

places with relatively big disparities between modeled and

actual flood extent boundaries. These are mainly located in

flat terrain. Also apparent is that the disparities between the

modelers are smaller than the disparities between any of

the modelers and the reference flood map (Fig. 4b).

3 Representing DEM-derived uncertainties
of flood maps

This work has focused on two aspects of accuracies and

uncertainties related to the elevation models that are used

for inundation mapping. One is related to the cell resolu-

tion of the DEM and the other is related to the river channel

and floodplain slope perpendicular to the flow direction.

3.1 DEMs used for creating an uncertainty equation

To be able to test the influence on resolution, the already

existing DEMs from the previous projects were used. In

that process, the strategy was to simulate the behavior of

the Leica ALS50 LiDAR instrument at different flight

heights (cf. Klang and Klang 2009 for full details of this

process), and hence these DEMs have the advantage of

being more similar to real recordings at different flight

heights, than if simple aggregation of cells or re-interpo-

lation of original LiDAR points were to be performed. The

original DEMs, with an initial point spacing of 1.64 and

1.36 points/m2, corresponding to cell sizes of 0.78 and

Fig. 2 River width disparities

between modeled floods using

reference DEM and degraded

DEMs when the mean of

absolute width differences have

been used (based on Brandt

2009). Inset shows the effect of

systematic errors in the DEM of

surrounding terrain on water

level and inundation width
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Fig. 3 a Disparities between modeled floods using reference DEM

and degraded DEMs with 3.83 and 50 m cell size on two areas along

the Eskilstuna River, Sweden. The red line represents the inundated

area based on Lantmäteriet’s (denoted National Land Survey) old

50 m DEM (from Brandt 2009). b Disparity distances between results

based on the reference model and the degenerated DEMs and

Lantmäteriet’s old 50 m DEM. Also included are visually estimated

envelope curves for each DEM resolution range (from Brandt and

Lim 2012), as well as an inlay on how disparity distances and the

river side slopes were calculated

Fig. 4 a Modeled floods using laser altimetry data (one by Brandt

and one by Lim) and using the 50 m DEM from Lantmäteriet

(denoted National Land Survey). The flood in 1977 serves as the

reference inundation area. b Disparity distances between the different

models. From Brandt and Lim (2012)
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0.86 m, respectively, had been degraded and downsampled

to a number of different DEMs (Table 1) of gradually

increased point spacing or cell size. The DEMs were the

same as for the two areas shown in Fig. 3a (Brandt 2009).

3.2 Estimating the uncertainties due to DEM

resolution and floodplain slopes

The previous studies show that it should be possible to

create an equation for disparity distances (Dd) according to:

Dd ¼ f S; d;Pð Þ ð1Þ

where S is terrain slope perpendicular to the flow direction,

d is the cell size of the DEM and P is the percentile of

interest (confidence) for estimating the uncertainties.

The first step to create a general equation that describes

disparity distances involved plotting the disparities against

the perpendicular slopes. Using the same transects descri-

bed in Brandt and Lim (2012), disparity was measured as

the absolute value of the distance between the modeled and

the ‘‘true’’ flood boundary (based on the reference DEM).

The slope was then calculated from the same coordinate

pairs of the reference DEM (also cf. Fig. 3b). Next, for

each resolution the slopes were divided into seven classes

where different percentiles were calculated for each slope

class (Table 2), and a regression model was developed

linking the percentiles to terrain slope and DEM resolution,

i.e., a quantile regression was performed (cf. e.g. Koenker

and Hallock 2001). As there were very few observations in

the two smallest slope classes, these were excluded from

the regression analyses. The total number of observations

for each DEM differs; partly because there were a few

observations with slopes steeper than 1.78 m/m, i.e., stee-

per than the slope classes used for the regression analysis

(in analogy with the smallest slope classes), and partly

because of removal of observations where the slope was

exactly 0 m/m (the reasons being: it is not possible to

define the logarithm of 0, and these observations would

belong to a slope class even smaller than those that were

not included in the regression analysis). Then, when the

logarithm of the percentile disparities for each slope class

were plotted against the logarithm of the slope classes it is

clear that they plot as straight lines with high coefficients of

determination (R2) (Fig. 5).

