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The resonant interaction between three waves in a uniform magnetized plasma is reconsidered.

Starting from previous kinetic expressions, we limit our investigation to waves propagating

perpendicularly to the external magnetic field. It is shown that reliable results can only be obtained

in the two-dimensional case, i.e., when the wave vectors have both x and y components. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4934938]

The theory for wave-wave interactions in plasmas has

up to now been developed during more than 50 years.

Almost all kinds of possible three-wave coupling phenomena

have thus been described in numerous papers. This theory

has many applications, for example, in laser-fusion research

(e.g., Ref. 1) and later also in ionospheric plasma studies

(e.g., Refs. 2–6). A previous review paper,7 with many refer-

ences to those early papers, covers the first 30 years of that

activity. Nonlinear plasma physics has however also flour-

ished during the recent two decades, and several complemen-

tary studies have thus been published, including quantum

properties, such as particle dispersive effects (e.g., Refs. 8

and 9) and/or degeneracy effects10 as well as bounded plas-

mas, e.g., Ref. 11. In addition, Yoon recently12 investigated

in detail the limit of one-dimensional wave propagation per-

pendicular to the external magnetic field. The purpose of the

present Brief Communication is to demonstrate that it is easy

to generalize the analysis to consider two-dimensional wave

propagation. This is a necessary prerequisite to reliable com-

parisons with future experiments.

The general case of three-wave interactions in a uniform

plasma situated in an external constant magnetic field B0ẑ

has been considered in many previous papers. The resonance

conditions for the frequencies xj (j¼ 1, 2, 3) and wavevec-

tors kj (j¼ 1, 2, 3) have then been supposed to be satisfied,

i.e., x3¼x1þx2 and k3¼k1þ k2. When calculating the

coupling coefficients, it turns out that they contain a common

factor V. It is therefore possible to write the three coupled

equations as (e.g., Refs. 7, 13, 14)

dW1;2

dt
¼ �2x1;2ImV (1)

and

dW3

dt
¼ 2x3ImV; (2)

where W ¼ e0E� � ð1=xÞ@ðx2eÞE is the wave energy, E is

the electric field amplitude, e is the usual textbook dielectric

tensor,15 and ImV stands for the imaginary part of V, where7

V ¼
X

s

m

ð
dvF0 vð Þ

X
p1 þ p2 ¼ p3

pj ¼ 0;61;62; :::

Ip1

1 Ip2

2 I�p3

3

� k1 � u1p1

x1d
u2p2
� u�3p3

þ k2 � u2p2

x2d
u1p1
� u�3p3

þ
k3 � u�3p3

x3d
u1p1
� u2p2

� ixc

x3d

k2z

x2d
� k1z

x1d

� �
u�3p3
� u1p1

� u2p2ð Þ

" #
: (3)

The index s denoting particle species has here been dropped for notational simplicity. Furthermore, F0 is the unperturbed ve-

locity distribution function, xc¼ qB0/m is the gyrofrequency, q the charge, m the mass, xjd¼xj� kjzvz� pjxc, Ij

ð¼expðihjÞÞ ¼ ðkjx þ ikjyÞ=kj?, and the velocity ujpj
satisfies

xjdujpj
þ ixcẑ � ujpj

¼ iq

mxj
xjdJpj

Ej þ vzEjz þ
pjxc

k2
j?

kj? � Ej?

� �
Jpj
þ iv?xc

k2
j?

ẑ � kj

� �
� Ej

d

dv?
Jpj

" #
kj

( )
; (4)

where Jpj
¼ Jpj

ðkj?v?=xcÞ denotes a Bessel function of order pj.

The electrostatic limit (where Ej¼�ikjUj) can be useful if we consider upper-hybrid waves, lower hybrid waves, or elec-

tron (or ion) Bernstein waves. In that case, Eq. (4) reduces to7
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ujpj
¼ qUj

mxjd 1� x2
c=x

2
jd

� � kj �
ixc

xjd
ẑ � kj �

x2
c

x2
jd

kjzẑ

 !
Jpj
:

(5)

Below we shall however not limit ourselves to the electro-

static case.

Letting kjz¼ 0 for j¼ 1, 2, 3, the last term in the expres-

sion (3) for V disappears. From now on, kj accordingly denotes

general two-dimensional vectors, i.e., kj ¼ kjxx̂ þ kjyŷ, with

magnitude kj ¼ ðk2
jx þ k2

jyÞ
1=2

, as is illustrated in Fig. 1. We

note that for perpendicular propagation, the velocity ujpj
will

either be induced by a wave mode with Ejz¼ 0, or by a wave

mode with Ej?¼ 0. This follows from linearized theory if we

assume zero net-drift along the magnetic field for all species

(i.e.,
Ð

dvvzF0ðvÞ ¼ 0), which we do here.

