
UPTEC F 15067

Examensarbete 30 hp
November 2015

Investigation of Inertial Navigation
for Localization in Underground
Mines

John Svensson

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besöksadress:
Ångströmlaboratoriet
Lägerhyddsvägen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 – 471 30 03

Telefax:
018 – 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

Investigation of Inertial Navigation for Localization in
Underground Mines

John Svensson

This thesis project considers the potential use of inertial navigation on a consumer
grade tablet mounted in a vehicle in an underground mine. The goal is to identify
which sensors and techniques are useful and to design a navigation algorithm based on
those results. The navigation algorithm is intended to work alongside the current
received signal strength indication (RSSI) positioning system. Testing of the gyroscope,
accelerometer and magnetometer sensors suggest that, while dead reckoning is likely
not precise enough, an orientation filter can be designed that can be used for
navigation. A complementary orientation filter using the gyroscope and accelerometer
is then designed that shows better results than the default sensor fusion solutions
available in Android. The filter is expandable and can come to include magnetometer
data in the future. Based on the outputs of this filter, a navigation algorithm based on
angle matching with map information is proposed.

Precise positioning in an underground mine can be crucial to employee safety, and
may also bring production benefits.

ISSN: 1401-5757, UPTEC F15 067
Examinator: Tomas Nyberg
Ämnesgranskare: Mikael Sternad
Handledare: Fredrik Ekenstedt

 2015-12-09

1 (46)

POPULÄRVETENSKAPLIG SAMMANFATTNING

Rörelsesensorerna i en kommersiell Android-surfplatta testas och utvärderas för

syftet att förbättra positioneringssystemet i en underjordisk gruva. Utifrån de

sensorer som verkar lovande byggs ett komplementärt rotationsfilter upp.

Rotationen från filtret används sen som grund för en navigeringsalgoritm som

bygger på jämförelser mellan de rotationer som ett fordon gör och möjliga vägar

synliga i en karta över gruvan. Algoritmen samarbetar med nuvarande

positioneringssystem som bygger på signalstyrkemätningar i gruvans trådlösa

nätverk för att approximera en uppkopplad enhets position.

Samtliga sensorer (accelerometer, gyroskop och magnetometer) visar sig vara

användbara för navigering. Tyvärr så ger dödräkning av accelerometerdata typiskt

sett dålig noggrannhet oberoende av sensorkvalitet, på grund av att man tvingas

att numeriskt integrera data två gånger för att nå den önskade storheten. Detta gör

att minsta lilla statiska fel eller brus kan ge upphov till snabbt växande fel i den

slutliga approximationen. Gyroskopet är desto mer precist, och används med

framgång för att följa plattans rotation. Magnetometern lider av störningar från

omkringliggande metall, vilket är speciellt tydligt då enheten placeras i en bil. Ett

sätt att isolera jordens magnetfält från störningarna föreslås och indikationer på att

det är möjligt visas. Tyvärr så visar flera av sensorerna upp icke-konsekventa

mätvärden, vilket begränsar noggrannheten.

Det komplementära rotationsfilter som byggs upp visar sig prestera bättre än

motsvarigheten som följer med Android, och uppvisar ett fel i storleksordningen

några grader per minut. Filtret använder accelerometern som referens för

vertikalriktningen och gyroskopet för att följa enhetens rotation, men kan även

expanderas till att använda sig av magnetometerdata om det blir tillgängligt.

Navigationsalgoritmen som föreslås bygger på ett partikelfilter, där flera virtuella

fordon traverserar gruvan utifrån de rotationer som registreras. När de flesta

virtuella fordon eliminerats, då de försökt ta omöjliga svängar eller kommit för

långt från aktuell accesspunkt, kommer vi närmare den sanna positionen.

 2015-12-09

2 (46)

TABLE OF CONTENTS

POPULÄRVETENSKAPLIG SAMMANFATTNING 1

1 INTRODUCTION .. 4

1.1 Background .. 4

1.1.1 Underground Mines... 4

1.1.2 Inertial Navigation ... 4

1.1.3 Alternate Solutions .. 5

1.2 Project Description ... 6

2 ANDROID TABLET SENSORS .. 8

2.1 Available Hardware Sensors .. 8

2.1.1 Accelerometer (BMI055) ... 8

2.1.2 Gyroscope (BMI055) ... 9

2.1.3 Magnetometer (AK09911C) 9

2.2 Available Software Sensors ... 10

2.2.1 Linear Acceleration Sensor 10

2.2.2 Gravity Sensor .. 10

2.2.3 Rotation Vector Sensor ... 10

2.2.4 Game Rotation Vector Sensor 10

2.3 Additional Sensors ... 10

2.3.1 Pressure Sensor ... 11

2.4 Sensor Experiments ... 11

2.4.1 Polling rates of Hardware Sensors 11

2.4.2 Accelerometer Calibration and Dead Reckoning 13

2.4.3 Heading and Magnetometer in a Vehicle 14

2.4.4 Orientation Tracking .. 17

2.4.5 Gyroscope Calibration ... 22

2.5 Sensor Conclusions ... 23

3 FILTERING ... 25

3.1 Attitude Filters .. 25

3.1.1 Kalman Filters ... 25

3.1.2 Complementary Filters .. 26

3.2 The Mahony Complementary Filter 26

3.2.1 Mahony Filter Constants and Accelerometer
Tolerance .. 27

3.2.2 Mahony Filter Responsiveness 28

3.2.3 Mahony Filter Drift ... 30

3.3 Filter Conclusions .. 31

3.3.1 Possible Future Improvements to the Filter 32

4 NAVIGATION ... 33

4.1 Available Data .. 33

4.1.1 WLAN RSSI Position... 33

4.1.2 Map Information (Node Graph) 33

4.1.3 Orientation Filter (Mahony) 34

 2015-12-09

3 (46)

4.1.4 Dead Reckoning ... 34

4.2 Proposed Method ... 34

4.2.1 Internal Map Representation 35

4.2.2 Vehicular Particle Filter ... 35

4.3 Problems and Possible Solutions 36

4.4 Navigation Discussion .. 36

5 CONCLUSIONS ... 38

5.1 Author’s Recommendations ... 38

6 APPENDIX .. 40

6.1 Numerical Orientation Descriptions 40

6.1.1 Axis-Angle ... 40

6.1.2 Euler and Tait-Bryan Angles 40

6.1.3 Rotation Matrices .. 41

6.1.4 Unit Quaternions ... 41

6.2 GyroScope Integration ... 43

7 REFERENCES ... 45

 2015-12-09

4 (46)

1 INTRODUCTION

1.1 BACKGROUND

1.1.1 Underground Mines

An underground mine is a dangerous and complex environment. At any one time,

a large number of machines, trucks, and operators are working in different parts of

the mine, which often consists of a large sprawling network of tunnels. In the

event of a fire or other life-threatening situations, it is crucial to have a reliable

and accurate way of finding the positions of everyone located underground.

Knowing the position of people in potential danger allows for targeted rescue

missions, and knowing when everyone is out of the way of danger avoids putting

rescue personnel through unnecessary risks. In normal day-to-day operations

having an accurate positioning system can allow for increased production

efficiency, with less time spent figuring out where operators and machines are

located. Going forward, it may also pave the way for traffic control systems that

could help avoid unnecessary hiccups in production. One such example is a fully

loaded truck having to stop in the middle of a steep ramp due to unexpected

oncoming traffic.

Since GPS cannot penetrate hundreds of meters of rock, several of Boliden’s

underground mines currently use a positioning solution based on received signal

strength indication (RSSI) from access points in the mines’ WLAN networks.

This provides a position estimate with an error commonly less than 100m, but

depending on the WLAN coverage in the area it may be as high as 200-250m,

which is the maximum range of the access points used. This rough position

estimate is currently used to automatically control the ventilation systems in some

of Boliden’s mines [1].

1.1.2 Inertial Navigation

Inertial navigation, in general, can be said to be the usage of motion and rotation

sensors to track the movement of an object via some numeric calculations.

Typically the motion sensor is an accelerometer, measuring linear acceleration,

and the rotation sensor is a gyroscope, measuring angular momentum. Common to

all inertial navigation systems (INS) is that they suffer from integration drift as

none of the sensors directly measure the desired quantity (position or orientation)

[2]. This is especially true for accelerometer data as it needs to be integrated

twice, often causing rapidly increasing errors. The amount of drift depends on the

quality of sensors and the algorithms used to process the raw data. To eliminate

the drift, all inertial navigation systems need to synchronize with external

reference data at startup and regularly during operation.

An example of this is a car’s navigation system which uses GPS as an external

reference, while inertial navigation and drivetrain information (such as wheel

speed) are used to calculate positions on shorter timescales or when GPS coverage

is unavailable.

 2015-12-09

5 (46)

While not inertial per se, many INS also use a magnetometer that can measure the

earth’s magnetic field. Combined with the direction of gravity measurable by the

accelerometer, this provides an external reference of orientation in all degrees of

freedom.

1.1.3 Alternate Solutions

Apart from inertial navigation systems (with some external reference), there are a

number of other possible solutions that could work on their own or alongside an

INS. Here, we discuss some of the more noteworthy ones and why they may or

may not be suitable for an underground mine environment.

RSSI data from a WLAN network can be used to approximate the position of a

connected device in a number of ways. First, one can approximate the position of

the device to be the same as the position of the wireless access point with highest

signal strength (or the associated one, depending on the implementation). To

increase the accuracy further, one may employ a trilateration algorithm that

approximates the position based on the signal strengths of all visible access

points. For the highest accuracy, one can make use of fingerprinting, which means

comparing the current RSSI data with previously sampled data. While

theoretically the most precise method, RSSI fingerprinting has a number of

downsides compared with trilateration. Conventional fingerprinting requires a

large amount of work prior to operation, work which may also have to be repeated

in select areas following changes to the infrastructure (such as access points being

moved) [3]. Also, the RSSI landscape may appear different depending on which

vehicle the connected device is placed in. Currently several of Boliden’s mines

use RSSI positioning with highest strength approximation [1].

Another possibility is to use radio frequency identification (RFID) tags placed

around the mine, which when read by passing vehicles indicate its position.

However RFID readers that can read passive tags from a reasonable range can be

large and cumbersome, and covering a significant part of the mine with high

precision requires a very large amount of tags. Instead, RFID tags are more

suitable to be used at certain choke points (which can help positioning or enable

gating functions), or otherwise more important areas. RFID tags can also be

placed on mobile equipment, allowing these to be located by passing vehicles.

RFID is currently used in production for some applications, and is being tested for

several more [1].

