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Abstract: Information representation is an important but neglected aspect of building text information retrieval models.
In order to be efficient, the mathematical objects of a formalmodel, like vectors, have to reasonably reproduce
language-related phenomena such as word meaning inherent in index terms. On the other hand, the classical
vector space model, when it comes to the representation of word meaning, is approximative only, whereas it
exactly localizes term, query and document content. It can be shown that by replacing vectors by continuous
functions, information retrieval in Hilbert space yields comparable or better results. This is because according
to the non-classical or continuous vector space model, content cannot be exactly localized. At the same time,
the model relies on a richer representation of word meaning than the VSM can offer.

1 Introduction1

This is a first report on interdisciplinary work in
progress. Since language as the carrier of meaning
(a.k.a. information) is crucial to IR, we are interested
in its modelling. With the respective linguistic field
of study being called semantics, meaning in language
comes in two major kinds: word meaning or word
semantics, and sentence meaning or sentence seman-
tics. This paper focuses on the mathematical repre-
sentation of the former variant only. Further, here we
do not move beyond applying Lyons’ word semantics
to index terms in the vector space model (VSM) and
its derivate using continuous functions.

A word of warning is in place here. Since the
study of meaning has been the preoccupation of
scholars for millennia now, we cannot and will not
attempt to offer new answers to the nature of this
phenomenon. Instead, we will concentrate on show-
ing that as much as vocalized and written charac-
ter strings, represented by vectors, continuous func-
tions can be used as carriers of word semantics as

1In: Dominich, S. - Kiss, F. (Eds.). Studies in Theory of
Information Retrieval. Proceedings of the ICTIR07 Confer-
ence, Budapest, 18-20 October 2007 (Foundation for Infor-
mation Society) Budapest. pp. 149-155.

well. In this respect, we build on the seminal work
of Hoenkamp, but also go beyond his predictions,
at least in terms of theoretical implications. There
will be two of these. First, what he has shown was
that square integrable functions from signal process-
ing such as the Fourier transform, JPEG or wavelets,
are unitary operators based on theL 2 norm in Hilbert
space, and thereby suitable for latent semantic index-
ing (LSI) (Hoenkamp, 2001). However, the reason
why these can be applied to IR at all is that there exists
a fitting model of word semantics, mapping the mean-
ing of index terms onto continuous functions. Sec-
ondly, we conjecture that by departing from a special
representational blend of word semantics, the mathe-
matical equivalent of the Heisenberg uncertainty prin-
ciple in quantum mechanics (QM) applies to the re-
sults.

This proof-of-concept paper is structured as fol-
lows. We start with the information representation
potential of vectors (Section 2), explaining types of
word meaning important for our experiment. We de-
part from the working assumption that a document
or query vector in the traditional VSM is a discrete
sample of a continuous “content signal”, represented
either by periodical (Section 3) or by non-periodical
functions (Section 4) and resulting in the two model



variants named Continuous Model A (CMA) and
Continuous Model B (CMB). Section 5 introduces a
similarity function which enables both the CMA and
CMB to perform information retrieval. First results
in an information retrieval scenario indicate that both
CMA and CMB tend to outperform the traditional
(”discrete”) vector space model but part of the im-
provements goes back to the exploitation of quasi-
referential meaning (Section 6). Finally, we discuss
two theoretical implications of the non-classical ap-
proach to the VSM: IR by continuous functions can
be interpreted in terms of semantic fields in general
linguistics, and the mathematical uncertainty princi-
ple applies to such models. (Section 7).

2 Word Semantics in the VSM and
in Function Space

In this paper, we will distinguish between seman-
tic content as contrasted with e.g. image content in
content-based image retrieval (CBIR), a misnomer
from the point of linguistics.

In language, words with a meaning do not exist
alone but in relation to one another. Such a complex
structure is divided into regions according to similar-
ities in meaning, and is called a semantic field (Trier,
1934; Lehrer, 1975) or a lexical field (Löbner, 2002).
In a semantic or lexical field, there are gaps, as not
every location in the field carries semantic content
(Lyons, 1968).

