Molecular-level Simulations of Cellulose Dissolution by Steam and SC-CO$_2$ Explosion

FARANAK BAZOOGAR

Department of Chemical and Biological Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2014

Swedish Centre for Resource Recovery

UNIVERSITY OF BORÅS

Borås, Sweden, 2014
Molecular-level Simulations of Cellulose Dissolution by Steam and SC-CO2 Explosion

FARANAK BAZOYAR

© FARANAK BAZOYAR, 2014.

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie nr 3739
ISSN 0346-718X

Department of Chemical and Biological Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Sweden
Telephone + 46 (0)31-772 1000

Skrifter från Högskolan i Borås, nr 51
ISSN 0280-381X

University of Borås
SE-501 90 Borås
Sweden
Telephone + 46 (0)33-435 4000

Cover: Changes in the cellulose crystal structure during steam explosion at 250 °C and 39.7 bar.

Printed by Chalmers Reproservice
Gothenburg, Sweden 2014
Molecular-level Simulations of Cellulose Dissolution by Steam and SC-CO$_2$ Explosion

Faranak Bazooyar

Department of Chemical and Biological Engineering
Chalmers University of Technology

Swedish Centre for Resource Recovery
University of Borås

ABSTRACT

Dissolution of cellulose is an important but complicated step in biofuel production from lignocellulosic materials. Steam and supercritical carbon dioxide (SC-CO$_2$) explosion are two effective methods for dissolution of some lignocellulosic materials. Loading and explosion are the major processes of these methods. Studies of these processes were performed using grand canonical Monte Carlo and molecular dynamics simulations at different pressure/temperature conditions on the crystalline structure of cellulose. The COMPASS force field was used for both methods.

The validity of the COMPASS force field for these calculations was confirmed by comparing the energies and structures obtained from this force field with first principles calculations. The structures that were studied are cellobiose (the repeat unit of cellulose), water–cellobiose, water-cellobiose pair and CO$_2$-cellobiose pair systems. The first principles methods were preliminary based on B3LYP density functional theory with and without dispersion correction.

A larger disruption of the cellulose crystal structure was seen during loading than that during the explosion process. This was seen by an increased separation of the cellulose chains from the centre of mass of the crystal during the initial stages of the loading, especially for chains in the outer shell of the crystalline structure. The ends of the cellulose crystal showed larger disruption than the central core; this leads to increasing susceptibility to enzymatic attack in these end regions. There was also change from the syn to the anti torsion angle conformations during steam explosion, especially for chains in the outer cellulose shell. Increasing the temperature increased the disruption of the crystalline structure during loading and explosion.

Keywords: Molecular modelling, Cellulose, Steam explosion, SC-CO$_2$ explosion
LIST OF PUBLICATIONS

This thesis is based on the following papers which are referred by roman numerals in the text:

Publication by the author that is not included in this thesis:

Contribution to the Publications

Faranak Bazooyar’s contributions to the appended papers:

Paper I: FB performed all calculations and wrote the first draft of the paper.

Paper II: FB performed all calculations and wrote the first draft of the paper.

Paper III: FB performed all calculations and wrote the first draft of the paper.

Paper IV: FB performed the molecular mechanics calculations and wrote the first draft of the paper. The first principles calculations were performed by Dr. Martin Bohlén.

Paper V: FB performed all calculations and wrote the first draft of the paper. First principles calculations were performed by Dr. Martin Bohlén.

Faranak Bazooyar’s contributions to the out of scope papers:

1 FB performed first principle calculations.
Table of Contents

1 Introduction.. 1
 1.1 Biofuels from lignocellulosic materials... 1
 1.2 Lignocellulosic materials... 2
 1.2.1 Lignin... 2
 1.2.2 Hemicellulose... 3
 1.2.3 Cellulose... 3
 1.3 Pretreatment methods of lignocellulosic materials.. 6
 1.3.1 Steam explosion... 7
 1.3.2 SC-CO₂ explosion... 8
2 Computational Methods... 10
 2.1 Quantum Mechanics.. 10
 2.1.1 Born-Oppenheimer approximation... 11
 2.1.2 Hartree-Fock approximation.. 11
 2.1.3 Post-Hartree-Fock methods... 14
 2.1.4 Density Functional Theory (DFT)... 14
 2.2 Molecular Mechanics... 17
 2.2.1 COMPASS force field... 18
 2.2.2 Dreiding force field... 19
 2.2.3 Universal force field.. 20
 2.3 Molecular Dynamics.. 20
 2.4 Monte Carlo... 21
3 Summary of Papers I-V.. 24
 3.1 Papers I & II... 24
 3.2 Paper III.. 30
 3.3 Paper IV... 35
 3.3.1 H₂O-cellulbiose pair... 36
 3.3.2 CO₂-cellulbiose pair... 38
 3.4 Paper V... 40
 3.4.1 Effect of temperature.. 43
 3.4.2 Effect of pressure... 44
4 Conclusions and Outlook... 47
 Future work... 49
 Acknowledgments.. 50
 References... 51
Paper I
Paper II
Paper III
Paper IV
Paper V
1 Introduction

One of the main concerns in the last few decades is substitution of fossil fuels by an appropriate and renewable energy supply. More than 80% of the world’s energy demand is produced from fossil fuels like oil, natural gas and coal [1]. Rapid growth of global population, limitation, depletion and high price of fossil fuels as well as climate changes due to emission of greenhouse gases, mainly due to using these fuels, have promoted the motivation of finding new sources. Several techniques have been developed to utilize lignocellulosic feedstock in biofuel production. Dissolution of cellulose is an important but difficult step in biofuel production from lignocellulosic materials (biomass). Steam and supercritical carbon dioxide (SC-CO₂) explosion are two effective pretreatment methods for this purpose. Loading and explosion are the major processes of these methods.

In this thesis, a molecular-level simulation study of these processes was performed using grand canonical Monte Carlo and molecular dynamics simulations at different temperature/pressure conditions on the crystalline structure of cellulose. The COMPASS force field was used in both methods.

1.1 Biofuels from lignocellulosic materials

Lignocellulosic biomass is a potential feedstock to substitute fossil fuels and is known as a good source for biofuels like biogas (bio-methane) and bioethanol (cellulosic ethanol). It is known as the most abundant organic material in the biosphere [2]. Besides the economic benefits of converting lignocellulosic biomass to biofuels, its sustainability and lower environmental impacts [3] have made it as a favoured feedstock. These materials can be provided in large-scale from inexpensive natural resources such as agricultural plant wastes, non-edible plant materials, paper pulp and industrial and municipal waste materials. Depending on the availability of feedstock, different materials are supplied in different areas [4]. An initial LCA analysis shows that, compared to gasoline, the use of sugar-fermented ethanol and bioethanol can reduce about 18-25% and 89% emission of greenhouse gases, respectively [5].

Production of bioethanol from lignocellulosic materials covers two main steps: hydrolysis and fermentation. During the hydrolysis, cellulose and hemicellulose of lignocellulosic biomass is decomposed by means of enzymes or chemicals to fermentable reducing sugars by
cutting the glycosidic linkages between glucose units. During the fermentation step microorganisms like yeasts or bacteria reduce the sugars to ethanol [4].

However, the bottleneck of the process is recalcitrance of lignocellulosic materials that hinders enzymatic hydrolysis; first due to presence of lignin that covers cellulose and hemicellulose and second because of high crystallinity of cellulose structure. These problems can be solved by adding a pretreatment step. Distillation and dehydration processes help to purify the produced bioethanol [6]. Figure 1 illustrates a very simple view of these processes.

![Flowchart](image)

Figure 1- Simple view of different steps in bioethanol production from lignocellulosic materials.

1.2 Lignocellulosic materials

The main components of lignocellulosic biomass are lignin, hemicellulose and cellulose. Lignin and hemicellulose are in non-crystalline phase, where microfibrils of cellulose are ordered in crystalline phase. Inter-linkages (via glycosidic, esteric or etheric linkages) between lignin and hemicellulose as well as cellulose, give stiffness to the lignocellulosic structure [7]. Proteins, coumaric acid, ferulic acid and other polysaccharides such as pectin also can be found in the non-crystalline phase [8]. The relative quantities of these components varies in different feedstock [9].

1.2.1 Lignin

Lignin is an amorphous, three-dimensional branched polymer complex. It is an aromatic-containing hydrocarbon polymer mainly consisting of phenyl-propanes that gives stiffness to the structure of lignocellulosic materials, holds polysaccharides together and supports the structure against swelling [10]. Lignin is covalently linked to cellulose, directly or through a bridging molecule like hydroxycinnamate. Most covalent bonding between lignin and cellulose are ester-ether cross links [11].
1.2.2 Hemicellulose

Hemicellulose, which fills the empty spaces between cellulose microfibrils, has a random, amorphous and branched structure. It is not rigid and can be hydrolyzed easily [12]. Hemicellulose is a polymer containing five and six-carbon sugars (mostly substitute with acetic acid) and uronic acid. Common five-carbon sugars in hemicellulose are D-xylose and L-arabinose, and the six-carbon sugars are D-galactose, D-glucose, and D-mannose. About 25-30% of total dry wood weight is hemicellulose [13].

1.2.3 Cellulose

Cellulose, the main structural part of plant cells and biomass, is a linear polymer of β-1,4 D-glucose repeat units. Cellulose is known as the most abundant organic material worldwide that can be found not only in all plants, primitive and unicellular creatures such as bacteria, algae, etc., but in some parts of animal world like horse-tail and tunicin. Table 1 shows the different amounts of cellulose in some living cells [14].

<table>
<thead>
<tr>
<th>Living cells</th>
<th>Cellulose content %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bark</td>
<td>20-30</td>
</tr>
<tr>
<td>Wood</td>
<td>40-50</td>
</tr>
<tr>
<td>Bamboo</td>
<td>40-50</td>
</tr>
<tr>
<td>Ramie</td>
<td>80-90</td>
</tr>
<tr>
<td>Cotton</td>
<td>95-99</td>
</tr>
<tr>
<td>Bacteria</td>
<td>20-30</td>
</tr>
<tr>
<td>Horse-tail</td>
<td>20-25</td>
</tr>
</tbody>
</table>

The properties of cellulose motivate its use in a variety of applications. Due to the excellent strength of cellulose, its applications in synthesized composites have been increasing; because of its flexibility, it is the main material in paper manufacturing; and its good tensile properties have increased its usage in textile fibres [15].

Cellulose is synthesized in the cell´s plasma membrane [16]. Native cellulose is structured in fibrils with a high degree of polymerization. In general, these fibrils are known as microfibrils and each microfibril consists of numbers of cellulose chain or elementary fibril and a mixture of hemicelluloses which covered its surface [16]. Cellulose chains are stabilized via van der Waals and hydrogen bonds that give strength and crystalline structure to the elementary fibrils. Depending on the source of cellulose, the number and dimension of
the microfibrils varies. The diameter of the microfibrils in plants cell walls is about 3-10 nm. However, in Valonia (an alga), Acetobacter xylinum (bacteria) and Ramie it is 18-20, 2 and 10-20 nm, respectively [17].

Four types of cellulose allomorphs have been identified: cellulose I, II, III and IV. Cellulose I is the main type of cellulose in nature which can be found in two forms, \(I_\alpha\) and \(I_\beta\). Cellulose II is the result of mercerization of cellulose I. Cellulose III is produced by treating cellulose I and II with amines such as liquid ammonia. Cellulose IV is the product of treating cellulose I, II, III with glycerol at high temperature. Cellulose \(I_\alpha\) and \(I_\beta\) have different crystalline forms. \(I_\alpha\) contains a single-chain triclinic unit cell, while \(I_\beta\) is in the form of two-chain monoclinic unit cell [18].

There are several reports of experimental, modelling and biological studies that identified cellulose microfibril structures [16, 19-21]. These studies show that different plant cell walls have different crystalline structures. In most of the proposed models, cellulose is assumed to organize the crystalline core structure that interacts with hemicellulose which forms the noncrystalline sheath.

Figure 2 shows four proposed crystal structures for plant cell walls of cabbage and onion (a), pineapple (b), apple cell walls (c) and Italian raygrass (d).

![Figure 2](image-url)
Figure 2. Order of cellulose chains in cabbage and onion (a), pineapple (b), apple cell wall (c) and Italian raygrass (d) cell walls.

Model (a) shows the order of 18 cellulose chains in cabbage and onion, containing 33% crystalline core chains (i.e., the chains that are not on the surface) while model (b) belongs to pineapple cell wall with 22 cellulose chains, containing 36% crystalline core chains [21]. The models for apple cell walls (c) and Italian raygrass (d) contain 23 and 28 cellulose chains with about 39 and 43% of core crystallinity, respectively. It is believed that the crystalline part of cellulose may be affected by the non-cellulosic materials present in the cell. Due to
the wide variety of non-cellulosic materials in different plants, the crystallite cellulose can have different dimensions [16, 19, 21].

The studies presented in this thesis are based on a new model proposed for cellulose I\textsubscript{\textbeta} by Ding and Himmel in 2006 [16, 22]. In their model 36-cellulose chains are arranged in three layers as shown in Figure 3(a). Six crystalline core chains are surrounded by 12 sub-crystalline chains and 18 non-crystalline chains support them in the outer layer, in which the chains are fixed by hydrogen bonds (O3\textprime-O5 and O2-O6\textprime).

![Diagram](image1)

Figure 3. Illustration of a cellulose microfibril containing 36 cellulose chains (a), numbering of the cellulose chains in the crystalline structure of cellulose (b), cellobiose (\textit{syn}) (c) and glucose (d) molecules.

Each cellulose chain is a linear polymer of \textbeta-1,4 D-glucose repeat units. Cellobiose is the shortest cellulose chain with two glucose repeat units. These structures are shown in Figures 3 (c) and (d).

Two conformers are known for cellobiose: \textit{syn} and \textit{anti}. Figures 3(c) and 4 show the \textit{syn} and \textit{anti} conformer of cellobiose. Numbering of atoms of cellobiose \textit{anti} is also showed in Figure 4; \(\phi_H\) is torsion angle between atoms H1-C1-O-C4\textprime. In the \textit{anti} conformer, \(\phi_H\) either \(\psi_H\) (C1-O-C4\textprime-C5\textprime) lies near -180\(^\circ\) [23].
Figure 4. Numbers of atoms in the anti conformation of cellobiose, showing the non-reducing and reducing ends.

The anti conformer can be found in vacuum where the syn is generally found in hydrated environment and in crystalline structure. However, due to entropic effects, at elevated temperatures the syn conformer is preferred in both vacuum and hydrated environments [23-25]. This is discussed in Paper I.

1.3 Pretreatment methods of lignocellulosic materials

As mentioned, the most important part of lignocellulosic materials for biofuel production is its hemicellulose and cellulose content. However, in the plant cell wall, lignin has bolstered cellulose and hemicellulose in a way that access of enzymes to these molecules is tough. The pretreatment step is an essential issue in biofuel production process to increase the accessibility of enzymes to cellulose chains by increasing the accessible surface area by removing the lignin from the surface of microfibrils and decreasing the crystallinity of cellulose crystals or dissolving the cellulose. Several methods have been developed for this purpose. Selection of the best pretreatment method should be based on several features such as effectiveness of the method for the chosen feedstock to increase the digestibility of the components, avoid to produce inhibitors, process economic issues and the environmental impact [26].

Four main pretreatment methods for lignocellulosic materials have been identified. These methods are classified as biological, physical, chemical and physico-chemical pretreatment.
The main goal of biological pretreatment is degrading of lignin. Microorganisms such as some bacteria, and fungi such as white-, brown- and soft-rot fungi can degrade lignin and make hemicellulose more soluble. However, the rate of cellulose dissolution is slow [27].

Physical pretreatment includes different methods such as milling (ball milling, hammer milling, vibro energy milling, colloid milling and two-roll milling), ultrasound and irradiation methods (gamma-ray, electron-beam and microwave irradiation), hydrothermal methods, expansion, extrusion and pyrolysis to reduce the particle size and crystallinity [26, 28].

During chemical pretreatment, several chemicals such as sodium hydroxide, ammonia, sulphuric acid, phosphoric acid, sulphur dioxide, hydrogen peroxide and ozone are used to disrupt biomass structure through chemical reactions [26, 29].

The most important processes of physico-chemical pretreatment are steam explosion, ammonia fiber explosion (AFEX), N-Methylmorpholine N-oxide (NMMO), supercritical carbon dioxide (SC-CO₂) explosion, SO₂ explosion and liquid hot-water pretreatment [26-29].

A brief description of steam and SC-CO₂ explosion methods that are studied in this thesis can be found in the following sections.

1.3.1 Steam explosion

Steam explosion was developed by Mason in 1925 [30], and Babcock used it as a pretreatment method for bioethanol production in 1932 [31]. This method is a successful and economical method with low environmental impact that can be applied for pretreatment of several types of lignocellulosic biomass. Steam explosion is the most effective pretreatment method in commercial production of bioethanol from feedstock such as wheat straw [32].

Steam explosion pretreatment includes two main steps, steaming (steam loading) and explosion. During steaming step the lignocellulosic material is subjected to high pressure saturated steam. It is followed by a pressure drop to atmospheric pressure called the explosion step. The process helps to remove, depolymerise and dissolve lignin and hemicellulose into lower molecular-weight products as well as reduces the size and crystallinity of the cellulose structure.
Several experimental studies have investigated the effect of temperature-pressure and retention time during steam explosion of different feedstock such as aspen wood, sweet sorghum, wheat straw and hardwood chips. It is believed that during pretreatment the crystalline structure of cellulose becomes disordered by disruption of the ordered cellulose chains in the crystal. This increases the surface area and enhances the accessibility to enzymes that leads to more effective hydrolysis. Typically, an increase in temperature-pressure and/or residence time increases the disruption of the cellulose structure. Optimum conditions of temperature-pressure and retention time of the steam explosion procedure differ for different types of feedstock [32-40].

1.3.2 SC-CO\textsubscript{2} explosion

Among the supercritical fluids [41], supercritical carbon dioxide (SC-CO\textsubscript{2}) is known as a green solvent for dissolving lignocellulosic biomass during biofuel production that was proposed by Zheng in 1995 [42]. CO\textsubscript{2} has a low critical temperature and pressure (31.1 °C and 1067 psi) and higher temperature and pressure give the CO\textsubscript{2} gas like mass transfer, liquid like solvating power and low viscosity characteristics [36, 43]. SC-CO\textsubscript{2} is economical, non-flammable, non-toxic, environmental friendly and easy to recycle [44]. In pulping production process, SC-CO\textsubscript{2} explosion enhances the penetration of chemicals. SC-CO\textsubscript{2} explosion has been widely used for treating different materials like corn stover, switchgrass, aspen, rice straw, southern yellow pine (SYP), cellulose-containing waste from cotton production, cotton fibre, Avicel and wheat straw [36, 45-53].

Experiments show that lignocellulosic materials answer to SC-CO\textsubscript{2} pretreatment differently. For example, the method is effective for Avicel and increases the glucose yield by 50% while pine wood does not show significant changes in its microstructure arrangement during SC-CO\textsubscript{2} pretreatment [42, 53].

Several experimental studies have worked on SC-CO\textsubscript{2} pretreatment with and without explosion for different feedstock at different conditions (temperature, pressure and residence time). For instance, temperature/pressure/residence time combinations of 40-110 °C/1450-4350 psi/15-45 min, 25-80 °C/1100-4000 psi/60 min, 160-210 °C/2900 psi/60 min, 80-160 °C/2900 and 3500 psi/10-60 min and 112-165 °C/3100 psi/10-60 min have been used for treatment of rice straw, bagasse, switch grass, corn stover and aspen and SYP, respectively [36, 46, 49, 52, 53]. Similar to steam explosion, SC-CO\textsubscript{2} explosion consists of two steps. In
the first step, the material is subjected to high temperature and pressure CO\textsubscript{2} (above its critical temperature and pressure) and in the second step, the pressure drops to atmospheric pressure rapidly. SC-CO\textsubscript{2} explosion helps in removing, dissolving and depolymerisation of lignin and hemicellulose into lower molecular-weight products as well as reduction of the crystallinity of the cellulose structure.

The effect of increasing temperature and pressure has been studied for some feedstock. While increasing temperature has been generally known as an effective parameter during this pretreatment [47, 52], pressure effect has been reported differently for different materials. It is believed that high pressure facilitates penetration of the fluid into the pores of the biomass. Studies of the effect of increasing temperature by Zheng et al. [52] showed that pretreatment of Avicel with subcritical CO\textsubscript{2} at 25 °C gave small yields of glucose whereas raising the temperature to 35°C increased it significantly. According to Narayanaswamy et al. [49], increasing pressure from 2500 to 3500 psi doubles the yield from corn stover compare to non-treated material, while increasing pressure from 3100 to 4000 psi shows negative effects for aspen [53].

Most of the experimental SC-CO\textsubscript{2} pretreatments use specific amount of water. It is believed that the presence of moisture during SC-CO\textsubscript{2} increases the enzymatic hydrolysis [52]. For example, dry lignocellulosic materials like aspen and SYP show no significant hydrolysis yield; but the presence of water between 40-73% increases the sugar yield [53]. There are some reasons for the positive effect of presence of water, like formation of weak carbonic acid due to reaction of water and CO\textsubscript{2} which consequently hydrolyses some parts of hemicelluloses surrounding cellulose, breaking up cellulose-hemicellulose hydrogen bonds and the hydrogen bonds between cellulose microfibrils. Water also causes swelling of the biomass and prepares the material for more penetration of CO\textsubscript{2} into the pores of biomass. Enzymes are also more active in microaqueous environments [49, 51, 52].
2 Computational Methods

Computational studies complement experimental studies. Computational chemistry or molecular modelling uses a set of theories and techniques to solve chemical problems like molecular energies and geometries, transition states, chemical reactions, spectroscopy (IR, UV and NMR), electrostatic potentials and charges on a computer. Connection between theory and experiment helps to have a better understanding of vague and inconsistent results, optimization of design or progress of chemical processes and prediction of the results of difficult or dangerous experiments. However computational chemistry techniques are expensive and models cannot be computed accurately and need some approximations.

Computational chemistry is based on classical and quantum mechanics and covers a wide range of areas like statistical mechanics, cheminformatics, semi-empirical methods, molecular mechanics and quantum chemistry. Various methods have been developed to study the structures and the energies of molecules, either using quantum mechanics or molecular mechanics. Due to its cost, quantum mechanics can be used for small molecules or systems containing with a good accuracy while molecular mechanics can be applied to larger systems containing thousands of atoms [54].

In the following paragraphs a brief description of the methods that have been used in this thesis is given.

2.1 Quantum mechanics

Quantum mechanics describes the behaviour of the electrons mathematically and describes electron density using a wave function, \(\Psi(r) \). Quantum mechanics is based on the time-independent Schrödinger equation (Eq.1):

\[
H(r) \Psi(r) = E(r) \Psi(r) \tag{Eq. 1}
\]

where \(H(r) \) is the Hamiltonian operator, \(\Psi(r) \) is the wave function and \(E(r) \) is the total energy (kinetic and potential) of the system and \(r \) denotes the nuclear and electronic positions [55, 56]. When no external field is present, the Hamiltonian operator is given by factors related to interaction of electrons, interaction of nuclei and interaction between electrons and nuclei according to Eq. 2:
\[H(r) = -\frac{\hbar^2}{2m_{el}} \sum_i \nabla_i^2 + \frac{1}{2} \sum_i \sum_{j \neq i} \frac{e^2}{|r_i - r_j|} - \sum_{i,l} \frac{e^2 Z_i}{|r_i - R_l|} - \frac{\hbar^2}{2M_i} \sum_i \nabla_i^2 + \sum_{l,k} \frac{e^2 Z_i Z_k}{|R_k - R_l|} \] \hspace{1cm} \text{Eq. 2}

where the terms describe kinetic energy of electrons, the electrostatic potential between electrons \(i\) and \(j\), the electrostatic potential between electron \(i\) and nucleus \(l\), the kinetic energy of nucleus \(l\), and the electrostatic potential between nuclei \(l\) and \(k\), respectively [47].

Quantum mechanics has very accurate prediction of a single atom or molecule, but practically can solve equations for systems containing one electron like hydrogen atom. Systems with \(M\) atoms and \(N\) number of electrons have \(3 \times (M + N)\) variables, and solving the Schrödinger equation for such systems needs some approximations [57].

2.1.1 Born-Oppenheimer approximation

The Born-Oppenheimer approximation [58] is one of the most fundamental approximations in chemistry that decouples the motions of electrons and the nuclei. Compared to electrons, nuclei are very heavy and the Born-Oppenheimer approximation considers the nuclei as fixed particles and implies that the electronic wave function is dependent on the nuclei position but independent of nuclei momenta. In this case the Schrödinger equation will be for electrons [47, 54]:

\[H(\text{el}) \Psi(\text{el}) = E(\text{el}) \Psi(\text{el}) \] \hspace{1cm} \text{Eq. 3}

where the Hamiltonian operator is:

\[H(r) = -\frac{\hbar^2}{2m_{el}} \sum_i \nabla_i^2 + \frac{1}{2} \sum_i \sum_{j \neq i} \frac{e^2}{|r_i - r_j|} - \sum_{i,l} \frac{e^2 Z_i}{|r_i - R_l|} \] \hspace{1cm} \text{Eq. 4}

and the total potential energy of the molecule is calculated according to Eq. 5:

\[E_{\text{total}} = E_{(\text{el})} + \sum_{l,k} \frac{e^2 Z_i Z_k}{|R_k - R_l|} \] \hspace{1cm} \text{Eq. 5}

2.1.2 Hartree-Fock approximation

The Hartree-Fock approximation [47, 54-56] is a useful approximation for the many-electron Schrödinger equation that gives a correct picture of electron motions by considering the electrons as independent particles.
The Hartree-Fock approximation describes the electrons as orbitals, limited to molecular orbitals (MO), Ψ.

$$\Psi=\psi_1\psi_2\psi_3...\psi_N \quad \text{Eq. 6}$$

where ψ_i is single-electron orbitals.

It is assumed that electrons move within an average field of all the other electrons and that the total wave function can be written in the form of a single determinant called the Slater-determinant (SD).