Time on arrival (ToA) is a technique used in several positioning systems (such as

GPS), which uses the difference in arrival times of signals from several reference

points to determine the position of the receiver. While very accurate, this requires

precise synchronization of the senders, and can suffer from multipath propagation

issues where the signal bounces off walls or other surfaces in the surroundings.

The main downside of ToA approaches is that they require large amounts of

additional hardware to be placed throughout the mine.

 2015-12-09

6 (46)

Angle of arrival (AoA) data enables triangulation of a signal source by looking at

phase differences of a received signal in an antenna array. Reflections and

multipath propagation are obviously a problem, and AoA is mostly useful in open

areas. However, knowing the direction of a signal source could give important

qualitative data when navigating in an underground mine. For example, receivers

placed in intersections could determine from which path the signal originated.

Some AoA information is possible to extract from a WLAN system, using bi-

directional access points.

One or more of these technologies may be used by themselves or in conjunction

with inertial measurements to find and track the position of a device.

1.2 PROJECT DESCRIPTION

The purpose of this project is to investigate the possibility of using inertial

navigation techniques on a consumer grade Android tablet (Samsung Tab S) to

improve the accuracy of the current RSSI-based positioning system. Tablets are

currently used in the mines for other purposes, so no new hardware needs to be

introduced. This is especially important in the mine environment, where

installation and maintenance work (such as battery changes) is time consuming

and expensive. In particular, infrastructure-dependent positioning solutions are

undesirable due to the large environment. Since vehicle standards vary between

brands, the project is limited exclusively to the hardware available in the tablet.

This means no information from the vehicle itself, such as wheel speed or

odometer data, is available for use. As external reference, an RSSI position

estimate is acquired through a HTTP request to a web server.

The project is divided into three parts. First, the tablet’s sensors will be

investigated to determine the quality of the sensor data. This includes an

evaluation of the sensor fusion algorithms available by default in the Android

operating system, and programming of an Android application for data collection.

The goal of this part is to determine which sensors provide useful data for the

purpose of navigating in a mine.

The second part is an investigation of various filter techniques to process the raw

sensor data. A suitable orientation filter is implemented and tested for drift,

responsiveness and sensitivity to noise of various frequencies. It is important that

the filtering method chosen can handle the heavy vibrations from driving on the

rough roads underground. The goal here is to find a filter that handles the sensor

data sufficiently well, and to determine what useful output data can be extracted.

Also, since the tablet will run several other applications at the same time, it is

worth taking computational performance into account at this stage. The precision

and performance of the filter is tested with an Android application running the

filter in real time.

Lastly, the available filter outputs are used to design a navigation algorithm for

navigating in an underground mine. To be considered for further development, the

 2015-12-09

7 (46)

algorithm should be able to provide an accurate position estimate that is more

precise and smoother than the current RSSI positioning. It should be able to detect

its own mistakes, and recover from them as quickly as possible. Since the

algorithm will be running on a tablet also using other software, good performance

is desirable. The proposed algorithm is presented and discussed.

All Android applications are written in Java and compiled using Android Studio

unless otherwise stated. There is an option to access lower level functions of

Android by using the Native Development Kit and programming in a lower level

language. For this project, the regular Software Development Kit and Java is used.

Data analysis and presentation is done with Matlab.

 2015-12-09

8 (46)

2 ANDROID TABLET SENSORS

This chapter includes information on the sensors available on the Samsung Tab S.

First, there is a listing of the available relevant sensors and why they may or may

not be suited for navigating in an underground mine. Then follows a description

of experiments made to determine the quality and viability of the various sensors,

as well as some results from these experiments. Lastly, there is a conclusion

detailing which sensors were chosen to be used for this project and why. Visual

inspection and on-the-go testing of sensors is done using the Android application

“Physics Toolbox Suite” by Chrystian Vieyra [4].

On the software level, each sensor reading comes in a package called a “sensor

event”, which contains the raw sensor data, a timestamp and an indication of

which sensor produced the event. The sensor event is passed to a “sensor event

listener” which uses the information in the way desired [5].

2.1 AVAILABLE HARDWARE SENSORS

This section is a listing of the relevant hardware sensors available on the tablet

and how they may be used for a navigation application. They are referred to as

hardware sensors even though there is some layer of abstraction and calibration

between the actual physical sensor and the readings obtained. The distinction is

made to differentiate them from the software sensors described in 2.2, which use

sensor fusion of more than one hardware sensor [6]. All sensors give their

measurements in the device frame of reference [5].

For the Samsung Tab S in particular, the accelerometer and gyroscope are found

on the same chip [7].

2.1.1 Accelerometer (BMI055)

The accelerometer measures linear acceleration along each axis of the device. In

theory, it can be used to calculate a good approximation of any translatory motion

by integrating twice over time. Unfortunately, any small error in the measurement

is also integrated twice, producing an error of quadratic growth in the result [6].

Also, error in the starting velocity will cause a linearly growing error over time.

Considering that measurements from the sensor come at a limited rate and that the

orientation must be taken into account, we must always expect some error to be

present, even from a perfectly calibrated accelerometer.

However, the accelerometer provides a direct measurement of the direction of

gravity that is not subject to any integration side-effects. This can be used as a

reference of the attitude of the device, preventing any rotational integration drift

except that around the vertical axis [8].

Looking at raw data from the accelerometer can also give us qualitative

information about the situation. If the absolute value of the measurement vector is

close to g, we are likely to be still or in non-zero linear motion. One could

 2015-12-09

9 (46)

possibly detect when the vehicle is likely to be standing completely still by

looking at vibrations and thus pause the navigation algorithm. A problem with

that is that it may be hard to tell road vibrations from the engine idling or a

machine working on something in the mine, such as drilling or scaling (removal

of loose chunks of rock from the walls and ceiling).

2.1.2 Gyroscope (BMI055)

The gyroscope measures angular velocity around each axis of the device. As

shown in appendix 6.2, this is in theory enough to calculate the orientation of the

device relative to some starting orientation. However, in practice every real world

gyroscope suffers from small errors, resulting in drift of orientation [2]. Since the

measured quantity is only the first derivative of the desired result, this drift is

usually quite small compared with that resulting from accelerometer errors, even

with cheap hardware. In a perfectly calibrated gyroscope, the resulting drift is

noise-driven, but in many cases there will be some locally linear drift from a

slowly varying gyroscope bias.

In Android, the gyroscope sensor has some built-in drift and compensation that is

not visible to the user; however, a version without drift compensation is also

available [5]. For the purpose of this project, the drift-compensated gyroscope is

chosen.

2.1.3 Magnetometer (AK09911C)

The magnetometer measures magnetic field strength along each axis of the device.

Apart from the light sensor, this is the only raw sensor available that directly

measures an external reference – the magnetic field of Earth. In perfect

conditions, this means one can easily eliminate all rotational drift around the

vertical world axis. However, the magnetic field measured by the magnetometer is

a superposition of the geomagnetic field and any local magnetic fields present,

such as from magnetized metal objects or running motors. In addition to this, the

geomagnetic field is distorted nearby ferromagnetic objects, such as steel beams

or vehicles’ structural elements (magnetic deviation) [2]. Thus it may be difficult,

depending on the location and situation, to isolate the geomagnetic field. This is

especially true in a vehicle, where the detected field may be completely dominated

by fields local to the body and engine of the vehicle. Assuming this local field is

static with respect to the device (as in, the device is fixed within the moving

magnetic field of the vehicle), it could be isolated and eliminated as the vehicle

turns. This is further investigated in section 2.4.3.

In an underground mine, one would also expect some errors to be introduced by

mine infrastructure and the presence of ferromagnetic minerals in the rock. In

particular, iron oxides such as magnetite will make magnetic fields very

unpredictable as an external reference where they are common. That said, none of

Boliden’s current underground mines have high content levels of ferromagnetic

minerals [1].

 2015-12-09

10 (46)

As with the gyroscope, the Android magnetometer sensor comes in two forms.

The default, and most commonly used, magnetometer has a calibration algorithm

that automatically calibrates when rotating the device [5]. This is mainly to

eliminate the parts of the magnetic field that come from the metal parts and

vibration motor of the device itself. There is also a non-calibrated magnetometer

available, which, according to specification, does none of those things. For this

project, the default magnetometer is used.

2.2 AVAILABLE SOFTWARE SENSORS

This section lists potentially relevant software sensors available on the tablet and

how they may be used in a navigation application. They are called software

sensors as they use sensor fusion of several hardware sensors to produce their

output [6]. Again, all sensors give their readings in the device frame of reference.

2.2.1 Linear Acceleration Sensor

The linear acceleration sensor outputs an estimate of the linear acceleration along

each device axis. The main difference from the accelerometer is that the output

does not include gravity, which makes it useful for dead reckoning applications.

2.2.2 Gravity Sensor

The gravity sensor is similar to the linear acceleration sensor, but returns only the

gravity component of the acceleration. The direction of gravity is the main

indication of the attitude of the device and can eliminate rotational drift around

two of the three axes.

2.2.3 Rotation Vector Sensor

The rotation vector sensor outputs the orientation of the device in the form of a

quaternion representing the rotation from some default orientation to the current

orientation. This sensor uses the magnetometer to prevent drift around the vertical

world axis when available.

2.2.4 Game Rotation Vector Sensor

Otherwise identical to the rotation vector sensor, the game rotation vector sensor

does not, according to specification, rely on the magnetometer for heading. It

cannot prevent drift around the vertical world axis, but is not affected by

variations in local magnetic fields.

2.3 ADDITIONAL SENSORS

Lastly, this section contains a short description of Android sensors that are not

available on the Samsung Tab S but still deserve mention when working with

navigation.

 2015-12-09

11 (46)

2.3.1 Pressure Sensor

A pressure sensor measures air pressure around the device. Visual analysis on

another device suggests it is fairly sensitive and could estimate altitude (or depth

in the case of a mine) quite well. However, the active ventilation systems down in

the mine may cause local pressure differences and as such, the viability of

pressure as a depth indicator would have to be investigated further before use.

2.4 SENSOR EXPERIMENTS

This section contains descriptions and results of experiments and research done to

determine the quality and usefulness of the different sensors. Each subsection

corresponds to a specific potential usage of the sensors, rather than a specific

sensor, and includes a conclusion specific to that usage. The final conclusion on

which sensors are used is given in section 2.5.

2.4.1 Polling rates of Hardware Sensors

In Android, there are a number of pre-defined sensor polling rates that are suited

to various types of applications. The available rates are: “Normal”, “UI”, “Game”

and “Fastest” [5]. For inertial navigation, having faster sensor polling rates is

generally better, as this allows more accurate sampling of high frequency

vibrations, reducing white noise [2].

