
A GPU-Accelerated Algorithm for
Self-Organizing Maps in a Distributed

Environment

Peter Wittek and Sándor Darányi ∗

Swedish School of Library and Information Science
University of Bor̊as

Bor̊as, Sweden

Abstract. In this paper we introduce a MapReduce-based implementa-
tion of self-organizing maps that performs compute-bound operations on
distributed GPUs. The kernels are optimized to ensure coalesced memory
access and effective use of shared memory. We have performed extensive
tests of our algorithms on a cluster of eight nodes with two NVidia Tesla
M2050 attached to each, and we achieve a 10x speedup for self-organizing
maps over a distributed CPU algorithm.

1 Introduction

While recent advances in the programmability of GPUs have made graphics
hardware more accessible for general-purpose computations, the process of devel-
oping efficient GPU implementations is still highly application-dependent. Many
applications require significant re-structuring of the algorithms to realize high
performance on GPUs, and the problem is even more convoluted if the GPUs
are distributed across several computing nodes. In data-intensive tasks, MapRe-
duce is a popular paradigm to distribute load and enable quick code development
[1]. There have been some attempts to use MapReduce in the compute-intensive
workloads that are typical to GPU-accelerated algorithms. We leverage on these
to speed up a demanding neural network method, self-organizing maps [2] in a
distributed GPU environment.

2 GPU-aware MapReduce

GPUs excel at compute-bound operations, but it is not always easy to formulate
a problem in the data parallel fashion that is required by lower level frameworks
to program GPUs. The core concept of GPGPU computing is the kernel. A
kernel is a unit of code that will execute on a graphics device launched from the
host CPU. The execution is asynchronous in most cases: the host may continue
working on other tasks while the kernel is being executed. The graphics device
cannot access the main memory, the data has to be copied to the memory of
the device through the system bus. This is a costly operation, and if a sufficient
level of parallelism cannot be achieved in the kernel, GPU-based computation
may decrease the overall performance due to this overhead [3]. There are several

∗This work was supported by Amazon Web Services.

research attempts that port MapReduce to GPUs to help develop applications
faster on this kind of hardware.

Mars was the first framework to program a GPU with the MapReduce
paradigm [4]. While it did show good potential compared to a CPU-based
MapReduce, it does not utilize the GPU efficiently. It has not been updated for
a long time and it is not capable of using more than one GPU.

Inspired by Mars, GPMR is the latest attempt to harness the power of GPUs
with MapReduce [5]. It can use any number of GPUs in a node and it is also
capable of running in a distributed system. Both features are provided by MPI.
The performance efficiency declines after about 16 GPUs in most of the tests.
GPMR does not try to hide the complexity of GPU programming, and it allows
full control over the individual GPUs. It is a compromise made to achieve
maximum performance. The default MapReduce scheduler moves the data from
the GPU to the main memory after each map step, and then pushes it back
before reduction (if needed), which might be inefficient in certain applications.

Taking the approach of GPMR further, the MapReduce and GPU parts of
an algorithm can be entirely decomposed. This way, for instance, one can use
MR-MPI [6], which is a lightweight MapReduce framework built with MPI, or
Hadoop [7], which is a more complex framework that also incorporates a dis-
tributed filesystem. These frameworks are good for a high-level load distribution
and one can use GPU code only inside the map or reduce jobs. This is the ap-
proach we have taken.

3 Self-organizing maps

The self-organizing map (SOM) training algorithm constructs a nonlinear and
topology preserving mapping of the input data set X = {x(t)|t ∈ {t0,...,tf }},
where t0 and tf are the beginning and the end of the current epoch, onto
a set of neurons M = n1, . . . , nk of a neural network with associated weight
vectors W = w1(t), ..., wk(t) at a given time step t. Each data point x(t) is
mapped to its best match neuron bm(x(t)) = nb ∈M such that d(x(t), wb(t)) ≤
d(x(t), wj(t)) ∀wj(t) ∈ W , where d is the distance on the data set. The neu-
rons are arranged on a two dimensional map: each neuron i possesses a set of
two coordinates embedded in a two dimensional surface. Next the weight vec-
tor of the best match neuron and its neighbours are adjusted toward the input
pattern using the following equation: wj(t+ 1) = wj(t) + αhbj(t)[x(t)− wj(t)],
where 0 < α < 1 is the learning factor, and hck(t) is the neighbourhood func-
tion that decreases for neurons further away from the best match neuron in
grid coordinates. A frequently used neighbourhood function is the Gaussian:

hbj = exp(
−||rb−rj ||

δ(t)), where rk and rc stand for the coordinates of the respective

nodes. The width δ(t) decreases from iteration to iteration to narrow the area
of influence. It is assumed, that the SOM gives a mapping with minimal, or at
least tolerable, topological errors [8]. The training might be repeated again on
the same data set to increase the fit, a training cycle is referred to as an epoch.
Eventually, the neighbourhood function decreases to an extent that training

might stop. The time needed to train an SOM grows linearly with the dataset
size and it also grows linearly with the number of neurons in the SOM.