Considering the antisymmetry principle (Pauli Exclusion Principle) \[59, 60\], the N-electron wave function is defined as a product of N one-electron wave functions, $\psi_i(i)$. The Slater-determinant creates molecular orbitals (MO) as a linear combination of atomic orbitals (LCAO).

$$\Psi = \Phi_{\text{SD}} = \frac{1}{\sqrt{N!}} \begin{vmatrix} \psi_1(1) & \psi_2(1) & \cdots & \psi_N(1) \\ \psi_1(2) & \psi_2(2) & \cdots & \psi_N(2) \\ \vdots & \vdots & \ddots & \vdots \\ \psi_1(N) & \psi_2(N) & \cdots & \psi_N(N) \end{vmatrix} \quad \text{Eq. 7}$$

Atomic orbitals are linear combinations of a set of basis functions (ϕ) known as basis sets:

$$\psi(r) = \sum_k C_k \phi_k (r) \quad \text{Eq. 8}$$

where C_k is the wave function’s coefficient.

In principle, an exact molecular orbital can be achieved by choosing a complete basis set and if the basis set is large enough, this could be a fairly accurate approximation \[61\]. Two main basis sets that are developed for calculating the molecular orbitals are Slater type orbitals (STO) and Gaussian type orbitals (GTO) \[47, 56\].

The mathematical description of a Slater type orbital (STO) is given in Eq. 9:

$$\eta_{\text{STO}} = Nr^{n-1}e^{-\zeta r}Y_{lm}(\theta, \phi) \quad \text{Eq. 9}$$
where N is a normalization factor, n is the quantum number, ζ corresponds to the orbital exponent, r is the radius and Y_{lm} describes the angular part of the function. However, Gaussian type orbitals (GTO) is given as the mathematical form in Eq. 10:

$$\eta^{GTO} = N x^l y^m z^n e^{-\alpha r^2} \tag{Eq.10}$$

where N is a normalization factor, α corresponds to the orbital exponent, r is the radius and l, m, n are quantum numbers such that $L = l + m + n$ gives the angular momentum of η. A linear combination of Gaussian functions or “Contracted Gaussians” (CGs) in the form of STO-MG are widely used that approximate Slater-type orbitals (STOs) by M primitive Gaussians (GTOs). STO-3G is called a “minimal basis set”, that is simplest possible atomic orbital that has the lowest basis functions.

Extending the basis sets is possible by adding the double zeta, triple or quadruple zeta to the basis sets, so that the set of functions are doubled, tripled or quartet. Split-valence basis sets apply two or three more basis functions to each valence orbital. Addition of polarization (*) and diffusion (+) functions to the basis sets can extend the basis sets even more. Polarization functions add orbitals higher in energy than the valence orbitals of each atom, e.g., adding the p-functions for hydrogen or d-functions for the first-row elements of the periodic table. Diffusion functions allow the electrons to be distributed far from the ionic positions. This function is useful for description of systems where the electrons need to move far from nuclei, like anions [62].

Hartree-Fock is a molecular orbital approximation that gives a set of coupled differential equations but cannot explain the correlation between electrons. It gives good description for many equilibrium geometries in the ground state but cannot describe thermochemistry where bonds are broken or formed. Using adequate basis sets, Hartree-Fock wave function can predict 99% of the total energy where the 1% remaining energy belongs to correlation interactions between electrons. The post-Hartree-Fock methods and Density Functional Theory (DFT) are useful methods that give more flexibility to Hartree-Fock methods. The so-called second-order Møller-Plesset model (MP2) is a commonly used method that describes thermochemistry where bonds are broken or formed [56].
2.1.3 Post-Hartree-Fock methods

Configuration interaction (CI) [63] and Møller-Plesset (MP) [64] are two of the useful methods that improve the flexibility of the Hartree-Fock through mixing the ground-state wave functions with excited-state wave functions. They also give a good description of electron correlations. However they are more expensive than Hartree-Fock methods. The correlation energy (E_C) is the difference between the real energy of the molecule and the energy calculated by Hartree-Fock methods.

$$E_C = E_{\text{real}} - E_{HF} \quad \text{Eq. 11}$$

MP methods are based on perturbation theory. Simply, the Møller-Plesset model mixes ground-state and excited-state wave functions together, i.e. when MP2 is applied, one or two electrons from occupied orbitals in the Hartree-Fock configuration will move to the unoccupied orbitals (excited state) to calculate the contribution to the correlation energy. Different orders of MP methods give different description of electronic structures. If MP0 considers electron repulsion in one molecular orbital, MP1 can be regarded as the Hartree-Fock wave function, considering an average of inter-electronic repulsions [64]. Higher orders of MP by addition of more functions can improve the calculations and give more accurate correlation energies but require large computational resources. MP2 methods account for ~80-90% of the correlation energy, while higher orders of MP like MP3 and MP4 account for ~90-95% and ~95-98%, respectively [56, 65].

2.1.4 Density Functional Theory (DFT)

DFT [47, 66] is first principles method based on the electron density $\rho(r)$, Eq. 12,

$$\rho(r) = N_{el} \int \cdots \int |\Psi_0(r_1, r_2, \ldots, r_{N_{el}})|^2 \, dr_2 \ldots dr_{N_{el}} \quad \text{Eq. 12}$$

where N_{el} denotes the total number of electrons.

The idea of DFT theory was born in the late 1920s by Thomas-Fermi model, but the density functional theory as we know it today was introduced in the contributions by Hohenberg-Kohn (1964) and Kohn-Sham (1965). DFT methods can be applied to larger systems than the post-Hartree-Fock methods. Hohenberg and Kohn showed that properties and the ground
state energy of a system can be defined solely by the electron density [67]. In DFT method, energy functional can be calculated as Eq. 13:

$$E[\rho(r)] = \int V_{\text{ext}}(r)\rho(r)dr + F[\rho(r)]$$ \hspace{1cm} \text{Eq. 13}$$

where $V_{\text{ext}}(r)$ is the external potential due to the Coulomb interaction between electrons and nuclei, and $F[\rho(r)]$ is kinetic energy of the electrons and the energy obtained from interaction of electrons. The problem with this definition was that the function $F[\rho(r)]$ was not clear; one year later Kohn and Sham extended the equation to Eq. 14:

$$F[\rho(r)] = E_{\text{KE}}[\rho(r)] + E_H[\rho(r)] + E_{\text{XC}}[\rho(r)]$$ \hspace{1cm} \text{Eq. 14}$$

in which $E_{\text{KE}}[\rho(r)]$ is kinetic energy of non-interacting electrons, $E_H[\rho(r)]$ is Coulombic energy between electrons and $E_{\text{XC}}[\rho(r)]$ is the energy due to exchange and correlation. The kinetic energy of non-interacting electrons, $E_{\text{KE}}[\rho(r)]$, can be obtained according to Eq. 15:

$$E_{\text{KE}}[\rho(r)] = \sum_{i=1}^{N} \int \psi_i(r) \left(-\frac{\nabla^2}{2} \right) \psi_i(r) dr$$ \hspace{1cm} \text{Eq. 15}$$

$E_H(\rho(r))$ or Hartree electrostatic energy, which is the electrostatic energy due to interaction between charge densities, is given in Eq. 16:

$$E_H[\rho(r)] = \frac{1}{2} \iint \frac{\rho(r_1)\rho(r_2)}{|r_1 - r_2|} dr_1 dr_2$$ \hspace{1cm} \text{Eq. 16}$$

Considering the Coulomb interaction between electrons and nuclei, $V_{\text{ext}}(r)$, Eq. 13 can be written as:

$$E[\rho(r)] = \sum_{i=1}^{N} \int \psi_i(r) \left(-\frac{\nabla^2}{2} \right) \psi_i(r) dr + \frac{1}{2} \iint \frac{\rho(r_1)\rho(r_2)}{|r_1 - r_2|} dr_1 dr_2 + E_{\text{XC}}[\rho(r)] - \sum_{A=1}^{M} \int \frac{Z_A}{|r - R_A|} \rho(r) dr$$ \hspace{1cm} \text{Eq. 17}$$

where M is the number of ions in the system.

The exchange-correlation functional, $E_{\text{XC}}[\rho(r)]$, is developed by several approaches. The simplest one is the Local Density Approximation (LDA) [47, 68, 69] which states that exchange-correlational energy is only affected by the local electron density and is given by Eq. 18:

$$E_{\text{XC}}[\rho(r)] = \text{...}$$ \hspace{1cm} \text{Eq. 18}$$
\[E_{XC}^{LDA}[\rho(r)] = \int \rho(r) \varepsilon_{XC}(\rho(r)) dr \]
\text{Eq. 18}

\(\varepsilon_{XC}(\rho) \) can be obtained from simulations of a homogeneous electron gas.

Adding electron spins \(\alpha \) and \(\beta \) to Eq. 18 yields a modified version of LDA called Local Spin Density approximation (LSD):

\[E_{XC}^{LSD}[\rho(r)] = \int \rho(r) \varepsilon_{XC}(\rho_\alpha(r)\rho_\beta(r)) dr \]
\text{Eq. 19}

An improved method beyond LDA is Generalized Gradient Approximation (GGA) [47, 70] which includes both local electron density and the gradient of the charge density. The gradient term shows the rate of density changes and is known as non-local functional.

\[E_{XC}^{GGA}[\rho(r)] = \int f(\rho(r)), |\nabla \rho(r)| dr \]
\text{Eq. 20}

PW91 [71] and PBE [70] are two general GGA functionals. Further improvement to the GGA is possible by including a certain amount of Hartree-Fock (HF) exchange. These functionals are known as hybrid functionals [72]. One of the most popular functionals, that has been used in the calculations presented here, is B3LYP (Becke three-parameter exchange and the Lee–Yang–Parr correlation functionals) [73-76] that includes LSD, Hartree-Fock and Becke (B) exchange functionals and LSD and Lee-Yang-Parr (LYP) correlation functionals [47]:

\[E_{XC}^{B3LYP} = (1-a)E_{X}^{LSD} + aE_{X}^{HF} + bE_{X}^{B} + dE_{C}^{LYP} + (1-d)E_{C}^{LSD} \]
\text{Eq. 21}

\(a, b \) and \(d \) are equal to 0.2, 0.72 and 0.81, respectively; the values are fitted to the empirical data like atomization energies, ionization potentials and proton affinities.

Nowadays, Kohn-Sham-DFT is one of the most common methods for calculating electronic structures of molecules in quantum chemistry, but one of the main challenges for DFT is its deficiency to find a correct description of dispersion interactions for long-range van der Waals forces. Many approaches have been proposed for the inclusion of dispersion interactions [77-79] [67]. One of the useful methods is DFT-D with B3LYP and PBE functionals that was developed by Grimme:

\[E_{DFT-D} = E_{DFT} + E_{disp} \]
\text{Eq. 22}
where E_{disp} is an empirical dispersion correction including an energy term of the $\frac{1}{R_{ij}}$:

$$E_{\text{disp}} = -s_6 \sum_{i=1}^{N-1} \sum_{j=i+1}^N c_{6}^{ij} \frac{1}{R_{ij}} f_{\text{damp}}(R_{ij})$$

Eq. 23

N is the number of atoms, c_{6}^{ij} is the dispersion coefficient for ij atom pair, s_6 is the global scaling factor that depends on the DFT method and R_{ij} is the distance between atoms i and j.

When the sum of van der Waals radii is R_v, the damping function is given by:

$$f_{\text{damp}}(R_{ij}) = \frac{1}{1 + e^{-d(R_{ij}/R_v - 1)}}$$

Eq. 24

In this thesis, the DFT-D method has been used in the Papers IV and V.

2.2 Molecular Mechanics

Molecular mechanics (MM) is widely used for conformational analysis. It is less accurate but more economical than quantum mechanics methods and can be applied to large systems like organic materials (oligonucleotides, hydrocarbons and peptides) and in some cases to metallo-organics and inorganics. In molecular mechanics, there is no reference to electrons and molecules are considered as a collection of balls joined by springs; the energy of a system (Eq. 25) caused by the geometry of the molecules in terms of a sum of contributions of bonding (stretching, bending, torsion and inversion) and non-bonding (electrostatic and van der Waals) energies between atoms [80, 81].

$$E_{\text{total}} = E_{\text{str.}} + E_{\text{bend.}} + E_{\text{tors.}} + E_{\text{inv.}} + E_{\text{el.}} + E_{\text{vdW}}$$

Eq. 25

These energy terms are illustrated in Figure. 5:

Figure 5 - Schematic view of contributions of stretching, bending, torsion, inversion and non-bonding energies in a molecule
Molecular mechanics uses a set of mathematical functions that are so-called force fields to describe the potential energy of molecular systems, thus generally molecular mechanics methods denoted as force field methods [56, 65]. The parameters of force field functions are fitted to both quantum mechanics and empirical data to describe entire types of atoms in the molecules; hence the choice of the molecular model and the force field is an essential step in prediction of the geometry and conformation of the molecules. Several groups of force fields have been developed for this purpose; classical force fields, second-generation force fields, special-purpose force fields and rule-based force fields are main groups of force fields [82].

Molecular mechanics employs one or more minimization method to find the local minima on the potential energy surface (PES). Steepest descent [83], conjugate gradient [84] and Newton-Raphson [85] are a number of well-known algorithms that are mostly used by molecular mechanics to find the geometry of the structure related to the local minima [65].

Three force fields, COMPASS, Dreiding and Universal that are applicable for polymers have been used in this thesis and will be discussed briefly. The COMPASS force field belongs to second-generation force fields while Dreiding and Universal (UFF) fit in the Rule-based force fields.

2.2.1 COMPASS force field

COMPASS (Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies) [86] is an *ab initio* force field that is based on the PCFF (Polymer Consistent Force Field) [87]. The COMPASS force field gives good prediction of geometry, conformational, vibrational, and thermophysical properties of a broad range of molecules, especially polymers in both isolation and condensed phases [88].

The COMPASS force field potential energy expression is given in Eq. 26. The first four terms account for bond stretch, angle bend, out-of-plane torsion and out-of-plane wag energies, terms five to ten are for cross-coupling and the last two terms show electrostatic interactions and van der Waals energies, respectively.
\[E_{total} = \sum_b \left[K_2(b - b_0)^2 + K_3(b - b_0)^3 + K_4(b - b_0)^4 \right] + \sum_\theta \left[K_2(\theta - \theta_0)^2
+ K_3(\theta - \theta_0)^3 + K_4(\theta - \theta_0)^4 \right] + \sum_\varphi \left[K_1(1 - \cos \varphi)
+ K_2(1 - \cos 2\varphi) + K_3(1 - \cos 3\varphi) \right] + \sum_x K_2 \gamma^2 \\
+ \sum_{b,b'} K(b - b_0)(b' - b'_0) + \sum_{b,\theta} K(b - b_0)(\theta - \theta_0) \\
+ \sum_{b,\varphi} K(\theta - \theta_0)(\theta' - \theta'_0) \cos \varphi \\
+ \sum_{b,\varphi} K(b - b_0)[K_1 \cos \varphi + K_2 \cos 2\varphi + K_3 \cos 3\varphi] + \sum_{b,\varphi} K_1(\theta - \theta_0)[K_1 \cos \varphi + K_2 \cos 2\varphi + K_3 \cos 3\varphi] \\
+ \sum_{i,j} Q_i Q_j / R_{ij} + \sum_{i,j} \epsilon_{ij} [2(R_e / R_{ij})^9 - 3(R_e / R_{ij})^6] \]

Eq. 26

\(b, \theta, \varphi \) and \(\gamma \) are bond length, angle, torsion angle and out-of-plane wag or inversion angle, respectively, \(Q_i \) and \(Q_j \) are atomic charges and \(R_{ij} \) is the interatomic separation. Parameters of \(b_0 \) and \(\theta_0 \) are equilibrium values and \(K \) and \(K_1 - K_3 \) are constants. However parameters for the intramolecular terms as well as the atomic charges have been fit to ab initio data, and those for the intermolecular terms are fit to empirical data [86, 89].

2.2.2 Dreiding force field

The Dreiding force field [90] has been fitted to biological, organic and some inorganic molecules where atomic hybridization has been considered when fitting the parameters and force constants. The Dreiding force field calculates the potential energy by considering bonded energy i.e., bond stretch, angle bend, out-of-plane torsion and inversion (out-of-plane wag angle), and non-bonded energy i.e. electrostatic interactions, the Van der Waals interactions and hydrogen bond energies. For calculation of bond stretch energy, in some applications harmonic functions can be replaced by Morse functions that are more accurate [91, 92]. The van der Waals interactions are based on the Lennard-Jones potential. Hydrogen bond energy is calculated according to Eq. 27:

\[E_{Hb} = D_e [5(R_e / R_{DA})^{12} - 6(R_e / R_{DA})^{10}] \cos^4(\theta_{DHA}) \]

Eq. 27
D_e is the energy for bond dissociation; R_e is equilibrium distance and R_{DA} is the length between electron donor and acceptor atoms. θ_{DHA} is the bond angle between atoms A, D and H (hydrogen) [90].

2.2.3 Universal force field

The Universal force field (UFF) [91] is a biological force field which can cover the entire elements of the periodic table. This force field is reasonably precise for geometry estimation and energy calculation of organic conformers, metal complexes and organo-metallic molecules. The Universal energy expressions are the sum of bonding and non-bonding energies. Like Dreiding, both harmonic oscillator and Morse functions can be used for calculation of bond stretch energy. Angular bend is given by General Fourier extension and inversion term is according to Cosine Fourier expansion. Non-bond interactions are introduced as van der Waals (Lennard-Jones potential) and electrostatic interaction [91].

In brief, molecular mechanics is a rapid and simple force field based method that can be applied for systems comprising several thousand atoms but is limited to finding particular conformation in equilibrium state. However, it is not able to explain the transition state and time evolution of the system.

2.3 Molecular Dynamics

Molecular dynamics focuses on molecules in motion through the study of nuclear motions by step-by-step solving the Newton’s equation of motion (Eq. 28) to calculate the trajectory of all atoms [55, 65, 93]:

$$F_i = m_i \frac{d^2r_i(t)}{dt^2} \quad \text{Eq. 28}$$

where F_i is the force acting on particle i at time t, m_i is the mass of the particle and r_i is the position vector of i th particle. The trajectories show the position, velocity and acceleration of the particles in the system under a period of time. Choosing an adequate time step is needed to have an acceptable time evolution. A too short time step is very expensive and covers a limited phase space, but a big time step makes the system unstable and leads to errors. In molecular dynamics, parameters like positions, velocities and also accelerations are often approximated as Taylor expansion (Eq. 29) and (Eq. 30) using time step δt:
\[r_i(t + \delta t) = r_i(t) + \delta t v_i(t) + \frac{\delta t^2}{2} a_i(t) + \cdots \quad \text{Eq. 29} \]
\[v_i(t + \delta t) = v_i(t) + \frac{\delta t}{2} [a_i(t) + a_i(t + \delta t)] + \cdots \quad \text{Eq. 30} \]

\(r_i \) shows the position, \(v_i \) stand for velocity and \(a_i \) is acceleration of particle \(i \). An integrator is needed to project the trajectory over a small time step \(\delta t \) [93]. There are several integrators for this purpose like the Verlet, Verlet leap frog, Gear fixed time step, Gear variable time step, Runge-Kutta, and Gauss-Radau algorithms [94]. The Verlet algorithm (Eq. 31) is a time-reversible algorithm [95] that, because of its simplicity and stability, is a widely used integration algorithm:

\[r_i(t + \delta t) = 2r_i(t) - r_i(t - \delta t) + \frac{F(t)}{m} \delta t^2 \quad \text{Eq. 31} \]

and the velocity will be:

\[v_i(t) = [r_i(t + \delta t) - r_i(t - \delta t)]/2\delta t \quad \text{Eq. 32} \]

In brief, in MD simulation, calculating time evolution is performed by numerically integrating Newton’s equation of motion for interacting atoms.

Molecular dynamics describes the potential energy of molecules by using an appropriate molecular mechanics force field. Choosing an ensemble such as NVT, NpT or NVE will identify which parameters are constant during the simulation. NVT keeps the number of particles, volume and temperature constant, while in NpT the number of particles, pressure and temperature remain unchanged and in NVE as well as the number of particles and volume, energy is kept constant too. NVT, NpT and NVE ensembles have been used in this thesis for study of steam and SC-CO\(_2\) explosion.

\section*{2.4 Monte Carlo methods}

Monte Carlo (MC) is a stochastic method based on probabilities, where random numbers are used to create a sequence of possible configurations.

In the MC methods, the particles can be positioned, for example, by transition between points, or random insertion-deletion of particles. The new conformations are then accepted or
rejected according to some filter. Many states are generated, and the energy of each conformation is calculated, often using a molecular mechanics force field.

However random numbers decide how atoms or molecules move to generate new conformations or geometric arrangements. In other words, configurations are chosen randomly and then their impact is weighted with \(\exp(-\Delta E/k_B T) \), where \(\Delta E \) is the energy difference between two configuration, \(k_B \) is Boltzman constant and \(T \) is temperature.

Metropolis method is a development of Monte Carlo method [96]. According to this method, configurations are chosen with a probability distribution of \(\exp(-\Delta E/k_B T) \) and then weighted equally.

Simply, if \(i \) is the configuration of a system of particles, the Metropolis Monte Carlo algorithm generates a new configuration \(j \) with a transition probability of \(P(i \rightarrow j) \):

\[
P(i \rightarrow j) = \exp(-\Delta E_{ij}/k_B T) \quad \text{Eq. 33}
\]

where \(\Delta E_{ij} \) is the energy difference between configuration \(i \) and \(j \). If the energy of the new configuration \(j \) is lower than the old one \(i \), i.e., \(\Delta E_{ij} \leq 0 \), the new configuration \(j \) is accepted for the new positioning; but if \(j \) has a higher energy than \(i \) or \(\Delta E_{ij} > 0 \), \(P(i \rightarrow j) \) is compared to a random number \(\zeta \) where \(0 < \zeta < 1 \); if \(P(i \rightarrow j) > \zeta \), the new configuration is accepted, otherwise \(j \) is rejected and a new configuration is generated [55, 56, 65, 97].

Metropolis Monte Carlo is a faster method with high quality of the statistics that ensures that accepted structures have a Boltzmann distribution. However, the magnitude of the particle displacements should be selected carefully, since a small change in displacement leads to high acceptance, but is a slow procedure. However big change is faster but the probability of acceptance is lower and the number of sampled configurations is few [56].

Grand canonical Monte Carlo (GCMC) simulation is an appropriate tool to, for example, study physical interactions of fluids with solid systems. An example is when one simulates a solid sorbent phase and a liquid or gas phase at equilibrium with a specified chemical potential [98].

In grand canonical Monte Carlo, which has a partition function denoted by \(\Xi (\mu, V, T) \), the volume, temperature and chemical potential are conserved. The system is open and the
numbers of particles are allowed to fluctuate by discontinuously creating new particles and destroying them during the simulation. This helps to minimize ergodic difficulties of the system.

In the grand canonical ensemble, the probability of a configuration \(m \), is given by Eq. 34:

\[
\rho_m = CF(\langle N \rangle_m) \exp[-\beta E_m]
\]

where \(C \) is an arbitrary normalization constant, \(\beta = \frac{1}{k_B T} \), \(E_m \) is the total energy of configuration \(m \), and the function \(F(N) \) is calculated by Eq. 35:

\[
F(N) = \left(\frac{(\beta f)^N}{N!} \right) e^{-\beta N \mu}
\]

where, \(f \) is the fugacity, \(\mu \) is the intramolecular chemical potential and \(N \) is the loading of the component. Probability of accepting the proposed configuration \(n \) is then calculated according to Eq. 36:

\[
P_{mn} = \min\left[1, \frac{F(N)_n}{F(N)_m} e^{-\beta (E_n - E_m)} \right]
\]
3 Summary of Papers I-V

Molecular–level studies of dissolution of crystalline structure of cellulose during steam and supercritical carbon dioxide (SC-CO$_2$) were performed using grand canonical Monte Carlo and molecular dynamics. For both simulations, COMPASS force field was used. The validity of this force field for these systems was tested by comparing the energy and structures obtained from quantum and molecular mechanics. These studies are presented in Papers I to V.

Quantum mechanics calculations were performed in the GAUSSIAN 09 program package at Neolith, AKKA and C3SE, and GAMESS-US program at the high performance computer cluster Kalkyl at UPPMAX. Molecular mechanics, Monte Carlo and molecular dynamics calculations were performed using the Materials Studio package version 6.0 (Accelrys Software Inc).

3.1 Papers I & II

Paper I presents the results from the COMPASS, Dreiding and Universal force fields for studies of cellulose systems. These force fields are widely used for studies of polymeric systems. The validity of the force field is tested by comparing structures and energies obtained by the force fields with data obtained from first principles calculations. The use of first principles methods requires that the comparison is limited to small systems of importance to cellulose, and we therefore focus on glucose and cellobiose molecules as well as their interaction with water molecules. The results indicate that the COMPASS force field is preferred over the Dreiding and Universal force fields for studying dissolution of large cellulose structures.

Figure 6 illustrates the annealed structure of cellobiose obtained from each of the three force fields, as well as the corresponding structures obtained after B3LYP/6-311++G** minimization. Similar structures are obtained after geometry optimization with the other DFT and MP2 calculations. It is clear that the annealed (and first principles optimized) cellobiose structure depends on the force field used for the annealing. The annealed structures obtained from COMPASS did not show significant change during the subsequent optimization with the first principles methods. For example, when performing geometry optimization with B3LYP/6-311++G** the bond lengths changed by less than 0.02 Å and the change in bond
angle was less than 2 degrees. The cellobiose structure obtained from Dreiding shows a larger change during the subsequent optimization with DFT (where an OH group rotates). Cellobiose structures obtained from Universal also show large changes during DFT geometry optimization. Together with the relative energies of the first principles methods discussed below with respect to Table 2, this indicates that the COMPASS force field yields the preferred cellobiose structures.

![Cellobiose molecular structures](image)

Figure 6- Cellobiose molecular structures (top and side view) obtained after annealing with the COMPASS, Dreiding and Universal force fields (upper three figures) and after further geometry optimization with B3LYP/6-311++G**.