To determine the upper limit of sampling rates for the hardware sensors, while at

the same time investigating the ability to use several sensors simultaneously, all

three hardware sensors as well as the game rotation vector were all set to gather

data at the “Fastest” rate. The analysis was then done by looking at the periods

between contiguous time stamps for each sensor separately. Results from a 40

second test run are shown in Figure 2.4-1.

 2015-12-09

12 (46)

Figure 2.4-1. The figure shows the time between measurements of the hardware sensors measuring at

the “Fastest” speed. Data was gathered with all three sensors and the game rotation vector sensor

running simultaneously over 40 seconds. All sensors show fairly stable rates, and disturbances

correlate between all three, suggesting external influence.

Both the accelerometer and the magnetometer seem to work with a period of 10

ms, or a rate of 100 Hz, while the gyroscope is faster with its period at 5 ms, a rate

of 200 Hz. All three sensors show variations between individual measurements,

but only the accelerometer and the gyroscope have periods shorter than their

apparent target rates, suggesting they measure on some fixed external clock. The

magnetometer, however, does not and thus effectively has a slower rate. Software

sensors, like the game rotation vector sensor, are synced to one of their hardware

sensors.

There are clear similarities between all three graphs. Larger variations in the

accelerometer and gyroscope data seem to correlate with longer delays in the

magnetometer data, suggesting these variations are not limitations of the

individual sensors themselves, but rather in some layer of software. This brings to

question whether or not to use the difference between sensor reading timestamps

or the expected period between readings in calculations based on the

accelerometer and gyroscope. This would depend on where the difference

appears. For this project it was decided to use the timestamps, as this is in

accordance with official code examples [5].

 2015-12-09

13 (46)

It would seem as if all sensors provide readings at a reasonably stable rate, with

the longest periods being about twice as long as the expected ones. It is also worth

noting that the magnetometer is less sensitive to slower or varying rates, as it

measures the desired quantity directly, and no integration is required.

2.4.2 Accelerometer Calibration and Dead Reckoning

Looking at the accelerometer readings when the device is in a fixed position

reveals that it is not quite calibrated. Values often exceed 10 m/s
2
, which is a clear

deviation from the expected 9.81 m/s
2
. Upon further investigation, it was

discovered that the values tended to change over time, even with the device

completely fixed. The most probable cause for this appears to be a temperature

dependency of the accelerometer, since the values often stabilized if the device

was doing the same thing for an extended period of time. Naturally, this makes

finding a good calibration difficult, as the device will be operating in an

environment where both ambient temperature as well as internal temperature from

using the device will vary largely.

Ideally, one would want an on-line calibration algorithm that reduces bias without

distorting the data. While some such algorithms exist [9], it was decided to use a

simple error model for calibration to try to remove the large errors that appeared

consistently through most runs.

The error model used is a description of the accelerometer output 𝑎¤ along a

single axis as

where 𝑘 is the scaling error and 𝑏 is the bias.

The calibration process was done by reading the displayed 𝑎∗ when the axis was

aligned with the direction of gravity, and the device held still (𝑎 ≈ 𝑔). This was

done in both the positive and negative direction of the axis, which produced a

system of two equations, from which the estimates 𝑘∗ and 𝑏∗ of 𝑘 and 𝑏 were

obtained. For the tablet used, the values found were:

𝒌∗ = (1.0032, 1.0010, 1.0010),
𝒃𝑎

∗ = (−0.069, 0.052, 0.130).

The scaling error is quite small on all three axes, but the bias error is considerable,

especially on the 𝑧 axis. Approximating 𝑎 ≈ 𝑎∗, where

𝑎∗ =
𝑎¤ − 𝑏𝑎

∗

𝑘∗

for each axis, we obtain the calibrated output. Use of the calibration method

described above improves the accelerometer accuracy, but it still remains unstable

 𝑎¤ = 𝑘 ⋅ 𝑎 + 𝑏𝑎, (2.4:1)

 2015-12-09

14 (46)

due to the apparent temperature dependency and some cross-axis dependencies.

For the project, it was decided that no further calibration would be done, as any

gains would soon be lost in the large uncertainties. These uncertainties also mean

that the accelerometer included in the test device is not suitable for calculating

position changes through dead reckoning, as per reasons given in section 2.1.1.

However, the accelerometer remains useful as a way to detect the direction of

gravity, and dead reckoning is most likely to be used for smoothing transitions

between more accurate position estimates obtained in some other fashion.

2.4.3 Heading and Magnetometer in a Vehicle

Since the tablet is intended to be mounted inside a moving vehicle, knowing how

the magnetometer is affected by the vehicle itself is important if it is to be used as

part of a navigation solution. Looking at the output values when sitting in a

vehicle immediately reveals that the magnetometer is heavily affected by the

environment, as the values clearly differ from those read outside.

To see how the magnetometer readings varied in a moving vehicle, data was

logged while driving around a parking lot with the device fixed flat on the

passenger seat. During the test sequence, the vehicle made a number of turns,

resulting in a total rotation of about 360° in a counter-clockwise direction. The

collected data can be seen in Figure 2.4-2.

 2015-12-09

15 (46)

Figure 2.4-2. The graph shows magnetometer readings from within a vehicle making a 𝟑𝟔𝟎° counter-

clockwise rotation. In this test, the 𝒚 axis points in the forward direction of the vehicle and the 𝒙 axis

points through the door on the right side of the vehicle. Both sets show a distinct bump around the 3-

second mark, which is when the engine was turned on, and show wave-like features. The large

separation between the two sets suggests the presence of a strong magnetic field turning with the

vehicle.

Since both sensor axes along which measurements were done lie in the horizontal

plane for the entire experiment, one would expect the values from the respective

sets to intersect at some points if only the geomagnetic field is present. Since they

both travel the same trajectory through the same plane, measuring the same

quantity, one would expect them to show the same values, albeit with a phase

delay. This is not the case, and the only difference between when the 𝑦 axis

points, say, north and when the 𝑥 axis points north is the orientation of the vehicle

and the device body. From this we can conclude that the vehicle and the device

body have strong magnetic fields that interfere with the magnetometer readings.

This is of course problematic when wishing to use the magnetometer for a

heading reference. However, if the magnetic fields produced by the vehicle and

device body are somewhat static with respect to the moving reference frame of the

device, they would appear as a static bias in the readings, which could then be

filtered out. If only the geomagnetic field is present, plotting the 𝑥 and 𝑦 readings

of a magnetometer rotating around the vertical would draw a circle around the

 2015-12-09

16 (46)

origin, with the strength of the horizontal component of the field being the radius

of the circle. Such a plot for the data presented in Figure 2.4-2 is shown in Figure

2.4-3.

Figure 2.4-3. The figure shows the 𝒙 and 𝒚 readings of a magnetometer turning with a vehicle plotted

against each other. The paired values form a circular shape around a point near (-6, 20) with an

approximate radius of about 10 𝝁𝑻. The circular shape suggests that the magnetic fields from the

vehicle and the device body can be approximated to be static in the reference frame of the device.

The path drawn in the plot clearly resembles a circle, which suggests that the

magnetic fields from the vehicle and the device body are well approximated as

static in the reference frame of the device. Removing the error could then be done

by finding the circle which best fits the set of collected points, for example using a

least-square algorithm [10]. The geomagnetic field data could then be used in

conjunction with a gyroscope to provide a smooth and accurate heading [2].

Eliminating the bias in this fashion requires the vehicle to move around for a

while before a reliable circle fitting can be done. Depending on what part of the

mine the vehicle is operating in, this may not happen right away. Also, local

magnetic disturbances from infrastructure, other vehicles, or ferromagnetic ores

may further complicate the search.

To determine the usefulness of the magnetometer for this project, we have to

consider other options that fill the same role – an external reference of heading.

 2015-12-09

17 (46)

One such option is that of map matching, which in an inertial navigation context

means to use map information to exclude impossibilities, like driving inside a

wall. This is especially interesting in the underground mine case, where tunnels

are often just wide enough for a single vehicle, and the map is very sparse in the

sense that the domain of possible positions and headings is very small (there is a

lot of solid rock per unit area of road). For this reason, map matching is a strong

alternative to magnetometers for heading references, given that a sufficiently

accurate sensor is available to track rotation on a shorter time scale. That said,

magnetic heading and map matching are not exclusive and combined could

simplify the positioning task. An ideal case of this would be to obtain the heading

from the magnetometer, and then look at map segments where a vehicle is likely

to have this heading.

2.4.4 Orientation Tracking

Whether one uses navigation using dead reckoning, map matching, or both,

knowing the orientation of the device is very important. As discussed in section

2.1.1, a dead reckoning algorithm will quickly diverge if there is any error in the

incoming data. This does not only apply to the acceleration measurements, but

also to the rotation measurements that determine which world frame direction the

accelerations apply to. In fact, even the slightest errors in an orientation estimate

will quickly create large position errors [6]. For this reason, having an accurate

estimate of the orientation is important (even without dead reckoning, the

orientation can be important for map matching). A brief summary of different

ways to represent rotations numerically is found in appendix 6.1.

The rotation vector sensor provides immediate access to the orientation of the

device [5], and for this reason it is easy to pick up and use without implementing

any filter algorithm. The downside is that it is only available as-is, and cannot be

modified.

Since the rotation vector sensor uses magnetometer data, it can provide a

complete description of the device orientation. To get a first look at how it is

affected by local magnetic fields, a test app that visually represents the measured

orientation was used. Immediately, it was clear that the sensitivity and reliance on

the magnetometer data was too high, as simply moving it around the office

environment while keeping it in a relatively stable orientation showed deviations

of up to 90º. While it seemed on average to show a correct orientation, the

readings were very inconsistent, and were very choppy when moving. When the

device was placed in a car with its motor running, it completely lost track of

north, even after extended running. It would seem the built-in filtering techniques

are unable to eliminate the static field of the vehicle.

As the rotation vector sensor cannot be modified, it was deemed unsuitable for

this project. However, the game rotation vector sensor, similar to the rotation

vector except for not relying on the magnetometer [5], could still be used for

orientation measurements with some external heading reference to prevent

 2015-12-09

18 (46)

horizontal drift. To investigate the accuracy of the game rotation vector sensor,

sensor output was logged to a file and processed in Matlab. Since no hardware to

externally measure the rotation was available, it was carefully ensured that the

orientation of the device at the beginning of a test was the same as that at the end,

by alignment of the device to a predetermined position. For comparison,

gyroscope data was also collected and integrated. The method of converting

gyroscope data to a rotation quaternion is described in detail in appendix 6.2.

