Artrikedom bland skorplavar och tickor i olika skogsbestånd
Artrikedom bland skorplavar och tickor i olika skogsbestånd

En rapport från Miljöanalysenheten

Länsstyrelsen
Gävleborg

Håkan Berglund, Mittuniversitetet
Förord

År 1999 och 2001 gjorde skogsekologen och forskaren Håkan Berglund systematiska inventeringar av två artgrupper över hela ytan i många av de skogsbestånd som Länsstyrelsen gjort mätningar i. Det är resultatet av dessa inventeringar som nu presenteras. I rapporten undersöks också olika indirekta mått på biologisk mångfald och hur de fungerar för att förutsäga mångfalden av arter i detta fall.

Rapporten ger ett viktigt bidrag till kunskapen om hur artmångfalden i längets skogar ser ut och hur den fördelas sig mellan olika typer av skogsbestånd. Systematiska artinventeringar av detta slag är ovanliga, och det är särskilt värdefullt att det kombinerats med analys av indirekta mått på biologisk mångfald. Rapporten är därigenom ett viktigt underlag för Länsstyrelsens planering av hur den fortsatta övervakningen av biologisk mångfald ska ske. Det är vår förhoppning att rapporten ska väcka intresse även utanför Länsstyrelsen.

Författaren står själv för slutsatserna i rapporten.

Olle Kellner
Länsstyrelsens Miljöanalysenhet
Innehåll

Förord ...3

1. Sammanfattning ...7

2. Bakgrund ...8

3. Syfte ...9

4. Studieområden ..10

5. Tillvägagångssätt ...14
 5.1 Övervakningsprogrammet ...14
 5.2 Totalinventering av skorplavar och vedsvampar (tickor) ..14
 5.3 Statistiska analyser ..15
 5.3.1 Urval av variabler ...15
 5.3.2 Generaliserade linjära modeller (GLM) ...16
 5.3.3 Faktoranalys (PCA) ...16
 5.3.4 Partial least squares (PLS) ...16

6. Resultat ...19
 6.1 Allmän beskrivning av objekten ..19
 6.1.1 Strukturskillnader mellan produktionsskog, nyckelbiotoper och reservat......................................19
 6.1.2 Strukturskillnader mellan objekt ...21
 6.2 Allmän beskrivning av förekomsten av arter ..24
 6.3 Artrikedom i olika objekt och områden ...26
 6.3.1 Art-ytaförhållanden ...26
 6.3.2 Effekt av objektkategori och område på artrikedom ...28
 6.4 Samband (korrelation) mellan olika artrikedomsmått ..29
 6.4.1 Artrikedomen bland lavar och tickor ...29
 6.4.2 Övervakningsprogrammets skattningar av artförekomst ...29
 6.5 Artrikedomens förutsägbarhet - regressionsanalyser ..31
 6.5.1 Linjär multipel regression med PCA-faktorer ...31
 6.5.2 Prediktiva modeller extraherade genom PLS (partial least squares) ..32

7. Diskussion ...34
 7.1 Artrikedom och antal rödlistade arter ...34
 7.2 Samband mellan artrikedom och förekomst av indikatorarter ...35
 7.3 Uppmätta beståndsvariablers prediktiva förmåga ..36

8. Tack ..37

9. Referenser ..38

Appendix 1-8.
1. Sammanfattning

Syftet med denna undersökning var att beskriva nuvarande artrikedom bland skorplavar och vedsvampar (tickor) i 24 olika skogsbestämm. Skorplavar inverterades på levande träd och tickor på omkullfallna döda träd (s.k. lägor). Detta gjordes i tre olika kategorier av skogsbestämm: sex äldre (>100 år) produktionsskogar, sexton nyckelbiodoper samt två naturreservat. Målet var även att analysera möjligheten att förutsäga artrikedom och antal rödlistade arter utifrån beståndsparametrar och förekomsten av indikatorarter. Dessa hade uppmätts inom ett program för regional miljöövervakning av skoglig biologisk mångfald.

Skogsbestånd i nordöstra delen av lännet (östt Hälsingland) tenderade att vara mer artrika än bestånd i sydvästra delen (västra Gästrikland). Möjliga förklaringar kan vara att det norra området erbjuder fördelaktigare lokalklimatförhållanden eller att det påverkats mindre av skogsbruk.

2. Bakgrund

3. Syfte

Detta arbete har två syften. Det ska ge en beskrivning av nuvarande artmängfald bland skorplavar på träd och vedsvampar på död ved i tre objektkategorier: äldre produktionsskog, nyckelbiotoper och naturreservat. Arbetet ska även utvärdera det i ”Handbok för övervakning av biotopers innehåll” ingående övervakningsprogrammet ”Extensiv övervakning av biotopers innehåll med inriktning mot biologisk mångfald (Naturvårdsverket 1999a, b, c, d) genom att testa de uppmätta beståndsvariblernas förmåga att förutsäga artrikedom.

De specifika målen är följande:

(1) Ge en nulägesbeskrivning av antal rödlistade arter (enligt Gårdenfors 2000) och artrikedom bland skorplavar och vedsvampar (tickor) i brukad skog, nyckelbiotoper och naturreservat i Gävleborg läns skogslandskap.

(2) Analysera sambanden mellan (i) artrikedomen inom de undersökta artgrupperna, (ii) antal rödlistade arter och (iii) de artfynd som gjorts inom övervakningsprogrammet (förekomst av indikatorarter).

(3) Analysera möjligheten att förutsäga (i) artrikedomen inom undersökta artgrupper samt (ii) antal rödlistade arter med hjälp av de beståndsvariblar som uppmätts inom övervakningsprogrammet.
4. Studieområden

Undersökningen omfattade 24 objekt där länsstyrelsen i Gävleborg genomförde mätningar enligt övervakningsprogrammet ”Extensiv övervakning av biotopers innehåll med inriktning mot biologisk mångfald (Naturvårdsverket 1999a, b, c, d). Objekten var belägna på fast mark och deras storlek varierade mellan 0,7 hektar och 12 hektar (Tabell 1). Nyckelbiotoperna och produktionsskogsområdena ligger både på privat mark och mark ägd av Svärdsjö-Svartnäs Besparingsskog och Holmen AB.

Merparten av objekten (21 stycken) provtogs inom två olika landskapsutsnitt där länsstyrelsen under åren 1998 och 1999 genomförde mätningar enligt övervakningsprogrammet (Fig. 1). Landskapsutsnittens storlek och avgränsning motsvarade två ekonomiska kartblad eller 50 km². Kartbladen 15H5b och 15H6b avgränsade det ena landskapsutsnittet i östra Hälsingland. Kartbladen 13G7f och 13G8f avgränsade det andra landskapsutsnittet i sydvästra Gästrikland.

![Figur 1. Undersökningområdenas läge i länet och de undersökta lokalernas läge i respektive område. Teckenförklaring: naturreservat, nyckelbiotop, produktionsbestånd.](image-url)
De två undersökta landskapsutsnitten valdes för att regioner med olika ägarförhållanden och skoglig historik skulle bli representerade i provtagningen. Det sydvästra området ligger nära Bergslagen, som har en lång historia av intensivt skogsutnyttjande för gruvbrytning och järnhantering. I området dominerar idag stora markägare (Sveaskog och Svärdsjö besparingsskog). Det nordöstra området ligger nära jordbruksbygden vid Hälsingekusten, där skogens utnyttjande historiskt sett har haft en lite annan inriktning (mest sågtimmer och brännved) och med dominans av små privata skogsägare. Inom respektive landskapsutsnitt inventerades (i) samtliga nyckelbiotoper samt (ii) tre slumpvist utvalda produktionsskogsbestånd som enligt Skogsvårdsstyrelsens Översiktlig skogsinventering (ÖSI) hade en grundtevågd medelålder över 100 år. Dessutom inventerades ett litet naturreservat i närheten av det sydvästra området. Genom detta urval blev ett naturreservat, 13 nyckelbiotoper och sex produktionsskogar provtagna. Ytterligare fyra objekt (ett naturreservat och samtliga tre nyckelbiotoper) provtogs i östra Hälsingland under år 2000 inom ett 50 km² stort landskapsutsnitt/närområde kring ett stort naturreservat (380 hektar).

De undersökta landskapsutsnitten i östra Hälsingland benämns härefter gemensamt för ”norra området” medan landskapsutsnittet i sydvästra Gästrikland benämns ”södra området” (Tabell 1). Sammanfattningsvis så har 15 objekt (ett naturreservat, 11 nyckelbiotoper och tre produktionsskogar) från det norra området och 9 objekt (ett naturreservat, 5 nyckelbiotoper och tre produktionsskogar) från det södra området undersöks i denna studie (Tabell 1).
Tabell 1. Allmänna beståndsdata om undersökta objekt indelade i kategorierna naturreservat (NR), nyckelbiotoper (NB) och produktionsskogar (P) och information om provtagsningsinsats.

<table>
<thead>
<tr>
<th>Objekt</th>
<th>Typ</th>
<th>Nr.</th>
<th>Omr.</th>
<th>Namn</th>
<th>Trädslagsfördelning</th>
<th>Provtagsningsinsats</th>
<th>Övervakningsprogram</th>
<th>Art</th>
<th>Inventeringsår</th>
<th>Provyror</th>
<th>Bälten</th>
<th>Area (hektar)</th>
<th>Antal</th>
<th>Antal</th>
<th>inventering ca tid (timmar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>1</td>
<td>S</td>
<td>Österbergsurens NR</td>
<td>Barrland</td>
<td>Tall (%): 60, Gran (%): 0, Löv (%): 0</td>
<td>Area (hektar): 4.2</td>
<td>Altitud (m.o.h.): 200</td>
<td>Bonitet (T100): 24</td>
<td>Inventeringsår: 1998</td>
<td>Provyror: 6</td>
<td>Bälten: 0.76</td>
<td>Area (hektar): 4</td>
<td>Antal: 4</td>
<td>Antal: 5</td>
<td>inventering ca tid (timmar): 5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>N</td>
<td>Bleckbergs urskog</td>
<td>Barrland</td>
<td>Tall (%): 50, Gran (%): 50, Löv (%): 0</td>
<td>Area (hektar): 4.5</td>
<td>Altitud (m.o.h.): 280</td>
<td>Bonitet (T100): 23</td>
<td>Inventeringsår: 2000</td>
<td>Provyror: 3</td>
<td>Bälten: 0.50</td>
<td>Area (hektar): 2</td>
<td>Antal: 2</td>
<td>Antal: 6</td>
<td>invetering ca tid (timmar): 2.5</td>
</tr>
<tr>
<td>NB</td>
<td>3</td>
<td>N</td>
<td>Naturskog ’Ysberget 158’</td>
<td>Blandöv</td>
<td>Tall (%): 60, Gran (%): 40, Löv (%): 1.4</td>
<td>Area (hektar): 260</td>
<td>Altitud (m.o.h.): 25</td>
<td>Bonitet (T100): 2000</td>
<td>Inventeringsår: 2001</td>
<td>Provyror: 3</td>
<td>Bälten: 0.32</td>
<td>Area (hektar): 3</td>
<td>Antal: 3</td>
<td>Antal: 1</td>
<td>invetering ca tid (timmar): 1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>N</td>
<td>Naturskog ’Ysberget 197’</td>
<td>Barrland</td>
<td>Tall (%): 50, Gran (%): 10, Löv (%): 1.7</td>
<td>Area (hektar): 200</td>
<td>Altitud (m.o.h.): 21</td>
<td>Bonitet (T100): 2000</td>
<td>Inventeringsår: 2001</td>
<td>Provyror: 2</td>
<td>Bälten: 0.33</td>
<td>Area (hektar): 3</td>
<td>Antal: 3</td>
<td>Antal: 1</td>
<td>invetering ca tid (timmar): 3</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>N</td>
<td>Naturskog ’Ysberget 293’</td>
<td>Blandöv</td>
<td>Tall (%): 50, Gran (%): 50, Löv (%): 1.8</td>
<td>Area (hektar): 250</td>
<td>Altitud (m.o.h.): 23</td>
<td>Bonitet (T100): 2000</td>
<td>Inventeringsår: 2001</td>
<td>Provyror: 3</td>
<td>Bälten: 0.36</td>
<td>Area (hektar): 3</td>
<td>Antal: 3</td>
<td>Antal: 1</td>
<td>invetering ca tid (timmar): 3</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>S</td>
<td>Sörja 1</td>
<td>Barrland</td>
<td>Tall (%): 40, Gran (%): 20, Löv (%): 11.0</td>
<td>Area (hektar): 225</td>
<td>Altitud (m.o.h.): 24</td>
<td>Bonitet (T100): 1998</td>
<td>Inventeringsår: 2001</td>
<td>Provyror: 5</td>
<td>Bälten: 0.77</td>
<td>Area (hektar): 5</td>
<td>Antal: 5</td>
<td>Antal: 6</td>
<td>invetering ca tid (timmar): 6</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>S</td>
<td>Sörja 2</td>
<td>Barrland</td>
<td>Tall (%): 60, Gran (%): 10, Löv (%): 6.9</td>
<td>Area (hektar): 255</td>
<td>Altitud (m.o.h.): 20</td>
<td>Bonitet (T100): 1998</td>
<td>Inventeringsår: 2001</td>
<td>Provyror: 4</td>
<td>Bälten: 0.70</td>
<td>Area (hektar): 4</td>
<td>Antal: 4</td>
<td>Antal: 3</td>
<td>invetering ca tid (timmar): 3</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>S</td>
<td>Sörja 4 Pengersjön</td>
<td>Barrland</td>
<td>Tall (%): 50, Gran (%): 10, Löv (%): 2.2</td>
<td>Area (hektar): 250</td>
<td>Altitud (m.o.h.): 23</td>
<td>Bonitet (T100): 1998</td>
<td>Inventeringsår: 2001</td>
<td>Provyror: 4</td>
<td>Bälten: 0.53</td>
<td>Area (hektar): 4</td>
<td>Antal: 4</td>
<td>Antal: 2</td>
<td>invetering ca tid (timmar): 2</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>S</td>
<td>Sörja 6</td>
<td>Barrland</td>
<td>Tall (%): 60, Gran (%): 0, Löv (%): 8.4</td>
<td>Area (hektar): 340</td>
<td>Altitud (m.o.h.): 20</td>
<td>Bonitet (T100): 1998</td>
<td>Inventeringsår: 2001</td>
<td>Provyror: 5</td>
<td>Bälten: 0.74</td>
<td>Area (hektar): 4</td>
<td>Antal: 4</td>
<td>Antal: 3</td>
<td>invetering ca tid (timmar): 3</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>N</td>
<td>Enänger 2 ’Ån 02’</td>
<td>Blandöv</td>
<td>Tall (%): 30, Gran (%): 40, Löv (%): 5.3</td>
<td>Area (hektar): 125</td>
<td>Altitud (m.o.h.): 20</td>
<td>Bonitet (T100): 1999</td>
<td>Inventeringsår: 1999</td>
<td>Provyror: 3</td>
<td>Bälten: 0.66</td>
<td>Area (hektar): 4</td>
<td>Antal: 4</td>
<td>Antal: 4</td>
<td>invetering ca tid (timmar): 4</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>N</td>
<td>Enänger 3 ’Ån 03’</td>
<td>Blandöv</td>
<td>Tall (%): 40, Gran (%): 50, Löv (%): 1.3</td>
<td>Area (hektar): 120</td>
<td>Altitud (m.o.h.): 24</td>
<td>Bonitet (T100): 1999</td>
<td>Inventeringsår: 1999</td>
<td>Provyror: 4</td>
<td>Bälten: 0.50</td>
<td>Area (hektar): 3</td>
<td>Antal: 3</td>
<td>Antal: 4</td>
<td>invetering ca tid (timmar): 4</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>N</td>
<td>Enänger 4 ’Bä 01’</td>
<td>Barrland</td>
<td>Tall (%): 60, Gran (%): 10, Löv (%): 5.8</td>
<td>Area (hektar): 250</td>
<td>Altitud (m.o.h.): 22</td>
<td>Bonitet (T100): 1999</td>
<td>Inventeringsår: 1999</td>
<td>Provyror: 4</td>
<td>Bälten: 0.73</td>
<td>Area (hektar): 5</td>
<td>Antal: 5</td>
<td>Antal: 6</td>
<td>invetering ca tid (timmar): 6</td>
</tr>
<tr>
<td>Objekt</td>
<td>Typ</td>
<td>Nr.</td>
<td>Omr.</td>
<td>Namn</td>
<td>Typ</td>
<td>Trädslagsfördelning</td>
<td>Area (hektar)</td>
<td>Altitud (m.o.h.)</td>
<td>Bonitet (T100)</td>
<td>Inventeringsår</td>
<td>Provnych</td>
<td>Arter</td>
<td>Antal</td>
<td>Area (hektar)</td>
<td>Antal</td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>--------------------------</td>
<td>----------</td>
<td>--------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-----------</td>
<td>-------------</td>
<td>--------</td>
<td>---------------</td>
<td>--------</td>
</tr>
<tr>
<td>NB</td>
<td>15</td>
<td>N</td>
<td></td>
<td>Enånger 6 'Sä 01'</td>
<td>Blandlöv</td>
<td>0</td>
<td>100</td>
<td>22</td>
<td>1999</td>
<td>1999</td>
<td>3</td>
<td>0.25</td>
<td>4</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>N</td>
<td></td>
<td>Enånger 7 'Bott 01'</td>
<td>Barrbland</td>
<td>20</td>
<td>125</td>
<td>25</td>
<td>1999</td>
<td>1999</td>
<td>4</td>
<td>0.52</td>
<td>4</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>N</td>
<td></td>
<td>Enånger 8 'MoDoreservatet'</td>
<td>Barrbland</td>
<td>50</td>
<td>85</td>
<td>25</td>
<td>1999</td>
<td>1999</td>
<td>4</td>
<td>0.64</td>
<td>3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>N</td>
<td></td>
<td>Enånger 9 'MoDo Nianän'</td>
<td>Blandlöv</td>
<td>20</td>
<td>90</td>
<td>23</td>
<td>1999</td>
<td>1999</td>
<td>3</td>
<td>0.49</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>19</td>
<td>N</td>
<td></td>
<td>P 1 Enånger</td>
<td>Barrbland</td>
<td>50</td>
<td>90</td>
<td>25</td>
<td>1999</td>
<td>1999</td>
<td>4</td>
<td>0.65</td>
<td>5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>N</td>
<td></td>
<td>P 2 Enånger</td>
<td>Barrbland</td>
<td>60</td>
<td>100</td>
<td>23</td>
<td>1999</td>
<td>1999</td>
<td>4</td>
<td>0.66</td>
<td>6</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>N</td>
<td></td>
<td>P 3 Enånger</td>
<td>Barrbland</td>
<td>70</td>
<td>70</td>
<td>23</td>
<td>1999</td>
<td>1999</td>
<td>5</td>
<td>0.76</td>
<td>7</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>S</td>
<td></td>
<td>Sörja 7</td>
<td>Barrbland</td>
<td>30</td>
<td>255</td>
<td>24</td>
<td>1998</td>
<td>2001</td>
<td>3</td>
<td>0.45</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>S</td>
<td></td>
<td>Sörja 8</td>
<td>Blandlöv</td>
<td>60</td>
<td>255</td>
<td>18</td>
<td>1998</td>
<td>2001</td>
<td>2</td>
<td>0.38</td>
<td>3</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>S</td>
<td></td>
<td>Sörja 10</td>
<td>Tallskog</td>
<td>100</td>
<td>210</td>
<td>18</td>
<td>1998</td>
<td>2001</td>
<td>3</td>
<td>0.45</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
5. Tillvägagångssätt