The three force fields yield different structures for the cellobiose molecule. Figure 6 also shows that there is a large difference in the cellobiose structures obtained from the different force fields. Dreiding and Universal force fields yield syn structures whereas COMPASS yields an anti structure. The torsions are $\varphi_H = 30.1^\circ$ (φ_H is defined in Figure 4) for the Dreiding force field, $\varphi_H = 51.4^\circ$ for the Universal force field and $\varphi_H = -179^\circ$ for the COMPASS force field. More structural details like torsion angles that exemplify differences in the structures can be found in appended Papers I and II.
Relative energies of the cellulose molecules that were optimized using the different quantum mechanics methods and basis sets are listed in Table 2. The energies in columns 3, 4 and 5 are obtained when the initial glucose structure is from the COMPASS, Dreiding and Universal force fields, respectively.

Table 2: Relative energies (kcal/mol) for the cellobiose molecule obtained after geometry optimization with the first principles methods. Energies are given relative to the results obtained when the initial structure is from the COMPASS force field. † These results are from MP2/6-311++G**//B3LYP/6-311++G** calculations.

<table>
<thead>
<tr>
<th>Method</th>
<th>Basis-set</th>
<th>Initial structure from COMPASS</th>
<th>Initial structure from Dreiding</th>
<th>Initial structure from Universal</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP2</td>
<td>6-311G</td>
<td>0.0</td>
<td>10.3</td>
<td>11.7</td>
</tr>
<tr>
<td></td>
<td>6-311G**</td>
<td>0.0</td>
<td>9.3</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>6-311++G**</td>
<td>0.0</td>
<td>7.7</td>
<td>8.2</td>
</tr>
<tr>
<td>B3LYP</td>
<td>6-311G</td>
<td>0.0</td>
<td>8.6</td>
<td>11.0</td>
</tr>
<tr>
<td></td>
<td>6-311G**</td>
<td>0.0</td>
<td>6.9</td>
<td>11.6</td>
</tr>
<tr>
<td></td>
<td>6-311++G**</td>
<td>0.0</td>
<td>5.1</td>
<td>5.0</td>
</tr>
<tr>
<td>PBE</td>
<td>6-311G</td>
<td>0.0</td>
<td>9.3</td>
<td>11.5</td>
</tr>
<tr>
<td></td>
<td>6-311G**</td>
<td>0.0</td>
<td>7.3</td>
<td>12.3</td>
</tr>
<tr>
<td></td>
<td>6-311++G**</td>
<td>0.0</td>
<td>5.4</td>
<td>6.2</td>
</tr>
<tr>
<td>B3PW91</td>
<td>6-311G</td>
<td>0.0</td>
<td>8.7</td>
<td>10.7</td>
</tr>
<tr>
<td></td>
<td>6-311G**</td>
<td>0.0</td>
<td>6.8</td>
<td>11.1</td>
</tr>
<tr>
<td></td>
<td>6-311++G**</td>
<td>0.0</td>
<td>5.2</td>
<td>5.7</td>
</tr>
</tbody>
</table>

Table 2 also shows that all methods and basis sets yield the lowest energy for the cellobiose structure that was obtained from annealing using the COMPASS force field. There is a rather large energy difference between the structures obtained from the various force fields. For example, the B3LYP/6-311++G** energy from the COMPASS structure is 5.1 and 5.0 kcal/mol lower than the structures obtained from the Dreiding and Universal force fields, respectively.

This conclusion is also supported by comparing the energies of the structures optimised by B3LYP. The energies of the cellobiose structures that are geometry optimised using B3LYP and when starting with structures obtained after annealing with the COMPASS, Dreiding and Universal force fields are \(-814729.84\), \(-814724.72\) and \(-814724.83\) kcal mol\(^{-1}\), respectively. Hence, the cellobiose structure obtained from the COMPASS force field not only has a structure that is in good agreement with B3LYP, but it is also the energetically preferred structure.
Similar results were obtained for glucose structures. All first principles methods and basis sets yield the COMPASS structure as the lowest energy structure that can be found in the original appended Paper. This indicates that COMPASS is the preferred force field when studying the glucose and cellobiose molecule.

Since the COMPASS force field is preferred, it was used in a more detailed comparison for the cellobiose molecule hydrated with between 0 and 4 water molecules. The comparison was made with relative energies and structures calculated using the B3LYP/6-311++G** method that were initially geometry optimized using AMB02C empirical force field. The COMPASS force field yields results for cellobiose that are in excellent agreement with these DFT results. The quantitative agreement seen for cellobiose deteriorates as more water molecules are added to the system.

According to previous studies, the syn conformers have a larger entropy contribution than the anti conformers, and may therefore be thermodynamically stable at higher temperatures. MD simulations at various temperatures under NpT conditions at 1 bar showed that at very low temperatures (e.g., 100 K) the conformer that is observed in the simulations depends on the initial cellobiose structure; i.e., the syn (anti) conformer is seen when starting with the syn (anti) structure since the energy barrier for isomerization has not been passed within the simulation time. However, this is not the case for higher temperatures.

Figure 7 shows the distribution of ϕ_H when the cellobiose (in vacuum) initially had a syn conformation and the temperature is 298 K. The data shown in the figure were obtained from the last part of the simulation, once the syn had isomerized to anti. Note that the same results were obtained at 325 K, and in neither case did the anti revert back to the syn. Hence, at these temperatures the anti conformer is thermodynamically stable.
Figure 7- Torsion distribution, ϕ_H, of cellobiose in vacuum at 298 K when the initial structure is syn.

Figure 8 shows that the anti conformation remains in this conformation at 298 K, which is expected since this is the thermodynamically stable structure. However, at 375 K there are peaks in the distribution that belong to both anti and syn conformations. It is important to note that multiple barrier crossings occur, i.e., many anti ↔ syn isomerisation occur in the simulation time) showing that both parts of coordinate space are sampled at this temperature. As expected, the same behaviour is found at even higher temperatures, with the fraction of time spent in the syn conformation increasing with temperature. This trend does not depend on which initial conformer is used.

Figure 8- Torsion distribution, ϕ_H, of cellobiose in vacuum at 298K and 375 K when the initial structure is anti.
The distributions of ϕ_H for cellobiose in bulk water at 1 bar and 100, 298, 350 and 475 K are shown in Fig. 9.

![Torsion distribution, ϕ_H, of cellobiose in bulk water at 100, 298, 350 and 475 K, when the initial structures are syn (left) and anti (right).]

Figure 9- Torsion distribution, ϕ_H, of cellobiose in bulk water at 100, 298, 350 and 475 K, when the initial structures are syn (left) and anti (right).

The COMPASS force field was also used to study the binding strength between two parallel glucose and two parallel cellobiose molecules. This binding strength is expected to be important when dissolving cellulose in a pretreatment process. The glucose-glucose and cellobiose-cellobiose structures obtained from annealing with the COMPASS force field are
shown in the left column of Figure 10, and the structures after further geometry optimisation with B3LYP/6-311++G** are shown in the right column. There is very little change in the structure after geometry optimisation. For example, the glucose-glucose and cellobiose-cellobiose centre of mass distances are 5.16 and 4.52 Å after annealing, and they change to 5.36 and 4.31 Å after geometry optimisation. The glucose-glucose and cellobiose-cellobiose binding energies are 13 and 29 kcal mol\(^{-1}\) according to the COMPASS force field and 14 and 41.6 kcal mol\(^{-1}\) according to B3LYP/6-311++G**. Hence, both methods yield strong binding between the molecules, indicating the COMPASS force field will produce valid mechanisms and trends when studying the formation and breaking of glucose-glucose and cellobiose-cellobiose intermolecular bonds.

The COMPASS force field was also used to study the interaction of glucose-glucose and cellobiose-cellobiose pairs with a water molecule (which is important for cellulose dissolution in water and steam explosion). More details of these calculations will be given in the summary of results of Paper IV.

3.2 Paper III

Molecular-level studies of dissolution of the crystalline structure of cellulose during steam explosion were performed at (100 °C, 1.0 bar), (160 °C, 6.2 bar), (210 °C, 19.0 bar) and (250 °C, 39.7 bar). These studies were based on the grand canonical Monte Carlo and molecular dynamics methods.
Figure 11 illustrates the change in the crystal structure after steam explosion at 250 °C and 39.7 bar. These changes are quantified below.

Figure 11- Illustration of the changes in the cellulose crystal structure during steam explosion at 250 °C and 39.7 bar.

Separation of the center of mass of each chain from the center of mass of the crystal for the initial structure and after the steaming simulations is presented in Figure 12. The figure reveals that there is substantial disruption of the crystal structure during the steaming stage at all (temperature, pressure) pairs, and an increase in temperature and pressure leads to a larger distortion.

Figure 12- Separation of the center of mass of each chain in the outer shell from the center of mass of the crystal for the initial structure (t=0) and after the steaming simulations at (100 °C, 1.0 bar), (160 °C, 6.2 bar), (210 °C, 19.0 bar) and (250 °C, 39.7 bar). The chain numbers are according to Figure 3.

Figure 13 shows the distance of the centers of mass of the chains from the center of mass of the crystal after steaming and after explosion (NpT) at 1 bar and constant temperature. As expected, there is no change in the center of mass separations at the (100 °C, 1 bar) combination. This is because these conditions were used for both the steaming and explosion
simulations. The results are included here since they confirm that the system has equilibrated during steaming and there are therefore no further changes during the subsequent simulation.

![Figure 13](image)

Figure 13- Separation of the centres of mass of outer shell chains from the centre of mass of the crystal after steaming (red dashed line) and after explosion at 1 bar and constant temperature (solid blue line). The four panels show results at different temperatures.

Similar to the change in the crystal structure during steaming, an increase in temperature and pressure leads to a larger disruption of the cellulose crystal structure during explosion. Also, although not shown in the figure (for the sake of clarity), the change in center of mass separation is largest for the chains in the outer shell compared to those in the core region. That is, the central cellulose chains (13-18) show very small changes compared to many of the chains in the outer shell (1-12). For example, the absolute value of the change in centers of mass of chains 1-12 during the explosion stage at (250 °C, 39.7 bar) is, on average, 1.9 Å, whereas for the chains in the core it is 0.8 Å.
Figure 14 shows the same results as those discussed with reference to Figures 13, but where the explosion simulations, starting with one of the structures obtained from steaming at (250 °C, 39.7 bar), are performed using NVE molecular dynamics with a volume 26 times larger than that used for steaming.

![Figure 14](image)

Figure 14 Same as Figure 13 but using NVE with the large box to simulate the explosion stage.

The figure shows that there is very little change in the centers of mass of the chains when performing the explosion simulations under constant energy conditions. Hence, it is the constant temperature, and not the drop in pressure, that caused the change in centers of mass during the NpT simulations. Since experimental explosion is performed under NVE conditions (but where the final pressure is 1 bar), the results obtained here indicate that most of the disruption of the crystal structure occurs during the steaming stage.

The change in radius of gyration for each chain as a function of its change in center of mass during explosion at 250 °C and 1 bar is shown in Figure 15. The results are typical for all initial structures and (temperature, pressure) pairs.
Figure 15- Change in radius of gyration for each chain as a function of its change in centre of mass during explosion at 250 °C and 1 bar. The lines are best-fit straight lines to the core chains (dashed line), the chains in the outer shell (thin solid line) and all eighteen chains (thick solid line).

Although all three curves show a trend of decreasing change in radius of gyration with increasing change in centre of mass, there is a large scattering (the R-squared values are 0.42, 0.24 and 0.27 for each of the fits, respectively). This means that there is no statistically relevant correlation between the change in radius of gyration of each chain and its change in centre of mass.

The change in separation between the non-reducing end of a chain in the outer shell and the same end of the neighbouring core chain is shown in Figure 16.

Figure 16- Change in the separation of centre of mass of the non-reducing end (non-Red.), the O-link in the centre of each chain and reducing end (Red.), between the outer chains and their neighbouring inner chains. The results are for steaming (red) and NpT explosion (blue) at 250 °C.

The figure reveals that there is larger disruption at the ends of the chains than at the middle during both steaming and explosion. It should also be noted that the values in the figure are
averages over all outer chains, and that some chain ends are separated by as much as 16.1 Å from the neighboring inner chain ends. Hence, after steaming and explosion the ends of the crystalline elementary fibrils are more accessible to enzymatic attack than other regions of the fibril.

At the beginning of the simulations all torsion angles in the chains in the crystal structure are syn. There was significant change from syn to anti conformation during the steaming and NpT explosion simulations. For example, after steaming at (250 °C, 39.7 bar) ~15.7% and ~9.9% of the torsions in the chains in the outer shell and core chains were anti, respectively. The corresponding numbers at (160 °C, 6.2 bar) were ~17.1% and ~7.4%. Explosion at 250 °C resulted in a further increase to ~21.4% for chains in the outer shell and ~14.4% in the core chains, whereas NpT explosion at 160 °C did not lead to a large increase in the percent of anti torsions (~17.9% for chains in the outer shell and ~9.1% in the core chains). These trends are typical for all structures and temperatures, and show that the chains in the outer shell, which also showed the largest change in center of mass motion, change more readily to anti torsions than the confined chains in the core region. In addition, a larger percentage of torsions change to the anti conformer at the higher temperatures and pressures and there is no significant correlation between the changes in percent anti conformer in a chain with its change in center of mass.

3.3 Paper IV

Computational studies of water and carbon dioxide interactions with a pair of cellobiose molecules was performed using the B3LYP/6-311++G** and Grimme’s dispersion correction. This study yields information on cellobiose-cellobiose bonding mechanisms and interactions between an H$_2$O or CO$_2$ with the cellobiose pair that can give a deeper understanding of the steam and SC-CO$_2$ explosion mechanisms.

The goal of this study is to determine if the CO$_2$ molecule yields significantly different low energy structures compared to when the H$_2$O interacts with the cellobiose pair and to investigate the relative importance of the inter-cellobiose hydrogen and van der Waals bonding and how this may differ between the H$_2$O and CO$_2$ complexes.
3.3.1 H$_2$O-cellobiose pair

Figure 17 shows the relative energies, ΔE, of the 90 unique H$_2$O-cellobiose pair local minimum energy structures, ordered according to relative energies obtained from the DFT with dispersion correction (DFT-D) calculations. These structures were initially geometry optimized with the COMPASS force field. The energies are relative to the DFT-D energy of the lowest energy structure. The lowest energy structure obtained from DFT-D also has the lowest DFT energy (i.e., when dispersion corrections are not included).

![Figure 17](image)

Figure 17- Relative energies (in kcal/mol) of local minimum H$_2$O-cellobiose pair structures obtained from DFT-D and DFT.

The Figure 17 shows that the energy difference between the high and low energy structures is ~25 kcal/mol within the DFT-D series and ~15 kcal/mol within the DFT series. This difference between the change in DFT-D and DFT energies is due to the extra stability that the dispersion contributes to the low energy structures. The dispersion correction yields DFT energies that are ~50 kcal/mol lower in energy than the DFT results.

Structures that have low energy consist of cellobiose molecules that are parallel to each other and where the glucose units on one of the molecules lie directly above the glucose units on the second molecule. This maximises the number of hydrogen bonds (which is between 5 and 7 in the low energy structures) and the van der Waals energy. Structures with intermediate energies consist of cellobiose molecules that lie parallel to each other, but the cellobiose molecules are shifted relative to each other that result in fewer hydrogen bonds (3-5) and reduced van der Waals attraction. In the structures with the highest energies, the cellobiose molecules have almost no overlap of the glucose units. There are only 1 or 2 hydrogen bonds and the van der Waals interactions are far weaker.
Figure 18- Lowest energy H$_2$O-cellobiose pair structure obtained from DFT-D. The H$_2$O molecule is shown in blue.

Figure 18 shows the lowest energy structure obtained from DFT-D. There are six hydrogen bonds in this structure that are between O3--H-O2', O6--H-O6', H-O4--O1', O4--H-O1', O1'--H--O3 and O6'--H--O6, where the first number in each bond is for Cellob.1 and the second for Cellob.2. The H$_2$O molecule is attached to the cellobiose pair by two hydrogen bonds in the minimum energy structure. The distance between centre of masses of the H$_2$O and Cellob.2 is 5.63 Å. The intermolecular energy between the H$_2$O and the cellobiose pair is -15.5 kcal/mol.

Table 3 represents DFT-D intermolecular energies ($E_{\text{inter-pair}}$) and the dispersion correction energies (E_{disp}) in kcal/mol for some structures shown in Figure 17.

<table>
<thead>
<tr>
<th>Structure No.</th>
<th>$E_{\text{inter-pair}}$</th>
<th>E_{disp}(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-51.5</td>
<td>-17.8 (35)</td>
</tr>
<tr>
<td>6</td>
<td>-46.8</td>
<td>-18.5 (40)</td>
</tr>
<tr>
<td>14</td>
<td>-51.2</td>
<td>-17.6 (34)</td>
</tr>
<tr>
<td>37</td>
<td>-42.2</td>
<td>-20.8 (49)</td>
</tr>
<tr>
<td>40</td>
<td>-27.4</td>
<td>-11.2 (41)</td>
</tr>
<tr>
<td>46</td>
<td>-38.2</td>
<td>-14.6 (38)</td>
</tr>
<tr>
<td>48</td>
<td>-33.0</td>
<td>-20.3 (62)</td>
</tr>
<tr>
<td>78</td>
<td>-34.6</td>
<td>-16.7 (48)</td>
</tr>
<tr>
<td>82</td>
<td>-29.4</td>
<td>-18.6 (63)</td>
</tr>
<tr>
<td>86</td>
<td>-12.6</td>
<td>-9.7 (77)</td>
</tr>
<tr>
<td>88</td>
<td>-13.8</td>
<td>-4.4 (32)</td>
</tr>
<tr>
<td>90</td>
<td>-17.3</td>
<td>-6.3 (36)</td>
</tr>
</tbody>
</table>

Table 3 represents DFT-D intermolecular energies ($E_{\text{inter-pair}}$) and the dispersion correction energies (E_{disp}) of cellobiose-cellobiose pairs in kcal/mol for some structures of Figure 17. It is evident that the intermolecular energy decreases with increasing structure number i.e. when relative energy increases. The dispersion contributions to the inter-celllobiose energies and the
non-dispersion contribution typically decrease or get weaker as the structures become less stable or relative energies increase. There is no clear trend of the percentage contribution increasing or decreasing with increasing the relative energies, which indicates that the dispersion and non-dispersion contributions decrease equally rapidly as the energy of the structure increases.

3.3.2 CO₂-cellobiose pair

Figure 19 shows the relative energies of the 80 unique CO₂-cellobiose pair local minimum energy structures. These structures were initially geometry optimized with the COMPASS force field.

![Figure 19](image)

Figure 19- Same as Fig 2 but for the CO₂-cellobiose pair structures.

The minimum energy structure obtained from the DFT-D calculations is also the DFT minimum energy structure, and the trend of increasing relative energies from Structures 1 through 80 is the same for DFT-D and DFT calculations. The difference in DFT-D energies between the highest and lowest energy structures is ~25 kcal/mol (which was the same for the H₂O-cellobiose pair systems) and this difference in DFT energies is ~15 kcal/mol (which was also the same for the H₂O systems). Since DFT does not include the dispersion contribution to the stabilisation of the low energy structures, the DFT energies are ~60 kcal/mol higher than the DFT-D energies.

The lowest energy CO₂-cellobiose pair structures are parallel such that the inter-cellobiose attraction is maximised. There are 5-7 H-bonds in the minimum energy CO₂-cellobiose pair structure (~Structures 1-15), while cellobiose molecules that have intermediate energies (~Structures 16-60) results in fewer (~3-5) H-bonds and weaker dispersion attractions. The
structures with the highest relative energies (~Structures 61-80) have even fewer H-bonds and weaker van der Waals attraction.

Figure 20 is the minimum energy CO$_2$-cellobiose pair structure. The separation between the cellobiose centres of mass is 4.10 Å. Both cellobiose molecules have the anti conformation, with $\phi_H = 177.5$ and 177.0° for Cellob.1 and Cellob.2, respectively. There are seven H-bonds, which are located between O6--H-O3', O3'--H-O6, O3-H--O3, O2'-H--O6, O3'-H--O6', O4'-H--O5' and O6'-H--O4', where the first number in each bond refers to the Cellob.1 molecule and the second number to Cellob.2.

Figure 20- CO$_2$-cellobiose pair minimum energy structure. The CO$_2$ molecule is shown in brown.

The distance between the centre of mass of the CO$_2$ molecule and the cellobiose pair in the minimum energy structure shown in Figure 20 is 7.51 Å. Neither this distance, nor the CO$_2$-cellobiose intermolecular energy, shows a systematic change with increasing structure number. For example, this energy is -8.2, -9.4 and -5.6 kcal/mol for Structures 1, 21 and 72, respectively.

Table 4 shows that the inter-cellobiose energy decreases by increasing relative energy. The dispersion energy and the non-dispersion contribution to the intermolecular energy also decrease. Similarly to the H$_2$O-cellobiose pair systems, there is no clear evidence that the relative contribution of the dispersion energy (shown as percent in parenthesis in the table) either increases or decreases with increasing structure number.

Table 4- same as Table 3, but for CO\textsubscript{2}-cellobiose pair systems

<table>
<thead>
<tr>
<th>Structure No.</th>
<th>$E_{\text{inter-pair}}$</th>
<th>E_{disp} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-56.6</td>
<td>-23.3 (41)</td>
</tr>
<tr>
<td>3</td>
<td>-54.9</td>
<td>-22.4 (41)</td>
</tr>
<tr>
<td>11</td>
<td>-46.7</td>
<td>-19.1 (41)</td>
</tr>
<tr>
<td>19</td>
<td>-38.0</td>
<td>-20.7 (54)</td>
</tr>
<tr>
<td>21</td>
<td>-34.0</td>
<td>-13.4 (39)</td>
</tr>
<tr>
<td>22</td>
<td>-25.6</td>
<td>-17.8 (70)</td>
</tr>
<tr>
<td>28</td>
<td>-30.2</td>
<td>-20.0 (66)</td>
</tr>
<tr>
<td>34</td>
<td>-29.4</td>
<td>-19.2 (65)</td>
</tr>
<tr>
<td>46</td>
<td>-23.6</td>
<td>-12.2 (52)</td>
</tr>
<tr>
<td>54</td>
<td>-18.9</td>
<td>-6.0 (32)</td>
</tr>
<tr>
<td>65</td>
<td>-12.9</td>
<td>-11.2 (87)</td>
</tr>
<tr>
<td>72</td>
<td>-17.4</td>
<td>-6.1 (35)</td>
</tr>
</tbody>
</table>

3.4 Paper V

The relative energies obtained from DFT-D, DFT and the COMPASS force field for CO\textsubscript{2}-cellobiose pair systems are shown in Figure 21. The numbering of the structures is according to the lowest energy structure obtained from DFT-D method. DFT energies are obtained from the DFT-D optimisations and where the dispersion corrections have not been added to the total energy.

![Figure 21](image.png)

Figure 21- Relative energies of local minimum CO\textsubscript{2}-cellobiose pair structures obtained from DFT-D, DFT and the COMPASS force field.

Figure 21 shows that the total energies obtained from DFT-D, DFT and COMPASS follow the same trends, such that the low and high energy structures obtained from DFT and the COMPASS force field are typically the same as the structures obtained from DFT-D. The
lowest energy structure that is obtained from DFT-D (first structure) has a COMPASS relative energy of 1.1 kcal/mol. All of these low energy structures are similar in geometry and are more compact compared to the higher energy structures. Hence, the COMPASS force field correctly describes the trends of compact structures having lower relative energies than structures where the cellobiose units have shifted relative to each other.

The lowest energy CO$_2$-cellobiose pair structure obtained from DFT-D (right) and the initial structure obtained from geometry optimisation using the COMPASS force field (left) are shown in Figure 22.

![Figure 22](image.png)

Figure 22- Lowest energy CO$_2$-cellobiose pair structure obtained from DFT-D. The initial structure obtained from geometry optimisation using the COMPASS force field is shown on the left and that obtained from the DFT-D optimization is shown on the right.

It is evident that these structures are similar; hence, geometry optimisation with DFT-D only leads to small changes in the structure obtained from the COMPASS force field. For instance, the separation between the cellobiose centres of mass is 3.85 Å in the structure obtained from the COMPASS force field and it is 4.10 Å according to DFT-D (more details can be found in Paper V). In both structures, seven H-bonds are formed by the same atoms. Both methods yield cellobiose molecules with the *anti* conformation. These similarities indicate that the COMPASS force field provides a valid description for the trends of CO$_2$ interacting with cellulose and for the disruption of the cellulose crystal structure. It was therefore used to study these trends during SC-CO$_2$ explosion of cellulose.

Similarly to the steam explosion, the molecular-level studies of dissolution of the crystalline structure of cellulose were simulated using grand canonical Monte Carlo and molecular dynamics. The SC-CO$_2$ explosion was at different temperature/pressure combinations of 110 °C/2500 psi, 110 °C/3000 psi, 110 °C/3500, 110 °C/4000 psi, 135 °C/3500 psi, 165 °C/3500 psi and 200 °C/3500 psi.
Figure 23 illustrates the change in the crystal structure after steam explosion at 250 °C and 39.7 bar. These changes are quantified below.

![Illustration of changes in cellulose crystal structure](image)

Figure 23 - Illustration of the changes in the cellulose crystal structure during SC-CO$_2$ explosion at 200 °C and 3500 psi.

The changes in the centres of mass for each chain relative to the centre of mass of the crystal are shown in Figure 24.

![Bar charts showing centre of mass](chart)

Figure 24 - Centre of mass of each chain 1-18 relative to the centre of mass of the crystal for the initial structure (t_0) and after loading and explosion. Results are for Systems (110 °C/ 2500 psi), (110 °C/ 3500 psi) and (200 °C/ 3500 psi) and the standard deviations are from the three trajectories
propagated at each temperature/pressure combination. The standard deviations are shown as error bars.