To quantify the rotations, we look at the angle of displacement of the orientation

quaternion in every time step, which corresponds to the angle 𝜃 in the quaternion,

defined as in equation (6.1:10). The initial position corresponds to a zero rotation

quaternion, defined in equation ((6.1:14). A graph showing the angle

displacements from zero rotation over time when the device is picked up, spun

randomly in the air, and then placed at its initial position is shown in Figure 2.4-4.

The game rotation vector sensor does take any deviation from a completely

horizontal position (based on accelerometer data) into account, and may as such

show a non-zero value from the start, but in this particular case, the device can be

considered to be completely flat. A video representation of the changing rotations,

as well as the raw gyroscope data, is also available [11].

Figure 2.4-4. The graph shows the angle part of the axis-angle representation of the device’s orientation

over time. The device was returned to its original position, meaning near-zero end values indicate

better accuracy or less drift. Both sensors perform quite similarly, but the gyroscope seems to perform

slightly better towards the end of the experiment.

 2015-12-09

19 (46)

We can see that both sensors perform similarly for most of the test, but the

gyroscope ends up having a slightly better end result (being closer to zero). This is

commonly seen in many of the test runs, and it would appear that the game

rotation vector’s underlying filter causes some side effects when motion stops. In

general, the gyroscope and game rotation vector seem to perform about equally

well, with one or the other performing better in individual tests. The gyroscope

integration’s disadvantage of not being able to counteract vertical drift (in this

context defined as any drift not in the horizontal plane) becomes very apparent

during some tests.

To investigate the drift characteristics of the two methods, the device was placed

in a fixed position for extended periods of time while collecting sensor data. To

evaluate how much the two methods drift, the same angle of displacement used in

the previous test is logged. Results from a 70-minute test are shown in Figure

2.4-4, and a video showing the rotations is available [12].

Figure 2.4-5. Angles of rotation for the gyroscope and game rotation vector sensor over a period of 70

minutes. Both methods drift significantly. The gyroscope drifts with a fairly constant rate, while the

game rotation vector accelerates over time. That both methods end at the same angle is a coincidence

and is inconsequential.

From this figure, we see that the two methods drift in quite different ways. The

first thing to notice is that the gyroscope integration drifts with a constant rate

while the game rotation vector sensor’s drift accelerates over time. The game

rotation vector sensor drifts less than the gyroscope integration during the first

 2015-12-09

20 (46)

1500 s, seems about equal at 2000 s, after which it becomes significantly worse

and eventually catches up at the 3500 s mark. While accelerating drift is not good,

it might be able to be circumvented by restarting the sensor every 10 minutes. To

further investigate the drift, the rate of change in the displacement angle was

plotted, seen in Figure 2.4-6. The data displayed is the absolute value of the rate,

passed through a low-pass filter.

Figure 2.4-6. The graph shows rate of change in the displacement angles of the gyroscope and game

rotation vector sensors during a stationary run of 70 minutes. The three vertical spikes are a filtering

artifact that appears when the angle of displacement becomes zero or π. We see that the gyroscope

drifts at a fairly constant rate (the small reduction likely comes from the deviation from a circular

path), while the game rotation vector sensor drifts at a growing rate for most of the duration. We can

also note that the game rotation vector has a much more uneven drift rate, with about 30 small spikes

showing up at a rate of approximately one every 140 s.

We can immediately notice a general trend, where the gyroscope integration drifts

at a more or less constant rate, while the game rotation vector sensor drifts with an

ever increasing rate as well as showing large local variations. Looking at the

video, we can see that much of the drift happening to the gyroscope integrated

rotation is non-horizontal, and thus could be eliminated through sensor fusion

with accelerometer data, possibly bringing the gyroscope down to the initial levels

of the game rotation vector sensor.

We also notice regularly recurring noise spikes in the game rotation vector

sensor’s drift rate that are spaced out evenly with an approximate period of 140 s.

 2015-12-09

21 (46)

The drift rate of the gyroscope integration appears to be in the region of 5º per

minute. Due to the time-varying nature of the game rotation vector sensor’s drift,

we can only conclude that it seems to be better than just the gyroscope over short

time scales, but gets progressively worse as time goes on.

Since the intended application involves the device placed in a moving vehicle, the

same two methods were applied to data gathered from the test described in 2.4.3,

where the device was placed on the passenger seat of a car making a full rotation

with a number of turns. A video showing the rotations is available [13].

Figure 2.4-7. The graph shows the angles of displacement for the gyroscope integration and the game

rotation vector sensor during a full 360º turn, made as a series of about 90º turns. The final orientation

was the same as the starting one, within reasonable accuracy of parking a car. We see that the game

rotation vector sensor falls behind quickly, and appears to attempt to counteract the rotation, clearly

seen at times 25-27 s, 35-40 s, and 43-48 s.

The gyroscope seems to be performing quite well, with the error within the

margin of error of parking a car. However, the game rotation vector sensor does

not appear to be able to keep up at all, ending with an error of nearly 180º. While

it is able to follow the rotations to a somewhat reasonable accuracy, it appears

erroneously to detect some motion in the opposite direction immediately

following an actual rotation. While an accurate pinpointing of the source of this

problem would require further investigation, it appears likely that it is either a

filter algorithm problem, which causes the filter to misinterpret accelerometer

readings from linear acceleration of the car as changes in attitude, or an indirect

 2015-12-09

22 (46)

magnetometer dependency. As the official documentation of the game rotation

vector sensor states that it does not use the geomagnetic field [5], this would

suggest that the problem lies in filter misinterpretation of accelerometer readings.

Considering how both of the rotation vector sensors seem to have trouble handling

vehicular motion, be it from static magnetic fields or from accelerometer

misinterpretations, using the gyroscope with a custom filtering solution seems like

the most promising alternative.

2.4.5 Gyroscope Calibration

Judging by the relatively constant rate of drift shown by the gyroscope seen in

Figure 2.4-5 and Figure 2.4-6, there seems to be a fairly stable bias in the

measurements. Visual inspection, by writing out the values directly to the display,

however, shows that the bias varies over time around some more static value. To

investigate this time-varying bias, the device was placed in a fixed upright

orientation for several hours. The gyroscope measurements from this test are

displayed in Figure 2.4-8, with each axis displayed separately and passed through

a low-pass filter for readability.

We can see that the bias varies slightly over time, but with no clear pattern. The

cause of this variation is unknown, but temperature dependencies seem likely.

Figure 2.4-8. The graph shows low-pass filtered gyroscope readings with the device fixed in an upright

position over about three hours. All three axes show readings that vary with time, but no clear pattern

appears.

 2015-12-09

23 (46)

Using a model of the measured angular velocity for a single axis, 𝜔¤, as:

 𝜔¤ = 𝜔 + 𝑏𝑐, (2.4:2)

where 𝜔 is the real angular velocity and 𝑏𝑐 is the bias, we obtain the following

approximation, 𝜔∗, of 𝜔:

 𝜔∗ = 𝜔¤ − 𝑏𝑐. (2.4:3)

From the experiment above, we obtain the following gyroscope bias:

 𝒃𝑐 ≈ (−0.4057, 0.8227, 0.1864) ⋅ 10−3. (2.4:4)

This, of course, only applies to the particular device used for testing in this

project. Applying the calibration reduced the drift to near-zero levels, with typical

drift rates of 0.1-0.4 degrees per minute. For comparison Earth spins at 0.25

degrees per minute.

For any larger-scale adaption one would most certainly want to use some on-line

calibration algorithm, which also could help deal with the small bias changes that

occur over time. A simple way to implement this is to add a slow high-pass filter

to the gyroscope outputs, but in order to avoid filtering out relevant data it would

have to be very slow, and thus not very responsive.

The need for on-line calibration became evident when applying the calibration to

older data sets, collected weeks before the calibration was done. In most of the old

data sets, the calibration did little or nothing to improve the accuracy. Examining

the gyroscope data from these old tests suggests a completely different bias was

present at the time. The later readings, on which the calibration is based, have

been accurate since, but since there is no clear cause of why the bias changed, it is

wise to assume it will happen again.

2.5 SENSOR CONCLUSIONS

After considering the results from experimenting with the sensors, using the

gyroscope for rotation tracking with the accelerometer as a reference of the

direction of gravity seemed like the solution most likely to bring good results

within the time frame of the project.

As the magnetometer would require on-line calibration and possibly depend on

the vehicle operators to do the initial self-calibration routine at startup, it was

decided to only use map matching as an external reference of heading. However,

the magnetometer remains promising and will likely be one focus of a future

continuation of the project.

As dead reckoning suffers from large errors due to the double integration of

accelerometer data, one would require additional hardware to obtain a reference of

 2015-12-09

24 (46)

speed or distance travelled. While the project is limited to only using the tablet,

any such hardware would likely prove very beneficial in later continuations.

However, due to the very sparse nature of an underground mine map, one may be

able to track the position of a vehicle by comparing the tracked heading to that of

adjacent map segments.

In general, the hardware present in the Samsung Tab S seems to provide fairly

precise results that are unfortunately somewhat inconsistent over time. This is the

case with the gyroscope bias investigated in 2.4.5 and accelerometer’s apparent

sensitivity to temperature, discussed in 2.4.2. These variations make it difficult to

improve the gathered sensor information further, and on-line calibration

algorithms may be necessary depending on the required level of precision.

 2015-12-09

25 (46)

3 FILTERING

This chapter covers a number of different possible filtering solutions for sensor

fusion that are applicable to the orientation tracking problem. First, there is a

listing of a few common approaches as well as their advantages and

disadvantages. Second, there is a detailed description of the chosen algorithm,

followed by results and comparisons with the qualities of the raw sensor data

examined in 2.4. Ideally, the filtering algorithm should preserve the

responsiveness of the gyroscope, while drifting less and always presenting an

attitude that is as close to the real one as possible.

For completeness and future-proofing, magnetometer data will also be considered

when comparing different algorithms.

3.1 ATTITUDE FILTERS

This section covers a couple of the most common ways to filter and fuse data

from two or more sensors into an estimation of the attitude of a device. This is

intended to provide a general overview of available algorithms without going into

too much detail. The chosen algorithm is presented in detail in section 3.2.

The common goal of all sensor fusion algorithms is to take several different

measurements of a quantity and combine them in a way that preserves the

advantages of the individual measurements, and eliminates the disadvantages [6].

In the orientation case, we have three commonly available sensors, each of which

possesses very different qualities. Both the accelerometer and the magnetometer

directly measure the sought quantity. Neither of them can fully determine the

orientation of the device, as they lack one degree of freedom - a magnetometer

cannot detect the “roll” around the field lines, while an accelerometer cannot

detect the “yaw” around the direction of gravity. Excluding the magnetic poles,

the two can be used to uniquely determine the orientation of a device.