5.1 Övervakningsprogrammet

Programmet omfattade fyra undersökningstyper. Via en allmäninventering (Naturvårdsverket 1999a) inhämtades allmänna data (t. ex area, altitud och bonitet) om respektive objekt. Genom bestånds- och ståndortsinventering i cirkulära provytor (radie 7 m, dvs. ca 0.015 hektar; Naturvårdsverket 1999b) inhämtades data om ståndorstegenskaper (t. ex. fältskiktstyp, topografi, markfuktighet) samt kvantitativa data om respektive objekts trädbestånd (t. ex. volym per hektar av olika trädslag) och indikatorarter på levande träd (bållängd hos några hänglavar). Inom respektive objekt gjordes även substratinventering i 14 m breda bälten (Naturvårdsverket 1999c), där man samlade in kvantitativa och kvalitativa data om död ved och grova träd. Även frekvensen av några utvalda signalarter enligt Norén m.fl. (1995) (även benämnda indikatorarter) knutna till träd- och vedstrukturer uppmättes i bältena. Frekvensen av signalarter uppmättes dels per hektar och dels per substrat (levande eller döda träd).

Övervakningsprogrammets fältprovtagning i cirkulära provytor och bälten skedde utifrån ett tänkt runtät som lagts över respektive objekt och där avståndet mellan runtäts linjer var en funktion av objektets area. Startpunkten för runtäten slumpades ut. Inventeringsbälten löpte längs runtäts linjer i N-S riktning. I objekt större än 4 hektar inverterades inte bälten efter hela linjen utan begränsades till 60 m långs bältessegment placerade på skärningspunkterna i runtäten. Cirkelprovytornas placeringar inom bältena på varannan skärningspunkt i runtäten V-Ö-riktning.

Syftet med detta förfarande var att övervakningsprogrammets provtagningsinsats i medeltal skulle vara lika stor oberoende av objektets storlek. Placeringen av provytorna slumpades ut inom respektive objekt vilket medförde att insatsen kom att variera mellan olika objekt i samma storleksklass (Tabell 1, Appendix 1 och 2). Ingen skillnad fanns dock mellan medelprovtagningsinsatsen i undersökta produktionsskogar och nyckelbiotoper (p>0.05, tvåsidigt t-test; Appendix 1).

När det gäller skogslevande arter och signalarter mäter man inom övervakningsprogrammet följande ”artvariabler”: (1) fem epifytiska lavarters (blad- och busklavar) abundans inom provytorna, (2) frekvensen av 35 skogslevande arter och signalarter (enligt Norén m.fl. 1995) inom bältena, (3) tätheten (summan) av skogslevande arter och signalarter per inverterad bältesareal och per substrat samt (4) medeltäckningsgraden av levermossor per inverterad låga i bältena.

5.2 Totalinventering av skorplavar och vedsvampar (tickor)

I början av augusti 1999 respektive 2001 inverterades förekomsten av skorplavar på träd och vedsvampar på lågor i de undersökta objekten. I vissa av objektet i det norra området gjordes inventeringen av arter under samma år (1999) som provtagningen i Länsstyrelsens
övervakningsprogram (Tabell 1). Artinventeringen genomfördes över hela objektet och pågick 1-12 timmar per objekt. Det fanns ett samband mellan inventeringstid och objektens area. Men genom att tiden som spenderades per substratenhet (träd respektive låga) var konstant inom varje objekt så ansågs inventeringsinsatsen vara oberoende av objektens area. Många arter identifierades i fält men de som inte kunde identifieras i fält samlades in och studerades med mikroskop på laboratoriet.

5.3 Statistiska analyser

5.3.1 Urval av variabler

Samtliga attrikedomsmätt och majoriteten av de variabler som övervakningsprogrammet uppmätte hade fördelning som inte signifikant avvek från en normalfordelning (p>0,05; enkelt Kolomogorov-Smirnov test). De variabler som uppsvisade en fördelning som signifikant avvek från normalfordelning (p<0,05; enkelt Kolomogorov-Smirnov test) blev log10(x)- eller log10(1+x)-transformerade (där x, står för skattningen av variabel x i bestånd i). Om avvikelsen från normalfordelning kvarstod efter transformeringen så uteslöt variablerna från fortsatt analys. Exempelvis så uteslöts flertalet av de ”artvariabler” som beskrev abundans eller frekvens av olika skogsvande arter och signalarter. Detta berodde på att skattningarna av arternas abundans och förekomstfrekvens i de flesta fall uppsådde nollvärdet. Endast sex ”artvariabler” uppfyllde ovanstående krav. Dessa var (1) frekvensen av (a) fnösricka (Fomes fomentarius), (b) klibbbricka (Fomitopsis pinicola) och (c) violtica (Trichaptum abietinum), (2) (a) medeltätheten (medelsumman)
av signalarter inom bälten och (b) den log\(_{10}(1+x)\)-transformerade medeltätheten (medelsumman) av signalarter per låga inom bälten samt (3) den log\(_{10}(1+x)\)-transformerade medeltäckningsgraden av levermossor per låga inom bältena. Eftersom ingen av de variabler som användes i de fortsatta analyserna avvek signifikant från normalfördelning användes bara parametriska analysmetoder.

5.3.2 Generaliserade linjära modeller (GLM)

5.3.3 Faktoranalys (PCA)

Faktoranalys användes för att reducera variationen med avseende på area och de 64 variabler som beskrev beståndsstruktur i de undersökta objekten, t. ex. volymen per hektar av levande och döda träd av olika trädslag och av olika kategorier (stående död ved och lågor; Appendix 3). Variationen reducerades till ett begränsat antal oberoende faktorer (se Tabell 3, Fig. 2). Sambandet mellan observerad artrikedom och dessa faktorer analyserades sedan med stegvis multipel regression.

5.3.4 Partial least squares (PLS)

fårre än antalet variabler och där de förklarande variablerna i hög grad samvarierar (internkorrelerar). En generell beskrivning av PLS ges av Eriksson m.fl. (1999). Extraheringen av PLS-komponenter sker genom korsvalidering som visar hur många komponenter som är signifikanta. Genom korsvalideringen erhålls även ett mått på modellens prediktionsförmåga. Korsvalideringen genererar (i) R^2_X, som anger andelen av variationen i X-matrisen som används i modellen, (ii) R^2_Y, som anger andelen av variationen i Y-data som förklaras av de extraherade komponenterna (motvärav den multipla korrelationskoefficienten R^2), och (iii) Q^2, som anger andelen av variationen i Y-data som kan predikteras av de extraherade komponenterna (dvs Q^2 är ett korsvaliderat R^2_Y). Ett $Q^2 > 0.5$ betraktades som bra och $Q^2 > 0.9$ som utmärkt. Skillnaden mellan R^2_Y och Q^2 fick inte heller vara större än 0.2-0.3 för att en modell skulle kunna betraktas som acceptabel (Eriksson m.fl. 1999).

En kvantitativ uppskattning av hur väl en regressionsmodell återger ursprungdata ges av förklaringsgraden (R^2; andelen förklarad variation). Säkerheten i modellens förutsägelser, det vill säga en uppskattning av hur väl vi kan förutse Y i nya observationer, ges däremot av prediktionsförmågan (Q^2; den predikerade variationen). Vanligtvis så förändras värden på R^2 på annat sätt än värden på Q^2 då modellens komplexitet (antal variabler) ökar. R^2 ökar med ökad modellkomplexitet (ökat antal fria x-variabler) och när relativt snabbt värden 1. Q^2-värden däremot ökar inledningsvis med ökad modellkomplexitet men när slutligen en punkt då värden slutar att öka. Ytterligare ökning av modellens komplexitet förbättrar inte Q^2-värden utan värden kommer att successivt minska (prediktionsförmågan försämras). Med andra ord; om antalet x-variabler kraftigt övertager antalet observationer i regressionsanalys så riskerar man att generera modeller med hög förklaringsgrad (högt R^2-värde) av ren slump. Även modellens prediktionsförmåga (Q^2-värden) påverkas negativt om antalet fria variabler vida övertager antalet observationer. Man får en svag modell med liten prediktionsförmåga (lägt Q^2-värde).

R²Y -intercept under 0.3-0.4 och Q²-intercept under 0.05 ansågs indikera validerade modeller (Eriksson et al. 1999).

Fyra olika vägar prövades för att med hjälp av PLS-analyserna generera prediktiva modeller av beståndsvärden (A-D nedan):

A. I en första ansats användes ett fåtal beståndsvärden som förklarande variabler. Dessa variabler var (1) Totalvolym död ved, (2) Volym levande lövträd förutom björk (vilket ofta motsvarade volymer av levande asp), (3) Volym levande gran och (4) Volym levande tall. Alla dessa grundläggande beståndsvärden byggde på skattningar gjorda inom provytorna. Trädvolymerna utgjorde totalvolymer, d.v.s. volymerna av samtliga levande träd med en höjd över 1.3 m inom provytan. Volymer död ved avsåg volymerna av all stående död ved med en höjd över 1.3 m inom provytan.

B. I en andra ansats användes area och samtliga 64 uppmätta beståndsvärden som förklarande variabler i PLS-analysen.

C. I en tredje ansats baserades urvalet av beståndsvärden på PCA-analysen ("faktoranalys"; se Tabell 3). För var och en av de sex första PCA-faktorerna valdes den starkast korrelerade variabeln. För de fyra första PCA-faktorerna valdes även en andra variabel. Denna representerade dock en annan skoglig företeelse än den första variabeln.

D. I den fjärde ansatsen gjordes först en korrelationsanalys mellan alla beståndsvärden och artrikedom inom respektive artgrupp, och endast de beståndsvärden som hade signifikant korrelation användes som förklarande variabler i PLS-analysen.

Statistikprogrammen SPSS 11.5.1, SIMCA 8.0 och R användes vid analyserna av data.
6. Resultat

6.1 Allmän beskrivning av objekten

Objekten i södra området var belägna på högre höjd (medelaltitud med standardavvikelse: 252±41 m.o.h.) än objekten i det norra området (medelaltitud med standardavvikelse: 155±74 m.o.h.; p=0.002, tvåsidigt t-test; för altitud se Appendix 4). Objekten i södra området hade lägre bonitet (medel T100 med standardavvikelse: 21.6±2.6) än objekten i norra området (medel T100 med standardavvikelse: 23.3±1.6) men skillnaden var inte statistiskt signifikant (p=0.054, tvåsidigt t-test; för bonitetsindex se Appendix 4).

6.1.1 Strukturskillnader mellan produktionsskog, nyckelbiotoper och reservat

Det fanns uppenbara skillnader i beståndsstruktur mellan objektkategorierna äldre produktionsskog, nyckelbiotop och naturreservat. Mängden lämpligt substrat för arterna inom de studerade artgrupperna var oftast högst i naturreservaten och minst i produktionsskogsbestånden (Tabell 2). Den genomsnittliga mängden levande lövträd i produktionsskog (1.2 m³/hektar⁻¹) var lägre än i nyckelbiotoper (32 m³/hektar⁻¹; p<0.05, tvåsidigt t-test; Tabell 2). Högst tätthet av död ved hade de två naturreservaten (73 respektive 118 m³/hektar⁻¹). Den genomsnittliga mängden av en rad olika kategorier av död ved var högre i nyckelbiotoper än i produktionsskog (p<0.05, tvåsidigt t-test; Tabell 2). I produktionsskogsområdena var även medeltätheten av avverkningsstubbar (526 hektar⁻¹) något högre än i nyckelbiotoper (340 hektar⁻¹; p=0.03, tvåsidigt t-test).
Tabell 2. Beståndsstruktur inom två naturreservat (NR), 16 nyckelbiotoper (NB) och sex produktionsskogsbestånd (P) i Gävleborgs län. För de två naturreservaten redovisas bara min- och maxvärden. För övriga objektkategorier redovisas även median och medel (samt standardavvikelse; SA). Resultaten från jämförelse av medelvärden för nyckelbiotoper och produktionsskog (P-värden från tvåsidigt t-test) presenteras. Signifikanta skillnader (P<0.05) i fet stil. I Appendix 5 redovisa data för respektive objekt.