Figure 24 shows that during SC-CO\textsubscript{2} loading and explosion the centres of mass of chains 3-5, 9-11, 15 and 18 decrease while other chains show an increase in centres of mass relative to the centre of mass of the crystal. This occurs since the pressure of the SC-CO\textsubscript{2} makes the cross section of the crystal structure more circular. The figure also shows that displacement of the chains in the outer layer (chains 1-12) is larger than chains in the core and changes in the chains in the outer shell affect the displacement of their neighbouring chains in the core. For example, during loading, chains 1 and 7 move away from the centre of the crystal by about 4.3 and 3.9 Å, while chains 4 and 10 move closer to the centre about 2.7 and 2.1 Å. Similarly, chains 13 and 16, which neighbour chains 1 and 7, respectively, move out by about 1.1 and 2.9 Å, respectively, while chains 15 and 18 move inwards by about 0.7 Å. As shown in Figure 22, most of the changes occur during loading of the SC-CO\textsubscript{2}, and explosion has a far smaller effect on the disruption of the structure.

The effect of temperature and pressure on SC-CO\textsubscript{2} loading and explosion was studied using two sets of chains. The first set was chains 1, 6, 7 and 12 and the second set was chains 4, 5, 10 and 11. These sets were chosen since the chains are all in the outer shell and the chains in the first set increase their centre of mass during loading and explosion and the chains in the second set decreases their centre of mass.

3.4.1 Effect of temperature

The left panel in Figure 25 shows the effect of increasing temperature on the average change in centre of mass of chains 1, 6, 7 and 12 after loading and the combined loading and explosion. The pressure is 3500 psi and the temperature increases from 110 to 200 °C. The right panel is the same but for chains 4, 5, 10 and 11.
The results presented in the figure reveal that, although there is no significant effect of increasing temperature (within the statistical uncertainty of the error bars); there is a trend of increasing disruption of the crystal structure with increasing temperature. The average change in the centres of mass of chains 1, 6, 7 and 12 when increasing from 110 to 135 °C is 0.35 Å, and this increases to 0.48 and 1.11 Å with a further increase in temperature to 165 and 200 °C. Increasing the temperature has a smaller effect on the average centre of mass of chains 4, 5, 10 and 11, which is about 0.3 Å when the temperature increases from 110 to 200 °C.

Similarly to the discussion with reference to Figure 24, Figure 25 shows that explosion does not lead to further disruption of the crystal structure. For example, explosion at 110, 135, 165 and 200 °C changes the average centres of mass of chains 1, 6, 7 and 12 by only about 0.14, 0.19, 0.05 and 0.48 Å (compared to the centres of mass after loading).

3.4.2 Effect of pressure

Figure 26 is the same as Figure 25 but when the pressure is increased from 2500 to 4000 psi at a constant temperature of 110 °C.
There is a larger change in separation of the centre of mass of the chains relative to the centre of the crystal at lower pressures. This is probably due to the fact that lower pressures allow chains 1, 6, 7 and 12 to move further away from the centre of the crystal than at higher pressures. This, in turn, means that chains 4, 5, 7 and 10 can move towards the centre of the crystal at the lower pressures. For example, increasing the pressure from 2500 to 3000 psi decreases the average change in centre of mass separation for chains 1, 6, 7 and 12 by 0.48 Å during loading. Further increases in pressure to 3500 and 4000 psi leads to larger decreases of 0.78 and 1.27 Å compared to 2500 psi. Similarly, the average change in centre of mass separation for chains 4, 5, 7 and 10 differs by 0.8 Å between pressures of 2500 and 3000 psi, 1.1 Å between 2500 and 3500 psi and 1.8 Å between 2500 and 4000 psi.

Figure 26 - Same as for Figure 25 but for systems 2500, 3000, 3500 and 4000 psi. The temperature is 110 °C for all systems.

Figure 27 - Change in the separation of centre of mass of the non-reducing end (non-Red.), the O-link in the centre of each chain and reducing end (Red.) between the outer chains and their neighbouring
inner chains during loading and explosion. The results are shown for loading and explosion at 110 °C and 3500 psi, 110 °C and 4000 psi and 200 °C and 3500 psi.

Figure 27 reveals that there is a larger disruption at the ends of the chains than in the middle (O-link) during both loading and explosion. Hence, there is larger disruption at the ends of the crystal structure (i.e., at the chain ends) than in the middle of the crystal. This would lead to enhanced accessibility for enzymatic hydrolysis at the crystal ends rather than in the middle of the crystal.

No significant correlation was observed between the magnitude of the change in centres of mass of chains during loading and explosion with changes in their radii of gyration.
4 Conclusions and Outlook

The COMPASS force field was preferred over the Dreiding and Universal force fields for study of glucose and cellobiose molecules as well as cellulose structural changes during dissolution with steam and supercritical carbon dioxide (SC-CO$_2$).

The validity of the COMPASS force field was checked by comparing the resulted structures and energies from first principles calculations and force field methods for glucose and cellobiose. These molecular systems were selected since they are sufficiently small to perform the first principles calculations in a tractable time and also being relevant to the dissolution of cellulose in water. The comparison was also made with relative energies and structures calculated by others using the B3LYP/6-311++G** method. The COMPASS force field was the only force field that yields the correct anti conformer of cellobiose and gave the minimum energy structure in vacuum and syn conformer in vacuum at high temperature and in aqueous environment at 1 bar and 298 K. The COMPASS force field also indicates that the crystal structure of cellulose has lower energy than the separated cellulose chains.

According to previous studies, the B3LYP/6-311++G** density functional method yields valid energies and structures for cellobiose and H$_2$O-cellobiose systems. This method, including Grimme’s dispersion correction, was used to study the interactions between several structures containing H$_2$O or CO$_2$ and two cellobiose molecules that were initially optimized using the COMPASS force field.

Comparison of the intermolecular energies of cellobiose-cellobiose obtained from DFT and DFT-D showed that both the non-dispersion and dispersion terms have large contributions (between 30 and 70 %.) to the intermolecular energies.

Geometry optimisation with the DFT-D method showed that the H$_2$O and CO$_2$ molecules prefer to bond to the surface of the cellobiose pair and opposed to being located between the cellobiose molecules.

The intermolecular energies obtained from DFT-D calculations also showed that when a H$_2$O molecule interacts with two cellobiose molecules, the intermolecular interactions between the two cellobiose molecules are weaker than when a CO$_2$ molecule interacts with the cellobiose
molecules. This is due to larger electron density that is located between the cellobiose pair and the water molecule.

Studies of steam and supercritical carbon dioxide (SC-CO$_2$) explosion were performed using grand canonical Monte Carlo and molecular dynamics based on the COMPASS force field. The calculations are based on the crystalline structure of cellulose that was proposed by Ding and Himmel. In these studies restructuring of the cellulose crystal were investigated by changes in the centres of mass of cellulose chains during loading of saturated steam (steaming) and SC-CO$_2$ and explosion steps. For both solvents disruption was larger for the chains in the outer shell compared to the core chains and comparison between chains within either the outer shell or core region showed that there was no significant correlation between changes in the radius of gyration and the change in centre of mass of the chains. Also, for both methods increasing the temperature leads to more disruption in the cellulose crystal. During SC-CO$_2$ explosion, increasing the pressure decreases the disruption of the crystal.

Comparing the centre of mass of neighbour chains, larger distortion of the crystal structure was seen at the ends of the crystal. Increase in disruption of the cellulose crystals due to increasing temperature, enhances accessibility of enzymes to the cellulose chains which particularly happens at the ends of the elementary fibrils and is important for the cellulose pretreatment in production of biofuel.
Future work

Several pretreatment processes have been developed for decreasing the recalcitrance and increasing dissolution of cellulose in several solvents, but only a few of them seem to be promising. N-methyl morpholine-N-oxide (NMMO) hydrate is an effective and direct solvent for dissolution of cellulose. Different proportion of water has different effects on the dissolution of cellulose. For example NMMO–water mixture containing 83% and 87% (w/w) NMMO (monohydrate) is known as dissolution mode and the cellulose fibres can be dissolve completely, while in a mixture with 76–82% NMMO, cellulose dissolves partially in the produced fibre balloons. Lower NMMO contents of 70–75% cause partial ballooning and swelling. Less NMMO content shows no effect on dissolution of cellulose fibres [99, 100]. The studies presented here, can be applied for molecular-level investigation of the dissolution of cellulose with different NMMO-water percentage.

The studies presented in this thesis shows the effect of steam and SC-CO₂ explosion on an 18 chains elementary fibril, the study can be extended to the 36 chains model and to microfibrils containing several elementary fibrils.

There is also no molecular-level study of the pretreatment for other proposed models of cellulose structures; these studies can also be executed on the different models of cellulose elementary and microfibrils.
Acknowledgements

First, I would like to express my deep gratitude to my supervisor Prof. Kim Bolton for accepting me as a student and for his patient guidance, enthusiastic encouragement and useful critiques of this research work.

My grateful thanks are also extended to my examiner Prof. Claes Niklasson and my co-supervisor Assoc. Prof. Peter Ahlström.

I would also like to thank Prof. Frank Momany for his great and helpful contribution in my first paper and Prof. Mohammad Taherzadeh for his assistance.

I am very thankful to my colleagues in modelling group: Anders, Edvin, Kavitha, Martin, Shayesteh and Abas for their good collaboration.

I would like to express my appreciation to all staffs at the School of Engineering, University of Borås for providing such a friendly environment. Peter, Ilona, Thomas S., Solveg, Louise and Sari are gratefully acknowledged for their helps.

My sincere thank also goes to Martin Bohlén for being such a good colleague.

I wish also to thanks my friends and all former and present PhD students at the University of Borås especially Behnaz, Azadeh, Shayesteh, Supansa, Päivi, Farzad, Abas, Tariq, Kamran and Mofoluwake.

I am grateful to Stiftelsen Foreningen Sparbanken Sjuharad and the Carl Trygger Foundation for Scientific Research for the financial support. The Quantum Mechanics calculations were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at NSC, HPC2N and C3SE. Molecular Mechanics results were obtained using program from Accelrys Software Inc.

My special thanks to my parents, Zahra and Heidar for their endless love, supports and encouragements. I wish also to thanks my lovely sisters, Parisa and Bita.

Thanks with love to my kind husband, Mehdi for his support, love, patience and encouragements.

And finally my greatest thanks to my wonderful children, Sahand and Soren for their patience and understanding.
References

53

Paper I
Validating empirical force fields for molecular-level simulation of cellulose dissolution

Faranak Bazooyar a,b,*, Frank A. Momany c, Kim Bolton a

a School of Engineering, University of Borås, SE-501 90 Borås, Sweden
b Department of Chemical Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
1 Plant Polymer Research, National Center for Agricultural Utilization Research, USDA, Agricultural Research Service, 1815 N. University St., Peoria, IL 61604, USA

A R T I C L E I N F O

Article history:
Received 15 November 2011
Received in revised form 11 January 2012
Accepted 13 January 2012
Available online 24 January 2012

Keywords:
Molecular simulation
Cellulose dissolution
First principles
Cellobiose
DFT
COMPASS

A B S T R A C T

The calculations presented here, which include dynamics simulations using molecular mechanics force fields and first principles studies, indicate that the COMPASS force field is preferred over the Dreiding and Universal force fields for studying dissolution of large cellulose structures. The validity of these force fields was assessed by comparing structures and energies of cellobiose, which is the shortest cellulose chain, obtained from the force fields with those obtained from MP2 and DFT methods. In agreement with the first principles methods, COMPASS is the only force field of the three studied here that favors the anti form of cellobiose in the vacuum. This force field was also used to compare changes in energies when hydrating cellobiose with 1–4 water molecules. Although the COMPASS force field does not yield the change from anti to syn minimum energy structure when hydrating with more than two water molecules as predicted by DFT – it does predict that the syn conformer is preferred when simulating cellobiose in bulk liquid water and at temperatures relevant to cellulose dissolution. This indicates that the COMPASS force field yields valid structures of cellulose under these conditions. Simulations based on the COMPASS force field show that, due to entropic effects, the syn form of cellobiose is energetically preferred at elevated temperature, both in vacuum and in bulk water. This is also in agreement with DFT calculations.

1. Introduction

The increasing need for energy together with the limited amount of non-renewable resources presents an important challenge to the research community, and much work focuses on renewable resources such as wind, water, solar energy and biofuels. In fact, this challenge is not only important but also acute since, according to Europe's energy portal [1], oil, natural gas, coal and uranium resources are expected to be depleted by 2047, 2068, 2140 and 2144, respectively. Since lignocellulosic biomass is the most abundant organic material in the biosphere [2] it has the potential to be used as feedstock for large-scale manufacturing of biofuels, and bio-ethanol in particular. The production of bio-ethanol from lignocellulosic materials usually requires several steps [3]. The cellulose often needs to be separated from the lignin and hemicellulose before it can be hydrolyzed and fermented [4]. The hydrolysis is done in order to decompose the cellulose crystal structure to glucose, which is subsequently ingested by microorganisms to produce ethanol [2].

Efficient conversion of cellulose to ethanol is required for optimal use of the feedstock. Although a lot of work has been done to increase this efficiency [5], further improvements are desired. The resistance of cellulose to dissolution is probably due to the strong intermolecular hydrogen and van der Waals bonds and its crystalline structure [6].

Native cellulose exists as fibrils which are composed of elementary fibrils [7]. Fig. 1 is a schematic cross section of an elementary fibril formed from 36 cellulose chains. Each elementary fibril contains 18 subcrystalline or noncrystalline chains which envelope 12 subcrystalline chains which, in turn, surround six true crystalline chains [7]. Each cellulose chain contains between 500 and 14,000 \(-1,4\)D-glucose units [8]. Although cellulose fibrils consist of both amorphous and crystalline regions, it is the crystalline regions that are most difficult to dissolve [6].

Theoretical and computational methods complement experimental studies [9] by, for example, providing a molecular-level understanding of the structure and hydrolysis of cellulose [10–31]. Together with experiment they can identify fragmentation and dissolution mechanisms and ways to improve the cellulose to ethanol conversion efficiency.

Due to the computational expense of first principles and semi-empirical methods, molecular mechanics (MM) force fields are required for the molecular-level simulation of cellulose dissolution,
which requires hundreds or thousands of atoms (to describe both the cellulose microfibril and the solvent). As illustrated by Stortz et al. [28] and Bergenstråhle et al. [30], it is of utmost importance to ascertain the validity of the force fields before using them to study disaccharide and cellulose systems. For example, Aldred [31] used the COMPASS force field to illustrate that molecular modeling can be used to study the complex interactions of cellulose.

In this contribution we check the validity of the COMPASS [32], Dreiding [33] and Universal [34] force fields focussing on COMPASS which, as mentioned above, has been used in studies of cellulose systems. The validity is tested by comparing structures and energies obtained by the force fields with data obtained from first principles calculations. The use of first principles methods requires that the comparison is limited to small systems of importance to cellulose, and we therefore focus on glucose and cellobiose molecules as well as their interaction with water molecules. In addition to performing new first principles calculations, we compared to published data, especially that from Ref. [22].

It is important to note that this contribution is not a study of the structure of glucose and cellobiose systems. First principles methods, such as B3LYP/6-311++G** [22] and COSMO [35], are preferable to MM force fields to study these systems. This contribution aims to determine if any of the force fields listed above can be used to study systems relevant to cellulose fragmentation and dissolution. For example, a valid MM force field should preferably predict the anti form of the cellobiose β1 structure when it is in the vacuum, and the syn form when the molecule is hydrated. This phenomenon, which has been determined from previous first principles calculations [16,22], may be very important when studying the dissolution mechanism of cellulose in water or non-polar solvents. Hence, in order to use an MM force field to study large cellulose systems, such as that illustrated in Fig. 1, it is important that it yields correct energetic and structural trends of the smaller hydrated and non-hydrated cellulose systems studied here.

In addition to evaluating the force fields for studies of large cellulose structures, we use the COMPASS force field, which yields trends in relative energies of cellobiose conformers that are in agreement with the first principles methods, to study the importance of temperature (entropic) effects on the relative stability of the anti and syn conformers of cellobiose. Analysis of first principles calculations [16] has indicated that entropic effects may change the relative thermodynamic stabilities of cellobiose conformers at elevated temperatures. In contrast to the first principles methods, the COMPASS force field enables long simulations of cellobiose, both in vacuum and in bulk water and at different temperatures, to study these effects.

2. Methods

The molecular mechanics simulations were based on the COMPASS [32], Dreiding [33] and Universal [34] force fields implemented in the Materials Studio Software (Accelrys Software Inc.). As described below, these force fields were selected since they have been developed for systems similar to those studied here.

First principles data were obtained from post-Hartree Fock Møller–Plesset second order correlation energy correction (MP2) and Density Functional Theory (DFT) methods using the B3LYP [36–39], PBE [40] and B3PW91 [36,41] functionals implemented in the Gaussian/09 suite of programs [42]. It has been shown that B3LYP, in combination with the basis sets used here, yields accurate energies of cellobiose conformers [28] and that basis set superposition error (BSSE) is not significant [43] when including diffuse functions. Hence, similarly to previous calculations [35,22] we include diffuse functions in the basis sets and do not correct for BSSE.

2.1. Molecular mechanics force fields

The Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies (COMPASS), Dreiding and Universal force fields have been described in detail elsewhere [32–34] and are briefly discussed here for the sake of completeness. The COMPASS force field includes terms for bond stretching, angle bending, out-of-plane torsions and wags, cross-terms that couple these intramolecular terms, and intermolecular interactions that are described by electrostatic and van der Waals terms. The parameters for the intramolecular terms as well as the atomic charges have been fitted to ab initio data [32], and those for the intermolecular terms are fit to experimental data [44]. The fit has been made to a variety of materials including polymers, metals, some metal ions, metal oxides, inorganic small molecules and most common organics [45].

The Dreiding force field includes terms for bond stretching, angle bending, out-of-plane torsions and wags, as well as electrostatic, van der Waals and hydrogen bonding intermolecular interactions. All parameters have been fit to empirical data [33,46,47]. The fit has been made to biological, organic and some inorganic molecules [33].

The Universal force field includes terms for bond stretching, angle bending, out-of-plane torsions and wags, as well as electrostatic and van der Waals intermolecular interactions. Similarly to the Dreiding force field, all of the parameters used in the Universal force field are empirical. The force field is relevant for a wide variety of biological systems, i.e., there are parameters for most elements in the periodic table. This force field can also be used for some metal complexes and organometallic structures [34].

2.2. Quantum mechanics methods

First principles methods are expected to give reasonably accurate data for disaccharides, including the glycosidic bond strength, which may be affected by the electron pairs on the oxygen atom that is involved in the bond as well as those of nearby oxygen atoms [48]. The B3LYP functional in combination with basis functions that include diffuse terms yields accurate structures and energies for cellobiose [28]. In addition to comparing relative energies and structures with those obtained by previous workers, we calculate structures using the post-Hartree Fock MP2 method and DFT using the B3LYP [36–39], PBE [40] and B3PW91 [36,41] functionals. This was done to compare with the previous calculations and to further test these methods. The similarity in the results obtained from these methods (see below), as well as their agreement with published data, supports their validity. As mentioned above, inclusion of diffuse terms in the basis set is important and we use the 6-31+G** basis set for all DFT calculations. However, due to computational constraints this basis set could not be used for the MP2 calculations and we therefore also use...
the 6-311G and 6-311G* basis sets for all calculations so that comparison can be made with the MP2 results. The effect of adding diffuse functions in the MP2 calculations is studied by optimizing the cellobiose structures with B3LYP/6-311+++G*** with subsequent single point calculations using MP2/6-311++G**, i.e., by performing MP2/6-311++G**//B3LYP/6-311+++G*** calculations.

2.3. Simulation methods

The molecular structures of glucose, water and cellobiose were annealed using the three molecular mechanics force fields discussed above. We note that this is a different approach to that used in some previous studies of β-cellobiose [49], where the potential energy landscape is scanned over two variables (usually \(\varphi_6 \) and \(\psi_{H1} \)) and the energies of the selected structures are plotted in Ramachandran (iso-potential) plots. The energies of all structures, including the minimum energy structure, can subsequently be identified from these plots. Ramachandran plots can, in principle, account for all degrees of freedom [50,51] which is also done in the annealing method used here. This method aims to identify the global minimum energy structure with the disadvantage that one does not obtain energies of other relevant structures. Although one cannot prove that one has located the global energy minimum, it should be noted that the annealed minimum energy structures are not sensitive to the annealing temperatures, simulation lengths or initial geometries since sufficiently high mid-cycle temperatures and sufficiently long annealing simulations have been performed. The fact that the same annealed structures are obtained under all proper conditions indicates that this structure is the global minimum, and that the annealing conditions allowed for complete sampling of coordination space.

Typical annealing simulations consisted of 50–70 cycles with about 5 million simulation steps per cycle (1.0 fs time steps) and mid-cycle temperatures of 400–500 K for cellobiose and glucose and 250 K for water. The molecular geometry was optimized to its minimum energy structure at the end of each cycle. The structures were considered to be minimized once the change in energy between subsequent steps was less than 2.0 \(\times 10^{-5} \) kcal/mol.

The annealed structures were subsequently used as the input for the quantum mechanics minimum energy optimizations. In principle this would be nine structures (cellobiose, glucose and water structures for each of the force fields), but the force fields yielded very similar structures for water, which means that only seven structures were used for the quantum mechanics calculations. These first principles calculations were used to determine which of the molecular mechanics force fields yield the preferred (lowest energy) structure of the cellobiose and glucose molecules.

As discussed below, the COMPASS force field is in better agreement with the first principles results than the other two force fields, and was therefore used in further studies. In particular, the effect of hydrating the cellobiose was studied by comparing structures and energies obtained from the COMPASS model with those obtained previously using B3LYP/6-311+++G*** [22]. All of the structures presented in Ref. [22] were used as input structures for geometry optimizations with COMPASS and the final structures and relative energies were compared with the B3LYP results.

In addition, molecular dynamics simulations of cellobiose in bulk water and in vacuum were performed to ascertain the effect of increasing temperature on the cellobiose structure. Trajectories were propagated at temperatures ranging from 1 to 500 K, and were propagated for typically 600 ps using a time-step of 1 fs. For the bulk water system, NpT runs were performed with a box size of 22 Å \(\times 17 \) Å \(\times 12 \) Å which contains 148 water molecules and ensured that the cellobiose molecule did not interact with its periodic boundary image. That is, the water molecules were treated explicitly within the COMPASS force field. Since the barrier for anti \(\leftrightarrow \) syn transformation is probably too large to allow for isomerization at the lower temperatures, simulations were begun with both anti and syn conformers to ascertain the correct equilibrium structure at the higher temperatures.

3. Results and discussion

3.1. Minimum energy structures

Figs. 2 and 3 illustrate the annealed glucose and cellobiose structures obtained from each of the three force fields, as well as the corresponding structures obtained after B3LYP/6-311+++G*** minimization. Similar structures are obtained after geometry optimization with the other DFT and MP2 calculations.

It is clear that the annealed (and first principles optimized) glucose and cellobiose structure depends on the force field used for the annealing. The annealed structures obtained from COMPASS did not show significant change during the subsequent optimization with the first principles methods. For example, when performing geometry optimization with B3LYP/6-311+++G*** the bond lengths changed by less than 0.02 Å and the change in bond angles was less than 2°. The cellobiose structure obtained from Dreiding shows a larger change during the subsequent optimization with DFT (where an OH group rotates) and both cellobiose and glucose structures obtained from Universal show large changes. This indicates that the COMPASS force field yields the preferred glucose and cellobiose structures.

Fig. 2 shows that the main difference in the glucose structures obtained from the force fields are the OH and CH2OH rotations. This is expected since these rotations do not have a large energy barrier and the difference in energy between these conformations (for a given force field) is small. However, it must be reiterated that the structures shown in Fig. 2 are the (annealed) minimum energy structures obtained for each force field.

Table 1 lists the relative energies of the glucose molecules that were optimized using the different quantum mechanics methods and basis sets. The energies in columns 3, 4 and 5 are obtained when the initial glucose structure is from the COMPASS, Dreiding and Universal force fields, respectively.

The energies are given relative to the results obtained after geometry optimization from the COMPASS structure, since this

1. We use the same notation as Ref. [16] where, with reference to their Fig. 1, \(\varphi_6 = H-1-C-1-O-C-4' \) and \(\psi_{H1} = C-1-O-C-4'-H-4' \).
combination gave the lowest energy for all methods and basis sets. There is a rather large energy difference between the structures obtained from the various force fields. For example, the B3LYP/6-311++G** energy for the COMPASS structure is 2.9 and 2.2 kcal/mol lower than the structures obtained from the Dreiding and Universal force fields, respectively. It is also clear that, although all first principles methods and basis sets yield the COMPASS structure as the lowest energy structure, there is a small change in relative energies of the Dreiding and Universal structures when the largest basis set is used in combination with the DFT methods.

Fig. 3 shows that there is a large difference in the cellobiose structures obtained from the different force fields. Dreiding and Universal force fields yield syn structures whereas COMPASS yields an anti structure. The torsions are $\psi_H = 30.1^\circ$ and $\psi_H = -39.2^\circ$ for the Dreiding force field, $\psi_H = 51.4^\circ$ and $\psi_H = -3.3^\circ$ for the Universal force field and $\psi_H = -179^\circ$ and $\psi_H = 4.9^\circ$ for the COMPASS force field.

Similarly to glucose, Table 2 shows that all methods and basis sets yield the lowest energy for the cellobiose structure that was obtained from annealing using the COMPASS force field. There is a rather large energy difference between the structures obtained from the various force fields. For example, the B3LYP/6-311++G** energy from the COMPASS structure is 5.1 and 5.0 kcal/mol lower than the structures obtained from the Dreiding and Universal force fields, respectively. Similarly to the glucose molecule, this indicates that COMPASS is the preferred force field when studying the cellobiose molecule.

It may be noted that, as expected, the energy obtained for the COMPASS structure after B3LYP/6-311+G** optimization (-814729.84 kcal/mol) is similar to that reported in Ref. [22] (-814729.15 kcal/mol). This difference may be due to the different ψ_H torsion angle, which is -0.6° in the structure in Ref. [22] and 4.6° in the structure obtained here.

As mentioned above, all three force fields yielded a similar structure for water. The bond lengths differed by less than 0.03 Å and the angles by less than 0.2°. Geometry optimization with the quantum mechanics methods yielded the same structures irrespective of the starting geometry.