However, the accelerometer is very noise-sensitive by nature, as it not only

measures gravity, but also the second derivative of the position. As such, any

slight change in position, like car engine vibrations, will distort the gravity

reading and throw the orientation off. The magnetometer, on the other hand, may

pick up electromagnetic noise or be statically biased by local magnetic fields in

the surroundings.

3.1.1 Kalman Filters

Kalman filtering, also known as linear quadratic estimation, is commonly used in

many fields, and is one of the most reliable methods of combining several noisy

measurements into a single estimate of the desired quantity. To produce an

accurate estimation, Kalman filters take a lot of knowledge about the system into

account, such as control-input, models of how the system is observed, knowledge

about the covariance of noise in the different measurements, as well as how

relevant physical laws apply to the system. This knowledge is encoded in a

 2015-12-09

26 (46)

number of matrices that are used in the calculation [14].

Kalman filters come in many variants, are generally technically quite complex and

may require a good amount of knowledge about the system beforehand. As such,

simpler solutions are often used even though a Kalman filter may give superior

results.

3.1.2 Complementary Filters

A complementary filter does not, contrary to the Kalman filters, consider

statistical descriptions for the noise in the measured signals, and as such is not

expected to reach the same levels of accuracy in the general case [15]. However,

their relative simplicity compared with the Kalman filters make them an attractive

choice when pursuing the optimal accuracy is not necessary, as they are often

much easier to implement and tweak. Thus, it can be a good idea to use a

complementary filter in situations where the accuracy produced is good enough.

There does not appear to be much of a rigid definition of what a complementary

filter is. However, the general idea is that two or more different measurements of

a quantity are filtered independently and added together to form a better

approximation of the quantity than any of the individual measurements. For

example, a low pass filter on a signal with high frequency noise, and a high pass

filter on a signal with a varying bias, can form a complementary filter so that the

combined output better approximates the measured quantity than any of the

individual measurements do.

3.2 THE MAHONY COMPLEMENTARY FILTER

For this project, a modified version of a complementary filter developed by

Mahony et al. in 2008 [16], is used to track the orientation of the device. This

section contains a brief overview of the original Mahony filter, followed by a note

on some additions and modifications that were made, and finally some results and

comparisons to the tests made in 2.4.

The filter was chosen as it was made for a similar application to that of this

project, is fairly easy to implement, and immediately upon testing showed

promising results. It also allows for easy future inclusion of magnetometer data.

Out of the three variations of his filter described by Mahony, the Explicit

Complementary Filter is the one best suited for this project, as it is formulated

directly in terms of the types of sensor readings gotten from inertial motion

sensors. Using a simple Riemann sum for integration, the update equation of the

current estimated orientation 𝑞 becomes:

𝑞𝑛+1 = 𝑞𝑛 +

1

2
𝑞𝑛 ⋅ 𝑝(𝝎′) ⋅ Δ𝑡, (3.2:1)

 2015-12-09

27 (46)

where 𝑝(𝝎′) is the pure imaginary quaternion by zero extension of the three-

element vector 𝝎′, the filtered angular velocity. 𝝎′ is defined by:

 𝝎′ = 𝝎 + 𝐾𝑝𝒆 − 𝒃, (3.2:2)

where 𝐾𝑝 is a proportionality constant on the error 𝒆, and 𝒃 is an approximation of

the gyroscope bias. The bias approximation is updated as:

 𝒃𝑛+1 = 𝒃𝑛 − 𝐾𝑖𝒆 ⋅ Δ𝑡, (3.2:3)

where 𝐾𝑖 is a constant describing the rate of integration of the error term 𝒆. The

filter thus has a built-in PI regulator driven by 𝒆, defined by 𝐾𝑝 and 𝐾𝑖. The error

term 𝒆 is based on a number of known reference vectors 𝒗𝑖 in the world frame and

the measurements of these vectors, �̂�𝑖, according to:

𝒆 = ∑

𝑘𝑖

2
(𝒗𝑖 × �̂�𝑖)

𝒊

, (3.2:4)

where 𝑘𝑖 is a weight parameter that allows tweaking of the correction speed for

individual reference vectors. The value of 𝑘𝑖 will depend on the rate of drift

around the relevant axes, as well as the accuracy of the �̂�𝑖 measurement. For

example, in the case of a magnetometer reference, the error should be weighted

high enough, so that horizontal drift is eliminated, but otherwise as low as

possible to reduce the sensitivity to noise and local magnetic fields.

While, in theory, any number of reference vectors can be used [16], the most

easily available ones are gravity and the geomagnetic field. The general

formulation of the filter in terms of generic reference vectors make it easily

expandable if any additional information becomes available, as no implementation

details have to be changed to accommodate the new information. However, the

usage of the filter output may have to be changed, as it contains more information

(for example, the filter output would tend to align to the correct heading if a

magnetometer reference vector is added).

If only a single reference vector is used, the output orientation will drift in one

degree of freedom. If that reference vector is gravity, then the drift occurs in the

horizontal plane, similar to the game rotation vector sensor, discussed in 2.2.4 and

2.4.4. This is the case with the implementation of the filter used for this project,

and the characteristics of the drift are investigated further in section 3.2.3.

3.2.1 Mahony Filter Constants and Accelerometer Tolerance

To find decent values of the 𝐾𝑖 and 𝐾𝑝 parameters, a few different sets of data

were passed through the filter for a number of values of the parameters. Having

either value too high causes the filter to show similar effects as the game rotation

vector sensor when significant linear accelerations are present, as the filter

 2015-12-09

28 (46)

misinterprets the horizontal accelerometer readings as the device having been

tilted to some side. Any rotation measured while this artificial tilt is in place will

not be correctly applied, and the final orientation often largely differs from the

real one (due to the non-commutativity of rotations).

This effect can be minimized by reducing the values of 𝐾𝑖 and 𝐾𝑝, but this also

slows the filter’s responsiveness to other errors. To find a better compromise, the

value of the weighting factor 𝑘𝑎 of the accelerometer reference vector is made to

depend on the absolute value of the accelerometer according to:

𝑘𝑎 = {

1, ||𝒂| − 𝑔| < 𝛼

0, ||𝒂| − 𝑔| ≥ 𝛼
 , (3.2:5)

where 𝑔 is the net gravitational force on an object, 9.82, and 𝛼 is the tolerance

range of the accelerometer. This tolerance range allows filtering out of all extreme

values of 𝒂, and reduces the rotation error following artificial tilt from linear

accelerations. While the average quality of the accelerometer reference

measurements improve with lower 𝛼, lowering it too much makes the filter

sensitive to small time-varying biases. For the device used in the project, 𝛼 = 0.2

is a good value using the calibration method detailed in 2.4.2. This typically lets

more than half of the measured values through, and even in tests with a lot of

linear acceleration about a fourth to a third of values pass through. While this may

seem like a small amount, the acceleration information contained in the discarded

readings essentially creates more error than it can be used to compensate for. That

said, setting 𝛼 too small can also be detrimental. For example, one should ensure

𝛼 is large enough that pure gravitational readings are not pushed out of the

tolerance range by noise or time-varying bias.

Introducing the tolerance criteria allows increasing the filter without introducing

the kind of artificial tilt seen earlier. However, while a small increase may

improve the responsiveness of the filter, increasing the filter constants far above

what is required to eliminate drift may cause unexpected behavior in some rare

edge cases, and is not advisable. 𝐾𝑝 = 1.00 and 𝐾𝑖 = 0.01 give good results with

the device used in the project, and should be a good starting point for a similar

setup.

3.2.2 Mahony Filter Responsiveness

To verify that the filter works as intended, it is compared against integrated

gyroscope data, using the method presented in appendix 6.2, for a number of

different data sets. First, the responsiveness is investigated to determine if the

filter can keep up with rapid movements. For this, the displacement angles,

defined as the angle 𝜃 in the orientation quaternion, as defined in equation

((6.1:10), are compared between the two methods. This comparison can be seen in

Figure 3.2-1.

 2015-12-09

29 (46)

Figure 3.2-1. Displacement angles of the Mahony filter and regular gyroscope integration during fast

motion. The two methods are mostly indistinguishable, and the final error is about 6º for both methods.

The similarity shows that the filter has no problem tracking fast motion.

We can see that the integrated gyroscope output and the output of the Mahony

filter are nearly identical, which suggests the filter has no problems with rapid

motion. Note that both methods show a final error of approximately 6º. This is not

ordinary drift (we will see further on that the Mahony filter drifts noticeably less

than gyroscope integrated rotations), but rather some inaccuracies that appear

during rapid movements. This error does not appear to be reliably reduced by

introducing a high-pass filter on the gyroscope readings 𝝎.

This type of error appears to emerge in a couple of different ways: First, whenever

the gyroscope peaks at its maximum value which, for the test device, is about 8.6

rad/s. Rates of rotation exceeding this value can easily be reached while rotating

the device by hand, but are non-existent or rare during normal operating

conditions. If they do happen regularly, large errors are introduced, but the

Mahony filter is able to correct the attitude, limiting the resulting error to one

degree of freedom (heading). Secondly, the accuracy of the gyroscope seems to

get slightly worse with higher rates of rotation. The exact reason for this is

unknown, but it shows that the operational accuracy must be expected to be worse

than shown during drift tests.

 2015-12-09

30 (46)

3.2.3 Mahony Filter Drift

Applying the Mahony filter to a number of drift tests shows that it is significantly

better than the gyroscope by itself. This shows that the attitude correction by

accelerometer measurements works as intended. Displacement angles for the

Mahony filter applied to the same test used in Figure 2.4-5 is shown in Figure

3.2-2. A high pass filtered on 𝝎 was added to try to prevent the heading drift, and

it was made as responsive as possible without distorting short-term variations. The

high-pass filter 𝒉𝒑(𝝎) at event 𝑛 is described by:

 𝒉𝒑(𝝎) = 𝝎 − 𝒍𝒑(𝝎)

𝒍𝒑𝑛(𝝎) = 𝛼 ⋅ 𝝎 − (1 − 𝛼) ⋅ 𝒍𝒑𝑛−1(𝝎)

𝛼 =
Δ𝑡

𝑅𝐶 + Δ𝑡

, (3.2:6)

where 𝒍𝒑(𝝎) is a low-pass filter with a smoothing factor 𝛼, calculated with the

time constant 𝑅𝐶, which determines the responsiveness and inertia of the filter.

This filter is very simple and not particularly effective, but it shows that high-pass

filters can be used to improve the data.

Figure 3.2-2. The graph shows displacement angles of gyroscope integration and the Mahony filter

from a completely still device, with and without a high-pass filter on the gyroscope readings. The

Mahony filter drifts far less, and the high-pass filter reduces the drift in both cases.