The general equation describing the regression lines,

seen in Fig. 5, can be expressed as:

Dd ¼ cSz ð2Þ

However, from Fig. 5 it can also be seen that the regression

lines vary in both position and degree of slope, i.e., the

lines’ c coefficients and z exponents vary depending on the

resolution and the desired confidence. If the c coefficients

are plotted against the resolution it can be seen that c is

increasing when resolution gets poorer and confidence

percentile gets higher (Fig. 6a).

Although in the figure it can be seen that the matching

between the data points and regression line is weaker for

the coarse resolution DEMs, relatively strong correlation

coefficients are achieved. The lines in Fig. 6a can be rep-

resented with the following equation:

Table 1 Characteristics of the DEMs used in this study (cf. Klang and Klang 2009 and Brandt 2009)

Simulated flight height (m) No. of points/m2 Point spacing [Cell size] (m) Introduced random errors of size 1 r

Planar (m) Vertical (m)

1122 (Reference for southern area) 1.64 0.78

1232 (Reference for northern area) 1.36 0.86

1122 (Southern area) 1.64 0.78 0.17 0.11

1232 (Northern area) 1.36 0.86 0.18 0.12

1500 0.92 1.04 0.20 0.12

2000 0.52 1.39 0.25 0.13

2500 0.33 1.74 0.31 0.14

3000 0.23 2.09 0.36 0.16

3500 0.17 2.43 0.41 0.17

4000 0.13 2.77 0.47 0.19

4500 0.102 3.13 0.52 0.20

5000 0.083 3.47 0.57 0.22

5500 0.068 3.83 0.63 0.24

14,391 0.010 10.0 0.63 0.24

35,979 0.0016 25.0 0.63 0.24

71,960 0.0004 50.0 0.63 0.24
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c ¼ adb ð3Þ

When plotting the a coefficients and b exponents against

the confidence percentiles, it appears that a increases

exponentially with increasing confidence percentile while b

has a relatively weak correlation, where the mean value is

0.970 with a standard deviation of 0.049 (Fig. 6b). Hence

the b exponent may be represented by a constant. The c

coefficient can therefore be described with the following

equation:

c ¼ 0:000792P1:303d0:970 ð4Þ

Also the z exponent increases when resolution gets

poorer (Fig. 6c), although the correlation coefficients are

not as high as for the c coefficient, according to the fol-

lowing general equation:

z ¼ x ln dð Þ þ y ð5Þ

However, when plotting the x and y coefficients against

the confidence percentiles, it appears that x is constant with

a mean value of 0.1124 and a standard deviation of 0.0062,

and that y increases with increasing confidence percentile

(Fig. 6d). The z exponent can therefore be described with

the following equation:

z ¼ 0:1124 ln dð Þ þ 0:0709 ln Pð Þ � 1:0064 ð6Þ

The final equation then becomes:

Dd ¼ d0:970 0:000792P1:303
� �

S 0:1124ln dð Þþ0:0709ln Pð Þ�1:0064½ �

ð7Þ

As a check the Dd equation has been plotted against the

empirical data (Fig. 7). Also included is a disparity dis-

tance example from Tärnsjö (Fig. 7c) (location taken from

the study by Vähäkari 2006), which serves as the most

extreme disparity known to the author.

4 Constructing the algorithm

4.1 Algorithm for visualizing flood boundary

delineation uncertainties

Based on the results from Table 2 and Figs. 5, 6, it is

possible to construct an algorithm for direct visualization

Table 2 Disparity distances for the 1.04, 3.83, and 50 m resolution DEMs

Slope class

center (m)

log (Slope

class center)

Class boundaries No. of

obs.