Hence, all MP2 and DFT methods and all basis sets show that the glucose and cellobiose structures obtained from the COMPASS force field have lower energies than the corresponding structures obtained from the Dreiding and Universal force fields. Hence, even the smaller basis sets without diffuse functions yield the correct trends for the systems studied here. In addition, the COMPASS structures did not undergo large changes during geometry optimization with the first principles methods. The COMPASS force field is therefore better than the Dreiding and Universal force fields when obtaining minimum energy geometries. In agreement with this, MP2/6-311+G**/B3LYP/6-311++G** calculations yield an energy for the structures obtained from the Dreiding and Universal force fields that are 7.7 and 8.2 kcal/mol larger than that obtained from the COMPASS force field, respectively.

Fig. 4 shows the B3LYP/6-311+G** relative energies of different cellobiose structures obtained from Ref. [22]. The notation (A–J) is the same as that used in the previous work (see Fig. 2 of Ref. [22]). The relative energies after geometry optimization with COMPASS are also shown in the figure. It is evident that the COMPASS relative energies are in very good agreement with the B3LYP/6-311+G** results, which strengthens the assertion that this force field provides a valid description of cellobiose. It can also be noted that the initial B3LYP/6-311+G** structures did not show significant change during optimization with the COMPASS force field. For example, the change in φ_H and ψ_H are 1.5° and 5.9° for the lowest energy structure (A) and the largest change in φ_H and ψ_H are 4.7° and 10.8° for structure F.

3.2. Hydration of cellobiose

Figs. 5–8 are the same as Fig. 4 but for the cellobiose molecule hydrated with 1, 2, 3 and 4 water molecules, respectively. The notation used in these figures is the same as that used in Ref. [22] (see Figs. 4–10 in that reference). It is evident from Fig. 5 that the agreement between the COMPASS and B3LYP relative energies is good, although not as good as for the non-hydrated structure. In particular, the anti conformation is the lowest energy structure according to both models, although COMPASS yields conformer 3.

Table 1

Relative energies (kcal/mol) for the glucose molecule obtained after geometry optimization with the first principles methods. Energies are given relative to the results obtained when the initial structure is from the COMPASS force field.

<table>
<thead>
<tr>
<th>Method</th>
<th>Basis-set</th>
<th>Initial structure from COMPASS</th>
<th>Initial structure from Dreiding</th>
<th>Initial structure from Universal</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP2</td>
<td>6-311G</td>
<td>0.0</td>
<td>3.1</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>6-311G**</td>
<td>0.0</td>
<td>3.3</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>6-311++G**</td>
<td>0.0</td>
<td>2.9</td>
<td>2.1</td>
</tr>
<tr>
<td>B3LYP</td>
<td>6-311G</td>
<td>0.0</td>
<td>3.2</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>6-311G**</td>
<td>0.0</td>
<td>3.1</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>6-311++G**</td>
<td>0.0</td>
<td>2.9</td>
<td>2.2</td>
</tr>
<tr>
<td>PBE</td>
<td>6-311G</td>
<td>0.0</td>
<td>3.5</td>
<td>10.1</td>
</tr>
<tr>
<td></td>
<td>6-311G**</td>
<td>0.0</td>
<td>3.2</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>6-311++G**</td>
<td>0.0</td>
<td>2.9</td>
<td>2.4</td>
</tr>
<tr>
<td>B3PW91</td>
<td>6-311G</td>
<td>0.0</td>
<td>3.4</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>6-311G**</td>
<td>0.0</td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>6-311++G**</td>
<td>0.0</td>
<td>3.0</td>
<td>2.2</td>
</tr>
</tbody>
</table>
as the lowest energy structure and not conformer 1 as predicted by DFT. This is not a significant difference since the energy difference between these two conformers is less than 0.3 kcal/mol, irrespective of the model used in the calculation. It is also evident from the figure that the COMPASS force field yields the same trends as B3LYP/6-311++G** when progressing from structures 1 through 15 (anti conformers) and 16 through 30 (syn conformers). There is also good agreement between the molecular structures obtained from the two models. For example, the COMPASS force field yields \(\varphi_H = -179.8^\circ \) and \(\psi_H = 5.5^\circ \) for structure 1 (the lowest energy structure according to B3LYP) which can be compared to the DFT values of \(\varphi_H = 179.1^\circ \) and \(\psi_H = 0.3^\circ \). Similarly, the values of structure 3 (the lowest energy structure according to COMPASS) are \(\varphi_H = -179^\circ \) and \(\psi_H = 4.9^\circ \) from COMPASS and \(\varphi_H = 176.7^\circ \) and \(\psi_H = -1.3^\circ \) from B3LYP/6-311++G**.

The agreement between the relative energies obtained from the COMPASS force field and those obtained from B3LYP/6-311++G** are not as good for the di-, tri- and tetrahydrates as it was for the monohydrate and non-hydrated cellobiose. The main difference between the models is that the COMPASS force field prefers an anti conformer over the syn conformer for all systems whereas, according to the DFT calculations, a syn conformer becomes the lowest energy conformer when the cellobiose is hydrated with two or more water molecules. The COMPASS force field does, however, yield the correct trends in energy change within each conformer series. For example, Fig. 6 shows that, according to both COMPASS and DFT, the energy increases when going from anti structures 1 through 11 (upper panel) and syn structures 12–20 (lower panel) for the dihydrates.

As shown in Fig. 7, the B3LYP/6-311++G** yields increasing relative energies from structure 1 through 5 (anti) and 6 through 10 (syn). The COMPASS force field captures these trends, although for some structures there are up to 2 kcal/mol deviations in relative energies. However, the largest difference is that, according to DFT, the lowest energy syn conformer is 0.8 kcal/mol lower than the lowest energy anti conformer, whereas the COMPASS force field favors the anti conformer by at least 0.83 kcal/mol over the syn conformers. Similar behavior is observed for the tetrahydrate (Fig. 8) where B3LYP/6-311++G** favors the syn conformer (structure 2 in Fig. 8) by 1.2 kcal/mol over the anti structure 1, whereas COMPASS favors the anti structure by 0.5 kcal/mol.

Hence, COMPASS does not give the correct trends of favoring syn over the anti structures for the di-, tri- and tetrahydrate systems. However, it is of interest that the relative difference in

Table 2
Relative energies (kcal/mol) for the cellobiose molecule obtained after geometry optimization with the first principles methods. Energies are given relative to the results obtained when the initial structure is from the COMPASS force field. *Note that, as described in the text, the results in the third row are from MP2/6-311++G**//B3LYP/6-311++G** calculations.

<table>
<thead>
<tr>
<th>Method</th>
<th>Basis-set</th>
<th>Initial structure from COMPASS</th>
<th>Initial structure from Dreiding</th>
<th>Initial structure from Universal</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP2</td>
<td>6-311G</td>
<td>0.0</td>
<td>10.3</td>
<td>11.7</td>
</tr>
<tr>
<td>B3LYP</td>
<td>6-311G</td>
<td>0.0</td>
<td>9.3</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>6-311G++G*</td>
<td>0.0</td>
<td>7.7</td>
<td>8.2</td>
</tr>
<tr>
<td>PBE</td>
<td>6-311G</td>
<td>0.0</td>
<td>6.9</td>
<td>11.6</td>
</tr>
<tr>
<td></td>
<td>6-311G++G*</td>
<td>0.0</td>
<td>5.1</td>
<td>5.0</td>
</tr>
<tr>
<td>B3PW91</td>
<td>6-311G</td>
<td>0.0</td>
<td>9.3</td>
<td>11.5</td>
</tr>
<tr>
<td></td>
<td>6-311G++G*</td>
<td>0.0</td>
<td>7.3</td>
<td>12.3</td>
</tr>
<tr>
<td></td>
<td>6-311++G**</td>
<td>0.0</td>
<td>5.4</td>
<td>6.2</td>
</tr>
<tr>
<td>MP2</td>
<td>6-311G</td>
<td>0.0</td>
<td>8.7</td>
<td>10.7</td>
</tr>
<tr>
<td>B3LYP</td>
<td>6-311G</td>
<td>0.0</td>
<td>6.8</td>
<td>11.1</td>
</tr>
<tr>
<td>PBE</td>
<td>6-311G</td>
<td>0.0</td>
<td>6.8</td>
<td>11.1</td>
</tr>
<tr>
<td>B3PW91</td>
<td>6-311G</td>
<td>0.0</td>
<td>5.2</td>
<td>5.7</td>
</tr>
</tbody>
</table>

Fig. 4. Relative energies (kcal/mol) of the non-hydrated cellobiose conformers. The B3LYP/6-311++G** relative energies are shown as crosses and the COMPASS relative energies as triangles.

Fig. 5. Relative energies (kcal/mol) of the monohydrated cellobiose conformers. The B3LYP/6-311++G** relative energies are shown as crosses and the COMPASS relative energies as triangles. The anti conformers are illustrated in the left panel and the syn in the right.
the lowest energy *syn* and lowest energy *anti* decreases from 1.2 through 0.83 to 0.50 as one increases the number of water molecules from 2 to 4. This raises the question if COMPASS yields the *syn* conformer when hydrating with a large number of water molecules. This is discussed below.

3.3. Conformations of cellobiose at elevated temperatures

Strati et al. [16] used the B3LYP/6-311++G** method to estimate the enthalpy and entropy contributions to the Gibbs free energy for various cellobiose conformers (in vacuum). There results indicate...
that the syn conformers have a larger entropy contribution than the anti conformers, and may therefore be thermodynamically stable at higher temperatures. To investigate these effects, for cellulose in vacuum and in bulk water, we have performed MD simulations at various temperatures to ascertain if anti → syn isomerization occurs at elevated temperatures. As discussed in Section 2, the simulations in the bulk water were done under NpT conditions where the pressure is 1 bar.

At very low temperatures (e.g., 100 K) the conformer that is observed in the simulations depends on the initial cellulose structure. That is, the syn(anti) conformer is seen when starting with the syn(anti) structure since the energy barrier for isomerization has not been passed within the simulation time. However, this is not the case for higher temperatures. Fig. 9 shows the distribution of \(\phi_H \) when the cellulose (in vacuum) initially had a syn conformation and the temperature is 298 K (\(\phi_H \) is not shown since this torsion does not provide information on anti ↔ syn isomerization). The data shown in the figure were obtained from the last part of the simulation, once the syn had isomerized to anti. Note that the same results were obtained at 325 K, and in neither case did the anti revert back to the syn. Hence, at these temperatures the anti conformer is thermodynamically stable.

This was confirmed by analyzing the \(\phi_H \) distribution when the cellulose initially had an anti conformation. These results are shown for temperatures of 298 K and 375 K in Fig. 10. It is clear that the anti conformation remains in this conformation at 298 K, which is expected since this is the thermodynamically stable structure. However, at 375 K there are peaks in the distribution that belong to both anti and syn conformations. It is important to note that multiple barrier crossings occur (i.e., many anti ↔ syn isomerizations occur in the simulation time) showing that both parts of coordinate space are sampled at this temperature. As expected, the same behavior is found at even higher temperatures, with the fraction of time spent in the syn conformation increasing with temperature. This trend does not depend on which initial conformer is used, and when starting with the anti conformer the fraction of time spent in the syn conformer is 0.16, 0.47, 0.57 and 0.70 for 375, 400, 425 and 500 K, respectively.

The distributions of \(\phi_H \) for cellulose in bulk water at 1 bar and 100, 298, 350 and 475 K are shown in Fig. 11. The results when
starting from the anti structure are shown in the right panel and those when starting from the syn structure are shown in the left panel. It is clear that, within the simulation time, the anti \leftrightarrow syn isomerization barrier is not crossed at 100 K and the conformers seen in the simulation are the same as the initial conformer. However, at 298 K and above the anti structure isomerizes to the syn conformer, and there are multiple anti \leftrightarrow syn barrier crossings. The fraction of time as a syn conformer increases with temperature, and it is 0.42, 0.76, 0.80 and 0.88 at 298, 350, 375 and 475 K, respectively. Due to its stability at increased temperatures, the syn conformation remains in this geometry for most of the simulations that begin with this conformation, and a temperature of at least 475 K is required to obtain a significant (0.20) population of the anti structure within the 600 ps simulation time. These results show that, in bulk water at 1 bar, the syn conformer is the preferred conformer at temperatures above 298 K. This is in agreement with the B3LYP/6-311+G** results described above and shows that the COMPASS force field is a valid force field when studying trends in the cellulose structure under these conditions. This, in turn, indicates that this force field can be used to study trends in changes of the cellulose structure under these conditions.

4. Conclusion

Three MM force fields have been evaluated for their use in studying cellulose structural changes in water (such as dissolution mechanisms). In order to compare with first principles calculations, the study has focused on water, glucose (as the repeating unit of cellulose) and cellobiose molecules (as the shortest cellulose chain), since these molecules allow for first principles calculations in a tractable computational time.

The COMPASS force field is preferred over the DREIDING and Universal force fields since it is the only one of these three force fields that yields the correct anti conformer of cellobiose. In addition, first principles geometry optimizations from the annealed minimum energy structures of cellobiose and glucose obtained from the three force fields shows that the structure obtained from the COMPASS force field is lowest in energy. Moreover, there are not large changes of the structures obtained from the COMPASS force field during the first principles optimizations.

Since the COMPASS force field is preferred over the DREIDING and Universal force fields it was used in a more detailed comparison for the cellobiose molecule hydrated with between 0 and 4 water molecules. The comparison was made with relative energies and structures calculated previously [22] using the B3LYP/6-311++G** method. The COMPASS force field yields results for cellobiose that are in excellent agreement with these DFT results. The quantitative agreement seen for cellobiose deteriorates as more water molecules are added to the system. For example, the change from an anti to a syn minimum energy structure, which is predicted by B3LYP/6-311++G** after hydration with two water molecules, is not observed with the COMPASS force field. However, the energetic trends within each anti or syn series are predicted, as is the decrease in the energy of the anti conformer relative to the syn conformer with increasing number of water molecules. In fact, simulations in bulk water at 1 bar and 298 K show that the COMPASS force field prefers the syn structure, indicating that this force field yields valid trends in structural changes under these conditions.

In agreement with B3LYP/6-311++G**, the COMPASS force field also shows that the syn conformer is favored over the anti conformer for cellobiose (in vacuum) at high temperatures. There are multiple crossings of the isomerization barrier at high temperatures, and the fraction of time when the cellobiose is in the syn conformation increases with increasing temperature.

Acknowledgements

The authors are grateful to Stiftelsen Föreningssparbanken Sjühärads for financial support. The Quantum Mechanics calculations were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at NSC, HPC2N and C3SE. Molecular Mechanics results were obtained using program from Accelrys Software Inc.

References

Paper II
Molecular Modelling of Cellulose Dissolution

Faranak Bazooyar1,2,*, Mohammad Taherzadeh1, Claes Niklasson2, and Kim Bolton1

1School of Engineering, University of Borås, Allégatan 1 SE-501 90, Borås, Sweden
2Department of Chemical Engineering, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden

In this work we present computational studies that shed light on the molecular mechanism of the initial stages of cellulose dissolution in saturated steam, which is an important pretreatment step in the conversion of lignocellulose to biofuel. The COMPASS, Dreiding and Universal molecular mechanics force fields and the B3LYP density functional with 6-311G, 6-311++G(\textit{d,p}) and 6-311++G(2\textit{d,2p}) basis sets were used to study systems containing glucose, cellobiose and water. These molecular systems were studied since they are sufficiently small to perform the density functional theory calculations in a tractable time, while also being relevant to the dissolution of cellulose in saturated steam. Comparison of the energies and structures obtained from the three force fields with those obtained from the first principles method showed that the COMPASS force field is preferred to the other two and that this force field gives similar structures obtained from the first principles method. This supports the validity of the COMPASS force field for studying cellulose dissolution in saturated steam, and preliminary simulations were performed using grand canonical Monte Carlo and molecular dynamics simulations of cellulose dissolution in saturated steam at 100 °C and 1 bar, 160 °C and 6.2 bar, and 250 °C and 39.7 bar. The results show that the cellulose crystal dissolves in saturated steam at the higher temperatures and pressures.

Keywords: Molecular Modelling, Cellulose, Biofuel, Lignocellulosic Waste.

1. INTRODUCTION

The increasing need for energy and materials together with the limited amount of non-renewable resources presents an important challenge. An example of a renewable resource, which can be converted into biofuels, is lignocellulosic waste. A lot of research has focused on this resource since lignocellulosic biomass is the most abundant organic material in the biosphere,1 however the complex molecular structures of these materials make them difficult to decompose to the smaller molecules that are needed to make biofuel. The cellulose chains are packed by strong bonds in ‘elementary fibrils,’2 which are attached to each other by hemicelluloses, amorphous polymers of different sugars as well as other polymers such as pectin, and covered by lignin.

Figure 1 shows the structures of glucose, cellobiose and the cross-section through a cellulose crystal. Cellobiose, the shortest cellulose chain, consists of two glucose molecules linked by β-1, 4-D glucosidic linkage, and cellulose consists of 500–14000 β-1, 4-D glucose units.3 In order to produce biofuel from cellulose, the large crystal structure must be converted to smaller molecules such as glucose, which can subsequently be imbibed by small organisms such as yeast that transform them to biofuel. The numbering shown in the figure is used in the discussion below.

The bottleneck for efficient conversion of lignocellulose to biofuel is the decomposition of the cellulose crystal structure. That is, efficient production of biofuel from lignocellulosic materials requires efficient decomposition of the crystal structure into small molecules. This is often done in a pretreatment process. Since very little is known about the decomposition of these structures at the molecular level, a huge variety of methods such as steam and carbon dioxide explosion have been tested, e.g., Refs. \cite{4-7} and are still being tested to improve the yield and rate lignocellulose decomposition during pretreatment. This research is, therefore, resource-intensive. That is, since there is a lack of chemical insight at the molecular level, improvement in the pretreatment is studied by changing process variables (pressure, reaction time and chemical species) based on experience. This leads to many experiments that require a lot of material and that lead to excessive use of chemicals and energy.

One common pretreatment method is steam explosion. This technique was developed by Mason in 1925, and is included in the list of pretreatment methods for bioethanol.
production presented by Babcock. Experimental evidence suggests that steam explosion depolymerizes and solubilizes lignin, hemicellulose and cellulose into lower molecular-weight products. For example, experiments by Schultz and co-workers on mixed southern hardwood showed that explosion using saturated steam between 167 °C and 235 °C led to the breakdown of the cellular structure and the subsequent depolymerization of lignin, partial degradation of hemicellulose and solubilization of cellulose. In addition, Zhang has studied the effect of steam explosion on enzymatic hydrolysis of sweet sorghum bagasse.

Computational studies complement experiments since they offer easy manipulation and analysis at the molecular level, which is often difficult to obtain from experiment. This can lead to a molecular level understanding of chemical processes and materials, which can be combined with knowledge, obtained from experiments to improve existing, and identify novel, processing techniques and materials. An example is the computational study of the structure of cellulose, e.g., . However, no molecular level studies have been aimed at investigating ways to optimize its chemical decomposition.

In this work we present computational studies of relevance to the pretreatment of cellulose by steam explosion. We combine the accuracy of first principles methods with the computational efficiency of molecular mechanics force fields, which are required to study the large systems relevant to steam explosion. Since the smaller glucose and cellobiose molecules are, as discussed with reference to Figure 1, the building blocks of cellulose, we use these systems to ascertain the accuracy of three commonly used force fields. This is done by comparing relevant structures and energies with accurate data obtained from first principles calculations. Since one of the force fields provides a valid description of the glucose and cellobiose systems, we use it in preliminary studies of cellulose dissolution in saturated steam at different temperatures and pressures.

2. METHODS

2.1. Molecular Mechanics Force Fields

The validity of the Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies (COMPASS), Dreiding and Universal force fields were checked by comparison to first principles data. These force fields which, as exemplified below, were developed for systems similar to those studied here, have been described in detail elsewhere and are briefly discussed here for the sake of completeness.

The COMPASS force field includes terms for bond stretching, angle bending, out-of-plane torsions and wags, cross-terms that couple these intramolecular terms, and intermolecular interactions that are described by electrostatic and van der Waals terms. The parameters for the intramolecular terms as well as the atomic charges have been fit to ab initio data, and those for the intermolecular terms are fit to experimental liquid equilibrium densities and cohesive energies. The fit has been made to a variety of materials including polymers. The Dreiding force field includes terms for bond stretching, angle bending, out-of-plane torsions and wags, as well as electrostatic, van der Waals and hydrogen bonding intermolecular interactions. All parameters have been fit to empirical data. The fit has been made to biological, organic and some inorganic molecules. The Universal force field includes terms for bond stretching, angle bending, out-of-plane torsions and wags, as well as electrostatic and van der Waals intermolecular interactions. Similarly to the Dreiding force field, all of the parameters used in the Universal force field are empirical. The force field is relevant for a wide variety of biological systems, i.e., there are parameters for most elements in the periodic table.

2.2. Quantum Mechanics Methods

First principles results were obtained from Density Functional Theory (DFT) methods using the B3LYP, PBE and B3PW91 functionals. It has been shown that B3LYP, in combination with the basis sets used here, yields accurate energies of cellobiose conformers and that basis set superposition error (BSSE) is not significant when including diffuse functions. Hence, similarly to previous calculations, we include diffuse functions in the basis sets used here and do not correct for BSSE.
Some of the results, including those obtained from post-Hartree Fock Moller-Plesset second order correlation energy correction (MP2) have been presented elsewhere, and here we only show results obtained from the B3LYP functional with basis sets that yield accurate structures and energies for glucose and cellobiose. In particular, we use B3LYP/6-311++G(d,p) for systems containing only glucose or cellobiose molecules and B3LYP/6-311++G(2d,2p) when water is included in the glucose system. The 6-311G basis set was used for systems containing two cellobiose molecules and water due to computational constraints.

2.3. Simulation Methods

The three molecular mechanics force fields discussed above were used to anneal the molecular structure of cellobiose, glucose and water to identify the global minimum energy structures. Although one cannot prove that one has located the global energy minimum, the annealed minimum energy structures obtained in this study are not sensitive to the annealing temperatures, simulation lengths or initial geometries since sufficiently high mid-cycle temperatures and sufficiently long annealing simulations have been performed. The fact that the same annealed structures are obtained under all proper conditions indicates that this structure is the chemically relevant minimum, and that the annealing conditions allowed for complete sampling of coordination space. Typical annealing simulations consisted of 50–70 cycles with about 5 million simulation steps per cycle (1.0 fs time steps) and mid-cycle temperatures of 400–500 K for cellobiose and glucose and 250 K for water. The molecular geometry was optimized to its minimum energy structure at the end of each cycle. The structures were considered to be minimized once the change in energy between subsequent optimization steps was less than 2.0 × 10^{-3} kcal/mol.

The annealed structures were subsequently used as the input for the first principles minimum energy optimizations. In principle this would be nine structures (a cellobiose, glucose and water structure for each of the three force fields), but the force fields yielded very similar structures for water, which means that only seven structures were used for the first principles calculations. These calculations were used to determine which of the molecular mechanics force fields yield the preferred (lowest energy) structure of the cellobiose and glucose molecules.

As discussed below, the COMPASS force field is in better agreement with the first principles results compared to the other two force fields, and was therefore used to study larger systems containing two glucose or two cellobiose molecules, where their interaction with water is also studied. Similar annealing simulations to those discussed above were used for these larger systems in order to find the global minimum energy structures. The annealed structures were subsequently used as input for first principles minimum energy optimizations.

The COMPASS force field was also used in preliminary studies of the solubility of cellulose in saturated steam. The grand canonical Monte Carlo (GCMC) method was used obtain structures of cellulose crystals in water at different temperatures and pressures. A cellulose crystal containing eighteen molecular chains (the first two inner shells of the structure shown in Fig. 1) where each chain consisted of three cellobiose units was placed in a 48 Å × 50 Å × 35 Å periodic box. The box is sufficiently large to avoid interaction of the cellulose crystal with its periodic images. It is expected that the mechanism of cellulose dissolution observed with this eighteen chain model is relevant to that with all thirty six chains, since the smaller model also has an inner and outer shell of cellulose molecules. It can also be noted that simulations performed on crystals composed of eighteen chains with one cellobiose unit in each chain gave similar results to those presented here, supporting the fact that a chain length of three cellobiose units gives valid results.

The results obtained at 100 °C–1 bar, 160 °C–6.2 bar and 250 °C–39.7 bar combinations are discussed here since the second and third conditions have been used in experimental studies of steam explosion and the first condition is to see the trend of effect of increasing pressure and temperature. Since the computational code used here does not allow for relaxation of the cellulose structure when inserting the water molecules during GCMC, the structures obtained for each temperature and pressure were simulated using NpT molecular dynamics (MD) under the same conditions used in the GCMC. Trajectories were propagated for typically 300 ps using a time-step of 1 fs. Integration was performed using the Verlet algorithm, which has the strength of being time-reversible. The distance of the centre of mass of each chain to the centre of mass of the cellulose crystal was monitored so that dissolution of the crystal could be analysed, once the average density was constant.

3. RESULTS AND DISCUSSION

The global minimum energy structures of glucose obtained from the three force fields are shown in the left column of Figure 2, and the corresponding B3LYP structures after further geometry optimisation are shown in the right column. The main difference in glucose structures obtained from each of the force fields are the OH and CHOH rotations. This is expected since these rotations do not have a large energy barrier and the difference in energy between these conformations (for a given force field) is small. However, it must be reiterated that the structures shown in Figure 2 are the minimum energy structures obtained for each force field. Torsion angles that exemplify these differences are given in Table I. For
example, the $\text{O}_6\text{C}_6\text{C}_5\text{O}_5$ torsion is 174°, 173° and 59° for the COMPASS, Dreiding and Universal force fields, respectively, and the $\text{H}_4\text{O}_4\text{C}_4\text{C}_5$ torsion is 172°, -48° and -155° for these force fields.