<table>
<thead>
<tr>
<th></th>
<th>Levande träd<sup>a</sup> (m³/hektar<sup>b</sup>)</th>
<th>Död ved<sup>a</sup> (m³/hektar<sup>b</sup>)</th>
<th>Levande träd<sup>b</sup> (m³/hektar<sup>b</sup>)</th>
<th>Död ved<sup>b</sup> (m³/hektar<sup>b</sup>)</th>
<th>Avv. stubbar (hektar<sup>b</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tot. (m³/ha<sup>b</sup>)</td>
<td>Tot. (m³/ha<sup>b</sup>)</td>
<td>Barr (m³/ha<sup>b</sup>)</td>
<td>Lågor (m³/ha<sup>b</sup>)</td>
<td>Lågor (m³/ha<sup>b</sup>)</td>
</tr>
<tr>
<td>NR</td>
<td>Min-Max</td>
<td>333.1-488.8</td>
<td>23.3-108.9</td>
<td>170.7-322.4</td>
<td>165.6-320.8</td>
</tr>
<tr>
<td>NB</td>
<td>Min-Max</td>
<td>128.5-641.7</td>
<td>0.6-35.2</td>
<td>13.9-271.9</td>
<td>13.9-265.0</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>304</td>
<td>7</td>
<td>97</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Medel (SA)</td>
<td>307.7 (120.9)</td>
<td>10.8 (10.9)</td>
<td>99.9 (65.8)</td>
<td>68.0 (59.4)</td>
</tr>
<tr>
<td>P</td>
<td>Min-Max</td>
<td>101.9-366.4</td>
<td>0.0-13.2</td>
<td>7.8-74.6</td>
<td>7.8-73.7</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>197</td>
<td>2</td>
<td>41</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Medel (SA)</td>
<td>215.5 (88.0)</td>
<td>4.1 (5.1)</td>
<td>40.9 (29.0)</td>
<td>39.7 (28.1)</td>
</tr>
<tr>
<td>T-test nyckelbiotoper - produktionsskog</td>
<td>P-värde</td>
<td>0.105</td>
<td>0.165</td>
<td>0.049</td>
<td>0.281</td>
</tr>
</tbody>
</table>
6.1.2 Strukturskillnader mellan objekt

Var och en av de fyra första faktorerna i faktoranalysen förklarade ≥10% av variationen bland de 65 beståndsvariabler som ingick i analysen. Tillsammans förklarade dessa faktorer 55% av totala variationen (Tabell 3). Första faktorn korrelerade främst med variabler som beskrev förekomsten av stående död granved men även med variabler som beskrev förekomsten av granlägor samt totala mängden död ved uppskattad inom bältena. Den andra faktorn beskrev förekomsten av grova (≥35 cm i brösthöjdsdiameter) barrträd (tall) medan övriga faktorer beskrev förekomsten av levande lövträd (ej björk), död tall, död björk respektive levande björk (Tabell 3, Fig. 2).
Tabell 3. Roterad faktormatris med variabelvärden ("loadings") från faktoranalys av undersökta beståndsvariabler i 24 objekt. För varje faktor redovisas de tre variabler som starkast korrelerade med respektive faktor och endast variabelvärden med absolutvärden över 0.5 (de variabler som hade negativa variabelvärden men relativt höga absolutvärden redovisas inte med detta urval). Tolkningen av respektive faktor redovisas.

<table>
<thead>
<tr>
<th>Substrattyp</th>
<th>Trädslag</th>
<th>Skattning</th>
<th>Faktor 1</th>
<th>Faktor 2</th>
<th>Faktor 3</th>
<th>Faktor 4</th>
<th>Faktor 5</th>
<th>Faktor 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Död granved</td>
<td>Grov tall</td>
<td>Grova lövträd</td>
<td>Död stående tall</td>
<td>Död björk</td>
<td>Levande björk</td>
</tr>
<tr>
<td>Stående död ved</td>
<td>Gran</td>
<td>Volym (m³/hektar)</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Döda träd</td>
<td>Gran</td>
<td>Volym (m³/hektar)</td>
<td>0.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stubbara</td>
<td>Gran</td>
<td>Volym (m³/hektar)</td>
<td>0.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levande träd</td>
<td>Grov tallb</td>
<td>Volym (m³/hektar)</td>
<td>0.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levande träd</td>
<td>Grov tallb</td>
<td>Antal (hektar⁻¹)</td>
<td>0.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levande träd</td>
<td>Grova bakkträdb</td>
<td>Antal (hektar⁻¹)</td>
<td>0.53</td>
<td>0.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levande träd</td>
<td>Grova lövträdb</td>
<td>Antal (hektar⁻¹)</td>
<td>0.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levande träd</td>
<td>Grova lövträd (ej björk)b</td>
<td>Volym (m³/hektar)</td>
<td>0.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levande träd</td>
<td>Grova lövträd (ej björk)b</td>
<td>Antal (hektar⁻¹)</td>
<td>0.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stubbara</td>
<td>Tall</td>
<td>Antal (hektar⁻¹)</td>
<td>0.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stående död ved</td>
<td>Tall</td>
<td>Antal (hektar⁻¹)</td>
<td>0.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stubbara</td>
<td>Tall</td>
<td>Volym (m³/hektar)</td>
<td>0.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lågor</td>
<td>Björk</td>
<td>Volym (m³/hektar)</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stående död ved</td>
<td>Björk</td>
<td>Antal (hektar⁻¹)</td>
<td>0.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lågor</td>
<td>Björk</td>
<td>Antal (hektar⁻¹)</td>
<td>0.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levande träd</td>
<td>Björk</td>
<td>Volym (m³/hektar)</td>
<td>0.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levande träd</td>
<td>Grov björkb</td>
<td>Antal (hektar⁻¹)</td>
<td>0.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levande träd</td>
<td>Grov björkb</td>
<td>Volym (m³/hektar)</td>
<td>0.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Förklarad varians</th>
<th>22.8</th>
<th>11.8</th>
<th>10.3</th>
<th>10.0</th>
<th>8.3</th>
<th>5.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kumulativ (%)</td>
<td>22.8</td>
<td>34.6</td>
<td>44.9</td>
<td>54.9</td>
<td>63.2</td>
<td>68.8</td>
</tr>
</tbody>
</table>

aStubbar avser både högstubbar och avverkningsstubbar. b Grova träd har en brösthöjdsdiameter ≥ 35 cm. c Denna variabel är beräknad utifrån skattningar gjorda i provytor (alla övriga variabler baseras på skattningar gjorda i bälten).
Fig. 2. (A) Objektens värde (score (t)) (● naturreservat; □ nyckelbiotop; × produktionsbestånd) och (B) några utvalda beståndsvariablers värde (loading (p)) på de två första faktorerna i en faktoranalys av 65 beståndsvariabler i 24 objekt i Gävleborgs län. I B redovisas 12 variabler som var starkt positivt korrelerad med faktor 1 och 2 (svarta punkter). V betecknar volym per hektar, T betecknar täthet (antal) per hektar. Även tre variabler med negativ korrelation redovisas (små grå punkter; täthet avverkningsstubbar per hektar, luckor per hektar och area).

* Varriablena är uppmätta inom provytor, medan övriga variabler är uppmätta i bälten.
6.2 Allmän beskrivning av förekomsten av arter

De flesta arter var sällsynta och hittades i ett fåtal objekt (Fig. 3). Bland lavarna var det 53 arter (eller 32% av alla lavar) som endast förekom i 1 eller 2 objekt. Bland tickorna förkom 39 arter (eller 45% av alla tickor) i 1 eller 2 objekt. Endast 12 lavar (eller 7% av alla lavar) och två tickor (eller 2% av alla tickor) hittades i samtliga 24 objekt (Fig. 3; Appendix 6).

Majoriteten av de rödlistade arterna var sällsynta och hittades oftast i 1-2 objekt (Fig. 3). Bland de 10 rödlistade lavarterna förekom sju arter (eller 70% av alla arter) i endast 1 eller 2 objekt. Bland de 20 rödlistade tickorna förkom 11 arter (eller 55% av alla arter) i 1 eller 2 objekt. Endast en rödlistad art, laven *Micarea globulosella*, hittades i samtliga 24 objekt (Appendix 6).

<table>
<thead>
<tr>
<th>Artgrupp</th>
<th>Substrat</th>
<th>Artantal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lavar</td>
<td>Totalt</td>
<td>166 (10)</td>
</tr>
<tr>
<td>Lavar</td>
<td>Lövträd</td>
<td>139</td>
</tr>
<tr>
<td>Lavar</td>
<td>Barträd</td>
<td>102</td>
</tr>
<tr>
<td>Tickor</td>
<td>Totalt</td>
<td>86 (20)</td>
</tr>
<tr>
<td>Tickor</td>
<td>Lövträdslagor</td>
<td>45</td>
</tr>
<tr>
<td>Tickor</td>
<td>Barträdslagor</td>
<td>50</td>
</tr>
</tbody>
</table>

Fig. 3. Frekvensfördelningsdiagram av (A) samtliga arter samt (B) rödlistade arter i de 24 undersökta objekten inom Gävleborgs län.
6.3 Artrikedom i olika objekt och områden

6.3.1 Art-ytaförhållanden

Det fanns få tydliga samband mellan artrikedom och objektens area (Fig. 4). Art-yta-förhållanden detekterades dock för totala antalet tickor respektive antalet tickor på barrträdslågor. Art-yta-
förhållandet \(S=cA' \) där \(S \) betecknar artrikedom, \(A \) objektens area och \(c \) och \(z \) betecknar konstanter) visade på ett \(z \)-värde på 0.13 för totalantalet tickor medan \(z \)-värden för tickor på
barrträdslågor var 0.26.

Inga tydliga skillnader i artrikedom mellan olika objektkategorier kunde påvisas men bland
lavarna tenderade artantalet i produktionsskogsområdena att vara lägre än i nyckelbiotoperna
(Fig. 4, Appendix 7). Antalet rödlistade arter som noterades i de två naturreservaten (12
respektive 16) översteg det högsta antal rödlistade arter som hittades i nyckelbiotoper (10) och
produktionsskogar (5; Fig. 4, Appendix 7). Antalet rödlistade arter i nyckelbiotoper respektive
produktionsskog var jämförbara och varierade mellan 1 och 10 respektive 1 och 5 (Fig. 4,
Appendix 7).
Fig. 4. Förhållandet mellan area på objekten och observerad artrikedom inom de undersökta artgrupperna och rödlistade arter i 24 objekt inom Gävleborgs län. Pearson korrelationskoefficient med P-värde. Naturreservat (●), nyckelbiotoper (○) och produktionsskogar (×).
6.3.2 Effekt av objektkategori och område på artrikedom

Objektens artrikedom uppvisade i de flesta fall inga signifikanta korrelationer med altitud eller bonitet (angivet som T100; p>0.05, efter Bonferroni korrektion). Endast korrelationen mellan bonitet och totala antalet tickor var signifikant positiv (p<0.05, efter Bonferroni korrektion). De positiva sambanden mellan bonitet och totala antalet lavar, antal lavar på lövträd samt antal tickor på lövträdslägor var nästan signifikanta (p-värdena varierade mellan 0.023 och 0.045 före Bonferroni korrektion). Efter att effekterna av area och bonitet tagits bort i GLM-analyserna påvisades en effekt av objektkategori (naturreservat, nyckelbiotop och produktionsskog) för tickor på barträdslägor och rödlistade arter. Tendens till effekt påvisades även för lavar på barträd. Artrikedomen var högst i naturreservat och lägst i produktionsskog (Tabell 5). Artrikedomen bland lavar på lövträd uppvisade även en effekt av område. Antalet lavar på lövträd var högre i norra området än i södra området. När även effekten av tillgängen av potentiella substrat (trädvolym och volym lågor per hektar) togs bort i GLM-analyserna så uteblev ovanstående skillnader. Endast antalet laverter på lövträd var fortsatt högre i norra området än i södra området (Tabell 5).

Tabell 5. Resultat från GLM-analys av effekt av objektkategori (naturreservat; NR, nyckelbiotop; NB, produktionsskog; P) respektive område (norra N; södra, S) på artrikedom bland undersökta artgrupper. Steg 1 i analyserna innebar att effekten av area och bonitet togs bort. I Steg 2 togs även effekten av potentiella substrat (trädvolym och volym lågor per hektar) bort. F-värden (eller Chi2-värden), frihetsgrader (F.g. 1 och 2) samt P-värden redovisas endast i de fall som signifikant effekt påvisades.

<table>
<thead>
<tr>
<th>Steg av</th>
<th>Effekt av</th>
<th>F<sup>a</sup></th>
<th>Chi2<sup>a</sup></th>
<th>F.g. 1</th>
<th>F.g. 2</th>
<th>P-värde<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Steg 1</td>
<td>Lavar</td>
<td>Total</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Löv Område (N>S)</td>
<td>12.2</td>
<td>-</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Barr Kategori (NR>NB>P)</td>
<td>3.5</td>
<td>-</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Tickor</td>
<td>Total</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Löv</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Barr Kategori (NR>NB>P)</td>
<td>-</td>
<td>11.8</td>
<td>2</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Rödlistade arter Kategori (NR>NB>P)</td>
<td>-</td>
<td>22.5</td>
<td>2</td>
<td>20</td>
<td><0.001</td>
</tr>
<tr>
<td>Steg 2</td>
<td>Lavar</td>
<td>Total</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Löv Område (N>S)</td>
<td>11</td>
<td>-</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Tickor</td>
<td>Total</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Löv</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Barr</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rödlistade arter</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Beroende på residuals spridning har antingen F- eller Chi2-test använts (se Tillvägagångssätt). Då F-test används redovisas F-värde. Då Chi2-test används redovisas Chi2-värde.
6.4 Samband (korrelation) mellan olika artrikedomsmått

6.4.1 Artrikedomen bland lavar och tickor

Det fanns flera starka positiva samband mellan artrikedomen bland lavar och tickor trots att korrelationen genomfördes med kontroll för arean på objekten. Korrelation fanns framförallt mellan artrikedom inom artgrupper som utnyttjade samma trädslag (barr- respektive lövträd; p<0.05 efter Bonferronikorrektion, Pearson korrelation; Tabell 6).

Tabell 6. Korrelationskoefficienten och p-värden (i parantes) för korrelationer mellan artrikedom bland lavar och tickor. Partiell korrelation med kontroll för arean på objekten användes. Korrelationer som var signifikanta (P<0.05) efter Bonferronikorrektion anges i fet stil.

<table>
<thead>
<tr>
<th></th>
<th>Lavar</th>
<th>Tickor</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tot.</td>
<td>Löv</td>
<td>Barr</td>
</tr>
<tr>
<td></td>
<td>0.74 (0.001)</td>
<td>0.58 (0.004)</td>
<td>0.52 (0.011)</td>
</tr>
<tr>
<td></td>
<td>0.73 (0.001)</td>
<td>0.67 (0.001)</td>
<td>0.44 (0.033)</td>
</tr>
<tr>
<td></td>
<td>0.65 (0.001)</td>
<td>0.34 (0.115)</td>
<td>0.59 (0.003)</td>
</tr>
</tbody>
</table>

6.4.2 Övervakningsprogrammets skattringar av artförekomst

Objektens artrikedom vad gäller lavar och tickor samt antalet rödlistade arter uppgav inga signifikanta korrelationer med övervakningsprogrammets ”artvariabler”, d.v.s. skattringarna av förekomsten av skogslevande arter och signalarter (p>0.05 efter Bonferroni korrektion; Tabell 7). Ett flertal korrelationer var positiva och nära signifikanta (p-värdena varierade mellan 0.002 och 0.044 före Bonferroni korrektion). Exempelvis så var antalet rödlistade arter positivt och nästan signifikant korrelerad med frekvensen av violticka (p=0.009 före Bonferroni korrektion) samt med tättheten av signalarter i bälten (p=0.040 före Bonferroni korrektion) och på lågor (p=0.018 före Bonferroni korrektion) och täckningsgraden av levermossor på lågor (p=0.022 före Bonferroni korrektion; Tabell 7).
Tabell 7. Korrelationskoefficienten och p-värden (i parantes) för korrelationer mellan artrikedom bland lavar och tickor och de variabler som beskriver abundans eller frekvens av olika skogslevande arter och signalarter och som extraherats ur data insamlade genom övervakningsprogrammet (se Tillvägagångssätt). Partiell korrelation med kontroll för arean på objekten användes. Inga korrelationer är signifikanta (\(P<0.05\)) efter Bonferronikorrektion.