Disparity distance (m) for percentile

10 20 30 40 50 60 70 80 90

[d = 1.04 m]

0.0006 -3.25 (-3.5) to (-3.0) 6 19.53 25.86 28.53 31.48 32.50 33.55 59.86 106.79 107.24

0.0018 -2.75 (-3.0) to (-2.5) 9 6.93 7.67 8.40 8.85 8.89 9.02 12.60 15.97 20.93

0.0056 -2.25 (-2.5) to (-2.0) 39 2.07 2.47 3.55 4.79 5.32 6.17 6.72 9.48 11.65

0.0178 -1.75 (-2.0) to (-1.5) 113 0.78 1.21 1.58 1.99 2.40 2.80 3.59 5.02 6.92

0.0562 -1.25 (-1.5) to (-1.0) 157 0.29 0.42 0.56 0.74 0.99 1.20 1.54 2.15 2.90

0.1778 -0.75 (-1.0) to (-0.5) 261 0.09 0.15 0.22 0.29 0.36 0.46 0.58 0.80 1.14

0.5623 -0.25 (-0.5) to (0) 116 0.05 0.07 0.12 0.15 0.21 0.26 0.31 0.38 0.54

[d = 3.83 m]

0.0006 -3.25 (-3.5) to (-3.0) 1 12.67 12.67 12.67 12.67 12.67 12.67 12.67 12.67 12.67

0.0018 -2.75 (-3.0) to (-2.5) 15 5.48 7.73 9.75 17.74 22.77 23.30 24.20 31.65 35.53

0.0056 -2.25 (-2.5) to (-2.0) 50 2.10 2.86 4.33 5.40 8.88 11.93 14.38 19.74 24.99

0.0178 -1.75 (-2.0) to (-1.5) 136 1.09 2.02 3.09 4.17 4.69 5.47 7.05 8.38 11.39

0.0562 -1.25 (-1.5) to (-1.0) 205 0.61 0.97 1.36 1.69 2.20 2.76 3.31 4.58 5.99

0.1778 -0.75 (-1.0) to (-0.5) 234 0.22 0.40 0.64 0.88 1.11 1.35 1.68 2.12 2.77

0.5623 -0.25 (-0.5) to (0) 123 0.11 0.25 0.42 0.55 0.69 0.86 1.02 1.21 1.64

[d = 50 m]

0.0006 -3.25 (-3.5) to (-3.0) 1 253.04 253.04 253.04 253.04 253.04 253.04 253.04 253.04 253.04

0.0018 -2.75 (-3.0) to (-2.5) 2 9.58 10.31 11.10 11.94 12.85 13.83 14.88 16.01 17.23

0.0056 -2.25 (-2.5) to (-2.0) 18 14.95 18.42 21.22 22.44 27.93 31.28 33.25 36.74 53.32

0.0178 -1.75 (-2.0) to (-1.5) 96 5.54 7.03 8.56 10.63 15.14 18.59 25.37 33.62 40.17

0.0562 -1.25 (-1.5) to (-1.0) 265 4.00 6.67 9.81 12.58 14.82 18.83 22.51 27.10 32.49

0.1778 -0.75 (-1.0) to (-0.5) 230 2.10 4.80 6.40 7.71 9.62 12.08 14.34 17.36 26.42

0.5623 -0.25 (-0.5) to (0) 30 0.91 2.16 2.57 2.92 3.17 4.90 5.60 6.85 7.89
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of the uncertainties related to the quality of the DEM and

the perpendicular side slopes. This example will use the

modeled inundation polygon, the already existing cross

sections in the hydraulic model, and a DEM as input. In

short the following procedure is followed (Fig. 8): (1)

First the cross sections are prepared for the analysis and

Fig. 5 Disparity distances between modeled and true flood bound-

aries plotted against the perpendicular slopes for 1.4, 3.83, and 50 m

DEMs, respectively (Note The peculiar linear pattern arises due to the

limiting factor of using elevation values with cm precision for slope

calculation). Also plotted are percentile values for each slope class

and their corresponding regression lines (for classes

0.0056–0.5623 m/m)

Fig. 6 a Variation of the c coefficient depending on resolution (or

DEM cell size) and confidence (percentile, P). Regression lines are

included for 10, 50, and 90 percentiles, respectively. b Variations of a

coefficient and b exponent depending on confidence. c Variation of

the b exponent depending on resolution and confidence. d Variation

of the x and y coefficients depending on desired confidence
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different input variables are determined. (2) Then each