The annealed structures obtained from the COMPASS force field do not show significant change during further optimization with B3LYP. The change in bond lengths during optimization is typically less than 0.02 Å and the change in bond angles less than 2°. The structure obtained from the Universal force field shows a large change on further optimization with B3LYP (where the $\text{H}_4\text{O}_4\text{C}_4\text{C}_5$ group rotates). These changes are also shown in Table I. For example, the $\text{H}_2\text{O}_2\text{C}_2\text{C}_3$ torsion is -61° after annealing with the Dreiding force field and it changes to -51° after subsequent geometry optimisation with B3LYP, and the $\text{H}_2\text{O}_2\text{C}_2\text{C}_3$ torsion is -79° after annealing with the Universal force field and it changes to -179° after subsequent B3LYP geometry optimisation. The good agreement between the structure obtained from the COMPASS force field and that obtained after subsequent geometry optimisation with B3LYP supports the validity of this force field when studying glucose and shows that the COMPASS force field is preferred to the Dreiding and Universal force fields when studying this molecule.

This conclusion is supported by comparing the energies of the structures optimised by B3LYP. The energy of the structure that is geometry optimised from that obtained after annealing with the COMPASS force field is -431352.65 kcal mol$^{-1}$ which is lower than the energies of the other two structures, which are -431349.8 and -431350.49 kcal mol$^{-1}$ for the structures obtained after annealing with the Dreiding and Universal force fields, respectively. Hence, the glucose structure obtained from the COMPASS force field not only has a structure that is in good agreement with B3LYP, but it is also the energetically preferred structure.

Figure 3 is the same as Figure 2 but for cellobiose. Similarly to the results for glucose, the three force fields yield different structures for the cellobiose molecule. One of the largest differences is that the COMPASS force field yields a bent, out-of-plane structure (also called an *anti* conformer) whereas the other two force fields yield planer (syn) conformers. This is also seen by comparing the $\text{H}_1\text{C}_1\text{O}_1\text{C}_4'$ torsion angle, which is -179° for the COMPASS force field and -30.1° and 51.4° for the Dreiding and Universal force fields. This, and other torsion angles that exemplify differences in the structures, is given in Table II.

Figure 3 and the torsion angles shown in Table II illustrate that the cellobiose structures change when optimising with B3LYP. However, these changes are smaller for the structure obtained from the COMPASS force field compared to those obtained from the other two force fields. For example, the structure obtained from the Dreiding force field shows large changes in the $\text{H}_4'\text{C}_4'\text{O}_1\text{C}_1$ and $\text{C}_1\text{O}_1\text{C}_4'\text{C}_5'$ torsion angles, and the structure obtained from the Universal force field shows large changes in the $\text{H}_4'\text{C}_4'\text{O}_1\text{C}_1$ and $\text{C}_1\text{O}_1\text{C}_4'\text{C}_5'$ torsion angles. Similarly to the result obtained for glucose, the good agreement between the structure obtained from the COMPASS force field and that obtained after subsequent geometry optimisation with B3LYP supports the validity of this force field when studying cellobiose and shows that the COMPASS

Table I. Torsion angles (in degrees) of the glucose molecule obtained after annealing using the COMPASS, Dreiding and Universal force fields, and these angles after subsequent geometry optimisation (G.O.) with B3LYP. The atom numbers are given in Figure 1.

<table>
<thead>
<tr>
<th>Torsion angle</th>
<th>COMPASS</th>
<th>Dreiding</th>
<th>Universal</th>
<th>B3LYP G.O. from COMPASS</th>
<th>B3LYP G.O. from Dreiding</th>
<th>B3LYP G.O. from Universal</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{O}_6\text{C}_6\text{C}_5\text{O}_5$</td>
<td>174</td>
<td>173</td>
<td>59</td>
<td>166</td>
<td>-177</td>
<td>73</td>
</tr>
<tr>
<td>$\text{O}_1\text{C}_1\text{O}_5\text{C}_5$</td>
<td>176</td>
<td>179</td>
<td>175</td>
<td>179.8</td>
<td>-179</td>
<td>179</td>
</tr>
<tr>
<td>$\text{H}_2\text{O}_2\text{C}_2\text{C}_3$</td>
<td>177</td>
<td>-61</td>
<td>-79</td>
<td>-178</td>
<td>-51</td>
<td>-179</td>
</tr>
<tr>
<td>$\text{H}_4\text{O}_4\text{C}_4\text{C}_5$</td>
<td>172</td>
<td>-48</td>
<td>-155</td>
<td>173</td>
<td>-49</td>
<td>170</td>
</tr>
<tr>
<td>$\text{O}_3\text{C}_3\text{O}_4$</td>
<td>-60</td>
<td>-65</td>
<td>-69</td>
<td>-63</td>
<td>-64</td>
<td>-64</td>
</tr>
<tr>
<td>$\text{C}_2\text{C}_3\text{O}_3\text{H}$</td>
<td>-60</td>
<td>-177</td>
<td>-156</td>
<td>-50</td>
<td>179</td>
<td>-84</td>
</tr>
</tbody>
</table>
force field is preferred to the Dreiding and Universal force fields when studying this molecule.

This conclusion is also supported by comparing the energies of the structures optimised by B3LYP. The energies of the cellobiose structures that are geometry optimised using B3LYP and when starting with structures obtained after annealing with the COMPASS, Dreiding and Universal force fields are -814729.84, -814724.72 and -814724.83 kcal mol$^{-1}$, respectively. Hence, the cellobiose structure obtained from the COMPASS force field not only has a structure that is in good agreement with B3LYP, but it is also the energetically preferred structure.

Since the COMPASS force field gave the preferred glucose and cellobiose structures compared to the Dreiding and Universal force fields and since these structures are in good agreement with the B3LYP results, it was used to study the binding strength between two glucose and two cellobiose molecules. This binding strength is expected to be important when dissolving cellulose in a pretreatment process. The glucose–glucose and cellobiose–cellobiose structures obtained from annealing with the COMPASS force field are shown in the left column of Figure 4, and the structures after further geometry optimisation with B3LYP are shown in the right column. There is very little change in the structure after geometry optimisation. For example, the glucose–glucose and cellobiose–cellobiose centre of mass distances are 5.16 and 4.52 Å after annealing, and they change to 5.36 and 4.31 Å after geometry optimisation. The glucose–glucose and cellobiose–cellobiose binding energies are 13 and 29 kcal mol$^{-1}$ according to the COMPASS force field and 14 and 41.6 kcal mol$^{-1}$ according to B3LYP. Hence, both methods yield strong binding between the molecules, indicating the COMPASS will produce valid mechanisms and trends when studying the formation and breaking of glucose–glucose and cellobiose–cellobiose intermolecular bonds.

The COMPASS force field was also used to study the interaction of glucose–glucose and cellobiose–cellobiose pairs with a water molecule (which is important for cellulose dissolution in water and steam explosion). Figure 5(a) shows the initial structures that were used for geometry optimisation with the COMPASS force field. The first three of these structures were based on the glucose–glucose annealed structure shown in Figure 4, and the fourth structure is based on the glucose–glucose structure that is often assumed for the cellulose crystal (see Fig. 1). The structures obtained after geometry optimisation (with the COMPASS force field) are shown in Figure 5(b). Comparison between the structures in panels (a) and (b) shows that the preferred location of the water molecule is outside, and not between, the glucose–glucose pair. This is confirmed by the structure obtained from simulated annealing with the COMPASS force field and that is shown in Figure 5(c). As shown in Figure 5(d), subsequent geometry optimisation with B3LYP does not lead to a large change in the geometry. For example, the distances between the centres of mass of the water-glucose (for the upper glucose in Fig. 5(c)), water-glucose (lower glucose) and glucose–glucose are 2.19, 2.20 and 0.19 Å for the COMPASS structure and 2.42, 2.44 and 0.18 Å for the B3LYP structure. Hence, the COMPASS force field shows that water does not prefer to penetrate between two glucose molecules, and

<table>
<thead>
<tr>
<th>Torsion angle</th>
<th>COMPASS</th>
<th>Dreiding</th>
<th>Universal</th>
<th>B3LYP G.O. from COMPASS</th>
<th>B3LYP G.O. from Dreiding</th>
<th>B3LYP G.O. from Universal</th>
</tr>
</thead>
<tbody>
<tr>
<td>O6′C6′C5′O5′</td>
<td>−64</td>
<td>171</td>
<td>58</td>
<td>−59</td>
<td>161</td>
<td>58</td>
</tr>
<tr>
<td>O6′C6′C5′O5′</td>
<td>−53</td>
<td>64</td>
<td>59</td>
<td>−59</td>
<td>70</td>
<td>62</td>
</tr>
<tr>
<td>H′O1′C1′O5′</td>
<td>30</td>
<td>−60</td>
<td>−74</td>
<td>−67</td>
<td>−67</td>
<td>−71</td>
</tr>
<tr>
<td>O2′C2′C3′O3′</td>
<td>58</td>
<td>−65</td>
<td>67</td>
<td>62</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>O2′C2′C3′O3′</td>
<td>56</td>
<td>65</td>
<td>68</td>
<td>61</td>
<td>66</td>
<td>65</td>
</tr>
<tr>
<td>O3′O4′C4′</td>
<td>−62</td>
<td>−66</td>
<td>−68</td>
<td>−64</td>
<td>−63</td>
<td>−64</td>
</tr>
<tr>
<td>H′O2′C2′C1′</td>
<td>68</td>
<td>57</td>
<td>81</td>
<td>78</td>
<td>51</td>
<td>68</td>
</tr>
<tr>
<td>H′C1′O1′C4′</td>
<td>−179</td>
<td>30</td>
<td>51</td>
<td>179</td>
<td>35</td>
<td>33</td>
</tr>
<tr>
<td>H′C4′O1′C1′</td>
<td>4.9</td>
<td>−39</td>
<td>3.3</td>
<td>−0.5</td>
<td>−18</td>
<td>−45</td>
</tr>
<tr>
<td>C1′O1′C4′C5′</td>
<td>−115</td>
<td>−156</td>
<td>−118</td>
<td>−120</td>
<td>−137</td>
<td>−163</td>
</tr>
<tr>
<td>O5′C1′O1′C4′</td>
<td>63</td>
<td>−92</td>
<td>−71</td>
<td>61</td>
<td>−85</td>
<td>−87</td>
</tr>
</tbody>
</table>

Fig. 3. Same as Figure 2 but for the cellobiose molecule.
Molecular Modelling of Cellulose Dissolution

RESEARCH ARTICLE

Fig. 4. Glucose–glucose and cellobiose–cellobiose structures obtained from the COMPASS force field (left) and after subsequent geometry optimisation with B3LYP (right).

Fig. 5. Glucose–glucose pair interacting with a water molecule, structures initially used for geometry optimisation with the COMPASS force field (a), after geometry optimisation (b) and simulated annealing (c) with this force field, and after geometry optimisation of the annealed structure with B3LYP (d).

Fig. 6. Global minimum energy structure of a cellobiose–cellobiose pair interacting with a water molecule obtained from the COMPASS force field (left) and after further geometry optimisation with B3LYP (right).

the annealed structure obtained from the COMPASS force field is in good agreement with that obtained after further geometry optimisation with B3LYP. Once again, this supports the validity of this force field to study systems containing glucose and water molecules.

The global minimum energy structure of a cellobiose–cellobiose pair interacting with a water molecule obtained after annealing with the COMPASS force field is shown on the left in Figure 6, and the corresponding B3LYP structure after further geometry optimisation is shown on the right. Similarly to the results shown for glucose in Figures 5(c) and (d), the water molecule does not prefer to penetrate into the cellobiose–cellobiose pair, but is rather located on the outside of the pair. Hence, dissolution of cellulose with water is not expected to be driven by changes in the system energy. Also, subsequent geometry optimisation with B3LYP does not lead to a large change in the geometry. For example, the distances between the centres of mass of the water-cellobiose (for the upper cellobiose in Fig. 6), water-cellobiose (lower cellobiose) and cellobiose–cellobiose are 1.99, 2.01 and 0.14 Å for the COMPASS structure and 2.10, 2.12 and 0.138 Å for the B3LYP structure.

Typical snapshots obtained after NpT equilibration at 100 °C and 1 bar, 160 °C and 6.2 bar and 250 °C and 39.7 bar are shown in Figure 7. The water molecules are shown in blue, the cellulose chains that were initially in the inner crystal shell in green and the chains that were initially in the outer shell in red. These temperature–pressure (T–p) combinations were chosen since they have been used in experimental steam explosion studies.7 It is evident that there is a larger change in the crystal structure at the higher temperatures and pressures. This is quantified by comparing the distances between the centres of mass of each of the glucose chains from the centre of mass of the crystal. These distances are shown in Figure 8 for each of the T–p combinations. It is evident that there is a broader distribution at the higher temperatures and pressures, showing that the cellulose crystal dissolves in saturated steam under these conditions.

These preliminary results are currently being extended in our group. For example, the equilibrated structures shown in Figure 7 will be subjected to a rapid decrease in
pressure, as is done in experimental steam explosion experiments. This will allow us to study the mechanisms of cellulose dissolution in steam explosion which is expected to assist in identifying improved solvents and/or experimental conditions for this type of pretreatment. We are also performing a more detailed study of the mechanism by which cellulose dissolves in saturated steam. For example, a statistical analysis of a larger number of systems will allow one to analyse which of the cellulose chains dissolves first, and if this depends on the temperature and pressure. The analysis may show that it is always chains in the outer layer that dissolve first, but it may also be the chains at the apices of the crystal hexagonal structure. The analysis will also reveal if the change from an in-plane (as found in the crystal) to out-of-plane (as seen in the studies of the cellobiose molecule discussed above) molecular structure is important for dissolution in saturated steam.

4. CONCLUSION

Three commonly used molecular mechanics force fields, COMPASS, Dreiding and Universal were used to study systems containing glucose, cellobiose and water. The validity of these models for these systems was checked by comparison to density functional first principles data using the B3LYP functional and the 6-311G, 6-311++G(d, p) and 6-311++G(2d, 2p) basis sets. These molecular systems were selected since they are sufficiently small to perform the first principles calculations in a tractable time, while also being relevant to the dissolution of cellulose in water.

Comparison of the energies and structures obtained from these three force fields with those obtained from the first principles method showed that the COMPASS force field is preferred to the other two force fields and that this force field gives similar structures to those obtained from the first principles method. This, together with results using other first principles methods and on other cellobiose-water systems published elsewhere32 supports the validity of the COMPASS force field for studying cellulose dissolution in water.

The COMPASS force field was therefore used in preliminary GCMC and MD simulations of cellulose dissolution in water at 100 °C and 1 bar, 160 °C and 6.2 bar, and 250 °C and 39.7 bar. Analysis of the results shows that the cellulose crystal dissolves in water at the higher temperatures and pressures. Further studies will reveal the dissolution mechanism and are therefore expected to assist in identifying improved solvents and/or experimental conditions for this type of cellulose pretreatment when converting cellulose waste into biofuel.

Acknowledgments: The authors are grateful to Stiftelsen Föreningssparbanken Sjuhärads for financial support. The first principles calculations were performed on the national supercomputer facilities provided by the Swedish National Infrastructure for Computing (SNIC) at NSC, HPC2N and C3SE. The molecular mechanics results were obtained using the program from Accelrys Software Inc.

References

Molecular Modelling of Cellulose Dissolution

Received: 6 September 2012. Accepted: 25 September 2012.
Paper III
Molecular-level Simulations of Cellulose Steam Explosion

Faranak Bazooyar1,2 and Kim Bolton1,*

1 School of Engineering, University of Borås, Borås, SE-501 90, Sweden

2 Department of Chemical Engineering, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden

*Corresponding author:
Kim Bolton (E-mail: \texttt{kim.bolton@hb.se})
-School of Engineering, University of Borås, SE-501 90, Borås, Sweden, Tel: +46 33 435 4602

ABSTRACT

Grand canonical Monte Carlo and molecular dynamics simulations are used to study steam explosion of crystalline cellulose using 100, 160, 210 and 250 °C saturated steam. The simulations are based on the COMPASS force field, which provides a valid description of the cellulose crystal structure and water-cellobiose interactions. Disruption of the crystal structure during steaming is typically larger than that during the explosion stage and the restructuring is larger at increased temperature and pressure. This is seen by an increased separation of the cellulose chains from the center of mass of the crystal during the initial stages of the steaming, especially for chains in the outer shell of the elementary fibril. There is a large change in the radius of gyration and fraction of \textit{anti} torsion angle conformers for chains in the outer shell of the elementary fibril. In addition, the disruption at the reducing and non-reducing ends of the cellulose crystal is larger than in the central core, increasing susceptibility to enzymatic attack in these end regions.

\textbf{Keywords:} cellulose, molecular dynamics, Monte Carlo, steam explosion
1. INTRODUCTION

A large amount of research has focused on lignocellulosic material as a source for fuel since it is the most abundant organic material in the biosphere. However, the complex molecular structure of this material makes it difficult to decompose it to the smaller molecules needed for biological conversion to fuels such as ethanol and methane. A variety of pretreatment methods have therefore been used to increase the accessibility of cellulose to enzymatic and chemical hydrolysis. One such method is steam explosion, which is an effective and inexpensive method that has lower environmental impact and fewer hazardous products than many of the other methods. It was developed by Mason in 1925 and used by Babcock in 1932 as a pretreatment method for bioethanol production.

Experimental investigations of steam explosion have studied the effect of temperature, pressure and residence time when pretreating feedstocks such as wheat straw, sweet sorghum, aspen wood and hardwood chips. The method consists of two stages. In the steaming stage the material is subjected to high pressure saturated steam and in the second stage, known as explosion, there is a rapid pressure drop to atmospheric pressure. Steam explosion helps to remove, depolymerise and dissolve lignin and hemicellulose into lower molecular-weight products, and it also reduces the size and crystallinity of the cellulose structure. It is believed that the crystalline structure becomes disordered, which increases the surface area and enhances the accessibility to enzymes, hence leading to more efficient hydrolysis. Typically, an increase in temperature, pressure and/or residence time increases the disruption of the cellulose structure. Steam explosion is the most effective pretreatment method in commercial production of bioethanol from feedstock such as wheat straw.

Computational methods have been used to study a wide range of materials and chemical processes. They complement experimental research since they offer easy manipulation
and analysis at the molecular level, which is often difficult to obtain from experiment. This leads to a molecular level understanding of chemical processes, which can be combined with knowledge obtained from experiments to improve existing, and identify novel, processing techniques. Examples include studies of the structure26 and of the thermal behavior of cellulose.27, 28 These studies provide molecular-level insight of some structural changes, such as expansion of the cellulose crystal, with increasing temperature. Although there exist numerous studies of structures that are relevant to cellulose, such as cellobiose,29- 33 apart from the preliminary studies presented by us 34 there have been no molecular level studies of cellulose steam explosion. This contribution presents results obtained from a combined Monte Carlo (MC) and molecular dynamics (MD) study of the steaming and explosion processes, thereby yielding a molecular level understanding of the changes in the cellulose crystal structure during these processes. The (temperature, pressure) combinations that were studied are (100 °C, 1.0 bar), (160 °C, 6.2 bar), (210 °C, 19.0 bar) and (250 °C, 39.7 bar). The last three combinations have been used in experimental studies of steam explosion,8, 2, 35 and the first combination is studied as a reference system to ensure that the simulations have equilibrated in the steaming and explosion stages.

The studies presented here are for a crystalline cellulose structure, since dissolving and decomposing this ordered structure is believed to be the bottleneck for biological conversion of lignocellulosic materials to fuel.36 Although the compositions and structures of different lignocellulosic materials can vary, they typically consist of cellulose elementary fibrils that are covered with lignin and hemicellulose. The elementary fibril is crystalline and is composed of linear polymer chains consisting of β-(1, 4)-D-glucan units. Different structures of the elementary fibrils have been suggested for different plant cell walls.37- 40
and the model used here is based on the cellulose Iβ structure proposed by Ding and Himmel. In this structure, shown in Figure 1, the elementary fibril contains thirty-six polymer chains bonded together with hydrogen bonds and van der Waals forces. Six of the glucan chains are situated in the central core region (green chains). These are surrounded by twelve chains (yellow) that form an inner shell and which are, in turn, surrounded by eighteen chains in the outer shell.

Fig. 1. A cellulose elementary fibril containing thirty-six cellulose chains.

2. METHODS

2.1. Force Field

Several force fields have been used to study cellulose, including a modified charmm02, Hybrid, PCFF, GROMOS 45a4, GLYCAM06 and the Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies (COMPASS) force fields. The present study uses the COMPASS force field, which is described in detail elsewhere and is briefly presented here for the sake of completeness. It includes terms for bonded and non-bonded interactions. Bonded terms include bond stretching, angle bending, out-of-plane torsions and wags, as well as cross-terms. Non-bonded interactions are described by van der Waals and electrostatic terms. The parameters for the bonded terms and the atomic charges have
been fit to \textit{ab initio} data and those for the non-bonded terms are fit to experiment.46 The fit has been made to a variety of materials including polymers.47

Studies by Aldred 48 revealed that the COMPASS force field yields valid structures for cellulose crystal systems, similar to those studied here. He combined this force field with canonical (NVT) MD simulations and geometry optimizations to obtain a unit cell structure for the I\textbeta polymorph (also studied in this work) with $a=7.44$ Å, $b=8.02$ Å, $c=10.42$ Å and $\gamma=98.33^\circ$ (these cell parameters are shown in Figure 2). This differs by 5.2, 3.0, 0.4 and 2.1% from the crystal structure based on X-ray diffraction data obtained by Sarko and Muggli,49 which has values of $a=7.85$ Å, $b=8.27$ Å, $c=10.38$ Å and $\gamma=96.3^\circ$. Aldred 48 also showed that the COMPASS force field yields valid structures of the II polymorph. Miyamoto \textit{et al.}50 has also shown that this force field provides a valid structure for cellulose II, and they have also used this force field to study cellulose I\textbeta.51 Eichhorn and Davies 52 used this force field to compare the mechanical properties of cellulose I and II, and studies by Wu and co-workers 53 showed that the COMPASS force field yields elastic properties of cellulose nanocrystals that are in agreement with experimental data and other MD simulations. They also used the COMPASS force field to calculate the elasticity of single cellulose chains.54 Hence, previous studies show that the COMPASS force field yields valid structures and mechanical properties of cellulose crystal structures.

This previous work has been extended by us to study unit cell parameters and densities of the crystalline cellulose structure based on Ding and Himmel’s model.40 This structure was equilibrated at 25 and 250 °C, since there are experimental data at these temperatures and the lower temperature is room temperature and the higher temperature is just below the cellulose melting point. The unit cell parameters are $a=7.85$ Å, $b=8.32$ Å, $c=10.50$ Å and $\gamma=$
97.5°, and $a = 8.12 \text{ Å}$, $b = 8.35 \text{ Å}$, $c = 10.44 \text{ Å}$ and $\gamma = 99.6°$ at 25 and 250 °C, respectively. These are in good agreement with experimental values 55,56 of $a = 7.78 \text{ Å}$, $b = 8.20 \text{ Å}$, $c = 10.38 \text{ Å}$ and $\gamma = 96.5°$, and $a = 8.19 \text{ Å}$, $b = 8.18 \text{ Å}$, $c = 10.37 \text{ Å}$ and $\gamma = 96.4°$ at 25 and 250 °C, respectively.

The maximum deviations from the experimental results are 1.5% for b at 25 °C and 3.3% for γ at 250 °C. These maximum deviations are similar to those obtained from other force fields. For example, at 25 °C the maximum deviations of any cell parameter from experimental data are 3.2, 3.8, 4.4, 7.7 and 2.0% using a modified charmm02,42 Hybrid,43 PCFF,44 GROMOS 45a427 and GLYCAM0645 force fields, respectively.

Fig. 2. Numbering of the cellulose chains in the crystal structure that is used in the discussion below, the position of torsion angles, $\phi_{H1}-\phi_{H5}$, in each chain and the crystal unit cell parameters (a, b, c and γ).

The validity of the COMPASS force field for cellulose-water interactions has also been investigated. Comparison of structures and energies obtained from this force field with those obtained from first principles results57 shows that it yields the correct trends
(structures and interaction energies) for cellobiose and cellobiose-water systems. Cellobiose was used in those studies due to the computational expense of the first principles calculations and, since cellobiose is the repeat unit of cellulose, the force field is also expected to yield valid trends for the systems studied here.

2.2. Cellulose structure

As discussed above with reference to Figure 1, the cellulose crystal structure contains a central core and two shells. The outermost shell is exposed to the water during steam explosion and the molecules in this shell are not completely surrounded by other cellulose chains. The chains in the outer shell may therefore exhibit different dissolution dynamics compared to the inner chains. To study this, and to perform the simulations in a tractable time, the crystal model used in this study consisted of eighteen chains, with six chains forming the core region and twelve forming an outer shell (i.e., the same as in Figure 1 but with the outermost shell removed). This model allows one to study any possible differences in the dissolution rates and mechanisms of chains in the outer shell and those in the core region.

Each cellulose chain in the crystal model consisted of six glucan units. This is sufficiently long to study changes in the chain conformation during steam explosion, such as radius of gyration and torsional dynamics. It is also sufficiently long to observe valid dissolution mechanisms, since test simulations performed on this system but where each chain consisted of just two glucan units gave similar trends to those presented here.

3. SIMULATION METHODS
As mentioned above, steam explosion can be divided into the steaming and explosion stages.

3.1. Steaming

The cellulose structure that was used as input for the steam explosion simulations was obtained by geometry optimizing the Ding and Himmel structure using a combination of the steepest descent, conjugate gradient and Newton-Raphson methods. This, and all subsequent simulations, was done using the Materials Studio suite of programs.

The cellulose structure was placed in a periodic box with dimensions $48 \times 50 \times 35$ Å3, which is sufficiently large to prevent interactions of the cellulose crystal with its periodic images. Water molecules were then inserted into the box using the grand canonical Monte Carlo (GCMC) method until the desired (temperature, pressure) combination was obtained. Attempts to perform conformational, rotational or translational changes were each selected with a probability of 0.2, attempts to create or delete water molecules were each selected with a probability of 0.19 and regrowth was selected with a probability of 0.02. The simulations were stopped once the system had equilibrated, which was seen by a constant average number of adsorbed water molecules. Equilibration was typically achieved after 10^8 MC steps.