4 Acceleration of self-organizing maps

A distributed, MapReduce-based SOM builds on the batch formulation of up-
dating the weights [9]:

wj(tf) =

∑tf
t′=t0

hbj(t
′)x(t′)∑tf

t′=t0
hbj(t′)

. (1)

This implementation builds on MR-MPI. The key idea is that before the data set
is partitioned by a map call, the current set of weight vectors is broadcast to all
worker nodes. The update in Equation 1 is performed locally at each node, and
the reduce step sums up the updates, and eventually the master nodes set the
values of the new weight vectors. The process repeats with subsequent epochs.

We extended the MapReduce SOM algorithm by moving all calculations on
local nodes to the GPU with the matrix-based Euclidean distance matrix and
reduction algorithm described below. The chunk of X assigned to the node and
the corresponding norms of X are kept in the GPU memory between subsequent
epochs, and the weight vectors are copied to the GPU memory in each step after
the node receives the broadcast of the update.

The most time-consuming part of the calculations is finding the best match-
ing neuron. This involves calculating the pairwise distances between the elements
of the data sets and the weight vectors. Euclidean distance is one of the most
common distances used in SOMs. The distance between a data point and a
weight vector in the batch formulation can be calculated by d(wj(t0), x(t)) =√∑N

i=1(xi(t)− wji(t0))2, where N is the dimension of the space that embeds

the data set, and t ∈ {t0, . . . , tf}. The pairwise distances can be efficiently com-
puted on a GPU if the distances are calculated on the same space [10]. The
above formula is more general, and a much higher performance can be achieved
if the entire distance matrix is calculated, and the steps are decomposed into
matrix level operations (see Algorithm 1 [11, 12]).

The algorithm does not calculate the Euclidean distances, but the square of
the distances. Taking the square root is an expensive operation on the GPU,

Algorithm 1 Calculate a Euclidean distance matrix with matrix operations (◦
is the Hadamard product)

1: v1 = (X ◦X)[1, 1 . . . 1]′

2: v2 = (W ◦W)[1, 1 . . . 1]′

3: P1 = [v1v1 . . . v1]
4: P2 = [v2v2 . . . v2]′

5: P3 = XW ′

6: D = (P1 + P2 − 2P3)

and since we seek the minimum of the distances, we can omit calculating it. The
experimental results in [11] have shown a speed up of 15x on datasets which
contain more than half million data points with the above algorithm on the
GPU.

An important point to note is that as the norms of X do not change between
subsequent epochs, these values can be computed before the main training loop
starts. Step 5 is a BLAS matrix multiplication, which can be calculated on the
GPU with a high-level CUBLAS call. The CUBLAS library is distributed with
CUDA, and it may not be the fastest implementation at a given time, but it
gives an optimized performance [13].

The other steps have to be implemented carefully to minimize global memory
access and avoid bank-conflicts in the shared memory of SMPs. This is achieved
by using a column-major representation of the matrices. The minimum is found
by a multi-step reduction algorithm. Existing GPU-based SOM algorithms take
a similar approach in finding the best matching unit, but they do not necessarily
use matrix operations to derive the distance matrix [14, 15].

5 Discussion of experimental results

5.1 Cluster Configuration

We built a Beowulf cluster of eight nodes using Amazon Web Services (AWS).
AWS ensures that cluster instances that are launched simultaneously are physi-
cally close and they are connected with a high-speed network. A cluster compute
GPU instance in AWS has two Intel Xeon X5570 quad-core CPUs and 23 GB of
memory, and it is equipped with two NVidia Tesla M2050. One Tesla card has
448 CUDA cores and 3GByte of device memory.

The implementation of the algorithms1, except for creating the inverted in-
dex, used OpenMPI 1.5, the June 2011 version of MR-MPI, and CUDA 4.0. The
inverted index was created using Lucene 3.4 and was not timed.

5.2 Data set

The collection consists of 84,283 PhD theses crawled from the database of the
German Nationaly Library. The files are in PDF format and the total size is
498GByte. File sizes vary widely, averaging around 6Mbytes, but many files are
over 100MBytes. The collection is multilingual, with the majority of documents
being in English or German.

We created an inverted index with Lucene, applying PDF extraction. We did
not use stemming or any other language specific processing step. The merged
and optimized index was approximately 11GByte, with a total of 34,965,200
terms. We applied random projection [16] to reduce the number of dimensions
to two hundred.

1The source code is available online: https://github.com/peterwittek/mr-mpi-som-gpu

Method Execution Speedup
time over CPU

CPU (64 cores) 2042s -
GPU (16 Tesla) 433s 4.71x
CPU (64 cores) 1882s -
(One epoch)
GPU (16 Tesla) 194s 9.68x
(One epoch)

Table 1: Execution time of self-organizing maps

5.3 Running time of self-organizing maps

The baseline distributed, multicore CPU implementation was based on MR-MPI-
SOM [9]. We used all sixty-four physical cores across the eight nodes. When
scaling up, we noticed a nearly linear scaling, which shows that the overhead of
broadcasting the SOM weight vectors is not considerable.