cross section is checked where (and whether) it is inter-

sected by the modeled flood boundary. From the inter-

section, an iterative process, going one cross section node

at a time, will look both toward the center of the river

(determining the inner uncertainty boundary) and in the

opposite direction away from the river (determining the

outer uncertainty boundary) until the disparity distance

from the Dd equation is exceeded. As the areal extent of

inundation is derived using a regular grid of raster cells,

with individual elevation values, there is a need to

translate the disparity distance locations of the cross

sections to elevation values. At the coordinates of dis-

parity distance exceedance, elevation values are sampled

or calculated based on the Dd equation, one lower ele-

vation defining the inner boundary of uncertainty and one

higher elevation defining the outer boundary of uncer-

tainty (by using the Dd equation, the algorithm can con-

sider abrupt ends due to e.g. buildings giving a so called

‘‘wall effect’’). (3) Next the nodes in all cross sections are

populated with the uncertainty elevation values and two

TINs are created; one with values representing the inner

uncertainty boundary and the other the outer uncertainty

boundary. These TINs are then rasterized (this point-to-

TIN-to-raster conversion will ensure that water levels will

always fall in the downstream direction whereas direct

raster interpolation from points may produce elevation

artifacts). (4) Finally the DEM can be compared with the

uncertainty rasters yielding three distinctive areas: not

flooded areas (at least according to the percentile used),

areas uncertain to be flooded, and flooded areas (at least

according to the percentile used).

4.2 Resulting pseudo code

The following variables are used:

Boolean: flag

Integers: mmax (number of cross sections); m (cross

section number), n (cell or point number in a cross section)

Float: DIflag, DOflag, (previous valid distances of inner

and outer uncertain flood area, respectively); ws (water

surface elevation); c, z (coefficient and exponent values

taken from the Dd equation); d (cell resolution)

Float arrays: x, y, h (coordinates and elevations of cross

section nodes/cells); DI, DO, SI, SO (inner and outer

uncertainty distances and slopes, respectively); RXSI,

RXSO, LXSI, LXSO (inner and outer uncertainty elevations

for right and left cross sections, respectively

1. Count the number of cross sections (mmax). Deter-

mine the cell resolution (d) of the DEM and use the

disparity equation (Dd) for the desired probability.

Fig. 7 The disparity distance Dd equation for three confidence percentiles compared with the observed disparities of a 1.04 m, b 3.83 m, and

c 50 m DEM resolutions, as well as d comparison between the Dd equations
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2. Split all cross sections at river channel center. Define

cross sections as LEFT or RIGHT.

3. Let m = 1.

4. Repeat until number of cross sections has been

exceeded, i.e., m[mmax.

4:1. If RIGHT cross section (cross section should

be seen looking in the downstream direction,

where cells are ordered from left (negative cell

positions in the river channel) to right (pos-

itive cell positions on the ground).

4:1:1. Determine the coordinates, i.e., x(0) and

y(0), and elevation, h(0), of the DEM

cell, where the modeled flood boundary

intersects the cross section, i.e., the

raster cell (or point) Cell (0). If no

intersection exists, exclude that cross

section from the analysis.

4:1:2. Let n = 0, flag = false, DI(0) = 0.

4:1:3. Repeat until the distance of the inner

flood area, DI, for Cell (n - 1), is longer

than the Dd for the same slope of that

between the Cell (n - 1) and Cell (0),

or that all cells in the cross section has

been treated:

4:1:3:1. Get the coordinates and eleva-

tion of Cell (n)’s neighboring

cell, i.e. x(n - 1), y(n - 1), and

h(n - 1) at Cell (n - 1), and

calculate the distance,DI(n- 1),

and slope, SI(n - 1), from Cell

(0) to Cell (n - 1).

4:1:3:2. If SI(n- 1)[ 0 (i.e. the terrain is

higher at Cell (n- 1), creating an

island) then n = n - 1, else

flag = true, DIflag = DI(n), and

compare DI(n - 1) with the Dd

for desired probability for the

absolute value of slope of SI(n-

1). If Dd is exceeded then stop,

else n = n - 1.

4:1:4. If flag = false then DIflag = d/2 (This

accounts for cross sections where no

Yes

Check if no certain flooding/no certain 
dry ground conditions occur. Check for 
“wall effect” and calculate elevation for 
the inner/outer uncertainty boundary of 
left/right cross section. 