To ascertain any possible effects that the selected cellulose – water structure may have on the steam explosion process, three systems were randomly chosen after equilibration for each of the (temperature, pressure) combinations. These three structures were used in subsequent studies which, since four (temperature, pressure) combinations were considered, meant that twelve systems were simulated.
Since the Materials Studio program does not allow for relaxation of the cellulose chains during GCMC, the structures were further simulated using canonical (NVT) MD at the same temperature and volume used in the GCMC simulations. The MD trajectories were typically propagated for 300 ps using a time-step of 1 fs. This is sufficiently long to obtain equilibrated structures, as seen from the constant average values of the data presented below. Integration was performed using the Verlet algorithm, which has the strength of being time-reversible.61 The temperature of the system was controlled using the Nose thermostat.62–64 An equilibrated structure obtained from this simulation was used as input for a second GCMC equilibration simulation. The effect of the MD simulation on the number of absorbed water molecules proved to be very small with less than 0.5% of water being adsorbed in the second simulation compared to the first GCMC simulation. The process was repeated, and the configuration obtained at the end of the second MD simulation showed no tendency to absorb more water in the subsequent GCMC simulation.

3.2. Explosion

The twelve structures obtained from the steaming simulations were used as input for the explosion simulations. These were performed using MD in the isobaric-isothermal (NpT) ensemble using the same temperature as in the steaming simulations but at a pressure of 1 bar. The trajectories were typically propagated for 300 ps using a time-step of 1 fs (as discussed below, this is sufficiently long to obtain convergence and hence longer trajectories are not required). The temperature was controlled using the Nose thermostat,62–64 while the pressure was controlled by the Berendsen barostat.65
Some of the explosion simulations were repeated in the microcanonical (NVE) ensemble to ascertain the effects of decreasing the pressure while maintaining a constant energy. Two approaches were used. First, a control simulation was performed using the same volume (and initial energy) obtained from the steaming simulations. Hence these simulations allow no change in the volume (pressure) or energy and, if the systems are equilibrated after the steaming stage, then no further changes in the system will be obtained during these NVE simulations. In the second approach, which was applied to one of the systems obtained at (250 °C, 39.7 bar), an NVE MD simulation was performed using a periodic box that was twenty-six times larger than that used in the GCMC simulations and the energy was the same as that obtained from the GCMC simulations. This enabled the investigation of a rapid drop in the pressure with a resulting decrease in temperature due to the explosion (at constant energy). Similarly to the previous simulations, the trajectories were propagated for 300 ps using a 1 fs time-step.

4. ANALYSIS

The numbering of the chains, which is used for the analysis and to discuss the results, is shown in Figure 2.

The effect of explosion on the cellulose crystal was studied by analyzing changes in the crystal structure and in the structure of each of the eighteen chains. The former property was analyzed by monitoring changes in the separation between the center of mass of each chain and the center of mass of the crystal. The center of mass of chain i was determined from Equation (1):
where the summation is over all atoms in the chain, \(m_j \) is the mass of atom j and \(r_j \) is its position. The center of mass of the crystal is obtained by summing \(r_{\text{CoM},i} \) over all eighteen chains. The results shown below are average values obtained between 100 and 300 ps of the relevant trajectories. Equilibration was reached within 100 ps in all simulations.

Changes in the crystal structure were also monitored by comparing changes in inter-chain separation at the ends and the middle of the cellulose chains. This was done since previous studies of poly (vinylidene fluoride) \(^6\) showed that polymer crystalline structures can show more distortion at the chain ends than in the middle. The analysis was performed by determining the center of mass of the non-reducing and reducing ends of each chain (see Figure 2) and the central oxygen atom of each chain, and obtaining the average value of each of these three positions between 100 and 300 ps of the relevant trajectory. The change in the distance between each of these three points in the outer shell chains (e.g., chain 1 in Figure 2) and the same points in the nearest core chain (e.g., chain 13) was monitored during the steaming and explosion stages.

The structures of the individual chains were analyzed by following changes in their radii of gyration and torsional distribution during the steaming and explosion. The radius of gyration of chain i was determined from Equation (2):

\[
R_{\text{OG},i} = \left(\frac{\sum_{j=1}^{N} m_j s_j^2}{\sum_{j=1}^{N} m_j} \right)^{1/2}
\]

where the summation is over all atoms in the chain, \(m_j \) is the mass of atom j and \(s_j \) denotes the distance of atom j from the center of mass of the chain.
Figure 2 shows the positions of the five torsion angles, ϕ_{H1} to ϕ_{H5}, that were monitored during the steaming and explosion. The numbering of each cellobiose unit and ϕ_{H} are the same as in reference 58, where $\phi_{H} = \text{H-1-C-1-O-C-4'}$ for each cellobiose unit. Analysis of the torsion angles reveals possible changes in the population of syn and anti conformers during the explosion. Our previous study of cellobiose in bulk water showed that, due to the presence of the water and to entropic effects at elevated temperatures, the syn conformer is preferred. The present study will reveal if similar preferences for the syn conformers are found for chains in the cellulose crystal under conditions relevant to steam explosion.

5. RESULTS AND DISCUSSION

Figure 3 illustrates the change in the crystal structure after steam explosion at 250 °C and 39.7 bar. These changes are quantified below.
Fig. 3. Illustration of the changes in the cellulose crystal structure during steam explosion at 250 °C and 39.7 bar.

5.1. Center of mass

Figure 4 shows the change in the separation of the center of mass of each chain from the center of mass of the crystal due to the steaming process. Only the chains in the outer shell are shown for the sake of clarity. The centers of mass at the beginning of the steaming are
labelled \(t=0 \), and the centers of mass obtained by averaging between 100 and 300 ps over the steaming simulation for each (temperature, pressure) pair are also shown. The results are from one of the three structures obtained for each (temperature, pressure) pair, and the other two structures show the same trends.

Several features of the change in the crystal structure are revealed in Figure 4. First, for all (temperature, pressure) pairs, the centers of mass of chains 3-5 and 9-11 decrease, and the centers of mass of the remaining outer shell chains increase. Although not shown in the figure, the centers of mass of the core chains 15 and 18 also decrease, while the centers of mass of the remaining core chains increase. Comparison with Figure 2 show that the chains that decrease their centers of mass are at the left and right hand sides of the crystal structure. Hence, the cross-section of the crystal structure shown in Figure 2 becomes more circular during steaming (this can also be seen in Figure 3). Second, an increase in temperature and pressure leads to larger changes in the centers of mass. Third, although the results from the core chains are not shown in Figure 4, it can be noted that the change in centers of mass of the chains in the outer shell are larger than the changes for the chains in the core. For example, the absolute value of the change in centers of mass of chains 1-12 at (250 °C, 39.7 bar) is, on average, 2.5 Å, whereas for the chains in the core it is 2.1 Å.
Fig. 4. Separation of the center of mass of each chain from the center of mass of the crystal for the initial structure (t=0) and after the steaming simulations at (100 °C, 1.0 bar), (160 °C, 6.2 bar), (210 °C, 19.0 bar) and (250 °C, 39.7 bar). Only the chains in the outer shell are shown for the sake of clarity. The chain numbers (see Figure 2) are shown on the circumference of the circle, and the inner grey ring shows a 9 Å separation from the crystal center of mass and the outer grey ring shows an 18 Å separation. The black dashed line (t=0) is for the geometry optimized structure before steaming and is hence the outline of the structure shown in the top panel of Figure 3.

Hence, Figure 4 reveals that there is substantial disruption of the crystal structure during the steaming stage at all (temperature, pressure) pairs, and an increase in temperature and pressure leads to a larger distortion.

Figure 5 shows the distance of the centers of mass of the chains from the center of mass of the crystal after steaming (dashed red lines taken from Figure 4) and after explosion at 1 bar and constant temperature. The results are from one of the three initial structures for each (temperature, pressure) pair and, as discussed below with reference to Figure 6, the other two structures yield the same trends. As expected, there is no change in the center of mass.
separations at the (100 °C, 1 bar) combination. This is because these conditions were used for both the steaming and ‘explosion’ simulations. The results are included here since they confirm that the system has equilibrated during steaming and there are therefore no further changes during the subsequent simulation. This was also confirmed by the NVE ‘explosion’ simulations using a periodic box that is the same size as that used in the steaming simulations, where no further change was seen in the crystal structure (results not shown for the sake of brevity).

Fig. 5. Separation of the centers of mass of outer shell chains from the center of mass of the crystal after steaming (red dashed line) and after explosion at 1 bar and constant temperature (solid blue line). The four panels show results at different temperatures.
Figure 5 shows that, similar to the change in the crystal structure during steaming, an increase in temperature and pressure leads to a larger disruption of the cellulose crystal structure during explosion. Also, although not shown in the figure (for the sake of clarity), the change in center of mass separation is largest for the chains in the outer shell compared to those in the core region. That is, the central cellulose chains (13-18) show very small changes compared to many of the chains in the outer shell (1-12). For example, the absolute value of the change in centers of mass of chains 1-12 during the explosion stage at (250 °C, 39.7 bar) is, on average, 1.9 Å, whereas for the chains in the core it is 0.8 Å.

Figure 6 shows the same information shown in Figure 5 but for all three initial structures at (250 °C, 39.7 bar). It is clear that the trends discussed above are observed for all structures, and the results are therefore not sensitive to the initial structure of the cellulose after steaming. These results, as well as those shown in Figure 5, also show that any of the outer chains may show the largest change in center of mass during steaming and explosion. That is, although the chains in the outer shell show a larger change in center of mass than the core chains, there is no preference as to which of chains 1-12 show the largest changes during steam explosion. In contrast, a large change in center of mass of a core chain requires that the neighboring chains in the outer shell also have a large change in their centers of mass. For example, the simulations showed that a large change in the center of mass of chain 13 requires large changes in its neighboring chains 1 and 12 (see Figure 2).
Fig. 6. Same as Figure 5 but for all three initial structures obtained at (250 °C, 39.7 bar).

Figure 7 shows the same results as those discussed with reference to Figures 5 and 6, but where the explosion simulations, starting with one of the structures obtained from steaming
at (250 °C, 39.7 bar), are performed using NVE molecular dynamics with a volume 26 times larger than that used for steaming. Hence, the pressure on the cellulose-water system is zero (water molecules do not leave and re-enter the periodic box during the simulation) and the energy is constant. Due to the explosion at constant energy, the temperature decreases by 80 °C.

![Graph showing comparison between steaming and explosion simulations](image)

Fig. 7. Same as Figure 5 but using NVE with the large box to simulate the explosion stage.

Figure 7 shows that there is very little change in the centers of mass of the chains when performing the explosion simulations under constant energy conditions. Hence, it is the constant temperature, and not the drop in pressure, than caused the change in centers of mass during the NpT simulations. Since experimental explosion is performed under NVE conditions (but where the final pressure is 1 bar), the results obtained here indicate that most of the disruption of the crystal structure occurs during the steaming stage.

Analysis of the center of mass separations during steaming shows that the largest changes occur during the first 4 ps, and at longer times the distance between center of mass of each
chain and the crystal fluctuate around a constant value. This reveals that the disruption occurs during the very early stages of the steaming process.

Additional insight of steaming on the disruption of the cellulose crystal structure was obtained from the inter- and intra-chain van der Waals energies. Under all conditions studied (and for all three initial structures) there is an increase in both inter- and intra-chain energies during the steaming process. This is expected, at least for the inter-chain energies, since disruption of the crystal structure results in larger inter-chain separations and hence higher van der Waals energies. For example, at 250 °C the inter-chain van der Waals energy increased by about 1025 kcal/mol during the steaming process. The increase in the intra-chain van der Waals energy is small compared to the increase in inter-chain energy.

There is no significant correlation between the magnitude of the change in centers of mass of chains during steaming and explosion and changes in their radii of gyration. As an example, Figure 8 shows the change in radius of gyration for each chain as a function of its change in center of mass during explosion at 250 °C and 1 bar. The results are typical for all initial structures and (temperature, pressure) pairs. The lines shown in the figure are best-fit straight lines to the core chains (dashed line), the chains in the outer shell (thin solid line) and all eighteen chains (thick solid line). Although all three curves show a trend of decreasing change in radius of gyration with increasing change in center of mass, there is a large scattering (the R-squared values are 0.42, 0.24 and 0.27 for each of the fits, respectively).
Fig. 8. Change in radius of gyration for each chain as a function of its change in center of mass during explosion at 250 °C and 1 bar. The lines are best-fit straight lines to the core chains (dashed line), the chains in the outer shell (thin solid line) and all eighteen chains (thick solid line).

The left column of Figure 9 shows the change in separation between the non-reducing end of a chain in the outer shell and the same end of the neighboring core chain. The central and right columns show the change in separation between the central O-links between outer and neighboring core chains, and the change in separation between the reducing ends of the outer chains and their neighboring core chains. The results are for steaming at (250 °C, 39.7 bar) and for explosion at this temperature. The figure reveals that there is larger disruption at the ends of the chains than at the middle during both steaming and explosion. It should also be noted that the values in the figure are averages over all outer chains, and that some chain ends are separated by as much as 16.1 Å from the neighboring inner chain ends. Hence, after steaming and explosion the ends of the crystalline elementary fibrils are more accessible to enzymatic attack than other regions of the fibril.
Fig. 9. Change in the separation of center of mass of the non-reducing end, the O-link in the center of each chain and reducing end between the outer chains and their neighboring inner chains. The results are for steaming (red) and explosion (blue) at 250 °C.

Previous studies done by us 54 and others 30, 67, 68 have shown that the preferred structure of cellobiose in vacuum is the \textit{anti} structure, whereas in water it is the \textit{syn} structure. In addition, the increased importance of entropic effects at higher temperatures also induces the \textit{syn} structure in vacuum.57 These previous studies have been done for single cellobiose molecules, and conformations of torsion angles ϕ_{H1-H5} (see Figure 2) were analysed here for comparison. In contrast to the previous studies, the core chains are surrounded by other chains (and not vacuum or water) before steam explosion, whereas the outer chains are neighbored by core chains and water. In addition, the increase in temperature is accompanied by an increase in pressure, which may reduce the influence of entropic effects.

All torsion angles (ϕ_{H1-H5}) in all of the chains are \textit{syn} when the chains are in the crystal structure (i.e., at the beginning of the steaming simulations). There was significant change from \textit{syn} to \textit{anti} conformation during the steaming and NpT explosion simulations. For example, after steaming at (250 °C, 39.7 bar) \sim15.7% of the torsions in the chains in the outer shell were \textit{anti}, and \sim9.9% in the core chains were \textit{anti}. The corresponding numbers at
(160 °C, 6.2 bar) were ~17.1% and ~7.4%. Explosion at 250 °C resulted in a further increase to ~21.4% for chains in the outer shell and ~14.4% in the core chains, whereas NpT explosion at 160 °C did not lead to a large increase in the percent of anti torsions (~17.9% for chains in the outer shell and ~9.1% in the core chains). These trends are typical for all structures and temperatures, and show that the chains in the outer shell, which also showed the largest change in center of mass motion, change more readily to anti torsions than the confined chains in the core region. In addition, a larger percentage of torsions change to the anti conformer at the higher temperatures and pressures. No correlation was observed between the percent anti of each torsion (ϕH1-ϕH5) and its position in the chain (i.e., whether the torsion was at one of the ends or in the middle of the chain). Also, similarly to the results presented above for the radius of gyration, there is no significant correlation between the changes in percent anti conformer in a chain with its change in center of mass.

6. CONCLUSION

Grand canonical Monte Carlo and molecular dynamics studies of steam explosion show that there is significant disruption of the crystal structure during the steaming stage. The restructuring of the cellulose crystal, which is seen by large changes in the centers of mass of cellulose chains during steaming, increases with increased temperature and pressure. Disruption was larger for the chains in the outer shell compared to the core chains. In addition, there was larger disruption at the reducing and non-reducing ends of the crystal. This increases the cellulose crystal’s accessibility to enzymes, particularly at the ends of the elementary fibrils, which is important for the cellulose pretreatment in production of biofuel.
Analysis of the changes in the radius of gyration and percent *anti* torsion angle conformers in each chain showed that there was a larger change in these properties for chains in the outer cellulose shell compared to the chains in the core region. However, comparison between chains within either the outer shell or core region showed that there was no significant correlation between these changes and the change in center of mass of the chains. These observations are valid for both the steaming and explosion stages and for all conditions studied.

7. ACKNOWLEDGEMENTS

The authors are grateful to Stiftelsen Föreningssparbanken Sjuhärad and the Carl Trygger Foundation for Scientific Research for financial support. Molecular simulations were done using the program from Accelrys Software Inc. F.B. thanks Mahdi Salimi and Dr. Edvin Erdtman for their assistance.
References

Paper IV
Computational Studies of Water and Carbon Dioxide Interactions with Cellobiose

Faranak Bazooyar*, 1, 2, Martin Bohlén 1, Kim Bolton 1

1 School of Engineering, University of Borås, SE-501 90, Borås, Sweden
2 Department of Chemical Engineering, Chalmers University of Technology,
 Gothenburg, SE-412 96, Sweden

Abstract

B3LYP/6-311++G** with dispersion correction (DFT-D) was used to study local and global minimum energy structures of water (H₂O) or carbon dioxide (CO₂) bonding with a pair of cellobiose molecules. The calculations showed that neither the H₂O nor the CO₂ prefer to be between the cellobiose molecules, and that the minimum energy structures occur when these molecules bond to the outer surface of the cellobiose pair. The calculations also showed that the low energy structures have a larger number of inter-cellobiose hydrogen bonds than the high energy structures. These results indicate that penetration of H₂O or CO₂ between adjacent cellobiose pairs, which would assist steam or supercritical CO₂ (SC-CO₂) explosion of cellulose, is not energetically favoured. Comparison of the energies obtained with DFT-D and DFT (the same method but without dispersion correction) show that both hydrogen bonds and van der Waals interactions play an important role in cellobiose-cellobiose interactions.

Keywords: Cellobiose, H₂O, CO₂, DFT, Dispersion Correction

* Corresponding author. Tel: +46 33 435 45 34.
E-mail address: faranak.bazooyar@hb.se
1. Introduction

Fossil fuel and natural gas reserves are limited and the use of these energy sources has a large environmental impact. Hence, alternative and preferably renewable sources need to be identified to support social and technological development. One such source is lignocellulosic biomass which can, for example, be converted to biofuel.

Lignocellulosic biomass, which stems mainly from forestry waste, agricultural residue and some municipal waste, is currently the largest source of biofuel [1, 2]. Due to this, there has been increasing focus on the conversion of this biomass to fuel, including improving the conversion efficiency. Different methods and materials have been used to break down the lignocellulosic structure, which is required for its conversion into the smaller biofuel molecules (such as ethanol and methane) [3]. Although the presence of lignin and hemicelluloses increases the recalcitrance of lignocellulosic material to hydrolysis, it is believed that it is the intermolecular bonding between cellulose chains as well as its crystalline structure that is the bottleneck for efficient conversion into biofuel [4, 5].

In order to improve the efficiency of the cellulosic material to biofuels, a pretreatment step is usually included in the production [3]. The aim of this step is to remove lignin and hemicellulose, dissolve cellulose microfibrils and disrupt their crystallinity so that they are more susceptible to, for example, biological attack. Numerous solvents have been examined for the pretreatment, and several physical, chemical and physico-chemical methods have been studied [3]. Steam explosion and supercritical CO₂ (SC-CO₂) explosion are two physico-chemical methods that are commonly used. In these pretreatment processes the biomass is exposed to H₂O or CO₂ at high temperatures and pressures, before there is a sudden drop in pressure [6-19].
Computational studies complement experimental research by offering easy control, manipulation and analysis at the molecular level. It is expected that insights obtained at this level can assist in understanding experimental results and identifying improved or new experimental methods. Molecular-level studies can be performed using accurate first principles techniques or methods based on analytic force fields. Although first principles techniques may yield reliable results, their computational expense limits them to studies of small model systems. The methods based on force fields can be used to study larger systems for longer times, but the chemical relevance of the results depends, among other things, on the validity of the force field [20, 21].

First principles studies of cellulose often use cellobiose as the model system since it is the smallest repeat unit of cellulose [22-32]. For example, Stortz et al. have shown that the B3LYP functional with a basis set that includes diffuse terms yields accurate structures and relative energies for cellobiose [20]. Calculations performed with B3LYP/6-311++G** yielded the correct anti conformer as the lowest energy structure for cellobiose in vacuum, and showed that the addition of at least two H2O molecules that surround the conformer change this lowest energy structure to the syn conformer. Similar studies showed that the COMPASS force field capture these properties, although the syn conformer is only obtained in bulk water at temperatures above 298 K (when the pressure is 1 bar). Since the COMPASS force field also predicts the correct crystalline geometry [33], it was suggested that this force field may be used in simulations of larger models of steam explosion [34].

The present contribution extends this work by using the B3LYP/6-311++G** to study the interactions between H2O or CO2 with a pair of cellobiose molecules. The effect of including Grimme’s dispersion corrections [35-37] to obtain an improved description of
the intermolecular forces is also studied. This study, which yields information on
cellulbiose-cellulbiose bonding mechanisms and interactions between an H₂O or CO₂
with the cellulbiose pair, is a first step towards using computational methods to gain a
deeper understanding of the far more complex steam and SC-CO₂ explosion
mechanisms. A more complete investigation of explosion may well require molecular
dynamics or Monte Carlo simulations and high pressures and temperatures (which
requires a valid force field). The first goal of this study is therefore to determine if the
CO₂ molecule yields significantly different low energy structures compared to when the
H₂O interacts with the cellulbiose pair. If this is the case then different mechanisms may
be expected for steam and SC-CO₂ explosion. Although the crystalline structure present
in the steam and SC-CO₂ explosion is very different to the cellulbiose studied here, the
types of intermolecular interactions – hydrogen and van der Waals bonding – will be
qualitatively the same. The second goal is to investigate the relative importance of the
inter-cellulbiose hydrogen and van der Waals bonding and how this may differ between
the H₂O and CO₂ complexes. This is achieved by comparing the B3LYP/6-311++G**
with dispersion correction and B3LYP/6-311++G** results.

2. Computational Methods

2.1. First principles methods

First principles methods are expected to give reasonably accurate data for disaccharides,
including the glycosidic bond strength, which may be affected by the electron pairs on
the oxygen atom that is involved in the bond as well as those of nearby oxygen atoms
[32]. Previous studies have shown that, among different density functional theory (DFT)
methods, the B3LYP [38-41] functional combined with a basis set that includes diffuse
and polarization terms yields accurate relative energies and structures of hydroxyl-
containing compounds like cellulbiose [20, 31]. The presence of the diffuse functions also reduces the effect of the basis set superposition error, so that this does not need to be specifically taken into account [42]. Hence, similarly to those studies, the B3LYP/6-311++G** method is used here.

Since DFT methods underestimate van der Waals energies, which may be important between the cellulbiose molecules and between the H₂O or CO₂ and the cellulbiose pair, we consider the effect of including dispersion corrections to the B3LYP/6-311++G** results. This was done by including Grimme’s dispersion corrections to the B3LYP/6-311++G** results. Although the DFT geometry optimizations were performed with dispersion correction, we also present the relative energies without the correction. The increase in intermolecular bond strength due to the inclusion of dispersion provides a measure of the importance of van der Waals interactions, and can be compared to the non-dispersion contribution (mainly hydrogen bonds). For the sake of brevity, the method without the dispersion correction is referred to as DFT, and when including the correction it is called DFT-D (DFT with dispersion corrections).

The first principles calculations, which are described below, were done using the General Atomic and Molecular Electronic Structure System (GAMESS) program [43].

2.2. Molecular mechanics force field

The Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies (COMPASS) force field has been discussed in detail by Sun [44] and is only briefly described here for the sake of completeness. The intramolecular terms are bond stretching, angle bending, cross-terms and out-of-plane torsions and wags, while intermolecular interactions include electrostatic and van der Waals terms. The
parameters for the intramolecular terms as well as the atomic charges have been fit to \textit{ab initio} data and those for the intermolecular terms are fit to experimental data. The fitting was done for a variety of materials including metals, metal oxides, some metal ions, inorganic small molecules, most common organics and polymers [45]. This force field is also suitable for studies of cellulose and cellobiose [26, 27, 46-51]. Calculations done with this force field were performed using the Materials Studio Software (Accelrys Software Inc.).

2.3. Simulation methods

As described below, the initial structures for most of the DFT-D geometry optimizations were obtained from annealing simulations using the COMPASS force field. Since none of the structures had the H$_2$O or CO$_2$ molecule between the cellobiose molecules (since this was not a preferred structure according to the COMPASS force field), six DFT-D geometry optimisations were initialised with the H$_2$O or CO$_2$ between the cellobiose molecules. These geometries were therefore constructed by hand. The cellobiose molecules, as well as the H$_2$O or CO$_2$, were initially in their minimum energy structures and the cellobiose molecules were parallel to each other. The H$_2$O or CO$_2$ was placed between the centre of masses of the cellobiose molecules or between neighbouring glucose units, with the separation between the nearest atoms on the H$_2$O / CO$_2$ and the nearest atom on cellobiose molecules ranging from 1.6 to 4.7 Å (to avoid starting with a structure that was too high in energy). All of these geometry optimisations resulted in the H$_2$O or CO$_2$ moving from being between the molecules to the outside of the cellobiose pair. That is, in the geometry optimised structures the H$_2$O or CO$_2$ bonded to the outer surface of the cellobiose pair (similar structures are discussed below with reference to Fig 3 and 5). The same trends were observed when using the COMPASS
force field. Hence, the DFT-D and COMPASS methods predict that the H_2O or CO$_2$ prefers to bond to the outer surface of the cellobiose pair, and the COMPASS force field was used to identify many H_2O-cellobiose pair and CO$_2$-cellobiose pair local minimum energy structures, which were used as input for the DFT-D geometry optimisations.

These structures were obtained using simulated annealing. Since the goal was to obtain different high and low energy local minimum energy structures, 50–100 cycles with 4-8 million simulation steps per cycle were simulated. The Verlet integration algorithm, which has the advantage of being formally time-reversible [52], was used with a step size of 1fs. The mid-cycle temperature for the H_2O systems was between 300 and 340 K, and for the CO$_2$ systems it was between 170 and 275 K. These temperatures were sufficiently high to allow for sampling of large regions of configuration space while still preventing excessive evaporation of the H_2O or CO$_2$ molecule from the cellobiose pair.