We had to use all sixteen GPUs to fit the problem in the distributed device
memories. Even then, the tensor describing the SOM at a given time was a
serious limiting factor, and we had to limit our experiments to a small 10x10
map in both the CPU and GPU cases. The bulk of the memory is taken up by
the dense matrix chunk that is assigned to a GPU. Since such a tiny map does
not show emergent clustering features very well, in the future we intend to work
on a variant of random projection that keeps the resulting structure sparse.

The total wall time of the CPU variant was 2041.71 seconds (Table 1). The
wall time of the GPU implementation was 433.25 seconds, including initializing
the CUDA context, and memory transfers before and after the SOM training.
This translates to a speedup of 4.71x. Considering that this is a speedup over
sixty-four cores of CPUs, we believe that this is a significant result.

Turning our attention to the execution time of one epoch, a CPU core finished
its chunk in 1881.71 seconds. The GPU variant took 194.54 seconds, which
means a speedup of 9.68x. Note that we only calculated the best matching units
on the GPU, so there is room for further improvement.

Looking at the GPU occupancy results, we were not far from fully loading the
stream processors. Steps 1 and 2 of Algorithm 1, that is, calculating the norms,
were performed with 100% occupancy. Finding the minimum is also optimal.
The CUBLAS dense matrix multiplication proved to be the weak point, with an
occupancy varying between 33% and 83%.

6 Conclusions

MapReduce jobs are fairly easy to develop, a wide range of machine learning
algorithms has already been adapted to this paradigm, hence developers of data
mining applications will find it convenient to use. With rephrasing the compu-

tational problems underlying self-organizing maps, we showed that it is feasible
to leverage on GPUs in a distributed system, and achieved a speedup of close to
10x.

References

[1] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. In
Proceedings of OSDI-04, 6th International Symposium on Operating Systems Design &
Implementation, San Francisco, CA, USA, December 2004.

[2] T. Kohonen, S. Kaski, K. Lagus, J. Salojärvi, J. Honkela, V. Paatero, and A. Saarela.
Self organization of a massive text document collection. IEEE Transactions on Neural
Networks, 11(3):574–585, 2000.

[3] NVida Compute Unified Device Architecture C Best Practices Guide 4.0, 2011.

[4] B. He, W. Fang, Q. Luo, N.K. Govindaraju, and T. Wang. Mars: A MapReduce frame-
work on graphics processors. In Proceedings of PACT-08, 17th International Confer-
ence on Parallel Architectures and Compilation Techniques, pages 260–269, Toronto,
ON, Canada, October 2008.

[5] J.A. Stuart and J.D. Owens. Multi-GPU MapReduce on GPU clusters. In Proceedings of
IPDPS-11, 25th International Parallel and Distributed Computing Symposium, Anchor-
age, AK, USA, May 2011.

[6] S.J. Plimpton and K.D. Devine. MapReduce in MPI for large-scale graph algorithms.
Parallel Computing, 2011.

[7] T. White. Hadoop: The Definitive Guide. O’Reilly Media, 2009.

[8] T. Kohonen. Self-Organizing Maps. Springer, 2001.

[9] S.J. Sul and A. Tovchigrechko. Parallelizing BLAST and SOM algorithms with
MapReduce-MPI library. In Proceedings of IPDPS-11, 25th International Parallel and
Distributed Computing Symposium, pages 476–483, Anchorage, AK, USA, May 2011.

[10] D. Chang, N.A. Jones, D. Li, M. Ouyang, and R.K. Ragade. Compute pairwise Euclidean
distances of data points with GPUs. In Proceedings of CBB-08, International Sympo-
sium on Computational Biology and Bioinformatics, pages 278–283, Orlando, FL, USA,
November 2008. ACTA Press.

[11] Q. Li, V. Kecman, and R. Salman. A chunking method for Euclidean distance matrix
calculation on large dataset using multi-GPU. In Proceedings of ICMLA-10, 9th Interna-
tional Conference on Machine Learning and Applications, pages 208–213, Washington,
DC, USA, December 2010.

[12] K.E.A. van de Sande, T. Gevers, and C.G.M. Snoek. Empowering visual categorization
with the GPU. IEEE Transactions on Multimedia, 13(1):60–70, 2011.

[13] S. Barrachina, M. Castillo, F.D. Igual, R. Mayo, and E.S. Quintana-Orti. Evaluation and
tuning of the level 3 CUBLAS for graphics processors. In Proceedings of IPDPS-08, 22nd
International Symposium on Parallel and Distributed Processing, pages 1–8, Miami, FL,
USA, April 2008.

[14] K.S. Oh and K. Jung. GPU implementation of neural networks. Pattern Recognition,
37(6):1311–1314, 2004.

[15] G. Strong and M. Gong. Browsing a large collection of community photos based on
similarity on GPU. Advances in Visual Computing, pages 390–399, 2008.

[16] P. Kanerva, J. Kristofersson, and A. Holst. Random indexing of text samples for latent
semantic analysis. In Proceedings of CogSci-00, 22nd Annual Conference of the Cognitive
Science Society, volume 1036, Philadelphia, PA, USA, 2000.