 2015-12-09

31 (46)

We can see that the Mahony filter drifts considerably less than the gyroscope on

its own. This is not surprising, since the drift is limited to one of three degrees of

freedom, but it is vastly better than the game rotation vector sensor, which uses a

similar sensor fusion algorithm that causes accelerating drift, shown in Figure

2.4-5.

We can also see that the high-pass filter reduces the drift rate over time, but that

the value of 𝑅𝐶 used in the test makes the high-pass filter very slow to respond.

Decreasing 𝑅𝐶 improves this, but the filter may then begin to affect actual motion

data. In fact, the filter may have to be slowed down even further to handle cases

where a vehicle moves slowly along a curved path (an extreme case being a

loaded truck driving up a spiral ramp for several minutes). This may be partially

offset by using a filter with a more sharply defined cut-off frequency, which could

allow for faster drift elimination. If available, magnetometer data is a better option

as it allows for fast, responsive drift elimination without the downsides of high-

pass filtering.

The average drift rate displayed by the Mahony filter in these tests is about 1º per

minute, with the high-pass filter reducing it even further during prolonged use.

This is close enough to zero to conclude that linear drift will not be the main

contributor to the heading error, with it being an order of magnitude smaller than

the more unpredictable errors, discussed in section 3.2.2, that arise during motion.

3.3 FILTER CONCLUSIONS

The Mahony complementary filter performs well in all of the tests, especially

after introducing the accelerometer tolerance parameter, detailed in section 3.2.1.

The filter is shown to keep up with the responsive gyroscope, while also being

able to maintain a correct attitude in cases where gyroscope integration does not.

The remaining drift is shown to be reduced by adding a bias-eliminating high-pass

filter on the gyroscope readings. However, since the frequency range of vehicle

motion may be very wide, the high-pass filter will likely have to be very slow, and

magnetometer data would likely be strictly better for drift elimination. The

Mahony filter appears to be strictly better than the game rotation vector sensor.

Without a deeper understanding of the system, it seems unlikely that a Kalman

filter would perform much better than the Mahony filter. Still, Kalman filters

should not be dismissed from further consideration.

The filter output is a quaternion describing the relative orientation of the device,

but depending on the navigation algorithm, less information may be necessary.

For example, one may want only to have the pitch and yaw angles. The yaw angle

is easily obtained by setting the pitch and roll components of quaternion axis to

zero and renormalizing the quaternion. Extracting 𝜃 from the normalized

quaternion then gives the yaw angle.

 2015-12-09

32 (46)

3.3.1 Possible Future Improvements to the Filter

There are a few areas where improvements may result in improved filter

performance. Having access to magnetometer data as a secondary reference vector

would be of great help if a suitable on-line calibration, as mentioned in 2.4.3, is

found. It could potentially bring the filter rotation from a relative one to an

absolute one in the world frame. If sufficiently accurate, it would significantly

simplify navigation algorithm further down the line, and it would be very easy to

add, as it could be directly added as a reference vector in equation ((3.2:4),

without any other modifications to the filter.

If magnetometer data is not available, implementing a more effective high-pass

filter to use on the gyroscope data could help reduce horizontal drift. However,

given the wide frequency range of vehicle motion, the high-pass filter would be

slow to respond.

Ideally, one would like to have some sort of on-line calibration algorithm for the

accelerometer data, as the bias tends to vary over time. This would enable a more

restrictive tolerance range, possibly together with a noise-cancelling low-pass

filter. Deviations in accelerometer readings cause applied rotations from the

gyroscope to be misaligned, as the filter assumes the accelerometer reading is

parallel to the 𝑧-axis in the world frame.

The method for temporal integration used is the simplest possible, and a better one

may provide some improvements to the precision. This would be a low priority

considering the high and fairly consistent polling rates of the sensors shown in

2.4.1, but may still make a difference.

By combining horizontal accelerometer data with yaw rotation from the

gyroscope, one could approximate the speed of the vehicle as well as determine if

it is moving forwards or backwards during a turn. This is only a rough estimation,

but it could give some usable qualitative information about the vehicle’s motion,

which would likely be useful for any navigation algorithm based on the filter

output.

 2015-12-09

33 (46)

4 NAVIGATION

This chapter covers the problem of navigating in an underground mine. First,

there is a summary of available in-data, also mentioning additional data sources

that could become available in the future. Second, a navigation method given the

set of data sources currently available is proposed, with a discussion of the

limitations and possible solutions to problems that arise.

A brief introduction to inertial navigation systems is given in section 1.1.2.

4.1 AVAILABLE DATA

This section is a summary of the data sources available for navigation given the

constraints set by the project in 1.2, as well as notable future sources of data that

may become useful to a navigation solution. For each data source, it is detailed

how they are acquired, and in what way they can be used.

In general, data sources are divided into two groups: external or reference data,

and relative motion data. External data provides an accurate measure of some

quantity, and ideally would be the only data required for a navigation application.

However, external data is often not very precise, so relative motion data is used

for smoothing and small-scale movements. By combining the two, one can have a

precise and accurate approximation.

4.1.1 WLAN RSSI Position

In Boliden’s underground mines, the primary external source of position data is

through received signal strength indication (RSSI) of the WLAN network [1]. In

the simplest (and current) case, this means approximating the position by the

position of the access point with the strongest signal. This estimate, acquired via a

HTTP request to a web server, is an accurate measurement with bad precision, as

the range of an access point may exceed 200m (although in most cases the error

will be less than 100m). Still, it limits the possible positions to a relatively small

area of the mine, and enables the verification or dismissal of a position obtained

through inertial navigation. When starting up a device within the mine, this is the

only initial indication of position.

The precision of RSSI positioning can be improved by employing a trilateration

algorithm to find a position estimate instead of just using the access point with the

strongest signal. As of writing, this is under development by the provider of the

current RSSI position.

The position estimate is delivered in the form of a node ID.

4.1.2 Map Information (Node Graph)

For each of the mines, there is a virtual representation called the node graph. This

is essentially a simplified map of the mine, consisting of a large number of points,

 2015-12-09

34 (46)

or nodes. Each node consists of a set of 3D-coordinates as well as a list of

adjacent nodes. This knowledge essentially reduces the possible positions from a

large volume to a relatively small area defined by the inter-node connections.

Also, since the underground roads in a mine are relatively narrow, the forward

axis of a vehicle can often be approximated to be parallel to some straight line

between two interconnected nodes in the graph. This map covers most of the mine

area (the exception being actively excavated areas), and can be pre-loaded or

obtained through a HTTP request over the wireless network. Apart from limiting

the search area, the node graph can also serve as a meta-external reference in

situations where the position is well known, by matching the changes in heading

from inertial sensors to the angles of nearby node connections.

A useful possibility would be to match the slope of a road to slopes measured in

the map, but this is likely to be problematic in certain parts of the mine where the

node graph does not contain accurate slope information.

4.1.3 Orientation Filter (Mahony)

The orientation filter described in 3.2 gives us access to the orientation of the

device relative to some initial starting rotation. As shown in Figure 3.2-1, the filter

is quite accurate over shorter periods of time, which means it can be used for map

matching by tracking short-term changes in orientation. It also allows easy access

to the slope of the current location, allowing for further matching with the node

graph.

The filter, in its current form, is essentially an external source of attitude data (in

the sense that it is accurate), and a source of relative heading data. This leads to

the heading being the last degree of freedom without any reference measurement.

However, if magnetometer data is made available to the filter, it becomes an

accurate source of complete orientation data.

4.1.4 Dead Reckoning

While the initial results from dead reckoning of accelerometer data, shown in

2.4.2, were discouraging, the available data could be used to some extent. The

problem is a lack of reference data of position or speed, which causes the position

estimate from dead reckoning to be able to diverge quickly. However, there is still

the possibility of using dead reckoning on even shorter time scales to provide

some reliable information to a navigation application.

4.2 PROPOSED METHOD

Considering the environment and the available data, a navigation algorithm was

devised. The algorithm is based on matching the heading angle rotations to inter-

node connections in the node graph. Since the initial position is only given with a

precision of hundreds of meters, a particle filter is introduced. This will also help

relieve issues around straight parts and intersections. This algorithm has not been

tested in practice, and lacks some implementation details, but it is believed by the

 2015-12-09

35 (46)

author to be usable in a working application once implemented. The concepts of

this algorithm are described below.

4.2.1 Internal Map Representation

The map is represented by the node graph, in which a large number of points are

represented as nodes, detailed in 4.1.2. In the algorithm, the entire map is

reworked into a set of edges, representing the connections between nodes. The

primary properties of an edge are its length and the angle it makes with the 𝑦-axis

of the map. This brings the map closer to the data sources we have available - the

angle is closely related to the output of the Mahony filter, and the length is useful

for determining the propagation length of WLAN signals (since the walls are solid

rock, the Euclidean distance is not very useful). Nodes are also represented

internally, but mostly as a way of accessing the edge network, specifically when a

RSSI position estimate is returned as a node.

4.2.2 Vehicular Particle Filter

As the initial position estimate is very rough, the vehicle and device may be

located anywhere within a fairly large area. For this reason, a particle filter is

used, consisting of a number of virtual “ghost” vehicles distributed over the

possible area. They are referred to as “ghosts” to differentiate them from actual

physical vehicles. A ghost is defined by the edge it stands on and its heading,

which is expressed as an offset from the Mahony filter’s heading. This allows for

all ghosts to take advantage of the Mahony filter, without having to repeat the

intense computations of the filter.

When the first RSSI position is obtained, two ghosts are placed on every edge

within WLAN range – one facing in each direction. When the filter heading

changes, ghosts are moved to adjacent edges that match the new heading, and

ghosts that make impossible turns are removed. Impossible turns can, for

example, be when a left-hand turn is made and a ghost is in a right-hand curve. As

the amount of ghosts shrink, we come closer to finding our position. Removal of

ghosts can also happen when RSSI data is updated and ghosts are out of range or

when ghosts “compress” into the same edge. Eventually we should have one or a

few possible positions, which we then approximate our vehicle position by.

This differs from most particle filtering algorithms in that it attempts to converge

to a single ghost as quickly as possible, where other algorithms maintain a swarm

of particles that are resampled at each time step according to a probability

distribution based on current data [17]. With our model, this could translate to

placing new ghosts on edges adjacent to other occupied edges when ghosts are

removed, or even placing several ghosts on the same edge, with each ghost having

a slightly different angle. If a good speed estimate becomes available we can

consider using a more conventional particle filter, as we become less tied to the

discrete map description.