IR has been trying to model semantic fields as dis-
tributions of index terms by different variants of the
VSM (Salton et al., 1975; Wong et al., 1985; Deer-
wester et al., 1990). The underlying idea was to use
locations in a geometry as, metaphorically speaking,
vehicles of some charge, so that charged locations
should represent index terms in vector space, whereas
empty locations should stand for lexical gaps. The
pursuit of this goal has led from utilizing term fre-
quencies from unweighted to weighted variants for
creating term vectors to including sources of word
semantics other than term occurrence, such as their
sense structure (Banerjee and Pedersen, 2002; Bu-
danitsky and Hirst, 2006) or their definitions (Lesk,
1986). As a result of such experiments, vector space
can be shown to comply with different major theories
of word meaning, briefly discussed below.

There exist quite a few theories of word meaning
(Nöth, 1990), but in IR, the typical assumption, go-
ing back to language technology , is that the distribu-
tional hypothesis (Harris, 1970), also called the con-
textual hypothesis (Miller and Charles, 1991), is the
sole source of word meaning available for automated

extraction from document texts. Recently, Sahlgren
has examined this model and discussed how its appli-
cation, by means of statistics and geometry, can lead
to the creation of word-spaces (Sahlgren, 2006). The
central idea underlying this hypothesis is that if we
consider words or morphemes A and B to be more
different in meaning than A and C, then we will often
find that the distributions of A and B are more differ-
ent than the distributions of A and C. In other words,
difference of meaning correlates with difference of
distribution (Harris, 1970). There exists also a philo-
sophical argument for a contextual theory of mean-
ing by Wittgenstein, stating that “Meaning is use”
(Wittgenstein, 1967), also advocated by (Blair, 1990;
Blair, 2006). This argument can be interpreted to hold
in a vector space environment either as: (1) mean-
ing is contextual, where contextuality stands for co-
occurrence of observation values on some variables,
discarding false assumptions about senses of an ex-
pression and leaving the true assumption only; and (2)
meaning is term occurrence rate based, i.e. the con-
solidation of contextuality (the solidity of meaning)
is a function of the co-occurrence of words related to
other ones, the latter interpretation underlying the for-
mer. According to Aitchison, such a disambiguating
role for context is a commonplace in structural lin-
guistics: “Language can (...) be regarded as an intri-
cate network of interlinked elements in which every
item is held in its place and given its identity by all
the other items” (Aitchison, 1999).

The VSM, being term occurrence-based, contains
and can utilize contextual meaning only. Let there
be M index terms, one vector of the canonical basis
of R

M is assigned to each index term. The order of
assignment isarbitrary. Let ai j be the weight of term
i in documentj. Thus a document vectora j is a linear
combination of the basis vectors:a j = ∑M

i=1ai j ei .
The representation of documents ignores any se-

mantic relation between the index terms, as orthog-
onal vectors are assigned to the index terms. In fact
index terms are not independent, a discrepancy much
investigated, and an essential point in this work.

In our current attempt we relied on a combina-
tion of sources of word semantics richer than the one
based on tfidf, using WordNet (Fellbaum, 1998). This
blend is computed from the hyponymic hierarchy of
word senses and their distances, as if we dealt with
quasi-referentialword semantics. This terminus tech-
nicus covers the following:

1. Apart from contextual word meaning, Lyons –
among others– distinguishes between referential
meaning and sense (Lyons, 1968). The former
equals the relation between a word in language
and an element of physical reality outside lan-



guage. The latter connects two words in language,
sense typifying the kinds of relations possible be-
tween any word pairs such as incompatibility, syn-
onymy, homonymy, antonymy, hypo- and hyper-
nymy, mero- and holonymy, etc.;

2. Because our respective algorithm, based on the
Lesk similarity (Banerjee and Pedersen, 2002),
computes the distance of two index terms as
WordNet glosses from their hyponymic hierarchy,
both the glosses and their sense hierarchies be-
ing intra-linguistic, this type of meaning cannot
be regarded referential because such hierarchies
are not elements of physical reality. On the other
hand, they are definitely not contextual either, as
the sense structure of a vocabulary is external to
index term distributions.