In the cold limit (see Ref. 13), on which we from now

on will focus our interest, we note that only the sums with

pj¼ 0 contribute. Hence, we have

V¼
X

s

mn0

k1 �u1

x1

u2 �u�3þ
k2 �u2

x2

u1 �u�3þ
k3 �u�3

x3

u1 �u2

� 	
;

(6)

where n0 is the number density. For the mode with Ejz¼ 0,

we find uj from

xjuj þ ixcẑ � uj ¼
iqEj?

m
; (7)

i.e.,

uj ¼
iq

m x2
j � x2

c

� � xjEj? þ ixcẑ � Ej?
� �

; (8)

whereas for the mode with Ej?¼ 0, we have

uj ¼
iqEjz

mxj
ẑ: (9)

Finally, for pedagogical reasons, we consider the case of

a one-component (electron) plasma. Using linear theory, we

express the coupling strengths explicitly in terms of wave

amplitudes rather than wave energies. Introducing the elec-

tric field amplitudes Ejl ¼ kj � Ej?=kj, the coupled equations

for three extra-ordinary waves are thus

dE3l

dt
¼ � 1

@Deo x3; k3ð Þ=@x3

CE1lE2l (10)

and

dE1;2l

dt
¼ 1

@Deo x1;2; k1;2ð Þ=@x1:2
CE3lE

�
2;1l; (11)

where

C ¼ qx1x2x3x2
c

mk1k2k3

k2
1

x1

K2 �K�3 þ
k2

2

x2

K1 �K�3 þ
k2

3

x3

K1 �K2

� 	
:

(12)

The dispersion function for the extra-ordinary mode is here

Deo xj; kjð Þ ¼
k2

j c2 x2
j � x2

p

� �
x2

j

� x2
j � k2

j c2
� �

x2
j � x2

h

� �
�x2

p x2
j � x2

p

� �h i
;

(13)

where c is the speed of light, xh ¼ ðx2
p þ x2

cÞ
1=2

is the upper

hybrid frequency, and xp is the plasma frequency. Finally,

the vectors Kj are

K1;2 ¼ k1;2 þ i
x1;2

xc
1�

x2
p

x2
1;2

 !
ẑ � k1;2 (14)

and

K3 ¼ k3 � i
x3

xc
1�

x2
p

x2
3

 !
ẑ � k3: (15)

The coupling coefficient C, defined by Eq. (12), can be writ-

ten explicitly by carrying out the scalar products, in which

case we obtain

C ¼ qx1x2x3

mk1k2k3

(
k2

3

x3

k1 � k2 x2
c � x1x2 1�

x2
p

x2
1

 !
1�

x2
p

x2
2

 !" #

þ ixck2
3 k1 � k2ð Þz 1�

x2
p

x1x2

 !
þ cycl: perm:

)
; (16)

where cycl. perm. stands for cyclic permutations of (x1,

x2, �x3) and (k1, k2, �k3). It is easy to see here that the

vector nonlinearities (the terms proportional to ðk1 � k2Þz
þ cycl: perm:) are in general of the same order of magni-

tude as the scalar nonlinearity terms (the terms proportional

FIG. 1. Schematic figure of the geometry of the problem. Since the magni-

tude of k3 can be varied independently of k1 and k2, by varying the angle

between k1 and k2, it is obvious that the frequency matching can be fulfilled.
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to k1 � k2 þ cycl: perm:), and thus it plays in general a sig-

nificant role in any estimate of coupling strength.

We note that in contrast to our previous case, if we

instead would have supposed that waves 1 and 2 were ordi-

nary modes with electric field amplitudes E1;2zẑ and wave 3

an extra-ordinary mode, the evolution of E1,2z would have

been governed by

dE1;2z

dt
¼ � q

2m

k3

x2;1
E3lE

�
2;1z: (17)

Here, we see that in contrast to our previous case, the cou-

pling strength has no explicit dependence on the angles

between the wave vectors.

The three wave coupling coefficients play a crucial role

for many nonlinear processes. In particular, they determine

the threshold values and growth rates for parametric instabil-

ities, see, e.g., Refs. 16 and 17 which constitute key ingre-

dients when studying nonlinear wave absorption. Moreover,

weak turbulence theories for plasma waves are typically con-

structed by summing over all resonant three wave processes

and applying the random phase approximation to eliminate

the phase dependence.18 In the present paper, we have

started from the general (but somewhat complicated) kinetic

expressions for the coupling strengths. Focusing on the low-

temperature limit with waves propagating perpendicularly to

the external magnetic field, we have derived simple formulas

for the coupling strengths between three extra-ordinary

modes which can be easily applied in concrete situations. A

related problem was recently considered in Ref. 12, where

the coupling strengths between three extra-ordinary modes

were computed. The results were used to construct a one-

dimensional weak-turbulence theory for extra-ordinary

modes. Our expression (16) generalizes the coupling strength

to the case where the wave-vectors of the interacting waves

are still perpendicular to the magnetic field but in general at

different angles. We note that the coupling strength given in

Eq. (12) shows an explicit dependence on the angles between

the wave vectors. Our result is thus a prerequisite to the con-

struction of a two-dimensional theory of wave turbulence,

based on the random phase approximation. For illustrative

purposes, we have also commented on the coupling strength

when two of the interacting modes are ordinary waves and

one wave is an extra-ordinary mode. In this case, the cou-

pling coefficient does not depend on the propagation direc-

tion of the waves.
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