Visualizing boundary delineation uncertainty

• Count number (mmax) of cross sections (xs)
• Determine DEM resolution; Count cells (cmax)
• Select Dd equation for desired probability
• Split cross sections into Left and Right
• m = 1; i = 1; n = 0; c = 1

No

Yes

Determine coordinates 
where modeled flood 
boundary intersects with 
xs (= cell [0]); n = 0

Get x, y, z coordinates of cell 
(n)’s neighboring cell (=n+1) 
and calculate the distance and 
slope from that to cell [0]. 

• Assign new water surface xs with 
elevation values

• Create new point themes from the 
water surface xs nodes

• Create TINs from the point themes
• Rasterize the TINs to create 

uncertainty rasters

No

No

m ≤ mmax

Yes

Start

No

Yes

D ≤ Dd

“island”?
No

i ≤ 4
No

Intersect?

Yes

No

Repeat loop until 
number of cross 
sections is exceeded

Repeat loop 4 times (i.e. inner 
and outer flood area for both left 
and right sides of the river) 

Check if xs(m) 
intersects with 
flood boundary

Repeat loop until Dd for the neighboring 
cell (=n+1) has been exceeded (or all 
nodes in xs have been checked)

i = i +1

n = n +1

Calculate D 
for cell(n+1)

m = m +1

c ≤ cmax

Yes

No

Repeat loop 
for all raster 
cells (cmax)

c = c +1

Stop

Z(c)o.u.
<

DEM

In outer uncertainty raster 
check if cell elevation is 
lower than DEM

Cell is
flooded

Cell is not 
flooded

Yes

Yes

In inner uncertainty raster 
check if cell elevation is 
higher than DEM

Cell is
uncertain

Z(c)i.u.
>

DEM

Fig. 8 Schema of the uncertainty algorithm
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cells in the inner part of the cross

section have negative slopes, i.e. no

certain flooding seems to occur).

4:1:5. If ws(m) – exp[(ln DIflag – ln c)/z]*

DIflag[ h(n - 1) then inner uncertainty

boundary elevation RXSI(m) = ws(m) –

exp[(ln DIflag – ln c)/z]*DIflag else

RXSI(m) = h(n - 1) (This accounts

for the wall effect; see Sect. 4.3).

4:1:6. Let n = 0, flag = false, DO(0) = 0.

4:1:7. Repeat until the distance of the outer

flood area, DO(n ? 1), for Cell (n ? 1),

is longer than the Dd for the same slope

of that between the Cell (n ? 1) and

Cell (0), or that all cells in the cross

section has been treated:

4:1:7:1. Get the coordinates and elevation

of Cell (n)’s neighboring cell, i.e.

x(n ? 1), y(n ? 1), and h(n ? 1)

at Cell (n ? 1), and calculate the

distance, DO(n ? 1), and slope,

SO(n ? 1), from Cell (0) to Cell

(n ? 1).

4:1:7:2. If SO(n ? 1)\ 0 (i.e. the terrain

is lower at Cell (n- 1), creating a

water pond) then n = n ? 1, else

flag = true, DOflag = DO(n),

and compare DO(n ? 1) with

the Dd for desired probability for

the absolute value of slope of

SO(n ? 1). If Dd is exceeded

then stop, else n = n ? 1.

4:1:8. If flag = false then DOflag = d/2 (This

accounts for cross sections where no

cells in the outer part of the cross

section have positive slopes, i.e. no

certain dry ground seems to occur).

4:1:9. If ws(m) ? exp[(ln DOflag – ln c)/z]*

DOflag\ h(n ? 1) then outer uncer-

tainty boundary elevation RXSO(m) =

ws(m) ? exp[(lnDOflag – ln c)/z]*DOflag

else RXSO(m) = h(n ? 1) (This accounts

for the wall effect).

4:2. Else LEFT cross section (follow 4.1, but

beware of sign changes,\/[ changes, and

change of RXSI/RXSO to LXSI/LXSO.

4:3. Let m = m ? 1.

5. Assign cross sections, i.e. both LEFT and RIGHT,

with elevation values from XSI and XSO elevation

values.

6. Create two point themes where the point locations

are taken from the nodes in the cross section lines.

One theme with associated inner elevation values

and one with outer elevation values.