As we conjecture that semantic fields are by na-
ture continuous, albeit discontinuities in the form of
lexical gaps exist in them, continuous functions are
more suitable to model this nature than vectors are.
This is the reason why we conceived the continuous
VSM.

3 A Continuous Model for
Information Retrieval

The continuous model of document representa-
tion and information retrieval is based on the classi-
cal vector space model. It is non-classical inasmuch
as the coordinates of real-valued document vectors
are interpreted as a subset of the range of continuous
functions. The functions are constructed by inverse
Fourier transformation. The continuity of semantic
content is a prerequisite for this IR model, provided
by term clustering.

In order to reproduce the continuity of semantic
content, one has to deal with the following problem.
A word is a hypernym if its meaning encompasses the
meaning of another word of which it is a hypernym;
it is more generic or broader than another given word.
Sometimes hypernymy is referred to as the “is-a” re-
lation . Its opposite relation is hyponymy. A word is
a hyponym (Lyons, 1977) if its semantic range is in-
cluded within that of another word; it is also referred
to as the “instance-of” relation. For example,ship is
an instance ofvessel, so ship is a hyponym thereof,
whereasicebreakeris aship, shiphere being a hyper-
nym to icebreaker. For the most comprehensive gen-
eral domain ontology with a hypernym hierarchy for
English, see the WordNet database (Fellbaum, 1998).

The assignment of canonical basis vectors to index
terms is arbitrary in case of the classical VSM. As the

continuous model heavily utilizes term interdepen-
dence, such arbitrary assignment should be avoided.
Instead, the clustering of index terms arranges them
in a semantically continuous fashion, with occasional
gaps between ”islands of similar meaning”. Re-
lated words are assigned to subsequent vectors of the
canonical base. Secondly, consider the hypernymic
termsvessel, ship, and icebreaker. As these vectors
need to reproduce, apart from their related meaning,
a respective hierarchy as well, first they should be
assigned toei−1, ei , andei+1 for somei, before we
transform them to theL 2 base of function space. We
will return to this point below, after briefly discussing
k-means clustering as applied for the arrangement of
our index terms.

For the semantic arrangement of index terms, two
k-means clustering methods based on cosine dissim-
ilarity and Lesk similarity were tested, the former on
tfidf, the latter on the above specified quasi-referential
sources of word meaning. Lesk similarity has proved
to be superior to other similar distances for the task
of word sense disambiguation (Lesk, 1986; Pedersen
et al., 2005). The so-called adapted Lesk algorithm
counts overlaps between the definitions of terms: the
more words they share the more similar the terms are
(Lesk, 1986). It also compares the hypernymic, hy-
ponymic, holonymic, meronymic and troponymic at-
tributes of each word in a term pair for which simi-
larity is computed (Pedersen et al., 2005). Compound
words and their definitions are included in the com-
parison (Pedersen et al., 2005). A term usually has
more than one sense, but it is computationally not
feasible to identify (disambiguate) the senses in each
processed document for indexing by senses instead of
terms. As a simplification, only the first, most fre-
quent senses and their definitions were considered in
this experiment. Since, however, the canonical basis
cannot reproduce sense hierarchy even after semantic
rearrangement, one has to opt for theL 2 basis instead.

Lately, Hoenkamp has pointed out that theL 2

space can be used for IR when he introduced a
Haar basis for the document space and identified
three properties for desirable transformation opera-
tors. Such operators (1) should be unitary (to pre-
serve cohesion of the documents), (2) they should
lead to dimension reduction (to preempt the lexicon
problem), and (3) they should be computationally in-
expensive (Hoenkamp, 2001).