 2015-12-09

36 (46)

To detect impossible turns accurately, we will often need to have qualitative

knowledge of the speed of the vehicle, as otherwise forward and backward motion

can easily be confused (reversing is not uncommon when navigating an

underground mine). As mentioned in 3.3.1, this information can be extracted by

comparing the direction of rotation and the direction of sideways acceleration

when making a turn. While no finished method of obtaining this data has been

produced within the project, initial testing has produced encouraging results.

4.3 PROBLEMS AND POSSIBLE SOLUTIONS

As previously stated, lacking knowledge of the direction of motion presents

problems when turning. Reversing into an exit on your left looks the same as

turning into an exit on your right while going forward, when only considering the

heading. This is immediately solved if (signed) speed data is made available, but

could also be deducted from inertial measurements if the device placement within

the vehicle is known.

Not having speed or distance data causes problems in certain situations, where the

matching of angles does not produce reliable results. One such case is whenever a

straight road segment is reached. Since all adjacent edges have the same heading

in such a segment, it is impossible to determine what part of the road the vehicle

is situated on. This is even more problematic if there are several intersections

along the straight path, as we cannot discern which turn was taken when one is

detected. The proposed solution to this is to create one ghost at every possible

turn, whenever there are several indiscernible option, each ghost prohibited from

continuing along the straight path. After a turn is made, RSSI data should quickly

eliminate the false guesses, as taking a turn significantly changes the signal

strengths of nearby access points, due to obstruction of line of sight.

If only map information is available as an external reference of heading, it

becomes difficult to correct errors, as the only indication is deviations from the

edges that the ghosts are matched to. Since the matching is based on the heading,

it becomes circular in many cases, and very difficult to determine how much error

has accumulated. This limits true heading references to specific road shapes, such

as when the road makes an “S”-shape, where the transition from left-hand to right-

hand turn can be used as an accurate position, and thus also heading, reference.

While underground roads often move in snaky patterns, this could still cause

failure in specific parts of the mine where such patterns are few. This problem

further indicates that reliable magnetometer heading data would simplify the

navigation task.

4.4 NAVIGATION DISCUSSION

Navigating an underground mine environment using only inertial sensors, map

information, and RSSI position estimates is difficult. Not only are there several

situations where many possible positions must be evaluated, but it also requires a

circular error correction method for the heading. This is likely possible, but it

 2015-12-09

37 (46)

seems more productive to investigate a way to obtain useful magnetometer

readings to produce one additional reference vector for the Mahony filter. This

would not require any additional hardware, and could completely remove the need

for the most difficult and possibly unstable part of the algorithm.

One thing that will further improve the accuracy of navigation is the addition of a

trilateration algorithm tied to the RSSI positioning service. This could improve the

worst-case performance of the algorithm, as the searchable area could be reduced.

However, the same uncertainties that apply to the current RSSI positioning

accuracy apply, such as directional shielding by the vehicle. It is currently not

known how much the RSSI landscape varies between vehicle types and device

placement within vehicles. This would have to be tested before drawing any

conclusions about the viability of high-precision RSSI uses, which also include

position syncing when passing below an access point (which in perfect conditions

would show up as a RSSI maximum).

Lastly, having any sort of speed indication (perhaps combined with reliable

magnetometer data) would open up a whole new range of possibilities. As the

currently proposed algorithm is built without taking this additional information

into account, access to it would warrant a completely new algorithm to be

constructed. Access to speed data can possibly be further improved by filtering it

along with accelerometer readings in a simple complementary filter.

Out of the three improvements listed, only the speed measurement requires

additional hardware to implement, but is also the one most likely to greatly

improve the accuracy and precision of the navigation task. Knowing the speed of

the vehicle greatly reduces the amount of guesswork needed in the algorithm, and

reduces the reliance on map information as more than a source of error correction.

While the speed could theoretically be approximated from road vibrations, the

varied road quality and texture in an underground mine make it unlikely to be

applicable in practice. Instead, the most likely source of speed data is from the

vehicle itself, such as from an on-board-diagnostics (OBD) outlet, transferred via

Bluetooth to the tablet.

It may be the case that an improved RSSI positioning algorithm may render

inertial navigation unnecessary for navigation in the inner parts of the mine,

where several WLAN access points are typically visible. However, it can never

exactly find the position of a device where many small tunnels branch off, as is

often the case in actively excavated areas.

 2015-12-09

38 (46)

5 CONCLUSIONS

The sensors present in the Samsung Tab S leave some things to be desired. While

the gyroscope is reasonably precise over shorter time frames, both the

accelerometer and gyroscope show inconsistencies and time-varying bias, as

shown in 2.4.2 and 2.4.5. However, both sensors are accurate enough to be useful

in a navigation application, especially if the time-varying bias can be eliminated.

Dead reckoning of accelerometer data is not likely to be useful as a way of

determining the velocity or position of the device, even if a more accurate

accelerometer were to be used. This is an inherent difficulty that comes with

double integration of noisy and/or inaccurate data. Dead reckoning is most likely

to be useful for smoothing between reference points (for example RFID), and not

as an actual position measurement.

The geomagnetic heading is likely to provide significant benefit to the navigation

task, if isolated from the vehicle’s static field, as discussed in 2.4.3. This requires

on-line identification of the static bias, and will require an initial calibration

period. Still, this is likely to produce more consistent results, especially when

recovering from previous errors.

The Mahony complementary filter, presented in 3.2, tracks orientation well, and is

easy to implement. The formulation of the filter in terms of general reference

vectors makes it expandable, and the calculations are relatively lightweight. If

complemented by on-line bias elimination of the accelerometer, as well as

magnetometer readings, it should be able reliably to provide an orientation

estimate with good precision.

The navigation algorithm based solely on inertial sensors, map information, and

RSSI data could potentially improve the positioning over just having RSSI

position estimates. However, one or more additional data sources (vehicle speed,

geomagnetic field) are likely required for the navigation algorithm to reach high

levels of accuracy and precision. Having a speed measurement will be the biggest

game-changer for the navigation task, but the geomagnetic field will bring much

needed stability and solve several troubling issues, discussed in 4.3.

5.1 AUTHOR’S RECOMMENDATIONS

The author’s recommendation to Boliden is to first investigate how much the

precision of the RSSI-based positioning system can be improved by introducing a

trilateration algorithm, as this is likely to improve the precision of the current

system without requiring any new hardware. Inertial navigation is most likely

only necessary for precise positioning in active areas, where vehicles are located

on the outside of the grid of access points.

 2015-12-09

39 (46)

For inertial navigation, isolating the geomagnetic field is the recommended next

step, as it brings stability and eliminates much guesswork, without requiring

additional hardware. In order to bring inertial navigation to its full potential,

however, it is likely necessary to extract speed data from the vehicle.

 2015-12-09

40 (46)

6 APPENDIX

6.1 NUMERICAL ORIENTATION DESCRIPTIONS

There are many ways of describing the rotation or orientation of an object. In this

appendix, axis-angle, Euler and Tait-Bryan angles, rotation matrices and rotation

quaternions are described, and reasons for why quaternions were chosen for this

project. All rotations mentioned here are considered around the origin of the

coordinate system they are described in. Orientations are described as a rotation

from a known starting orientation, usually defined as the intuitive “forward”

direction object pointing along the 𝑦-axis of the coordinate system (such as a car

or plane parked flat on the ground while facing north).

6.1.1 Axis-Angle

Euler’s rotation theorem states that any displacement of a rigid body such that a

point on the body remains fixed, is equivalent to a single rotation around some

axis (the Euler axis) that runs through the fixed point. If we disregard translatory

displacement by fixing the origin of our coordinate system to some point in the

rigid body, this becomes equivalent to stating that any rotation of the body can be

described by one rotation around some vector starting at the origin. Most often

comprised of a scalar and a unit vector, this is called an axis-angle representation.

While not often used as-is, axis-angle representations are closely tied to

quaternions, which are briefly explained in 6.1.4.

6.1.2 Euler and Tait-Bryan Angles

When talking about aircraft, the yaw, pitch and roll system is often used, since it

makes the orientation easy to visualize for a human, as well as being directly

measureable from a gimbal. In this context, yaw is the compass heading, pitch is

the angle between the horizontal plane, and roll is the angle of rotation of the

aircraft around its own forward-pointing axis. Yaw, pitch and roll are a specific

set of Tait-Bryan angles, which in turn are closely related to Euler angles, the

difference being that Tait-Bryan angles use all three axes, while Euler angles use

the same axis for the first and third rotation. Both representations can be used with

either intrinsic, meaning the rotations occur about a coordinate system that rotates

with each of the rotations, or extrinsic rotations, meaning rotations occur about the

axes of a fixed coordinate system.

One downside with using Euler or Tait-Bryan angles is that there is a coordinate

singularity in some situations. For example, when following the above definition

of yaw, pitch and roll, the pitch is exactly 90° - in this case, roll and yaw is the

same thing, and there is no unique way to describe the current orientation. This

effect is commonly known as gimbal lock.

Even with the downsides considered, Euler and Tait-Bryan angles are very

common representations of orientation, since they are easy to visualize and are the

 2015-12-09

41 (46)

least memory-intensive representation commonly in use, requiring only three

numbers to describe any orientation.

6.1.3 Rotation Matrices

A rotation matrix is a representation of a rotation as a square, orthogonal matrix

that has a lot of nice properties. Given a 𝑛-by-𝑛 rotation matrix 𝑅 and a column

vector 𝑣 of length 𝑛, the rotated vector 𝑣′ is simply calculated as

 𝑣′ = 𝑅𝑣. (6.1:1)

Consider a vector 𝑣, rotated first by 𝑅1 and then by 𝑅2. The rotated vector 𝑣′ is

then calculated as

 𝑣′ = 𝑅2(𝑅1𝑣) = (𝑅2𝑅1)𝑣 = 𝑅𝑡𝑣, (6.1:2)

where 𝑅𝑡 = 𝑅2𝑅1. Several rotations can as such be computed before applying

them to the vector that is to be rotated, which is very useful in cases where the

same set of rotations are to be applied to a large number of vectors. When

multiplying matrices, one must regularly ortho-normalize the resulting matrix or

risk ending up with improper or inaccurate rotations.

From 𝑅−1𝑅 = 𝐼, we see that the inverse of a rotation matrix corresponds to the

opposite rotation to that of the original matrix. Since rotation matrices are

orthogonal, they satisfy

 𝑅𝑇 = 𝑅−1. (6.1:3)

Since transposing is a much cheaper operation than inverting, this can save a lot

of performance when a lot of inversions are needed.

Rotating a vector with a rotation matrix uses considerably less computations than

Euler angles, but in turn the matrix uses three times more memory.