<table>
<thead>
<tr>
<th></th>
<th>Lavar</th>
<th></th>
<th>Tickor</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tot.</td>
<td>Löv</td>
<td>Barr</td>
<td>Tot.</td>
<td>Löv</td>
<td>Barr</td>
</tr>
<tr>
<td>Frekvens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Försiktig ticka</td>
<td>0.14</td>
<td>(0.527)</td>
<td>0.09</td>
<td>(0.689)</td>
<td>0.17</td>
<td>(0.442)</td>
</tr>
<tr>
<td>Klippicka</td>
<td>0.57</td>
<td>(0.005)</td>
<td>0.48</td>
<td>(0.020)</td>
<td>0.51</td>
<td>(0.014)</td>
</tr>
<tr>
<td>Vörticka</td>
<td>0.42</td>
<td>(0.044)</td>
<td>0.32</td>
<td>(0.140)</td>
<td>0.49</td>
<td>(0.018)</td>
</tr>
<tr>
<td>Täthet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signalarter</td>
<td>0.40</td>
<td>(0.058)</td>
<td>0.31</td>
<td>(0.154)</td>
<td>0.43</td>
<td>(0.040)</td>
</tr>
<tr>
<td>Bältan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lägor (^\text{a})</td>
<td>0.51</td>
<td>(0.013)</td>
<td>0.41</td>
<td>(0.054)</td>
<td>0.56</td>
<td>(0.005)</td>
</tr>
<tr>
<td>Täckningsgrad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levermossor</td>
<td>0.37</td>
<td>(0.086)</td>
<td>0.31</td>
<td>(0.150)</td>
<td>0.46</td>
<td>(0.026)</td>
</tr>
<tr>
<td>Lägor (^\text{a})</td>
<td>0.38</td>
<td>(0.070)</td>
<td>0.09</td>
<td>(0.700)</td>
<td>0.41</td>
<td>(0.054)</td>
</tr>
</tbody>
</table>

\(^\text{a}\)Variablerna log\(_{10}(1+x)\)-transformerades
6.5 Artrikedomens förutsägbarhet - regressionsanalyser

6.5.1 Linjär multipel regression med PCA-faktorer

Faktoranalys användes för att reducera variationen bland de 64 variabler som beskrev beståndssstruktur (se ovan). Sambandet mellan observerad artrikedom och de fyra första faktorerna som var och en förklarade >10% av variationen analyserades med stegvis multipel regression (Tabell 8). Inga modeller kunde genereras för att förklara artrikedomen bland lavar och förklaringsgraden för de modeller som förklarade artrikedomen bland tickor var generellt låg ($R^2 = 0.15-0.32$). Hela 57% av variationen i antal rödlistade arter i de studerade objekten kunde förklaras av en regressionsmodell där faktorerna som beskrev mängden död granved och mängden grova levande tallar var viktiga (Tabell 8).

<table>
<thead>
<tr>
<th>Faktorer i modellen</th>
<th>b</th>
<th>R^2</th>
<th>P-värde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Lavar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ingen modell</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Löv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ingen modell</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Barr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ingen modell</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Tickor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1 (död granved)</td>
<td>0.44</td>
<td>0.15</td>
<td>0.033</td>
</tr>
<tr>
<td>F4 (död stående tall)</td>
<td>-0.47</td>
<td>0.32</td>
<td>0.007</td>
</tr>
<tr>
<td>F3 (levande lövträd)</td>
<td>0.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Rödlistade</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1 (död granved)</td>
<td>0.69</td>
<td>0.57</td>
<td><0.001</td>
</tr>
<tr>
<td>F2 (levande tall)</td>
<td>0.36</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabell 8. Faktorer inkluderade i linjära modeller för att förklara artrikedomen i 24 objekt i Gävleborgs län. Standardiserad regressionskoefficient (b) för varje faktor och regressionskoefficienten (R^2) anges. Tolkningen av respektive faktor redovisas inom parantes (se även Tabell 3).
6.5.2 Prediktiva modeller extraherade genom PLS (partial least squares)

Fyra olika vägar (A-D) prövades för att med hjälp av PLS-analyserna ta fram prediktiva modeller utifrån uppmätta beståndsvaribler (se Tillvägagångssätt). I många fall var det dock svårt att generera modeller för att förutse arrikedom. Detta gällde främst arrikedomen bland skorplavar men även arrikedomen bland tickor. I de fall då prediktiva modeller med god validitet kunde genereras för arrikedomen utgjorde ”död ved”-variabler (mängden lägor) viktiga förklarande variabler.

För antalet rödlistade arter kunde man dock generera prediktiva modeller med god validitet oberoende av tillvägagångssätt. De viktigaste prediktiva variablerna i dessa modeller var variabler som beskrev mängden lägor och död ved, framförallt mängden död granved. Resultaten från ansats A-C redovisas i Appendix 8. Här nedan följer redovisning av resultaten av ansats D.

Ansats D: PLS med beståndsvariabler utvalda från korrelationsanalys

En analys av korrelationen mellan arrikedomsstären och beståndsvariabler användes för att reducera antalet beståndsvariabler som användes i PLS-analysen. För var och en av arrikedomsstären testades korrelationen mot samtliga 65 beståndsvariabler. De beståndsvariabler som korrelerade signifikant (p<0.05, Pearson korrelation) med arrikedom fick ingå i PLS-analysen av respektive arrikedomsstället. Antalet variabler reducerades på detta sätt till mellan 11 och 37 (Tabell 9).

I de flesta fall var prediktionsförmågan (Q^2) högre än 0.40 och jämförbar med förklaringsgraden (R^2_Y; Tabell 9). De observerade Q^2-värdena var i närmast samtliga fall högre än de värden som kunde erhållas av ren slump (dock ej för tickor på barträdslägor). Modellen för antal rödlistade arter hade högst prediktionsförmåga ($Q^2=0.59$) och högst förklaringsgrad ($R^2_Y=0.69$).
Tabell 9. PLS (Partiell Least Squares)-regressions modeller genererade utifrån data över artrikedom och beståndsvariablar som korrelerar med artrikedomen i 24 objekt i Gävleborgs län. N_korr anger antalet variabler som korrelerade med respektive artrikedomsmått och N_vip1 anger hur många av dessa variabler som hade ett VIP-värde ≥1 i PLS-analysen.

<table>
<thead>
<tr>
<th></th>
<th>R²X</th>
<th>R²Y</th>
<th>Q²</th>
<th>N_comp</th>
<th>N_korr</th>
<th>N_vip1</th>
<th>Variabler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lavar</td>
<td>0.47</td>
<td>0.53</td>
<td>0.43</td>
<td>1</td>
<td>23</td>
<td>8</td>
<td>T & V lågor lövved (ej björk), T lågor, V död ved, V grova bærrträd, V lövträd (ej björk), T & V grova lågor</td>
</tr>
<tr>
<td>Löv</td>
<td>0.41</td>
<td>0.62</td>
<td>0.51</td>
<td>1</td>
<td>21</td>
<td>6</td>
<td>T & V lågor lövved (ej björk), T & V lövträd (ej björk), T lågor, V björk</td>
</tr>
<tr>
<td>Barr</td>
<td>0.62</td>
<td>0.41</td>
<td>0.35</td>
<td>1</td>
<td>11</td>
<td>4</td>
<td>T & V lågor lövved (ej björk), T lågor, V död ved</td>
</tr>
<tr>
<td>Tickor</td>
<td>0.58</td>
<td>0.44</td>
<td>0.36</td>
<td>2</td>
<td>14</td>
<td>2</td>
<td>Area, T lågor</td>
</tr>
<tr>
<td>Löv</td>
<td>0.49</td>
<td>0.52</td>
<td>0.42</td>
<td>1</td>
<td>12</td>
<td>5</td>
<td>T & V död stående tallved (-), T lågor lövved (ej björk), T & V lövträd (ej björk)</td>
</tr>
<tr>
<td>Barr</td>
<td>0.58</td>
<td>0.48</td>
<td>0.40</td>
<td>1</td>
<td>23</td>
<td>11</td>
<td>T & V granlågor, T & V lågor, V död ved, V stubbar⁶, V gran¹, T & V grova lågor, T stående död ved, V tallstubbar⁶</td>
</tr>
<tr>
<td>Rödlistade</td>
<td>0.53</td>
<td>0.69</td>
<td>0.59</td>
<td>1</td>
<td>37</td>
<td>15</td>
<td>T & V granlågor, T & V lågor, V död ved, V granstubbar⁶, V död stående gran, T & V döda träd, T & V grova lågor, V död ved¹, V stubbar⁶, T stående död ved, T grova bærrträd</td>
</tr>
</tbody>
</table>

|¹R²X är variationen bland de förklarande variablerna (beståndsvariablerna) som används i modellen (dvs variationen i X-matrisen som förklaras av PLS-komponenterna). ²R²Y är variationen i responsvariablen (dvs artrikedom) som förklaras av modellen (dvs motsvarar den multipla korrelationskoeficienten, R²). ³Q² är del av variationen i responsvariablen (dvs artrikedom) som gör att förutsäga (dvs prediktionsförmågan eller "kors-validerad" R²Y). ⁴N_komp är antalet signifikanta komponenter. ⁵Bara variabler med ett VIP (variable importance)-värde > 1 redovisas. Tecknet på PLS regressionskoeficienten för varje variabel redovisas (- för dem som är negativt korrelerade). Variablerna är ordnade efter deras betydelse i modellen och börjar med den viktigaste variablen. Förkortningen T står för tätet (antal per hektar) och V står för volym per hektar. Volymerna avser alla träd högre än ≥1.3 m inom inventerade provytor. ⁶Stubbar avser både högstubbar och avverkningsstubbar. ⁷Volymerna avser alla träd högre än ≥1.3 m inom inventerade provytor. ⁸Stubbar avser både högstubbar och avverkningsstubbar. |
7. Diskussion

7.1 Artrikedom och antal rödlistade arter

Naturreservat har högst artrikedom och högst antal rödlistade arter. Produktionsskog har lägst. Dessa skillnader försvinner dock om man i analyserna kontrollerar för mängden substrat. Artrikedomen verkar således främst bero på tillgången på substrat (t. ex. lågor) och inte på andra faktorer (t. ex. lokal skogshistorik). Likt ett klassiskt art-nya-förhållande ökar antalet arter med mängden substrat som inverteras. Det verkar alltså vara möjligt att hitta lika många arter i produktionsskog och nyckelbiotoper som i naturreservat om bara lika stora substratmängder inverteras. Genom att substratättheten är förhållandevis låg i produktionsskog och nyckelbiotoper (se Appendix 5) innebär detta att inventeringen behöver ske över en stor areal. Att så är fallet indikeras av att relativt många rödlistade arter (10 stycken) hittades i den största nyckelbiotopen (11.7 hektar; se Fig. 4, Appendix 7).

Jämfört med andra skogsbeständ innehåller naturreservaten exceptionellt stora mängder gamla träd och grov död ved. Mängderna död ved i reservaten liknar mängderna som uppmätts i naturskogar. I sydligt boreal naturskog varierar mängden död ved mellan 60 och 120 m³ hektar⁻¹ (Siitonen 2001). Att återskapa höga tätheter av gamla träd och grov död ved i mer påverkade skogsbestånd skulle ta mycket lång tid. Av denna anledning utgör således naturreservaten viktiga tillflyktsorter för rödlistade arter i dagens brukade skogslandskap. Naturreservaten är därmed särskilt viktiga att beakta när man planerar bevarandet av biologisk mångfald.

I fem av nyckelbiotoperna är antalet rödlistade arter högre än i produktionsskogbestånden (se Fig. 4, Appendix 7). I samtliga dessa nyckelbiotoper är tätheten av död ved >20 m³ hektar⁻¹ (se Appendix 5). I två av nyckelbiotoperna är antalet rödlistade arter relativt högt (9-10 rödlistade arter). En slutsats är därmed att förhållandena i vissa nyckelbiotoper är jämförbara med hur det ser ut i naturreservaten där 12 respektive 16 rödlistade arter hittades (se Fig. 4, Appendix 7).

Det kan tyckas oväsentat att rödlistade arter även återfinns i äldre produktionsskogbestånd. Faktum är att det inte råder någon skarp gräns mellan äldre produktionsskogar och nyckelbiotoper. Skillnaden i antal rödlistade arter är inte särskilt tydlig. Produktionsskogsområdena uppvisar även likheter med många nyckelbiotoper vad gäller förekomsten av gamla träd och död ved. Båda objektkategorierna har generellt små mängder död ved (< 20 m³ hektar⁻¹; se Appendix 5). Detta kan bero på att äldre produktionsskog och nyckelbiotoper har påverkats av skogsbruk i likartad utsträckning. Man har t. ex. visat att nyckelbiotopers nuvarande beståndsstruktur är ett resultat av olika former av skogsbrukspåverkan (Eriesson m.fl. 2005). En slutsats är därmed att vissa äldre produktionsskogsområden kanske egentligen borde klassas som nyckelbiotoper. De har bara inte upptäckts under Skogstyrelsens nyckelbiotopsinventering. Deras potentiella värde för den
skogliga biologisk mångfalden bör därför beaktas vid bevarandeplanering. De rödlistade arter
som först och främst påträffas i produktionsskogsbestånden är dock inte hotade arter (Appendix
6). De ingår istället i kategorin av arter som anses vara missgynnad eller som blivit rödlistade
p.g.a. av brist på kunskap. Naturreservat och nyckelbiotoper spelar alltså en särskild roll som
tillflyktsort för de hotade arterna.

För skorplavarna indikerar resultaten att objekt i det norra området är mer artrika än objekt i det
södra området. Detta gäller framförallt lavar på lövträd där skillnaden kvarstår även om man
kontrollerar för objektens area, bonitet och innehåll av potentiella substrat. Andra faktorer tycks
alltså vara viktiga och påverkar det norra områdets rikedom av lavar positivt. Möjliga förklaringar
can vara att det norra området erbjuder fördelaktigare lokalklimatförhållanden eller att den lokala
historiken varit annorlunda. Exempelvis kan det norra området vara mindre påverkat av
skogsbruk.

7.2 Samband mellan artrikedom och förekomst av indikatorarter

Artvikedomsmätten bland skorplav och tickor upprisade relativt starka korrelationer
(R=0.6-0.7) trots att korrelationsanalyserna skedde med kontroll för area. Korrelationerna mellan
artvikedom bland lavatar och artvikedom bland tickor var speciellt tydliga mellan de artgrupper
som utnyttjade samma trädslagskategori, det vill säga löv- respektive barrträd. Resultaten
indikerar således att artvikedomen inom en organismgrupp skulle kunna fungera som indikator
för artvikedomen inom en annan organismgrupp. Detta är något som sällan har påvisats i andra
studier. Oftast hittas svaga samband eller så finns inga samband alls mellan artvikedomen bland

Det faktum att de flesta skogslevande arter är sällsynta (se Fig. 3) försvårar användandet av
”artvaribler” inom övervakningsprogrammet. De flesta ”artvaribler” upprisade många
nollvärden. Detta gjorde dem oanvändbara i analyserna. En annan utformning av provtagningen
av arter krävs antagligen för att ”artvaribler” ska kunna tjäna som indikatorer för artvikedom
bland skogslevande arter (se exempelvis Ringvall 2000).

Det sex ”artvaribler” som gick att använda i analyserna upprisade dock många svaga samband
med artvikedomen bland skorplav och tickor. Resultaten indikerar således att vissa
skogslevande arter och signalarter har potential att fungera som indikatorer på artvikedomen
inom de undersöka artgrupperna.
7.3 Uppmätta beståndssvariablers prediktiva förmåga

Resultaten indikerar att det i många fall är svårt att utifrån beståndssvariabler ta fram modeller för att förutse artrikedom. Detta gäller främst artrikedomen bland skorplavar. Genom att använda beståndssvariabler som korrelerar med artrikedomen bland lavar kan dock modeller med god validitet tas fram. Dessa modeller bygger emellertid inte på variabler som beskriver tillgången på lavarnas substrat (levande träd) utan istället på variabler som beskriver förekomsten av lågor och död ved (se Tabell 9). Detta skulle kunna förklaras av att fler ”död ved”-variabler än ”levande träd”-variabler ingick i analyserna (38 respektive 21 stycken; se Appendix 3). Död ved-variabler skulle således kunna bli viktiga i modeller för lavar på levande träd av rena sannolikhetsskäl. Mängden död ved ger dock en indikation på i vilken grad ett objekt har påverkats av skogsbruk (virkesuttag). Det finns relativt starka samband mellan tätheten av avverkningsstubbar samt mängden död ved (R= -0.49, p= 0.014, Pearson korrelation) respektive mängden lågor (R= -0.54, p= 0.007, Pearson korrelation). Stora mängder död ved indikerar således små virkesuttag, medan små mängder indikerar stora uttag. Stora mängder död ved och små virkesuttag bör i sin tur innebära att träden i objektet är gamla. Genom att artrikedomen bland lavar sannolikt i hög grad beror på träd- och beståndsålder kan detta förklara att mängden död ved (lågor) utgör viktiga variabler även i modellerna för lavar.