In order to introduce a wavelet-based continuous
model of IR inL 2 space, we approach the problem
from a different angle than Hoenkamp did, observ-
ing semantics as a constraint on IR. Therefore apart
from tfidf as the raw material for testing, we also uti-
lize the Lesk similarity and thereby quasi-referential



sources of word meaning, in addition to his above ob-
servations. The Whittaker-Shannon formula (Equa-
tion 1) describes a way to reconstruct the function
from discrete values (Weaver, 1988). It uses the un-
normalized sinc function (sinus cardinalis), defined
by sinc(x)= sin(x)

x . The function has a removable sin-
gularity at zero, its value at this point is specified ex-
plicitly as 1. The sinc function is analytic onR. The
Whittaker-Shannon formula is defined by

f (t) =
n−1

∑
k=0

f (k)sinc(2πωc(t −k)). (1)

The sinc function is not periodic and is of finite
power and the formula does not assume periodicity of
the original signal.

f j (t) =
M−1

∑
k=0

ak jsinc(2πωc(t −n)). (2)

The bandwidthωc is unknown; in fact, it is more
like a parameter than a derived constant, as long as
the conditions of the sampling theorem are satisfied.
By changingωc, the width of one sinc impulse is con-
trolled. The width of a sinc function determines how
much of the semantic relatedness between terms (Sec-
tion 7) is considered.

The Whittaker-Shannon formula is not the only
way of restoring a signal of discrete samples. The
next section introduces another formulation, hence
the above model will be referred to as Continuous
Model A (CMA).

4 A Variant of the Continuous model

Since it is possible to use both wavelets as non-
periodical continuous functions (Model CMA), and
continuous periodical functions to construct and re-
construct document and query vectors, we designed a
respective model called Continuous Model B (CMB)
as well.

Following clustering, we perform Fourier trans-
form on the document vectors of the matrixA. Let
dn j denote a Fourier coefficient. For the sake of sim-
plicity, the elements in the matrix are indexed starting
from 0.

dn j =
1
M

M−1

∑
k=0

ak j exp(−ın
2π
M

k)),

0≤ n≤ M−1,0≤ j ≤ N−1,

whereak j is an entry in the vector space model (aj is
the jth document vector),M is the number of features
(i.e. the number of keywords used to index the docu-
ments),N is the total number of documents, anddn j

is a Fourier coefficient. The inverse transform which
reconstructs the original document vector is consecu-
tively defined by

ak j =
M−1

∑
n=0

Re(dn j)cos(n
2π
M

k)− Im(dn j)sin(n
2π
M

k),

0≤ k≤ M−1,0≤ j ≤ N−1.

Assuming that the initial vector space had only
real entries, the number of elements to be summed
is reduced.

ak j = Re(d0 j)+2
M/2

∑
n=1

Re(dn j)cos(n
2π
M

k)− (3)

Im(dn j)sin(n
2π
M

k),

0≤ k≤ M−1,0≤ j ≤ N−1.

If Formula (3) is extended from the discrete set
of k = 1,2, . . . ,M to the set of real numbers, periodic
functions with periodM are created:

fi(x) = Re(d0i)+2
M/2

∑
n=1

Re(dni)cos(n
2π
M

x)− (4)

Im(dni)sin(n
2π
M

x), 0≤ j ≤ N−1.

The continuous document functions are the above
functions restricted to the[0,M−1] interval. If a doc-
ument vector is regarded as a sample of a hypothetical
continuous signal, Equation (4) is the reconstruction
of that signal.

5 Information Retrieval

In the VSM, the document retrieval process is
based on the inner product of the Euclidean space
as the similarity measure, where document and query
vectors represent a formal description of a users in-
formation need and a set of documents satisfying that
need (van Rijsbergen, 1979; Dominich and Kiezer,
2007). The continuous model follows the same prin-
ciple: it maps natural language documents to a feature
space (that isL 2([0,M − 1])), and uses the usual in-
ner product of this Hilbert space to express similarity
between documents, or a document and a query for
retrieval.