7. Create two TINs from the point themes. One based

on inner elevation values and one based on outer

elevation values. Rasterize the TINs to the same

extent as the DEM to create uncertainty rasters.

8. Compare the uncertainty rasters with the DEM. If

cell elevations in uncertainty raster for outer eleva-

tions\DEM then cell is not flooded. If cell

elevations in uncertainty raster for inner eleva-

tions[DEM then cell is flooded. Other alternatives

results in uncertain with respect to flooded/not

flooded.

4.3 Calculation of wall effect

Figure 9 illustrates how the water elevations for the cross

sections can be calculated (for outer uncertainty boundary

elevation in the RIGHT cross section). When the distance

to cell C(n ? 1) is greater than the Dd for the same slope

(i.e., between location of the modeled flood boundary

location and the cell C(0)), the uncertainty elevation (from

the Dd equation) of cell C(n) is compared with the ground

elevation of cell C(n ? 1). The elevation can be calculated

by adding the water surface elevation to the product of the

distance and slope from Eq. 2:

h ¼ ws þ e
lnDd�ln c

zð Þ � Dd ð8Þ

If the computed uncertainty elevation for cell C(n) is lower

than the ground elevation of cell C(n ? 1) the former

elevation is used; if not, the ground elevation of cell

C(n ? 1) is used. By doing that, extremely high uncer-

tainty elevations will not occur, due to for example vertical

walls in the cross section. Also, when there is no wall, the

resulting uncertainty elevation will be slightly higher (i.e.

more conservative, or on the ‘‘safe side’’) compared with

using an elevation from a cell farther away.

4.4 Applying the algorithm

To test the Dd equation and the algorithm, two DEMs were

chosen, 3.83 m and 50 m, respectively, with a 95 per-

centile confidence. The results can be seen in Fig. 10,

where red areas represent the areal range that is uncertain

to be flooded. It is 95 % certain that the flood boundary

will be within this area. The remaining 5 % are divided

into blue areas that are almost certain to be flooded and

areas outside of the red areas that are almost certain not to

be flooded.
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5 Discussion and conclusion

Previous research has produced relatively consistent rec-

ommendations from 4 to 10 m DEM resolution. Better

resolution than that has not produced any significant

improvements in inundation boundary prediction. Yet there

are numerous real case examples on disparities where the

models clearly have failed and where the water boundary

may be several hundreds of meters wrong, even when

LiDAR data has been used as input (also cf. e.g. Croke

et al. 2014 who stressed the importance of geomorpho-

logical understanding during flood risk management).

Casas et al. (2006) argued that coarser resolution will have

less consequence when discharge increases, i.e., floodplain

areas will be more accurately mapped than near river areas.

This may be true with respect to difference in total surface

area of the true and modeled inundation. But, even if the

flow rates are bigger, the flood boundary perimeter should

be of roughly the same length, provided the river flows

through a pronounced river or floodplain valley, and

therefore the uncertainty problem will still persist at the

modeled inundation boundaries. To overcome unpleasant

surprises, extra caution should therefore be taken when

either the DEMs are of poor resolution or that the terrain

adjacent to the modeled inundation boundary is flat.

It is generally possible to construct an equation for the

uncertainty of floodplain boundaries depending on DEM

resolution and terrain slope. Except for the relation

between z exponent and resolution, high correlation coef-

ficients were yielded for all coefficients and exponents.

This is probably due to the topographical character of the

areas the modeling is based on; or in other words, the

geographical areas of this study are not enough flat for

sufficiently long distances. Hence, the main weakness in

the data lies in the number of observations for the poorest

DEM resolution together with the characteristics of the

geographical area. Although there are very flat areas, these

are not very big, making it impossible to get big disparities.

This will also impact the equation. Most probable, the z

exponent is too big, i.e., the slopes of the lines in Fig. 7

should be sloping steeper in the negative direction.