6.1.4 Unit Quaternions

Quaternions are an extension of the complex numbers to four dimensions that

have a few properties that make them well suited to represent rotations. A

quaternion 𝑞 can be written as

 𝑞 = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘, (6.1:4)

commonly denoted 𝑞 = (𝑎, 𝑏, 𝑐, 𝑑) with 𝑖, 𝑗, 𝑘 defined by

 𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1. (6.1:5)

 2015-12-09

42 (46)

From this description, we can derive the possible products of 𝑖, 𝑗, 𝑘 as

 𝑖𝑗 = 𝑘, 𝑗𝑖 = −𝑘
𝑗𝑘 = 𝑖, 𝑘𝑗 = −𝑖
𝑘𝑖 = 𝑗, 𝑖𝑘 = −𝑗.

(6.1:6)

Multiplication of quaternions is non-commutative and, with 𝑞1 = (𝑎1, 𝑏1, 𝑐1, 𝑑1)

and 𝑞2 = (𝑎2, 𝑏2, 𝑐2, 𝑑2), defined as

 𝑞1 ⋅ 𝑞2 = (𝑎1𝑎2 − 𝑏1𝑏2 − 𝑐1𝑐2 − 𝑑1𝑑2,
 𝑎1𝑏2 + 𝑏1𝑎2 + 𝑐1𝑑2 − 𝑑1𝑐2,
 𝑎1𝑐2 − 𝑏1𝑑2 + 𝑐1𝑎2 + 𝑑1𝑏2,

 𝑎1𝑑2 + 𝑏1𝑐2 − 𝑐1𝑏2 + 𝑑1𝑎2).

(6.1:7)

Quaternions are often viewed as a scalar, 𝑎, and a vector, (𝑏, 𝑐, 𝑑). If 𝑎 = 0, it is a

pure imaginary quaternion, and reversely, if 𝑏 = 𝑐 = 𝑑 = 0, it is a real

quaternion. The norm, ‖𝑞‖, of a quaternion is defined as

 ‖𝑞‖ = √𝑎2 + 𝑏2 + 𝑐2 + 𝑑2. (6.1:8)

and a unit quaternion, 𝑞𝑢, can be obtained by normalization:

 𝑞𝑢 =
𝑞

‖𝑞‖
. (6.1:9)

The quaternion representation of rotation is closely tied to the axis-angle

representation discussed in 6.1.1. If the angle is 𝜃 and the axis is that which runs

through the unit vector 𝑢 = (𝑢𝑥, 𝑢𝑦, 𝑢𝑧), the corresponding rotation quaternion 𝑞

is:

𝑞 = (cos (

𝜃

2
) , 𝑢𝑥 sin (

𝜃

2
) , 𝑢𝑦 sin (

𝜃

2
) , 𝑢𝑧 sin (

𝜃

2
)).

(6.1:10)

Explaining the reasons for why only half the angle is used require delving into

hyper dimensional geometry, which is beyond the scope of this appendix. One

simpler way to look at it is that the angle used is applied twice during the

conjugation operation described in equation (6.1:12), once from the left and once

from the right.

Similar to rotation matrices in equation (6.1:3), the inverse, 𝑞−1 of a unit

quaternion 𝑞 = (𝑎, 𝑏, 𝑐, 𝑑) is its complex conjugate 𝑞∗, which differs from 𝑞 only

by having the opposite sign on its vector part:

 𝑞−1 = 𝑞∗ = (𝑎, −𝑏, −𝑐, −𝑑). (6.1:11)

 2015-12-09

43 (46)

A unit quaternion 𝑞 can be used to rotate a vector 𝑝 (here represented as a pure

imaginary quaternion 𝑝 = (0, 𝑝1, 𝑝2, 𝑝3)) by the conjugation operation

 𝑝∗ = 𝑞𝑝𝑞∗, (6.1:12)

𝑝∗ being the rotated vector and 𝑞∗ being the conjugate of 𝑞.

Just like with rotation matrices, any number of rotation quaternions can be

multiplied to precompute the resulting rotation. Consider a vector 𝑝 rotated first

by 𝑞1 and then by 𝑞2:

 𝑝∗ = 𝑞2(𝑞1𝑝𝑞1
∗)𝑞2

∗ = 𝑞2𝑞1𝑝𝑞1
∗𝑞2

∗ = (𝑞2𝑞1)𝑝(𝑞1
∗𝑞2

∗). (6.1:13)

The rotation is equivalent to that of 𝑝 by a precomputed quaternion 𝑞2𝑞1. The

result should be normalized as often as performance allows in order to avoid

improper or inaccurate rotations.

Extracting the rotation around one specific axis can be done by setting the

remaining two to zero, and then normalizing the resulting quaternion.

Finally, a quaternion 𝑞0 representing no rotation is defined as:

 𝑞0 = (1, 0, 0, 0), (6.1:14)

which represents a zero rotation (cos(0) = 1) around the zero vector.

The advantages of quaternions as a representation of rotation are several, with the

main downside being that most people are not as used to dealing with them as

with matrices or Euler angles. Compared with rotation matrices, quaternions use

less memory, are much easier to normalize, and are easy to interpolate, which is

often the case in graphics applications where smooth object and camera

movements are desirable. Also, multiplying quaternions is faster than multiplying

matrices, which makes a big difference when combining a large number of small

rotations. However, rotating a vector by a quaternion using the conjugation

operation defined in equation (6.1:12) is more computationally expensive than

rotation by a rotation matrix, which is a single matrix-vector multiplication. This

should be taken into account when deciding on which representation to use.

6.2 GYROSCOPE INTEGRATION

This appendix details how raw angular velocity measurements from a 3-axis

gyroscope are used to compute rotation quaternions and, in turn, how those

quaternions are used to update a quaternion representing the orientation of the

measurement device.

 2015-12-09

44 (46)

The gyroscope outputs data in the form 𝜔 = (𝜔𝑥, 𝜔𝑦, 𝜔𝑧), where 𝜔𝑥, 𝜔𝑦, 𝜔𝑧 are

the rates of rotation in radians around the 𝑥, 𝑦 and 𝑧 axes of the device. The

magnitude of the rotation is the norm of 𝜔:

‖𝜔‖ = √𝜔𝑥

2 + 𝜔𝑦
2 + 𝜔𝑧

2.
(6.2:1)

The axis of rotation, 𝑢, is calculated by normalizing the gyroscope data 𝜔 by

‖𝜔‖:

 𝑢 =
𝜔

‖𝜔‖
. (6.2:2)

If the measurement was taken over a time period 𝑑𝑡, the angle of rotation, 𝜃, is

approximated as 𝜃 = ‖𝜔‖ ⋅ 𝑑𝑡. The quaternion 𝑑𝑞 representing the rotation is:

𝑑𝑞 = (cos (

𝜃

2
) , 𝑢𝑥 sin (

𝜃

2
) , 𝑢𝑦 sin (

𝜃

2
) , 𝑢𝑧 sin (

𝜃

2
)).

(6.2:3)

Given a quaternion 𝑞, representing the current orientation of the object, the new

orientation 𝑞∗ is calculated as:

 𝑞∗ = 𝑑𝑞 ⋅ 𝑞, (6.2:4)

as per the definition of quaternion multiplication given in equation (6.1:7). If the

measurement taken is the first one, the default orientation 𝑞0 is set according to

equation (6.1:14).

Note that since this orientation is described in the device’s frame of reference,

rotation of vectors has to be done by the conjugate, 𝑞−1, of 𝑞. To obtain 𝑞 in the

world frame, one would rotate the angular velocity data, 𝜔, by 𝑞 in every time

step of the calculation.

 2015-12-09

45 (46)

7 REFERENCES

[1] P. Burman, Interviewee, [Interview]. September 2015.

[2] O. J. Woodman, ”An introduction to inertial navigation,” 2007.

[3] L. De Nardis and G. Caso, "Overview on RSSI-based Positioning,"

[Online]. Available:

http://www.diag.uniroma1.it/~querzoni/corsi_assets/1314/GreatIdeas/great_

ideas_de_nardis_2.pdf. [Accessed 18 September 2015].

[4] Vieyra Software, "Physics Toolbox Sensor Suite," [Online]. Available:

https://play.google.com/store/apps/details?id=com.chrystianvieyra.physicst

oolboxsuite&hl=en. [Accessed 18 September 2015].

[5] Android, "Sensors Overview," [Online]. Available:

https://developer.android.com/guide/topics/sensors/sensors_overview.html.

[Accessed 18 September 2015].

[6] Google Tech Talks, "Sensor Fusion on Android Devices: A Revolution in

Motion Processing," August 2010. [Online]. Available:

https://www.youtube.com/watch?v=C7JQ7Rpwn2k.

[7] BMI055, "Bosch Sensortec," [Online]. Available: http://www.bosch-

sensortec.com/de/homepage/products_3/6_axis_sensors_2/inertial_measure

ment_unit_1/bmi055_1/bmi055. [Accessed 18 September 2015].

[8] M. Pedley, ”Tilt Sensing Using a Three-Axis Accelerometer,” Freescale

Semiconductor, Inc., 2013.

[9] T. Beravs, J. Podobnik and M. Munih, "Three-Axial Accelerometer

Calibration Using Kalman Filter Covariance Matrix for Online Estimation

of Optimal Sensor Orientation," IEEE Transactions on Instrumentation and

Measurement, vol. 61, no. 9, pp. 2501-2511, 2012.

[10] W. Gander and G. H. S. R. Golub, "Least-Squares Fitting of Circles and

Ellipses," BIT Numerical Mathematics, vol. 34, no. 4, pp. 558-578, 1994.

[11] "Spin Test," [Online]. Available:

https://www.youtube.com/watch?v=A660HVfPpAE.

[12] "Drift Test," [Online]. Available:

https://www.youtube.com/watch?v=sO3_JT-z0V4.

[13] "In-Vehicle Test," [Online]. Available:

https://www.youtube.com/watch?v=-9C8Xx1uTIo.

[14] M. I. Riberio, ”Kalman and Extended Kalman Filters: Concept, Derivation

and Properties,” Istitute for Systems and Robotics, IST, Lisbon, 2004.

[15] W. T. J. Higgins, "A Comparison of Complementary and Kalman

Filtering," IEEE Transactions on Aerospace and Electronic Systems, vol.

11, no. 3, pp. 321-325, 1974.

[16] R. Mahony, T. Hamel and J.-M. Pflimlin, "Nonlinear Complementary

Filters on the Special Orthogonal Group," IEEE Transactions on Automatic

Control, vol. 53, no. 5, pp. 1203-1218, 2008.

 2015-12-09

46 (46)

[17] A. Doucet, N. d. Freitas och N. Gordon, ”An Introduction to Sequential

Monte Carlo Methods,” i Sequential Monte Carlo Methods in Practice,

Springer New York, 2001, pp. 3-14.