As for this inner product, letλ be the Lebesgue
measure onR, then

( fi , f j ) =

Z

[0,M−1]
fi(x) f j (x)dλ(x), (5)

fi , f j ∈ L 2([0,M−1]).

Thus, information retrieval can be performed by
Equation (5) in a similar fashion as in the VSM.



Cluster Bandwidth (ωc)
Size 0.001 0.01 0.1 1 10
12.5 0.110 0.130 0.124 0.105 0.105
25 0.102 0.112 0.107 0.114 0.134
50 0.137 0.112 0.109 0.126 0.098
100 0.110 0.138 0.111 0.132 0.097

Table 1: Mean Average Precision Values of Continuous
Model A, Cosine Clustering

Cluster Bandwidth (ωc)
Size 0.001 0.01 0.1 1 10
12.5 0.102 0.112 0.119 0.116 0.145
25 0.129 0.125 0.122 0.106 0.088
50 0.116 0.118 0.119 0.144 0.111
100 0.123 0.112 0.120 0.139 0.131

Table 2: Mean Average Precision Values of Continuous
Model A, Lesk Clustering

6 Results

Experimental results for both the CMA and CMB
models were computed on the ADI test collection2.
The subject of the collection is Information Science
and it consists of 82 documents and a relatively larger
number of queries, 35. A range of parameters were
tested for both models.

The standard 11-pt recall-precision values were
calculated to estimate performance. The eleven val-
ues were averaged to get a single-number description
(mean average precision). The mean average preci-
sion of the VSM was 0.131.

6.1 Results of the Continuous Model A

The results for CMA are consistently better than
for CMB. Non-periodical functions outperformed the
”discrete” VSM in 4 out of 20 measurements based
on contextual word meaning, i.e. cosine clustering
(Table 1), and in 3 out of 20 measurements based on
quasi-referential meaning, i.e. Lesk clustering (Ta-
ble 2). The best mean average precision, 0.145, was
reached by a combination of bandwidth 10 and clus-
ter size 12.5, in other words where bandwidth best
approximated cluster size.

The detailed results of the best three parameter
settings with Lesk clustering are plotted on a standard
11-point recall versus precision diagram (Figure 1).

2http://ir.dcs.gla.ac.uk/resources/testcollections/
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Figure 1: 11-point Recall versus Precision Diagram, Con-
tinuous Model A; (a) Vector Space Model; (b) Clustering:
Lesk Similarity, Average Cluster Size: 100, Bandwidth: 1;
(c) Clustering: Lesk Similarity, Average Cluster Size: 50,
Bandwidth: 1; (d) Clustering: Lesk Similarity, Average
Cluster Size: 12.5, Bandwidth: 10

Cluster Cut-off Frequency
Size M/4 5M/16 3M/8 7M/16 M/2
12.5 0.131 0.129 0.124 0.118 0.131
25 0.108 0.104 0.116 0.117 0.127
50 0.140 0.126 0.131 0.131 0.130
100 0.116 0.119 0.116 0.129 0.130

Table 3: Mean Average Precision Values of Continuous
Model B, Cosine Clustering

6.2 Results of the Continuous Model B

The efficiency of CMB, measured by the mean av-
erage precision, is close to but worse than that of
the ”discrete” vector space model based on contex-
tual word meaning, and is worse based on quasi-
referential word meaning. Table 3 and 4 present the
results for various cut frequencies and average cluster
sizes.