Det är även svårt att utifrån skattade beståndssvariabler extrahera modeller med god validitet för att förutse artrikedomen bland tickor. Modellerna för antal tickor på barrträdslägor tenderar dock att vara relativt starka. Dessutom är beståndssvariablen som beskriver mängden substrat för tickor (d.v.s lågor) viktigast i modellerna.

Ett positivt resultat är att det utifrån uppmätta beståndssvariabler går bra att förutsäga antal rödlistade arter. Detta är värdefullt då ett centrale mål är att övervaka hotade och rödlistade arterns förekomst. Närst oberoende av tillväxtagängensätt kan man generera prediktativa modeller med god validitet. De viktigaste beståndssvariablerna beskriver mängden lågor och död ved, framförallt mängden död granved. Detta beror antagligen på att majoriteten av de rödlistade arterna är tickor och många av dessa förkommer på död barrträdsved. Prediktionsförmågan (Q²-värdet) för modellerna för antal rödlistade arter varierade mellan 0.4 och 0.6 vilket kan anses som bra. Det är jämfört med värden i andra studier. Till exempel rapporterar Berglund & Jonsson (2001, 2005) Q²-värdena 0.37 (skorplavar), 0.70 (tickor) och 0.69 (rödlistade arter) i en studie av artrikedom på beståndsgrad i boreala naturskogssystem.

Det andra positiva resultatet är att det går att generera modeller med relativt hög prediktionsförmåga för närmast samtliga artgrupper om man använder beståndssvariabler som korrelerar med artrikedomen. Detta resultat är en indikation på att det krävs data för ett flertal likartade skogliga variabler för att kunna göra godtagbara förutsägelser om objektets artrikedom. Variabler som beskriver snarlika skogliga företeelser är ofta internkorrelerade (t. ex. mängd död ved, mängd lågor och mängd grova lågor). Trots detta förklarar var och en av variablerna en
specifik del av variationen i artrikedom. På så sätt kompletterar de varandra i förutsägelser om artrikedomen.

Resultaten visar att främst variabler som skattats inom bältena är viktiga i modellerna. Variabler som skattats i provytorna tenderar till att ha en försumbar betydelse. Detta kan dock till stor del bero på att de flesta variabler skattades just i bältena. Endast 15 av samtliga 64 beståndsvariabler och en av 38 död ved-variabler baserades på skattnings gjorda i provytorna (se Appendix 3).

Det faktum att många arter är sällsynta kan förklara att det i flera fall var svårt att ta fram modeller över artrikedom utifrån de uppmätta beståndsvariablerna. Många substrat och miljöer som är viktiga för arterna förekommer också sparsamt och ibland aggererat. Metoder för att mäta förekomsten av sällsynta arter på sällsynta substrat (se exempelvis Ringvall 2000) behöver därför utvecklas om man vill förbättra övervakningsprogrammets förmåga att förutsäga artrikedom och antal rödlistade arter.

8. Tack

9. Referenser

Appendix 1.
Information om provtagningsinsats i undersökta objekt uppdela i kategorierna naturreservat (NR), nyckelbiotoper (NB) och produktionsskogar (P). Resultat från jämförelse av medelvärden för nyckelbiotoper och produktionsskog (P-värde från tvåsidigt t-test) presenteras

<table>
<thead>
<tr>
<th>Objekt</th>
<th>Provlytor</th>
<th>Bälten</th>
<th>Antal</th>
<th>Ca tid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Antal</td>
<td>Area (hektar)</td>
<td></td>
<td>timmar</td>
</tr>
<tr>
<td>NR</td>
<td>1</td>
<td>6</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>NB</td>
<td>3</td>
<td>3</td>
<td>0.32</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2</td>
<td>0.33</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3</td>
<td>0.36</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>5</td>
<td>0.77</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>4</td>
<td>0.70</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>4</td>
<td>0.61</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>4</td>
<td>0.53</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5</td>
<td>0.74</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>3</td>
<td>0.66</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>4</td>
<td>0.50</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>4</td>
<td>0.73</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>6</td>
<td>0.92</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>3</td>
<td>0.25</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>4</td>
<td>0.52</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>4</td>
<td>0.64</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>3</td>
<td>0.49</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Min-Max</td>
<td>2.0-6.0</td>
<td>0.2-0.9</td>
<td>3.0-9.0</td>
</tr>
<tr>
<td>Median</td>
<td></td>
<td></td>
<td>0.57</td>
<td>4</td>
</tr>
<tr>
<td>Medel (SA)</td>
<td>3.8 (1.0)</td>
<td>0.6 (0.2)</td>
<td>4.3 (1.5)</td>
<td>4.7 (2.6)</td>
</tr>
<tr>
<td>P</td>
<td>19</td>
<td>4</td>
<td>0.65</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>4</td>
<td>0.66</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>5</td>
<td>0.76</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>3</td>
<td>0.45</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>2</td>
<td>0.38</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>3</td>
<td>0.45</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Min-Max</td>
<td>2.0-5.0</td>
<td>0.4-0.8</td>
<td>3.0-7.0</td>
</tr>
<tr>
<td>Median</td>
<td></td>
<td></td>
<td>0.55</td>
<td>5</td>
</tr>
<tr>
<td>Medel (SA)</td>
<td>3.5 (1.0)</td>
<td>0.6 (0.2)</td>
<td>4.7 (1.6)</td>
<td>3.7 (1.7)</td>
</tr>
</tbody>
</table>

T-test nyckelbiotoper - produktionsskog
P-värde 0.521 0.90 0.574 0.367
Övervakningsprogrammets provtagningsinsats (provyteantal respektive bältesareal i hektar) samt tidsåtgång (timmar) för artinventering inom de 24 undersökta objekten i Gävleborgs län. Pearson korrelationskoefficient med signifikansvärde för sambandet mellan insats och area.
Appendix 3.
Medel- max- och minvärden för de 64 beståndsvariabler som tillsammans med area användes för att undersöka prediktionsförmågan med avseende på artrikedom bland skorplavar och lickor i 24 objekt i Gävleborgs län.

<table>
<thead>
<tr>
<th>Skattning gjord inom</th>
<th>Variabel</th>
<th>Enhet</th>
<th>Medel</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Provyrar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. hela</td>
<td>Trädskiktning Antal</td>
<td>Antal</td>
<td>"skikt"</td>
<td>3.5</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>Levande träd Tot.</td>
<td>Volym</td>
<td>(m³·ha⁻¹)</td>
<td>293.3</td>
<td>101.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Täthet</td>
<td>(antal·ha⁻¹)</td>
<td>2140.0</td>
<td>519.7</td>
</tr>
<tr>
<td></td>
<td>Tall</td>
<td>Volym</td>
<td>(m³·ha⁻¹)</td>
<td>113.6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Gran</td>
<td>Volym</td>
<td>(m³·ha⁻¹)</td>
<td>128.4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Björk</td>
<td>Volym</td>
<td>(m³·ha⁻¹)</td>
<td>25.1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Löv (ej björk)</td>
<td>Volym</td>
<td>(m³·ha⁻¹)</td>
<td>26.2</td>
<td>0</td>
</tr>
<tr>
<td>Död ved</td>
<td>Tot. (stående) Volym</td>
<td>(m³·ha⁻¹)</td>
<td>13.7</td>
<td>0</td>
<td>108.9</td>
</tr>
<tr>
<td>Avverkningsstubbar</td>
<td>Tot.</td>
<td>Täthet</td>
<td>(antal·ha⁻¹)</td>
<td>363.2</td>
<td>0</td>
</tr>
<tr>
<td>Beskuggning</td>
<td>4-gradig skala</td>
<td></td>
<td>2.8</td>
<td>2</td>
<td>3.7</td>
</tr>
<tr>
<td>Markfuktighet</td>
<td>5-gradig skala</td>
<td></td>
<td>2.2</td>
<td>1.3</td>
<td>4</td>
</tr>
<tr>
<td>Luckighet</td>
<td>7x7 m luckor Täthet</td>
<td>(antal·ha⁻¹)</td>
<td>27.8</td>
<td>18.6</td>
<td>31.8</td>
</tr>
<tr>
<td></td>
<td>Antal buskarter Antal</td>
<td>objekt⁻¹</td>
<td>5.2</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>b. första kvadraten</td>
<td>Levande träd</td>
<td>Täthet</td>
<td>(antal·ha⁻¹)</td>
<td>215.3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Tall</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gran</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Bälten</td>
<td>Levande träd a</td>
<td>Tall</td>
<td>Volym</td>
<td>(m³·ha⁻¹)</td>
<td>52.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tall</td>
<td>Täthet</td>
<td>(antal·ha⁻¹)</td>
<td>33.1</td>
</tr>
<tr>
<td></td>
<td>Gran</td>
<td>Volym</td>
<td>(m³·ha⁻¹)</td>
<td>22.9</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Täthet</td>
<td>(antal·ha⁻¹)</td>
<td>17.2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Löv</td>
<td>Volym</td>
<td>(m³·ha⁻¹)</td>
<td>21.9</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Täthet</td>
<td>(antal·ha⁻¹)</td>
<td>46.4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Björk</td>
<td>Volym</td>
<td>(m³·ha⁻¹)</td>
<td>7.2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Täthet</td>
<td>(antal·ha⁻¹)</td>
<td>7.1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Löv (ej björk)</td>
<td>Volym</td>
<td>(m³·ha⁻¹)</td>
<td>14.6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Täthet</td>
<td>(antal·ha⁻¹)</td>
<td>39.4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Barträd</td>
<td>Volym</td>
<td>(m³·ha⁻¹)</td>
<td>75.5</td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Täthet</td>
<td>(antal·ha⁻¹)</td>
<td>50.4</td>
<td>6.7</td>
</tr>
</tbody>
</table>

aTräd med brösthöjdsdiameter >35 cm.
Appendix 3. forts.

<table>
<thead>
<tr>
<th>Skattning gjord inom</th>
<th>Variabel</th>
<th>Enhet (m³/ha⁻¹)</th>
<th>Medel</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Bälten</td>
<td>Död ved Tot.</td>
<td>Volym</td>
<td>25.7</td>
<td>5</td>
<td>118</td>
</tr>
<tr>
<td>Lågor</td>
<td>Tot.</td>
<td>Volym</td>
<td>18.0</td>
<td>3.5</td>
<td>78.1</td>
</tr>
<tr>
<td></td>
<td>Täthet</td>
<td>118.9</td>
<td>39.5</td>
<td>268.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tall</td>
<td>Volym</td>
<td>5.3</td>
<td>0.2</td>
<td>30.1</td>
</tr>
<tr>
<td></td>
<td>Täthet</td>
<td>28.9</td>
<td>1.5</td>
<td>82.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gran</td>
<td>Volym</td>
<td>9.0</td>
<td>0.1</td>
<td>43.3</td>
</tr>
<tr>
<td></td>
<td>Täthet</td>
<td>45.2</td>
<td>2.6</td>
<td>112.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Björk</td>
<td>Volym</td>
<td>1.3</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Täthet</td>
<td>18.1</td>
<td>0</td>
<td>80.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Löv (ej björk)</td>
<td>Volym</td>
<td>2.3</td>
<td>0.1</td>
<td>17.7</td>
</tr>
<tr>
<td></td>
<td>Täthet</td>
<td>26.6</td>
<td>2.2</td>
<td>126.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grova</td>
<td>Volym</td>
<td>11.9</td>
<td>0</td>
<td>66.4</td>
</tr>
<tr>
<td></td>
<td>Täthet</td>
<td>25.4</td>
<td>0</td>
<td>97.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Staubb</td>
<td>Tot.</td>
<td>Volym</td>
<td>2.2</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>Täthet</td>
<td>24.8</td>
<td>5.8</td>
<td>54.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tall</td>
<td>Volym</td>
<td>1.2</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Täthet</td>
<td>11.7</td>
<td>0</td>
<td>31.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gran</td>
<td>Volym</td>
<td>0.6</td>
<td>0</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>Täthet</td>
<td>6.0</td>
<td>0</td>
<td>19.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Björk</td>
<td>Täthet</td>
<td>3.2</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Löv (ej björk)</td>
<td>Täthet</td>
<td>3.9</td>
<td>0</td>
<td>9.2</td>
</tr>
</tbody>
</table>

bLågor med maximumdiameter >25 cm.

cAvser både avverkningsstubbar och högstubbar
Appendix 3. forts.

<table>
<thead>
<tr>
<th>Skattning gjord inom</th>
<th>Variabel</th>
<th>Enhet</th>
<th>Medel</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Bälten</td>
<td>Döda träd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tot.</td>
<td>Volym (m³×ha⁻¹)</td>
<td>5.4</td>
<td>0</td>
<td>30.9</td>
</tr>
<tr>
<td></td>
<td>Täthet (antal·ha⁻¹)</td>
<td>12.1</td>
<td>0</td>
<td>31.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tall</td>
<td>Volym (m³×ha⁻¹)</td>
<td>3.1</td>
<td>0</td>
<td>25.5</td>
</tr>
<tr>
<td></td>
<td>Täthet (antal·ha⁻¹)</td>
<td>5.2</td>
<td>0</td>
<td>19.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gran</td>
<td>Volym (m³×ha⁻¹)</td>
<td>1.6</td>
<td>0</td>
<td>7.3</td>
</tr>
<tr>
<td></td>
<td>Täthet (antal·ha⁻¹)</td>
<td>4.4</td>
<td>0</td>
<td>19.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stående död ved a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tot.</td>
<td>Volym (m³×ha⁻¹)</td>
<td>7.6</td>
<td>0.5</td>
<td>39.9</td>
</tr>
<tr>
<td></td>
<td>Täthet (antal·ha⁻¹)</td>
<td>36.9</td>
<td>7.7</td>
<td>75.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tall</td>
<td>Volym (m³×ha⁻¹)</td>
<td>4.3</td>
<td>0</td>
<td>29.8</td>
</tr>
<tr>
<td></td>
<td>Täthet (antal·ha⁻¹)</td>
<td>16.9</td>
<td>0</td>
<td>42.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gran</td>
<td>Volym (m³×ha⁻¹)</td>
<td>2.2</td>
<td>0</td>
<td>9.3</td>
</tr>
<tr>
<td></td>
<td>Täthet (antal·ha⁻¹)</td>
<td>10.4</td>
<td>0</td>
<td>38.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Björk</td>
<td>Volym (m³×ha⁻¹)</td>
<td>0.4</td>
<td>0</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>Täthet (antal·ha⁻¹)</td>
<td>3.7</td>
<td>0</td>
<td>21.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Löv (ej björk)</td>
<td>Volym (m³×ha⁻¹)</td>
<td>0.8</td>
<td>0</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>Täthet (antal·ha⁻¹)</td>
<td>5.9</td>
<td>0</td>
<td>20.2</td>
<td></td>
</tr>
</tbody>
</table>

a Avser både hela träd, högstubbar och avverkningsstubbar.
Appendix 4.
Allmänna beståndsdata om undersökta objekt indelade i kategorierna naturreservat (NR), nyckelbiotoper (NB) och produktionsskogar (P). Resultat från jämförelse av medelvärden för nyckelbiotoper och produktionsskog (p-värde från tvåsidigt t-test) presenteras.