Therefore, to have a more conservative and ‘‘safe’’ estimate

on risks, the z exponent could be set to the value for the

highest resolution (*–0.72), irrespectively of DEM reso-

lution. Furthermore, as the same transects, with approxi-

mately 10 m spacing, are used for all DEM resolutions, the

same DEM cells are used several times for calculation of

the transect slopes of the coarse resolution DEMs. This is

not the case for fine-resolution DEMs. Another problem

may be the usage of retransforming logged values in the

regression analysis (cf. Granger and Newbold 1976 or, for

a hydrological example, Jansson 1985). No correction has

been applied in this work and therefore some of the coef-

ficients and exponents are probably underestimated.

As the disparity distance equation has been developed

from elevation and slope values taken from the reference

DEM, this may give erroneous estimates when applying the

algorithm on DEMs of lower qualities. Therefore, in future

research an equation based on the slopes derived from the

lower quality DEMs will be created to see if that may affect

the results. Also important is not to use the equation for

higher confidences than 95 %. For example it is possible to

get computed disparity distances that are shorter than those

that were actually observed, even when 100 % is used as

input. As can be seen in Fig. 7, there are not exactly 10 % of

observations above and below the 90 percentile lines for the

Fig. 9 Illustration on how the

water elevation is calculated
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three DEMs shown. This arises mainly due to the combi-

nation of the 14 DEMs. The magnitudes of these errors

(which can be seen as the uncertainty of the disparities for a

given probability) have not been calculated in this study, as

the primary focus have been on modeling and visualizing

the uncertainties of the flood boundary lines, not the

uncertainties of the uncertainties. However, when more

robust data have been gathered for a wider range of geo-

graphical settings, it will be of interest to also study this (cf.

Roscoe et al. 2012 for such a procedure).

High confidence percentages have to be treated using

extreme value statistics. If more data, especially coarse

resolution data, had been available, another option would

be to use envelope curves. In this study envelope curves

were created through increasing the 95 % confidence level

by one magnitude. When comparing these envelope curves

with the visually determined curves in Brandt and Lim

(2012), there are strong indications that the z exponent is

too big (cf. Fig. 4b), again calling for a z value closer to

-0.72, also for poorer resolutions. Furthermore, the

importance of regularly, and not too sparsely, placed cross

sections can be seen in Fig. 10. For the 50 m DEM case,

the inundated areas do not follow the trunk river in the

western (left) part. This can be attributed to cross sections

not expanding long enough, making them disqualified in

the algorithm which in the end therefore produced too low

water levels for this area.

To test the applicability of the equation and resulting

algorithm, future research will look at another river where

river side slopes are much gentler, as already now it can be

seen that the disparities are higher for the Testebo River

than the Eskilstuna Rivers, for the same slope. However,

the disparities at Testebo River are compared against an

actual flood event that may not have been mapped good

enough, whereas Eskilstuna River’s are compared against a

reference DEM. This means that the Dd equation developed

for Eskilstuna River provides a measure of uncertainties

only related to the DEM, whereas the disparities for Tes-

tebo also contain other types of uncertainties. Also, higher

precision than cm on elevations has to be used to avoid the

linear patterns seen in Fig. 5. This will also reduce the risk

of getting 0 m/m slopes that make the use of logarithm

functions problematic. More studies on other rivers, fol-

lowing both the Eskilstuna case of totally focusing on the

DEM, as well as other cases that are compared with actual

flood events, should both verify the approach as well as

making adjustment of the equation possible. Finally, as this

kind of uncertainty only represents one type of uncertainty,

i.e., random errors in the DEM, other types including

friction parameter errors, systematic errors of DEMs, rain

and reach input of water flow, model structure, operator

errors, etc. should also be considered. Therefore, being

humble describing the uncertainties of the presented flood

risk maps is to be recommended.
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Fig. 10 Resulting uncertainty areas for 95 percentile confidence.

Upper figure shows the 0.78 m DEM with ‘‘true’’ inundation extents,

middle shows the 3.83 m DEM, and the lower figure the 50 m

resolution case. The lines in the lower two figures represent the

‘‘true’’ inundation extents. Blue areas are almost certain to be flooded,

red areas are uncertain to be flooded (containing 95 % of the possible

inundation delineations), and remaining areas are almost certain not

to be flooded
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sionell översvämningsmodellering. FoU-rapport Nr 35, Högsko-
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Brandt SA, Lim NJ (2012) Importance of river bank and floodplain

slopes on the accuracy of flood inundation mapping. In: Murillo
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