7 Discussion

The proposed models are theoretically interesting
because of their linguistic relevance and alternative

Cluster Cut-off Frequency
Size M/4 5M/16 3M/8 7M/16 M/2
12.5 0.115 0.126 0.125 0.126 0.128
25 0.123 0.118 0.120 0.118 0.125
50 0.115 0.117 0.121 0.128 0.131
100 0.120 0.114 0.124 0.125 0.127

Table 4: Mean Average Precision Values of Continuous
Model B, Lesk Clustering



approach to modelling semantic content, i.e. using
continuous functions instead of vectors. Although
(Hoenkamp, 2001) proposed to use such continuous
functions for LSI, and we are experimenting with the
coupling of theories of word meaning and continuous
LSI as well, in this paper we have limited ourselves to
the more general question of language representation
by them.

There are two implications of CMA and CMB.
The first regards the question, why is it possible to
use mathematical objects in Hilbert space for IR at
all? If we consider the fact that an infinite number of
continuous functions may exist with only the poten-
tial, but not the chance, to signify, i.e. mean anything,
it becomes evident that what matters is thecoupling
between language and Hilbert space. The elements
thereof can mean anything based on human conven-
tion only. Once this convention is called a language,
the next step is to find a theory of word semantics
which happens to map reasonably well onto the ge-
ometry of Hilbert space. As we have indicated above,
such theories exist, and can be traced back to the in-
herent notion of the continuity of semantic content.

Since the 18th century, this continuity gave rise
to two related concepts, that of a semantic field
and of a lexical gap (Lyons, 1977). The two to-
gether essentially describe something evolving in
a well-documented fashion, following socio-historic
changes in language use, and can be conceived as an
n-dimensional texture of semantic content, i.e. a ge-
ometry with locations used vs. not used for the rep-
resentation of semantic content. Whereas we note in
passing that lexical semantics is working on the above
concepts and their status is far from being finalized,
their existence is not debated. This offers a solid op-
portunity for IR to cooperate with linguistics on elab-
orating a joint synoptic understanding.

Secondly, as also discussed by (Park, 2003), there
is a mathematical phenomenon that closely resem-
bles the Heisenberg uncertainty principle in quantum
mechanics, and is also referred to as the mathemati-
cal uncertainty principle (Papoulis, 1963).. Roughly
speaking, the more tightly localized anf signal (func-
tion) is, the less localized is its Fourier transform̂f .

The duration off is defined as follows:

D2
t =

Z

R

t2| f (t)|2dλ(t)

The bandwidth off is defined as follows:

D2
ω =

Z

R

ω2| f̂ (ω)|2dλ(t)

Time-Frequency Uncertainty Principle: If
limt→±∞

√
t f (t) = 0, thenDtDω ≥

√π
2 .

Applying a low-pass filter or defining a low cut-off
frequency, as in our experiment, therefore means that

in the time domain (which is now the axis of terms),
a document function is no longer localized precisely.
Hence as a representation it no longer resembles
the ”discrete” VSM with its exact localization, in-
stead document content is ”smeared out” reflecting
the fuzziness of information. A more “smeared out”
representation is due to, and contains more quasi-
referential meaning. However, as a trade-off, a docu-
ment is no longer localized precisely, that is, its origi-
nal vector cannot be fully reconstructed by the contin-
uous function. This trade-off is captured in the above
uncertainty principle.

8 Conclusions

We departed from the working hypothesis that the
classical VSM, when it comes to information repre-
sentation - with special regard to the representation of
word meaning -, is approximative and this has a bear-
ing on its efficiency.

We have found an indication that the mathemat-
ical uncertainty principle, a property of the contin-
uous VSM model, may have significance to IR uti-
lizing more advanced combinations of semantic con-
tent. As is known, this principle is a general form of
the Heisenberg uncertainty principle, and it states that
content cannot be exactly localized.

In our experiment, the same VSM IR model, run
on the ADI test database, performed in some cases
better once the same information was represented by
appropriate continuous functions instead of vectors
in it. We regard these first results inconclusive be-
cause of the small size of the test database, and keep
working on collecting more evidence to understand
whether there is a fundamental trade-off between IR
effectiveness –the success rate of an algorithm to re-
trieve relevant documents– and the localization of
content in an IR model.
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