<table>
<thead>
<tr>
<th>Objekt</th>
<th>Area (hektar)</th>
<th>Nord-Syd (N-S)</th>
<th>Öst-Väst (Ö-V)</th>
<th>Altitud (m.o.h.)</th>
<th>Bonitet (T100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>1</td>
<td>4.2</td>
<td>6732700</td>
<td>1532750</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4.5</td>
<td>6827840</td>
<td>1548920</td>
<td>280</td>
</tr>
<tr>
<td>NB</td>
<td>3</td>
<td>1.4</td>
<td>6827369</td>
<td>1548737</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.7</td>
<td>6827200</td>
<td>1544280</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.8</td>
<td>6826770</td>
<td>1542890</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>11.0</td>
<td>6735200</td>
<td>1524400</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6.9</td>
<td>6737950</td>
<td>1522900</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>6.6</td>
<td>6740400</td>
<td>1522700</td>
<td>275</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>2.2</td>
<td>6741400</td>
<td>1531300</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>8.4</td>
<td>6742400</td>
<td>1522700</td>
<td>340</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>5.3</td>
<td>6827973</td>
<td>1559316</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1.3</td>
<td>6828212</td>
<td>1558772</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>5.8</td>
<td>6829129</td>
<td>1559200</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>11.7</td>
<td>6830698</td>
<td>1558492</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.7</td>
<td>6827566</td>
<td>1558997</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1.7</td>
<td>6829221</td>
<td>1555980</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>7.2</td>
<td>6834250</td>
<td>1556700</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>5.8</td>
<td>6833400</td>
<td>1556600</td>
<td>90</td>
</tr>
<tr>
<td>Min-Max</td>
<td>0.7-11.7</td>
<td>6,735,200-6,834,250</td>
<td>1,522,700-1,559,316</td>
<td>85.0-340.0</td>
<td>20-25</td>
</tr>
<tr>
<td>Median</td>
<td>5.6</td>
<td>6827468</td>
<td>1552359</td>
<td>213</td>
<td>23</td>
</tr>
<tr>
<td>Medel (SA)</td>
<td>5.0 (3.6)</td>
<td>6,801,196 (43,056)</td>
<td>1,545,248 (15,230)</td>
<td>195.6 (78.8)</td>
<td>22.8 (1.8)</td>
</tr>
</tbody>
</table>
Appendix 4. forts.

<table>
<thead>
<tr>
<th>Objekt</th>
<th>Area (hektar)</th>
<th>Koordinater (RT90) N-S</th>
<th>Ö-V</th>
<th>Altitud (m.o.h.)</th>
<th>Bonitet (T100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>19</td>
<td>10.9</td>
<td>6830650</td>
<td>1559500</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>3.5</td>
<td>6830500</td>
<td>1557950</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>2.4</td>
<td>6831420</td>
<td>1558850</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>11.6</td>
<td>6738000</td>
<td>1524600</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>8.0</td>
<td>6738800</td>
<td>1522200</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>6.6</td>
<td>6740200</td>
<td>1524800</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>Min-Max</td>
<td>2.4-11.6</td>
<td>6,738,000-6,831,420</td>
<td>1,522,200-1,559,500</td>
<td>70.0-255.0</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>7.3</td>
<td>6785350</td>
<td>1541375</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>Medel (SA)</td>
<td>7.2 (3.8)</td>
<td>6,784,928 (50,318)</td>
<td>1,541,317 (19,144)</td>
<td>163.3 (86.1)</td>
</tr>
<tr>
<td>T-test nyckelbiotoper - produktionsskog</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-värde</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.200</td>
<td>0.459</td>
<td>0.620</td>
<td>0.413</td>
<td>0.365</td>
</tr>
</tbody>
</table>
Appendix 5.

Övervakningsprogrammet, beståndsstruktur i undersökta objekt uppdelade i kategorierna naturreservat (NR), nyckelbiotoper (NB) och produktionsskogar (P). Resultat från jämförelse av medelvärden för nyckelbiotoper och produktionsskog (P-värde från tvåsidigt t-test) presenteras.

<table>
<thead>
<tr>
<th>Objekt</th>
<th>Levande träd(^a) (m(^3)×hektar(^{-1}))</th>
<th>Död ved(^b) (m(^3)×hektar(^{-1}))</th>
<th>Levande träd(^a) (m(^3)×hektar(^{-1}))</th>
<th>Död ved(^b) (m(^3)×hektar(^{-1}))</th>
<th>Avv. stubbar (hektar(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR 1</td>
<td>333.1</td>
<td>23.3</td>
<td>170.7</td>
<td>165.6</td>
<td>173.2</td>
</tr>
<tr>
<td></td>
<td>488.8</td>
<td>108.9</td>
<td>322.4</td>
<td>302.8</td>
<td></td>
</tr>
<tr>
<td>NB 3</td>
<td>298.6</td>
<td>0.8</td>
<td>151</td>
<td>113.7</td>
<td>173.2</td>
</tr>
<tr>
<td></td>
<td>247.2</td>
<td>1.4</td>
<td>47.6</td>
<td>37</td>
<td>357.3</td>
</tr>
<tr>
<td></td>
<td>359.4</td>
<td>30</td>
<td>106</td>
<td>31.4</td>
<td>129.9</td>
</tr>
<tr>
<td></td>
<td>318.2</td>
<td>6.4</td>
<td>46.4</td>
<td>41.6</td>
<td>194.9</td>
</tr>
<tr>
<td></td>
<td>148</td>
<td>0.6</td>
<td>20.7</td>
<td>20.5</td>
<td>194.9</td>
</tr>
<tr>
<td></td>
<td>328.3</td>
<td>10.9</td>
<td>71.9</td>
<td>62.5</td>
<td>357.3</td>
</tr>
<tr>
<td></td>
<td>434.9</td>
<td>35.2</td>
<td>91.1</td>
<td>68.4</td>
<td>194.9</td>
</tr>
<tr>
<td></td>
<td>128.5</td>
<td>3.5</td>
<td>13.9</td>
<td>13.9</td>
<td>116.9</td>
</tr>
<tr>
<td></td>
<td>226.9</td>
<td>5.8</td>
<td>53.7</td>
<td>27.4</td>
<td>368.1</td>
</tr>
<tr>
<td></td>
<td>321.3</td>
<td>6.6</td>
<td>182.3</td>
<td>70.5</td>
<td>552.2</td>
</tr>
<tr>
<td></td>
<td>243.9</td>
<td>8.6</td>
<td>68.2</td>
<td>35.9</td>
<td>308.6</td>
</tr>
<tr>
<td></td>
<td>308.9</td>
<td>1.6</td>
<td>104.5</td>
<td>73.5</td>
<td>508.9</td>
</tr>
<tr>
<td></td>
<td>236.4</td>
<td>26.1</td>
<td>102.6</td>
<td>57.3</td>
<td>324.8</td>
</tr>
<tr>
<td></td>
<td>273.8</td>
<td>19.7</td>
<td>119.6</td>
<td>67.9</td>
<td>600.9</td>
</tr>
<tr>
<td></td>
<td>641.7</td>
<td>9.7</td>
<td>271.9</td>
<td>265</td>
<td>552.2</td>
</tr>
<tr>
<td></td>
<td>407.4</td>
<td>6.4</td>
<td>147.4</td>
<td>99.3</td>
<td>454.7</td>
</tr>
<tr>
<td>Min-Max</td>
<td>128.5-641.7</td>
<td>0.6-35.2</td>
<td>13.9-271.9</td>
<td>0.0-111.8</td>
<td>116.9-600.9</td>
</tr>
<tr>
<td>Median</td>
<td>304</td>
<td>7</td>
<td>97</td>
<td>60</td>
<td>341</td>
</tr>
<tr>
<td>Medel (SD)</td>
<td>307.7 (120.9)</td>
<td>10.8 (10.9)</td>
<td>99.9 (65.8)</td>
<td>68.0 (59.4)</td>
<td>336.9 (160.7)</td>
</tr>
</tbody>
</table>
Appendix 5. forts.

<table>
<thead>
<tr>
<th>Objekt</th>
<th>Levande träd<sup>a</sup> (m³×hektar<sup>b</sup>)</th>
<th>Död ved<sup>b</sup> (m³×hektar<sup>b</sup>)</th>
<th>Levande träd<sup>a</sup> (m³×hektar<sup>b</sup>)</th>
<th>Död ved<sup>b</sup> (m³×hektar<sup>b</sup>)</th>
<th>Avv. stubbar (hektar<sup>b</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Tot.)</td>
<td>(Tot.)</td>
<td>(Tot.)</td>
<td>(Tot.)</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>19</td>
<td>101.9</td>
<td>1.1</td>
<td>72</td>
<td>68.4</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>190</td>
<td>3.5</td>
<td>9.2</td>
<td>9.2</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>366.4</td>
<td>6.6</td>
<td>74.6</td>
<td>73.7</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>249</td>
<td>0.0</td>
<td>41.4</td>
<td>41.4</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>203.2</td>
<td>13.2</td>
<td>40.3</td>
<td>37.8</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>182.4</td>
<td>0.0</td>
<td>7.8</td>
<td>7.8</td>
</tr>
<tr>
<td>Min-Max</td>
<td>101.9-366.4</td>
<td>0.0-13.2</td>
<td>7.8-74.6</td>
<td>7.8-73.7</td>
<td>0.0-3.6</td>
</tr>
<tr>
<td>Median</td>
<td>197</td>
<td>41</td>
<td>40</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>Medel (SD)</td>
<td>215.5 (88.0)</td>
<td>41 (5.1)</td>
<td>40.9 (29.0)</td>
<td>39.7 (28.1)</td>
<td>1.2 (1.5)</td>
</tr>
</tbody>
</table>

T-test nyckelbiotoper - produktionsskog

<table>
<thead>
<tr>
<th></th>
<th>Levande träd<sup>a</sup> (m³×hektar<sup>b</sup>)</th>
<th>Död ved<sup>b</sup> (m³×hektar<sup>b</sup>)</th>
<th>Avv. stubbar (hektar<sup>b</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-värde</td>
<td>0.105</td>
<td>0.165</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.049</td>
<td>0.281</td>
<td>0.023</td>
</tr>
<tr>
<td></td>
<td>0.023</td>
<td>0.282</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>0.024</td>
<td><0.001</td>
<td>0.039</td>
</tr>
<tr>
<td></td>
<td>0.030</td>
<td>0.030</td>
<td></td>
</tr>
</tbody>
</table>

^aVolymerna avser alla trädb och all stående död ved med en höjd ≥1.3 m inom inventerade provytor.
^bVolymerna avser träd med en brösthöjdsdiameter ≥35 cm, stående död ved med brösthöjdsdiameter ≥15 cm samt lågor med diameter i grovändan ≥10 cm inom inventerade bälten.
Appendix 6.
Skorplavar och tickor (inklusive åtta skinnsvampar) som hittades vid totalinventering av 24 objekt i Gävleborgs län. För varje art anges om den är rödlistad (klass; enligt Gärdenfors 2000) samt i hur många objekt (totalt; n=24), naturreservat (NR; n=2), nyckelbiotoper (NB; n=16) och äldre produktionsskogar (P; n=6) arter noterades (frekvens). Totalt antal arter samt antal rödlistade respektive hotade arter summeras för respektive artgrupp.

<table>
<thead>
<tr>
<th>Grupp</th>
<th>Släkte</th>
<th>Artnamn</th>
<th>Klass</th>
<th>Total</th>
<th>NR</th>
<th>NB</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skorplavar</td>
<td>Acrocardia</td>
<td>cavata</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>gemmata</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amandinea</td>
<td>punctata</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anisomeridium</td>
<td>polypori</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anzina</td>
<td>carneonivea</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arthonia</td>
<td>apatetica</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>didyma</td>
<td>8</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>incarnata</td>
<td>EN</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lecopellata</td>
<td>9</td>
<td>2</td>
<td>7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>medieila</td>
<td>9</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>patellulata</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>radiata</td>
<td>10</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>spadica</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>vinosa</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arthopyrenia</td>
<td>analepta</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>punctiformis</td>
<td>13</td>
<td>1</td>
<td>9</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>rhyponta</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arthothelium</td>
<td>scandinavicum</td>
<td>10</td>
<td>0</td>
<td>7</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arthorosporum</td>
<td>populorum</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bacidia</td>
<td>beckbiansii</td>
<td>12</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>circumpecta</td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>fraxcinea</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>igniarii</td>
<td>7</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>subincompta</td>
<td>19</td>
<td>1</td>
<td>13</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bacidina</td>
<td>chlorotica</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biatora</td>
<td>chrysanta</td>
<td>8</td>
<td>1</td>
<td>7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>efflorescens</td>
<td>24</td>
<td>2</td>
<td>16</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>belvola</td>
<td>24</td>
<td>2</td>
<td>16</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ocelliformis</td>
<td>DD</td>
<td>12</td>
<td>2</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sphaerodiza</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>vernalis</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Grupp</td>
<td>Släkte</td>
<td>Artnamn</td>
<td>Klassa</td>
<td>Total</td>
<td>NR</td>
<td>NB</td>
<td>P</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>-----------</td>
<td>--------</td>
<td>-------</td>
<td>----</td>
<td>----</td>
<td>---</td>
</tr>
<tr>
<td>Skorplavar</td>
<td>Buellia</td>
<td>arborea</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>disciformis</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>erubescens</td>
<td>10</td>
<td>1</td>
<td>9</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>griseovires</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calicium</td>
<td>denigratum</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>glaucellum</td>
<td>13</td>
<td>2</td>
<td>9</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>parvum</td>
<td>22</td>
<td>1</td>
<td>16</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pinastri</td>
<td>6</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>salicinum</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>trabinellum</td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>viride</td>
<td>8</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Caloplaca</td>
<td>borealis</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>cerina</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ferruginea</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>flavonubescens</td>
<td>12</td>
<td>1</td>
<td>7</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bolocarpa</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Candelariella</td>
<td>xantbostigma</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Catillaria</td>
<td>atropurpurea</td>
<td>11</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>globulosa</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>neuschildii</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>nigroclavata</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chaenotheca</td>
<td>brachypoda</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>brunnneola</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>chryscephala</td>
<td>24</td>
<td>2</td>
<td>16</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ferruginea</td>
<td>21</td>
<td>2</td>
<td>13</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>furfuracea</td>
<td>15</td>
<td>1</td>
<td>10</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>laevigata</td>
<td>VU</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>stemonea</td>
<td>6</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>subrosida</td>
<td>13</td>
<td>1</td>
<td>9</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>trichialis</td>
<td>24</td>
<td>2</td>
<td>16</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>xylocena</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chaenothecopsis</td>
<td>consociata</td>
<td>21</td>
<td>2</td>
<td>13</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>epithallina</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>haematopus</td>
<td>DD</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nana</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 6. Forts.

<table>
<thead>
<tr>
<th>Grupp</th>
<th>Släkte</th>
<th>Artnamn</th>
<th>Mäktig</th>
<th>Klassa</th>
<th>Total</th>
<th>NR</th>
<th>NB</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skorplavar</td>
<td>Chaenothecopsis</td>
<td>pusilla</td>
<td>6</td>
<td></td>
<td>0</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pusiola</td>
<td>2</td>
<td></td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>savonica</td>
<td>1</td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>vainioana</td>
<td>3</td>
<td></td>
<td>1</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cheiromycina</td>
<td>flabelliformis</td>
<td></td>
<td>VU</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Chrysotrix</td>
<td>candelaris</td>
<td>8</td>
<td></td>
<td>2</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clistomum</td>
<td>leprosum</td>
<td></td>
<td>VU</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pallens</td>
<td>10</td>
<td></td>
<td>1</td>
<td>8</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conotrema</td>
<td>populorum</td>
<td>1</td>
<td>DD</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Dimerella</td>
<td>pinetii</td>
<td>18</td>
<td></td>
<td>1</td>
<td>15</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fellbanera</td>
<td>subtilis</td>
<td>1</td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fuscidea</td>
<td>pusilla/Ropalospora viridis</td>
<td>24</td>
<td></td>
<td>2</td>
<td>16</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Graphis</td>
<td>scripta</td>
<td>5</td>
<td></td>
<td>0</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hypocenonyce</td>
<td>friisii</td>
<td>22</td>
<td></td>
<td>2</td>
<td>14</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>lencococca</td>
<td>14</td>
<td></td>
<td>1</td>
<td>11</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>praeestabilis</td>
<td>1</td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>scalaris</td>
<td>22</td>
<td></td>
<td>2</td>
<td>14</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sorophora</td>
<td>8</td>
<td></td>
<td>2</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Japewia</td>
<td>subaurifera</td>
<td>24</td>
<td></td>
<td>2</td>
<td>16</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>tornoensis</td>
<td>9</td>
<td></td>
<td>1</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecanactis</td>
<td>abietina</td>
<td>10</td>
<td></td>
<td>1</td>
<td>7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecania</td>
<td>cyrtella</td>
<td>5</td>
<td></td>
<td>0</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>cyrtellina</td>
<td>1</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>naegelii</td>
<td>1</td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecanora</td>
<td>aitena</td>
<td>6</td>
<td></td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>allophana</td>
<td>14</td>
<td></td>
<td>1</td>
<td>9</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>argentata</td>
<td>1</td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>boligera</td>
<td>5</td>
<td></td>
<td>0</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>cadubriae</td>
<td>12</td>
<td></td>
<td>1</td>
<td>9</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>carpinea</td>
<td>6</td>
<td></td>
<td>0</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>cateleia</td>
<td>1</td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>chlarotera</td>
<td>1</td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>circumborealis</td>
<td>6</td>
<td></td>
<td>0</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>expallens</td>
<td>9</td>
<td></td>
<td>2</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bagenii</td>
<td>4</td>
<td></td>
<td>0</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>hypoptella</td>
<td>23</td>
<td></td>
<td>2</td>
<td>15</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>lepytyrodes</td>
<td>2</td>
<td></td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 6. forts.

<table>
<thead>
<tr>
<th>Grupp</th>
<th>Släkte</th>
<th>Artnamn</th>
<th>Klass</th>
<th>Total</th>
<th>NR</th>
<th>NB</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skorplavar</td>
<td>Lecanora</td>
<td>piniperda</td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pulicaris</td>
<td></td>
<td>23</td>
<td>2</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>subinricata</td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>subrugosa</td>
<td></td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>symmicta</td>
<td></td>
<td>11</td>
<td>0</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>varia</td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Lecidea</td>
<td></td>
<td>albofuscascens</td>
<td></td>
<td>22</td>
<td>2</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>albohyalina</td>
<td></td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>erythrophyaca</td>
<td></td>
<td>11</td>
<td>1</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>leprarioides</td>
<td></td>
<td>23</td>
<td>2</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>margaritella</td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>meiocarpa</td>
<td></td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nylanderi</td>
<td></td>
<td>24</td>
<td>2</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pullata</td>
<td></td>
<td>22</td>
<td>2</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>turgidula</td>
<td></td>
<td>22</td>
<td>1</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>Lecidella</td>
<td></td>
<td>elaeochroma</td>
<td></td>
<td>6</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>euphorea</td>
<td></td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Lepraria</td>
<td></td>
<td>sp</td>
<td></td>
<td>24</td>
<td>2</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>Lopadium</td>
<td></td>
<td>disciforme</td>
<td></td>
<td>9</td>
<td>2</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Loxospora</td>
<td></td>
<td>elatina</td>
<td></td>
<td>24</td>
<td>2</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>Micarea</td>
<td></td>
<td>denigrata</td>
<td></td>
<td>13</td>
<td>1</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>elachista</td>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>globulosella</td>
<td>NT</td>
<td>24</td>
<td>2</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>melaena</td>
<td></td>
<td>23</td>
<td>2</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>misella</td>
<td></td>
<td>6</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nitschkeana</td>
<td></td>
<td>11</td>
<td>1</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>prasina</td>
<td></td>
<td>23</td>
<td>2</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>Microcalicium</td>
<td></td>
<td>ablneri</td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>disseminatum</td>
<td></td>
<td>17</td>
<td>2</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>Mycobilimbia</td>
<td></td>
<td>berengeriana</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>carnealbida</td>
<td></td>
<td>15</td>
<td>1</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>epicanthoides</td>
<td></td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hyphorum</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tetramera</td>
<td></td>
<td>7</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>
Appendix 6. forts.

<table>
<thead>
<tr>
<th>Grupp</th>
<th>Släkte</th>
<th>Artnamn</th>
<th>Klassa</th>
<th>Total</th>
<th>NR</th>
<th>NB</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skorplavar</td>
<td>Mycoblastus</td>
<td>affinis</td>
<td></td>
<td>14</td>
<td>1</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>alpinus</td>
<td></td>
<td>12</td>
<td>2</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fucatus</td>
<td></td>
<td>21</td>
<td>2</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sanguinarius</td>
<td></td>
<td>22</td>
<td>2</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Myeocalicium</td>
<td>subtile</td>
<td></td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Ochrolechia</td>
<td>albofascens</td>
<td></td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>andragna</td>
<td></td>
<td>23</td>
<td>2</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>arborea</td>
<td></td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>microstictoides</td>
<td></td>
<td>24</td>
<td>2</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pallescens</td>
<td></td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Opegrapha</td>
<td>varia</td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Pachyphiale</td>
<td>fagiola</td>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Parmeliella</td>
<td>triptophylla</td>
<td></td>
<td>8</td>
<td>1</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Pertusaria</td>
<td></td>
<td>amara</td>
<td></td>
<td>23</td>
<td>2</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>borealis</td>
<td></td>
<td>24</td>
<td>2</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>carnepallida</td>
<td></td>
<td>10</td>
<td>0</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>leioptica</td>
<td></td>
<td>13</td>
<td>1</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>luxostoma</td>
<td></td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ophthalmica</td>
<td></td>
<td>15</td>
<td>2</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Phaeocalicium</td>
<td></td>
<td>flabelliforme</td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>populneum</td>
<td></td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Phyltis</td>
<td></td>
<td>argena</td>
<td></td>
<td>17</td>
<td>1</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>Placynthiella</td>
<td></td>
<td>dasea/icmalea</td>
<td></td>
<td>17</td>
<td>2</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>Rinodina</td>
<td></td>
<td>degeliana</td>
<td>VU</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Schismatoma</td>
<td></td>
<td>peridenum</td>
<td>NT</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Scoliosporum</td>
<td></td>
<td>chlorococcum</td>
<td></td>
<td>11</td>
<td>1</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Stenocybe</td>
<td></td>
<td>pullatula</td>
<td></td>
<td>13</td>
<td>0</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>Trapeliopsis</td>
<td></td>
<td>flexuosa</td>
<td></td>
<td>9</td>
<td>1</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Varicellaia</td>
<td></td>
<td>rhodocarpa</td>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

	Summa antal arter	166	91	154	100
	Summa antal rödlistade artera	10	5	7	3
	Summa antal hotade arterb	5	2	4	0
Appendix 6. forts.

<table>
<thead>
<tr>
<th>Grupp</th>
<th>Släkte</th>
<th>Artnamn</th>
<th>Klass</th>
<th>Total</th>
<th>NR</th>
<th>NB</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tickor</td>
<td>Amylocystis</td>
<td>lapponica</td>
<td>NT</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Amylostereum</td>
<td>ebrellii⁵</td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Antrodia</td>
<td>albida</td>
<td></td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>albobrunnea</td>
<td>VU</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>heteromorpha</td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pulvinascens</td>
<td>NT</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>serialis</td>
<td></td>
<td>23</td>
<td>2</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sinosa</td>
<td></td>
<td>19</td>
<td>2</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>xanthi</td>
<td></td>
<td>12</td>
<td>2</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Antrodilla</td>
<td>americana</td>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>boehnelii</td>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>pallasii</td>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>romelli</td>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>semisupina</td>
<td></td>
<td></td>
<td>6</td>
<td>0</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Asterodon</td>
<td>ferruginosus</td>
<td></td>
<td>NT</td>
<td>7</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Bjerkandra</td>
<td>adusta</td>
<td></td>
<td></td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ceriporia</td>
<td>reticulata</td>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>viridans</td>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Ceriporia</td>
<td>nucida</td>
<td></td>
<td>VU</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>pannocincta</td>
<td></td>
<td></td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Cerrena</td>
<td>unicolor</td>
<td></td>
<td></td>
<td>15</td>
<td>1</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>Climacocystis</td>
<td>borealis</td>
<td></td>
<td></td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Columnocystis</td>
<td>abietina</td>
<td></td>
<td></td>
<td>13</td>
<td>2</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Cystostereum</td>
<td>murrayi</td>
<td></td>
<td>NT</td>
<td>8</td>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Datronia</td>
<td>mollis</td>
<td></td>
<td></td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Diplomitoporus</td>
<td>finibladii</td>
<td></td>
<td></td>
<td>7</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Fomes</td>
<td>fomentarius</td>
<td></td>
<td></td>
<td>23</td>
<td>2</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>Fomitopsis</td>
<td>pinicola</td>
<td></td>
<td></td>
<td>23</td>
<td>2</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>rosea</td>
<td></td>
<td>NT</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Ganoderma</td>
<td>lucidum</td>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Gloeophyllum</td>
<td>odoratum</td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>sepiarium</td>
<td></td>
<td></td>
<td>22</td>
<td>2</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>Hapalopilus</td>
<td>nidulans</td>
<td></td>
<td></td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Haplopilus</td>
<td>odorus</td>
<td></td>
<td>NT</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Heterobasidion</td>
<td>annosum</td>
<td></td>
<td></td>
<td>8</td>
<td>0</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Inonotus</td>
<td>obliquus</td>
<td></td>
<td></td>
<td>11</td>
<td>0</td>
<td>9</td>
<td>2</td>
</tr>
</tbody>
</table>
Appendix 6. forts.

<table>
<thead>
<tr>
<th>Grupp</th>
<th>Släkte</th>
<th>Artnamn</th>
<th>Klass</th>
<th>Total</th>
<th>NR</th>
<th>NB</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tickor</td>
<td>Inonotus</td>
<td>radiatus</td>
<td>6</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>rhaedes</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ischnoderma</td>
<td>benzo-aumin</td>
<td>9</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Junghehnia</td>
<td>lateoloba</td>
<td>NT</td>
<td>11</td>
<td>2</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Lensites</td>
<td>betulinus</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leptoporus</td>
<td>mollis</td>
<td>7</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Oligoporus</td>
<td>balsamens</td>
<td></td>
<td>NT</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>caesius</td>
<td>10</td>
<td>0</td>
<td>8</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>fragilis</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>hibernicus</td>
<td>NT</td>
<td>6</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lenomalpellus</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>rennyi</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sericommollis</td>
<td>7</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>stiptics/Tyromyes chionens (i Granlandslata)</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>tephrolencus</td>
<td>6</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>undosus</td>
<td>NT</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Oxyoporus</td>
<td>corticola</td>
<td></td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>populinus</td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Peniophora</td>
<td>pithya</td>
<td></td>
<td>7</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Phellinus</td>
<td>chrysoloma</td>
<td></td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>conchatus</td>
<td></td>
<td>10</td>
<td>0</td>
<td>9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ferrugineofuscus</td>
<td></td>
<td>15</td>
<td>2</td>
<td>12</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ignarius s. lat. (P. ignarius, P. alni, P. trivialis, P. nigricans)</td>
<td>14</td>
<td>2</td>
<td>10</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>laevigatus</td>
<td></td>
<td>7</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lundellii</td>
<td></td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nigrolimitatus</td>
<td></td>
<td>NT</td>
<td>8</td>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>punctatus</td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tremulae</td>
<td></td>
<td>15</td>
<td>1</td>
<td>12</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vitiola</td>
<td></td>
<td>24</td>
<td>2</td>
<td>16</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Phlebia</td>
<td>centrifuga</td>
<td></td>
<td>NT</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Phlebiopsis</td>
<td>gigantea</td>
<td></td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Piptoporus</td>
<td>betulinus</td>
<td></td>
<td>19</td>
<td>2</td>
<td>13</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Polyoporus</td>
<td>ciliatus</td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Schizophora</td>
<td>paradoxica</td>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 6. forts.

<table>
<thead>
<tr>
<th>Grupp</th>
<th>Släkte</th>
<th>Artnamn</th>
<th>Klass(^a)</th>
<th>Total</th>
<th>NR</th>
<th>NB</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tickor</td>
<td>S. amorpha</td>
<td></td>
<td></td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>S. biguttulata</td>
<td></td>
<td></td>
<td>17</td>
<td>2</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>S. brevispora</td>
<td>VU</td>
<td></td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>S. chrysella</td>
<td>VU</td>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>S. kuehneri</td>
<td>NT</td>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>S. odorata</td>
<td>VU</td>
<td></td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>S. stellae</td>
<td>VU</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>S. sanguinolentum</td>
<td></td>
<td></td>
<td>21</td>
<td>2</td>
<td>14</td>
<td>5</td>
</tr>
<tr>
<td>Stereum</td>
<td>S. birtata</td>
<td></td>
<td></td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Trametes</td>
<td>S. ochracea</td>
<td></td>
<td></td>
<td>13</td>
<td>1</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>S. pubescence</td>
<td></td>
<td></td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Trechispora</td>
<td>S. mollusca</td>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Trichaptum</td>
<td>S. abietinum</td>
<td></td>
<td></td>
<td>24</td>
<td>2</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>S. laricium</td>
<td>NT</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tyromyces</td>
<td>S. chionius</td>
<td></td>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Summa antal arter</th>
<th>86</th>
<th>37</th>
<th>71</th>
<th>54</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Summa antal rödlistade arter(^a)</td>
<td>20</td>
<td>14</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Summa antal hotade arter(^b)</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

\(^b\)Dessa arter räknas som skinnsvampar men har i denna studie ingått i gruppen tickor.
Appendix 7.
Artinventering, artantal i undersökta objekt uppdelade i kategorierna naturreservat (NR), nyckelbiotoper (NB) och produktionsskogar (P). Resultat från jämförelse av medelvärden för nyckelbiotoper och produktionsskog (P-värde från tvåsidigt t-test) presenteras.

<table>
<thead>
<tr>
<th>Objekt</th>
<th>Lavar</th>
<th>Artrikedom</th>
<th>Tickor</th>
<th>Rödlistade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tot.</td>
<td>Löv</td>
<td>Barr</td>
<td>Tot.</td>
</tr>
<tr>
<td>NR 1</td>
<td>52</td>
<td>40</td>
<td>50</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>81</td>
<td>67</td>
<td>61</td>
<td>31</td>
</tr>
<tr>
<td>NB 3</td>
<td>66</td>
<td>63</td>
<td>40</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>43</td>
<td>35</td>
<td>40</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>67</td>
<td>52</td>
<td>54</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>65</td>
<td>50</td>
<td>56</td>
<td>27</td>
</tr>
<tr>
<td>7</td>
<td>56</td>
<td>46</td>
<td>53</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>70</td>
<td>57</td>
<td>57</td>
<td>28</td>
</tr>
<tr>
<td>9</td>
<td>42</td>
<td>38</td>
<td>35</td>
<td>17</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>42</td>
<td>46</td>
<td>21</td>
</tr>
<tr>
<td>11</td>
<td>64</td>
<td>55</td>
<td>48</td>
<td>20</td>
</tr>
<tr>
<td>12</td>
<td>69</td>
<td>63</td>
<td>47</td>
<td>21</td>
</tr>
<tr>
<td>13</td>
<td>58</td>
<td>54</td>
<td>44</td>
<td>32</td>
</tr>
<tr>
<td>14</td>
<td>80</td>
<td>72</td>
<td>59</td>
<td>36</td>
</tr>
<tr>
<td>15</td>
<td>65</td>
<td>57</td>
<td>51</td>
<td>19</td>
</tr>
<tr>
<td>16</td>
<td>72</td>
<td>63</td>
<td>57</td>
<td>23</td>
</tr>
<tr>
<td>17</td>
<td>69</td>
<td>58</td>
<td>54</td>
<td>26</td>
</tr>
<tr>
<td>18</td>
<td>89</td>
<td>80</td>
<td>62</td>
<td>31</td>
</tr>
<tr>
<td>Min-Max</td>
<td>42-89</td>
<td>35-80</td>
<td>35-62</td>
<td>12-36</td>
</tr>
<tr>
<td>Median</td>
<td>66</td>
<td>56</td>
<td>52</td>
<td>23</td>
</tr>
<tr>
<td>Medel (SD)</td>
<td>64.1 (12.3)</td>
<td>55.3 (11.8)</td>
<td>50.2 (7.7)</td>
<td>23.8 (6.1)</td>
</tr>
<tr>
<td>P 19</td>
<td>65</td>
<td>58</td>
<td>49</td>
<td>31</td>
</tr>
<tr>
<td>20</td>
<td>53</td>
<td>45</td>
<td>41</td>
<td>18</td>
</tr>
<tr>
<td>21</td>
<td>47</td>
<td>39</td>
<td>43</td>
<td>20</td>
</tr>
<tr>
<td>22</td>
<td>40</td>
<td>35</td>
<td>34</td>
<td>21</td>
</tr>
<tr>
<td>23</td>
<td>56</td>
<td>49</td>
<td>44</td>
<td>15</td>
</tr>
<tr>
<td>24</td>
<td>43</td>
<td>36</td>
<td>39</td>
<td>19</td>
</tr>
<tr>
<td>Min-Max</td>
<td>40-65</td>
<td>35-58</td>
<td>34-49</td>
<td>15-31</td>
</tr>
<tr>
<td>Median</td>
<td>50</td>
<td>42</td>
<td>42</td>
<td>20</td>
</tr>
<tr>
<td>Medel (SD)</td>
<td>50.7 (9.2)</td>
<td>43.7 (8.8)</td>
<td>41.7 (5.0)</td>
<td>20.7 (5.5)</td>
</tr>
</tbody>
</table>

T-test nyckelbiotoper - produktionsskog

P-värde | 0.026 | 0.041 | 0.021 | 0.291 | 0.595 | 0.230 | 0.150 |
Appendix 8.

För att analysera uppmätta beståndsvarablös förmåga att förutse artriksdom och antal rödlistade arter användes PLS (partial least squares). Fyra olika vägar (A-D) prövades för att välja ut beståndsvariabler till PLS-analyserna (se Tillvägagångssätt). I detta Appendix redovisas resultaten från ansats A-C.

Ansats A: Samband mellan artriksdom och några få grundläggande beståndsvariabler.

Det var generellt svårt att generera modeller med hög prediktionsförmåga (Q^2; Tabell 8-1) utifrån de grundläggande beståndsvariablerna. Förklaringsgraden (R^2_Y) var oftast mycket högre än prediktionsförmågan (Q^2). I dessa fall var dessutom de observerade R^2_Y- och Q^2-värdena ofta lika med eller lägre än de värden som kunde genereras genom slumpvis omblandning av Y-värdena (permutationstest). Modell med validerad prediktionsförmåga kunde dock genereras för rödlistade arter. Prediktionsförmågan var god ($Q^2=0.39$) men tydligt lägre än förklaringsgraden ($R^2_Y=0.57$). De observerade R^2_Y- och Q^2-värdena var dock alltid högre än de R^2_Y- och Q^2-värden som skulle kunde erhållas av ren slump.

Tabell 8-1. PLS (Partiell Least Squares)-regressions modeller genererade utifrån data över artriksdom och fyra grundläggande beståndsvariabler in 24 objekt i Gävleborgs län.

<table>
<thead>
<tr>
<th></th>
<th>$R^2_X^a$</th>
<th>$R^2_Y^c$</th>
<th>Q^2^d</th>
<th>N_{comp}^e</th>
<th>Variablerf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lavår</td>
<td>Tot.</td>
<td>0.29</td>
<td>0.46</td>
<td>0.29</td>
<td>1 Volym gran, Volym lövträd (ej björk)</td>
</tr>
<tr>
<td></td>
<td>Löv</td>
<td>0.29</td>
<td>0.45</td>
<td>0.25</td>
<td>1 Volym lövträd (ej björk), Volym gran</td>
</tr>
<tr>
<td></td>
<td>Barr</td>
<td>0.32</td>
<td>0.28</td>
<td>0.19</td>
<td>1 Volym gran, Totalvolym död ved</td>
</tr>
<tr>
<td>Tockor</td>
<td>Tot.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>- Ingen modell</td>
</tr>
<tr>
<td></td>
<td>Löv</td>
<td>0.38</td>
<td>0.26</td>
<td>0.17</td>
<td>1 Volym lövträd (ej björk), Volym tall</td>
</tr>
<tr>
<td></td>
<td>Barr</td>
<td>0.42</td>
<td>0.39</td>
<td>0.28</td>
<td>1 Volym gran</td>
</tr>
<tr>
<td>Rödlistade</td>
<td>0.41</td>
<td>0.57</td>
<td>0.39</td>
<td>1</td>
<td>Totalvolym död ved, Volym gran</td>
</tr>
</tbody>
</table>

aBaseras på skattnings gjorda inom provytor. b R^2_X är variationen bland de förklarande variablerna (beståndsvariablerna) som används i modellen (dvs variationen i X-matrisen som förklaras av PLS-komponenterna). c R^2_Y är variationen i responsvariabeln (dvs artriksdom) som förklaras av modellen (dvs motsvarar den multipla korrelationskoefficienten, R^2). d Q^2 är del av variationen i responsvariabeln (dvs artriksdom) som går att förutsäga (dvs prediktionsförmågan eller “kors-validerad” R^2_Y). e N_{comp} är antalet signifikanta komponenter. fbara variabler med ett VIP (variable importance)-värde > 1 redovisas. Tecknet på PLS regressionskoefficienten för varje variabel redovisas (- för dem som är negativt korrelerade). Variablerna är ordnade efter deras betydelse i modellen och börjar med den viktigaste variabeln.
Appendix 8. forts.

Ansats B: PLS med samtliga beståndsvariabler

När alla beståndsvariabler användes i PLS var det svårt att generera starka modeller med hög prediktionsförmåga (Q^2; Tabell 8-2). Ofta var förklaringsgraden (R^2_Y) mycket högre än prediktionsförmågan (Q^2). Det var dessutom en liten skillnad mellan de observerade R^2_Y- och Q^2-värden och de värden som kunde generas genom slumpvis omblanding av Y värdena (permutationstest). Modellen för rödlistade arter hade dock relativt hög förklaringsgrad ($R^2_Y=0.71$) och samtidigt en hög prediktionsförmåga ($Q^2=0.55$). Dessutom var de observerade R^2_Y- och Q^2-värdena alltid högre än de värden som skulle kunde erhållas av ren slump.

Tabell 8-2. PLS (Partiell Least Squares)-regressions modeller genererade utifrån data över artrikedom och area och 64 beståndsvariabler (se Appendix 3) från 24 objekt i Gävleborgs län. $N_{\text{VIP1.5}}$ anger hur många variabler som hade ett VIP-värde ≥1.5 i PLS-analysen.

<table>
<thead>
<tr>
<th>Variabler</th>
<th>R^2_X</th>
<th>R^2_Y</th>
<th>Q^2</th>
<th>N_{comp}</th>
<th>$N_{\text{VIP1.5}}$</th>
<th>Variabler (VIP>1.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lavar Tot.</td>
<td>0.28</td>
<td>0.52</td>
<td>0.29</td>
<td>1</td>
<td>4</td>
<td>T & V lövlågor (ej björk), T lågor, T lövträd (ej björk)</td>
</tr>
<tr>
<td>LÖV</td>
<td>0.25</td>
<td>0.57</td>
<td>0.33</td>
<td>1</td>
<td>4</td>
<td>T & V lövlågor (ej björk), T lövträd (ej björk), T lågor</td>
</tr>
<tr>
<td>Barr</td>
<td>0.30</td>
<td>0.37</td>
<td>0.14</td>
<td>1</td>
<td>7</td>
<td>T & V lövlågor (ej björk), T lågor, T & V död ved tot., T & V grova lågor</td>
</tr>
<tr>
<td>Tickor Tot.</td>
<td>0.40</td>
<td>0.76</td>
<td>0.27</td>
<td>2</td>
<td>3</td>
<td>Area, T buskarter tf, T lågor</td>
</tr>
<tr>
<td>LÖV</td>
<td>0.15</td>
<td>0.60</td>
<td>0.28</td>
<td>1</td>
<td>9</td>
<td>T & V stående död tallved, T lövlågor (ej björk), T & V lövträd (ej björk), T buskarter tf, T döda tallar, T & V tallstubbar ge</td>
</tr>
<tr>
<td>Barr</td>
<td>0.31</td>
<td>0.48</td>
<td>0.30</td>
<td>1</td>
<td>8</td>
<td>T & V granlågor, T & V lågor, T & V död ved tot., V stubbar, V granar fe</td>
</tr>
<tr>
<td>Rödlistade</td>
<td>0.32</td>
<td>0.71</td>
<td>0.55</td>
<td>1</td>
<td>7</td>
<td>T & V granlågor, T & V lågor, T & V död ved tot., V granstubbar</td>
</tr>
</tbody>
</table>

*a*R²X är variationen bland de förklarande variablerna (beståndsvariablerna) som används i modellen (dvs variationen i X-matrisen som förklaras av PLS-komponenterna). *b*R²Y är variationen i responsvariabeln (dvs artrikedom) som förklaras av modellen (dvs motsvarar den multipla korrelationskoefficienten, R²). *c*Q² är del av variationen i responsvariabeln (dvs artrikedom) som gör att förutsåga (dvs prediktionsförmågan eller “kors-validerad” R²Y). *d*Ncomp är antalet signifikanta komponenter. *e*Bara variabler med ett VIP (variable importance)-värde > 1.5 redovisas. Tecknet på PLS regressionskoefficienten för varje variabel redovisas (- för dem som är negativt korrelerade). Variablerna är ordnade efter deras betydelse i modellen och börjar med den viktigaste variabeln. Förkortningen T står för täthet (antal per hektar) och V står för volym per hektar. *f*Dessa variabler är beräknade utifrån skattnings gjorda i provytor (alla övriga variabler baseras på skattnings gjorda i bälten). *g*Stubbar avser både högstubbar och avverkningsstubbar.
Appendix 8. forts.

PLS med oberoende beståndsvariabler utvalda från faktoranalys

Resultaten från faktor-(PCA)-analysen av beståndsvariabler användes för att reducera antalet beståndsvariabler som användes i PLS-analysen. Area samt två variabler som representanter för de fyra första faktorerna (som var och en förklarade mer än 10% av variationen) och en variabel för faktorerna 5 och 6 valdes ut. På detta sätt erhölls sammanlagt 11 beståndsvariabler som representerade area samt sex relativt oberoende beståndsegenskaper (se Tabell 3).

Liksom i de tidigare PLS-analyserna var det svårt att generera starka modeller med hög prediktionsförmåga (Q^2; Tabell 8-3). Ofta var förklaringsgraden (R^2_Y) mycket högre än prediktionsförmågan (Q^2). I flera fall var det dessutom en liten skillnad mellan de observerade R^2_Y- och Q^2-värden och de värden som kunde generas genom slumpvis omblandning av Y-värdena (permutationstest). Men trots relativt låga Q^2-värden för modellerna för lavatar på lövträd, tickor på lövträdssläggor samt tickor på barrträdssläggor så var dessa värden alltid högre än de Q^2-värden som kunde erhållas av ren slump. Starka modeller kunde dock fortfarande genereras för rödlistade arter. Prediktionsförmågan var relativt hög ($Q^2=0.50$) och jämförbar med förklaringsgraden ($R^2_Y=0.63$). Dessa värden var dessutom alltid högre än de R^2_Y- och Q^2-värden som skulle kunnat erhållas av ren slump.
Appendix 8. forts.

Tabell 8-3. PLS (Partiell Least Squares)-regressions modeller genererade utifrån data över artrikedom och 11 beståndsvariabler* från 24 objekt i Gävleborgs län.

<table>
<thead>
<tr>
<th>Variabeler</th>
<th>R²ₓ</th>
<th>R²ᵧ</th>
<th>Q²</th>
<th>N_komp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lavar Tot.</td>
<td>0.19</td>
<td>0.62</td>
<td>0.23</td>
<td>1</td>
</tr>
<tr>
<td>Löv</td>
<td>0.20</td>
<td>0.66</td>
<td>0.33</td>
<td>1</td>
</tr>
<tr>
<td>Barr</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tickor Tot.</td>
<td>0.16</td>
<td>0.57</td>
<td>0.16</td>
<td>1</td>
</tr>
<tr>
<td>Löv</td>
<td>0.23</td>
<td>0.53</td>
<td>0.35</td>
<td>1</td>
</tr>
<tr>
<td>Barr</td>
<td>0.25</td>
<td>0.55</td>
<td>0.32</td>
<td>1</td>
</tr>
<tr>
<td>Rödlistade</td>
<td>0.25</td>
<td>0.63</td>
<td>0.50</td>
<td>1</td>
</tr>
</tbody>
</table>

*Urvalet av beståndsvariabler baserades på PCA-analysen (se Tabell 3). För var och en av de sex första PCA-faktorerna valdes den starkast korrelerade variablen. För de fyra första PCA-faktorerna valdes även en andra variablen. Denna representerade dock en annan skoglig företeelse än den första variablen.
⁶R²ₓ är variationen bland de förklarande variablarna (beståndsvariablarna) som används i modellen (dvs variationen i X-matrisen som förklaras av PLS-komponenterna).
⁶R²ᵧ är variationen i responsvariablen (dvs artrikedom) som förklaras av modellen (dvs motsvarar den multa korrelationskoeficienten, R²).
⁶Q² är del av variationen i responsvariablen (dvs artrikedom) som går att förutsäga (dvs prediktionsförmågan eller "kreoverad" R²Y).
⁶N_komp är antalet signifikanta komponenter.
⁶Bara variabler med ett VIP (variable importance)-värde > 1 redovisas. Tecknet på PLS regressionskoeficienten för varje variabel redovisas (- för dem som är negativt korrelerade). Variablerna är ordnade efter deras betydelse i modellen och börjar med den viktigaste variablen.
Förkortningen T står för tätthet (antal per hektar) och V står för volym per hektar. Volymerna avser alla trädf som en höjd ≥1.3 m inom inverterade provytor.
⁶Stubbar avser både högstubb och avverkningsstubbar.
Länsstyrelsens rapporter 2006

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006:1</td>
<td>Dagverksamheter inom äldreomsorgen i Gävleborgs län</td>
</tr>
<tr>
<td>2006:3</td>
<td>Karakterisering av avfall som ska till deponi – Resultat från tillsynskampanjen 2005</td>
</tr>
<tr>
<td>2006:4</td>
<td>Upplösningsmetod Giftfri miljö</td>
</tr>
<tr>
<td>2006:5</td>
<td>Regional åtgärdsplan för kalkningsverksamheten i Gävleborgs län 2005-2009</td>
</tr>
<tr>
<td>2006:6</td>
<td>Personligt ombud i Mellansverige – ombuden och deras arbete</td>
</tr>
<tr>
<td>2006:8</td>
<td>Fiskkyngel och undervattensvegetation i Långvind, Sörsundet och Harkskärstjärden i Gävleborgs län. En rapport från Miljöanalysenheten.</td>
</tr>
<tr>
<td>2006:10</td>
<td>Marin hårdbotteninventering sommaren 2005 i Gävleborgs län - Sörsundet, Gåsholma, Tupporna, Långvind</td>
</tr>
<tr>
<td>2006:11</td>
<td>Hur är det att vara chef inom äldreomsorgen i Gävleborg län?</td>
</tr>
<tr>
<td>2006:12</td>
<td>Bostadsmarknadsenkäten 2006 – Bostadsmarknaden och bostadsbyggandet i Gävleborgs län</td>
</tr>
<tr>
<td>2006:13</td>
<td>Proviske i Färnebofjärden - En inventering av fiskfaunan i syfte att finna asp</td>
</tr>
<tr>
<td>2006:14</td>
<td>Inventering av klöversobermal Anancampsis fuscella i Gävleborgs län 2005</td>
</tr>
<tr>
<td>2006:15</td>
<td>Inventering av rönnpraktbagge Agrilus mendax - återbesök på gamla lokaler och inventering av nya</td>
</tr>
</tbody>
</table>

Tryck: Länsstyrelsen Gävleborg
Rapportnr: 2006:29
ISSN: 0284:5954