Ten geometries were used as input for the annealing to further increase the configuration space that was sampled. These geometries had different orientations of the cellobiose molecules relative to each other (parallel, anti-parallel, perpendicular and when one of the cellobiose was rotated so that there was a 90° angle between the molecular planes of the cellobiose molecules) and where the H_2O or CO$_2$ molecule was placed between the cellobiose molecules or at different sites on the surface of the cellobiose pair. These structures were geometry optimised before being used as input for the annealing simulations. The choice of the annealing parameters enabled identification of local minimum energy structures from all of these regions of configuration space, and many of the annealed structures obtained from the different
initial structures were very similar (i.e., the annealing linked the regions of
configuration space spanned by the initial structures).

Ten geometries were typically chosen from each of the ten annealing simulations for
further analysis. The selection was done so that both high and low energy (including the
lowest energy) structures were included. These structures were geometry optimised with
the COMPASS force field using a combination of conjugate gradient [53], Newton [54]
and steepest descent [55] methods. The structures were considered to be minimized
once the change in energy between subsequent steps was less than 2.0×10^{-5} kcal/mol.
Since some of these structures were the same, this procedure resulted in 90 unique
structures for the H$_2$O-cellobiose pair and 80 unique structures for the CO$_2$-cellobiose
pair. These structures were used as input for the DFT-D geometry optimisations. These
geometry optimizations were performed using a gradient convergence tolerance of
6.28×10^{-3} kcal/(mol$ \times $bohr) and a RMS gradient tolerance of 2.09×10^{-3} kcal/(mol$ \times $bohr).

2.4. Analysis

Several parameters were analysed to ascertain whether H$_2$O and CO$_2$ induced
significantly different local minimum energy structures. These included the relative
energies of the cellobiose pair and the size of the dispersion correction for the different
structures. Several geometrical parameters were analysed (e.g., the relative orientation
of the cellobiose molecules, the relative positioning of the reducing and non-reducing
ends, the orientation of the carbonyl groups, the positions of the H$_2$O and CO$_2$
molecules), but the clearest difference between the high and low energy geometries was
the number of hydrogen-bonds (H-bonds) that linked the two cellobiose molecules.
Hence, this is discussed in detail below, where the H-bond is defined by a maximum
separation of 2.5 Å between the H and O atoms on the different molecules and a
minimum angle of 90° formed by the H--O bond on one molecule and the H atom on the second molecule. The trends discussed below are not expected to be sensitive to this definition.

The strength of the H₂O / CO₂ – cellobiose pair interaction is

\[E_{(X\text{-}pair)} = E_{(X\text{+pair})} - E_{\text{pair}} - E_X \]

Eq. (1)

where \(E_{(X\text{+pair})} \) is the energy of the geometry optimised structure, \(E_{\text{pair}} \) is the energy of the cellobiose pair and \(E_X \) is the energy of the H₂O or CO₂. The cellobiose pair structure (used to obtain \(E_{\text{pair}} \)) was subsequently used to obtain the intermolecular energy between the cellobiose molecules, which is

\[E_{(\text{inter-cellob})} = E_{\text{pair}} - E_{\text{Cellob.1}} - E_{\text{Cellob.2}} \]

Eq. (2)

where \(E_{\text{Cellob.1}} \) and \(E_{\text{Cellob.2}} \) are the energies of the separated cellobiose molecules. Note that the structures used to obtain \(E_{\text{pair}} \), \(E_{\text{Cellob.1}} \) and \(E_{\text{Cellob.2}} \) were the same as those obtained from geometry optimisation of H₂O / CO₂ – cellobiose pair system (i.e., there was no further optimisation of the individual cellobiose molecules or the cellobiose pair). This was done since the aim was to analyse the strength of the intermolecular interactions in the H₂O / CO₂ – cellobiose pair complex, and further geometry optimisation would also have included the contribution of the intramolecular energies. As discussed below, comparison between the DFT and DFT-D results reveals the relative importance of the non-dispersion and dispersion interactions.

The conformation (\(\text{anti} \) or \(\text{syn} \)) of the cellobiose was also analysed since it is known that it is \(\text{syn} \) in the cellulose crystal structure and \(\text{anti} \) in the cellobiose structure in vacuum. Possible changes from \(\text{syn} \) to \(\text{anti} \) will be important during steam or SC-CO₂ explosion
since this would distort the crystal structure and make the crystal more susceptible to biological attack. The conformation is given by ϕ_H, which is the dihedral angle defined by $H1-C1-O1-C4^\prime$ as shown in Fig 1. A ϕ_H near 180° (or -180°) reveals the anti (flipped) conformer and a ϕ_H near 60° (or -60°) reveals the syn (normal) conformer [27, 39].

![Structure of the anti (flipped) conformer of β-cellobiose. The atom numbering is used in the discussion of the H-bonding below, and the dihedral angle ϕ_H is defined by H1–C1–O1–C4’. The non-reducing and reducing ends are also shown.](image)

Fig 1. Structure of the anti (flipped) conformer of β-cellobiose. The atom numbering is used in the discussion of the H-bonding below, and the dihedral angle ϕ_H is defined by H1–C1–O1–C4’. The non-reducing and reducing ends are also shown.

3. Results and Discussion

3.1. H$_2$O-cellobiose pair

Fig 2 shows the relative energies, ΔE, of the 90 unique H$_2$O-cellobiose pair local minimum energy structures, ordered according to energies obtained from the DFT-D calculations. The energies are relative to the DFT-D energy of the lowest energy structure. Several aspects are revealed from the figure. First the lowest energy structure obtained from DFT-D also has the lowest DFT energy. This lowest energy structure is discussed in more detail below. Second, the energy difference between the high and low energy structures is ~25 kcal/mol within the DFT-D series and ~15 kcal/mol within the DFT series. As discussed below, the difference between the change in DFT-D and DFT energies is due to the extra stability that the dispersion contributes to the low
energy structure. Third, the dispersion correction yields DFT energies that are ~50 kcal/mol lower in energy than the DFT results.

Fig 2. Relative energies (in kcal/mol) of local minimum H$_2$O-cellobiose pair structures obtained from DFT-D and DFT.

The local minimum structures were analysed to ascertain if there are any general differences and similarities between the high and low energy structures. There are no significant trends regarding differences in the binding position of the H$_2$O molecule on the surface of the cellobiose pair, the relative positions of the reducing and non-reducing ends of the cellobiose molecules, the conformations of the cellobiose molecules (which are typically *anti*) or the relative orientations of the carbonyl groups on the cellobiose molecules. However, as exemplified in Fig 3, the low energy structures consist of cellobiose molecules that are parallel to each other and where the glucose units on one of the molecules lie directly above the glucose units on the second molecule. This maximises the number of hydrogen bonds (which is between 5 and 7 in the low energy structures) and the van der Waals energy.

The structures with intermediate energies (~ Structures 40-85 in Fig 2) also consist of cellobiose molecules that lie parallel to each other, but the cellobiose molecules are shifted relative to each other such that the two glucose units of the first molecule are not directly above those on the second molecule. This results in fewer hydrogen bonds (3-5)
and reduced van der Waals attraction. The cellobiose molecules in the structures with the highest energies have almost no overlap of the glucose units. There are only 1 or 2 hydrogen bonds and the van der Waals interactions are far weaker (as quantified below).

Table 1 lists bond lengths, angles and torsions of the two cellobiose molecules in the minimum energy structure shown in Fig 3. The data in the table were chosen since they represent different types of bonds, angles and torsions. It is evident that the bond lengths and angles are similar for the two cellobiose molecules. The torsion angles that are formed by carbon and oxygen atoms are also similar, whereas torsion angles that end with a hydrogen atom can show a significant difference between the two molecules (e.g., C5'-C6'-O6'-H). This is expected since the hydrogen atoms readily rotate between local minimum structures that have similar energies so that the intermolecular interactions - including H-bonding - are strengthened. The separation between the cellobiose centres of mass is 4.59 Å. Both cellobiose molecules have the anti conformation, with $\phi_H = -173.7$ and 179.2° for Cellob.1 and Cellob.2, respectively.
Table 1. Representative bond lengths (Å), bond angles (°) and torsions (°) in the cellobiose molecules (Cellob.1 and Cellob.2 in Fig 3) of the DFT-D minimum energy structure.

<table>
<thead>
<tr>
<th>Bond lengths</th>
<th>Cellob.1</th>
<th>Cellob.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1-C4’</td>
<td>1.436</td>
<td>1.435</td>
</tr>
<tr>
<td>C4’-C5’</td>
<td>1.543</td>
<td>1.546</td>
</tr>
<tr>
<td>C5’-O5’</td>
<td>1.432</td>
<td>1.436</td>
</tr>
<tr>
<td>O6’-C6’</td>
<td>1.423</td>
<td>1.417</td>
</tr>
<tr>
<td>O1’-C1’</td>
<td>1.389</td>
<td>1.401</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angles</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1-O1-C4’-C5’</td>
<td>120</td>
<td>118</td>
</tr>
<tr>
<td>O1-C4’-C5’-O5’</td>
<td>110</td>
<td>108</td>
</tr>
<tr>
<td>C4’-C5’-C6’-O6’</td>
<td>114</td>
<td>114</td>
</tr>
<tr>
<td>O5’-C1’-O1’-C5’</td>
<td>109</td>
<td>108</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Torsions</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1-O1-C4’-C5’</td>
<td>118</td>
<td>123</td>
</tr>
<tr>
<td>O1-C4’-C5’-O5’-C1’</td>
<td>173</td>
<td>169</td>
</tr>
<tr>
<td>C4’-C5’-O5’-C1’-O1’</td>
<td>63</td>
<td>54</td>
</tr>
<tr>
<td>C4’-C5’-C6’-O6’-H</td>
<td>57</td>
<td>56</td>
</tr>
<tr>
<td>C5’-O5’-C1’-O1’-H</td>
<td>176</td>
<td>179</td>
</tr>
<tr>
<td>O5’-C1’-C2’-O2’-H</td>
<td>174</td>
<td>176</td>
</tr>
<tr>
<td>C5’-C6’-O6’-H</td>
<td>102</td>
<td>60</td>
</tr>
<tr>
<td>O5’-C1’-O1’-H</td>
<td>75</td>
<td>64</td>
</tr>
<tr>
<td>C1’-C2’-O2’-H</td>
<td>61</td>
<td>93</td>
</tr>
</tbody>
</table>

Fig 3. Lowest energy H₂O-cellobiose pair structure obtained from DFT-D. The H₂O molecule is shown in blue. The reducing and non-reducing ends of each cellobiose molecule are shown.
There are six hydrogen bonds in the lowest energy structure (shown in Fig 3) and these are between O3--H-O2´, O6--H-O6´, H-O4--O1´, O4--H-O1´, O1´-H--O3 and O6´-H--O6, where the first number in each bond is for Cellob.1 and the second for Cellob.2. The atom numbers are given in Fig 1. The second column in Table 2 shows the intermolecular energy between the cellobiose molecules for this structure and eleven other local minimum energy structures. The structures were chosen to represent low, intermediate and high energy structures (the numbers in the table are the same as those in Fig 2). It is evident that the intermolecular energy (obtained from the DFT-D results) decreases with increasing structure number (increasing relative energy). The difference between DFT-D and DFT energies for each structure is shown in the third column in Table 2. These are the dispersion contributions to the inter-cellobiose energies, and they also decrease with increasing structure number. The difference between the values in the second and third columns is the non-dispersion contribution, which also decreases with increasing structure number. Hence, both types of inter-cellobiose interactions get weaker as the structures become less stable (as their energy increases). The numbers in parentheses in the third column are the percentage contribution of the dispersion interactions to the inter-cellobiose energies. There is no clear trend of this percentage contribution increasing or decreasing with increasing structure number, which indicates that the dispersion and non-dispersion contributions decrease equally rapidly as the energy of the structure increases.
Table 2. Cellobiose-cellobiose intermolecular energies ($E_{\text{inter-pair}}$) and the dispersion correction energies (E_{disp}) in kcal/mol for some structures shown in Fig 2.

<table>
<thead>
<tr>
<th>Structure No.</th>
<th>$E_{\text{inter-pair}}$</th>
<th>E_{disp} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-51.5</td>
<td>-17.8 (35)</td>
</tr>
<tr>
<td>6</td>
<td>-46.8</td>
<td>-18.5 (40)</td>
</tr>
<tr>
<td>14</td>
<td>-51.2</td>
<td>-17.6 (34)</td>
</tr>
<tr>
<td>37</td>
<td>-42.2</td>
<td>-20.8 (49)</td>
</tr>
<tr>
<td>40</td>
<td>-27.4</td>
<td>-11.2 (41)</td>
</tr>
<tr>
<td>46</td>
<td>-38.2</td>
<td>-14.6 (38)</td>
</tr>
<tr>
<td>48</td>
<td>-33.0</td>
<td>-20.3 (62)</td>
</tr>
<tr>
<td>78</td>
<td>-34.6</td>
<td>-16.7 (48)</td>
</tr>
<tr>
<td>82</td>
<td>-29.4</td>
<td>-18.6 (63)</td>
</tr>
<tr>
<td>86</td>
<td>-12.6</td>
<td>-9.7 (77)</td>
</tr>
<tr>
<td>88</td>
<td>-13.8</td>
<td>-4.4 (32)</td>
</tr>
<tr>
<td>90</td>
<td>-17.3</td>
<td>-6.3 (36)</td>
</tr>
</tbody>
</table>

The H_2O molecule is attached to the cellobiose pair by two hydrogen bonds in the minimum energy structure shown in Figure 1. The H-bonds are with the H-O3 and the O2 atoms of Cellob.2 shown in Figure 3, and the distance between centre of masses of H_2O and Cellob.2 is 5.63 Å. The intermolecular energy between the H_2O and the cellulose pair is -15.5 kcal/mol. As mentioned above, there are no clear trends of changes in this energy as the total energy of the H_2O-cellobiose pair structure increases. For example, the energy between the H_2O and the cellulose pair is -14.1 kcal/mol for Structure 46, and it is -18.2 kcal/mol for Structure 88.

3.2. CO2-cellobiose pair

The trends observed for the H_2O-cellobiose pair systems are also seen for the CO2-cellobiose pair systems. Fig 4 shows the relative energies of the 80 unique CO2-cellobiose pair local minimum energy structures. The minimum energy structure obtained from the DFT-D calculations is also the DFT minimum energy structure, and the trend of increasing relative energies from Structures 1 through 80 is the same for DFT-D and DFT calculations. The difference in DFT-D energies between the highest and lowest energies structures is ~25 kcal/mol (which was the same for the H_2O-
cellobiose pair systems) and this difference in DFT energies is ~15 kcal/mol (which was also the same for the H_2O systems). Since DFT does not include the dispersion contribution to the stabilisation of the low energy structures, the DFT energies are ~60 kcal/mol higher than the DFT-D energies.

Fig 4. Same as Fig 2 but for the CO_2-cellobiose pair structures.

Similarly to the H_2O-cellobiose pair systems, the lowest energy CO_2-cellobiose pair structures are parallel such that the inter-cellobiose attraction is maximised (the minimum energy CO_2-cellobiose pair structure is discussed below with reference to Fig 5). There are 5-7 H-bonds in the structures with the lowest energies (~Structures 1-15 in Fig 4) and, as discussed below, there are strong dispersion attractions. The cellobiose molecules are shifted relative to each other in the structures that have intermediate energies (~Structures 16-60) which results in fewer (~3-5) H-bonds and weaker dispersion attractions. The structures with the highest relative energies (~Structures 61-80) have even fewer H-bonds and weaker van der Waals attraction.

The minimum energy structure for the CO_2-cellobiose pair system is shown in Fig 5 and data for this structure is shown in Table 3. The separation between the cellobiose centres of mass is 4.10 Å. Both cellobiose molecules have the *anti* conformation, with \(\varphi_H = 177.5 \) and 177.0° for Cellob.1 and Cellob.2, respectively. There are seven H-
bonds, which are located between O6--H-O3´, O3´--H-O6, O3--H-O3, O2'--H--O6, O3'--H--O6', O4'--H--O5' and O6'--H--O4', where the first number in each bond refers to the Cellob.1 molecule and the second number to Cellob.2. The atom numbers are those given in Fig 1.

Fig 5. Same as Fig 3 but for the CO₂-cellobiose pair minimum energy structure. The CO₂ molecule is shown in brown.

Table 3. Same as Table 1 but for the CO₂-cellobiose pair minimum energy structure.

<table>
<thead>
<tr>
<th></th>
<th>Cellob.1</th>
<th>Cellob.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bond lengths</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1-C4'</td>
<td>1.429</td>
<td>1.432</td>
</tr>
<tr>
<td>C4'--C5'</td>
<td>1.540</td>
<td>1.545</td>
</tr>
<tr>
<td>C5'--O5'</td>
<td>1.432</td>
<td>1.438</td>
</tr>
<tr>
<td>O6'--C6'</td>
<td>1.426</td>
<td>1.419</td>
</tr>
<tr>
<td>O1'--C1'</td>
<td>1.394</td>
<td>1.388</td>
</tr>
<tr>
<td>Angles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1-O1-C4'</td>
<td>117</td>
<td>118</td>
</tr>
<tr>
<td>O1-C4--C5'</td>
<td>109</td>
<td>109</td>
</tr>
<tr>
<td>C4--C5--O5'</td>
<td>110</td>
<td>108</td>
</tr>
<tr>
<td>C4--C5--C6'</td>
<td>115</td>
<td>116</td>
</tr>
<tr>
<td>O5'--C1--O1'</td>
<td>107</td>
<td>108</td>
</tr>
<tr>
<td>Torsions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1-O1-C4--C5'</td>
<td>-123</td>
<td>-132</td>
</tr>
<tr>
<td>O1-C4--C5--O5'</td>
<td>-179</td>
<td>174</td>
</tr>
<tr>
<td>C4--C5--O5--C1'</td>
<td>57</td>
<td>67</td>
</tr>
<tr>
<td>C4--C5--C6--O6'</td>
<td>66</td>
<td>49</td>
</tr>
<tr>
<td>C5--O5--C1--O1'</td>
<td>-173</td>
<td>-177</td>
</tr>
<tr>
<td>O5--C1--C2--O2'</td>
<td>174</td>
<td>171</td>
</tr>
<tr>
<td>C5--C6--O6--H</td>
<td>46</td>
<td>-70</td>
</tr>
<tr>
<td>O5--C1--O1--H</td>
<td>68</td>
<td>-64</td>
</tr>
<tr>
<td>C1--C2--O2--H</td>
<td>80</td>
<td>106</td>
</tr>
</tbody>
</table>
It is evident from Table 3 that the structures of Cellob.1 and Cellob.2 (Fig 5) are very similar. The only large differences are in some of the torsion angles that have hydrogen as an end atom. As discussed above with reference to the H₂O-cellobiose pair system, this is because there is a small torsion barrier between these local minima, and the energy difference between the minima is also small.

The second column in Table 4 shows that the inter-cellobiose energy decreases with increasing structure number (i.e., with increasing relative energy). The dispersion energy and the non-dispersion contribution to the intermolecular energy (difference between columns two and three) also decrease. Similarly to the H₂O-cellobiose pair systems, there is no clear evidence that the relative contribution of the dispersion energy (shown as percent in parenthesis in the table) either increases or decreases with increasing structure number.

Table 4. Same as Table 2 but for CO₂-cellobiose pair systems.

<table>
<thead>
<tr>
<th>Structure No.</th>
<th>E_{inter-pair}</th>
<th>E_{disp} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-56.6</td>
<td>-23.3 (41)</td>
</tr>
<tr>
<td>3</td>
<td>-54.9</td>
<td>-22.4 (41)</td>
</tr>
<tr>
<td>11</td>
<td>-46.7</td>
<td>-19.1 (41)</td>
</tr>
<tr>
<td>19</td>
<td>-38.0</td>
<td>-20.7 (54)</td>
</tr>
<tr>
<td>21</td>
<td>-34.0</td>
<td>-13.4 (39)</td>
</tr>
<tr>
<td>22</td>
<td>-25.6</td>
<td>-17.8 (70)</td>
</tr>
<tr>
<td>28</td>
<td>-30.2</td>
<td>-20.0 (66)</td>
</tr>
<tr>
<td>34</td>
<td>-29.4</td>
<td>-19.2 (65)</td>
</tr>
<tr>
<td>46</td>
<td>-23.6</td>
<td>-12.2 (52)</td>
</tr>
<tr>
<td>54</td>
<td>-18.9</td>
<td>-6.0 (32)</td>
</tr>
<tr>
<td>65</td>
<td>-12.9</td>
<td>-11.2 (87)</td>
</tr>
<tr>
<td>72</td>
<td>-17.4</td>
<td>-6.1 (35)</td>
</tr>
</tbody>
</table>

The distance between the centre of mass of the CO₂ molecule and the cellobiose pair in the minimum energy structure shown in Fig 5 is 7.51 Å. Neither this distance, nor the CO₂-cellobiose intermolecular energy, shows a systematic change with increasing
structure number. For example, this energy is -8.2, -9.4 and -5.6 kcal/mol for Structures 1, 21 and 72, respectively.

3.3. Comparison between the H₂O-cellobiose pair and CO₂-cellobiose pair results

The results obtained from the H₂O and CO₂ systems are similar, indicating that the intermolecular bonding between the H₂O or CO₂ molecule and the cellobiose pair does not significantly influence the minimum energy structures, or the trends observed between structures with increasing relative energies. For example, the structures with the lowest energies have the largest number of H-bonds and strongest van der Waals attractions, and are approximately 25 kcal/mol (DFT-D) or 15 kcal/mol (DFT) lower in energy than the high energy structures. Both non-dispersion and dispersion interactions have large relative contributions to the cellobiose-cellobiose intermolecular interactions for all of the structures. Also, the H₂O and CO₂ molecules prefer to bind to the outer surface of the cellobiose pair instead of being located between the cellobiose molecules.

However, there are some differences. For example, the distance between the centres of mass the H₂O and the cellobiose pair (5.63 Å) in the lowest energy structure is smaller than between the CO₂ and the cellobiose pair (7.51 Å). This is expected since the water is bound via two H-bonds to the cellobiose pair. It is also of interest that the distance between the centres of mass the two cellobiose molecules is larger (4.59 Å) when they interact with the H₂O molecule than when they interact with the CO₂ molecule (4.10 Å). This is consistent with the weaker cellobiose-cellobiose intermolecular energy for the pair that interacts with the H₂O molecule (-51.1 compare to -56.6 kcal/mol for the CO₂ complex). Hence, the increase in intermolecular attraction to the water molecule – which results in increased electron density being located between the cellobiose pair and
the water molecule – decreases the interaction strength (electron density) between the celllobiose molecules.

4. Conclusion

Previous studies [26, 27] have shown that the B3LYP/6-311++G** density functional method yields valid energies and structures for celllobiose and H$_2$O-celllobiose systems. This method, including Grimme’s dispersion correction, was used to study the interactions between H$_2$O and two celllobiose molecules, as well as CO$_2$ and two celllobiose molecules. The results obtained with and without the dispersion corrections are presented, since they enable an estimation of the relative contributions of non-dispersion (main H-bonding) and dispersion (van der Waals bonding) terms to the intermolecular energies.

Geometry optimisation with the DFT-D method showed that the H$_2$O and CO$_2$ molecules prefer to bond to the surface of the celllobiose pair as opposed to being located between the celllobiose molecules. Also, comparison of 90 unique H$_2$O-celllobiose pair and 80 unique CO$_2$-celllobiose pair local minimum energy structures showed that the trends in relative energies between the low and high energy structures were the same with and without dispersion correction. The structures with lower energies typically have a larger number of H-bonds and stronger van der Waals interactions.

Comparison of the DFT and DFT-D celllobiose-celllobiose intermolecular energies showed that both the non-dispersion and dispersion terms have large contributions to the intermolecular energies. The contribution of the dispersion (and non-dispersion)
energies was typically between 30 and 70 %, and there was no clear trend in increasing or decreasing this contribution with weaker intermolecular bonds.

The distance between the centres of mass the two cellobiose molecules is larger (4.59 Å) when they interact with the H$_2$O molecule than when they interact with the CO$_2$ molecule (4.10 Å). This is consistent with the weaker cellobiose-cellobiose intermolecular energy for the pair that interacts with the H$_2$O molecule. Hence, the increase in intermolecular attraction to the water molecule – which results in increased electron density being located between the cellobiose pair and the water molecule – decreases the interaction strength between the cellobiose molecules.

5. Acknowledgments

Financial support from Stiftelsen Föreningssparbanken Sjuhärad and The Carl Trygger Foundation for Scientific Research is gratefully acknowledged. GAMESS-US, version 1 OCT 2010 (R1) was used at the high performance computer cluster Kalkyl at UPPMAX (Uppsala Multidisciplinary Centre for Advanced Computational Science), Uppsala Sweden. Calculations using the COMPASS force field were done using the program from Accelrys Software Inc.
References

[50] Miyamoto H, Yamane C, Ueda K (2013) Structural changes in the molecular sheets along (hk0) planes derived from cellulose Iβ by molecular dynamics simulations. Cellulose 20: 1089–1098

Paper V
Molecular-level Calculations of Cellulose Explosion using Supercritical CO₂

Faranak Bazooyar¹,²,*, Martin Bohlén¹, Mohammad Taherzadeh¹, Claes Niklasson² and Kim Bolton¹

¹Swedish Centre for Resource Recovery, University of Borås, SE-501 90, Borås, Sweden
²Department of Chemical Engineering, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden

Abstract

Supercritical carbon dioxide (SC-CO₂) explosion is often used as a pretreatment step when converting cellulosic waste into biofuel. Density functional theory with dispersion correction (DFT-D), grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) have been used to study the explosion of crystalline cellulose at temperature/pressure combinations relevant to experimental studies. The GCMC and MD simulations are based on the COMPASS force field, which provides a valid description of the cellulose crystal structure. In addition, comparison of COMPASS and DFT-D minimum energy structures and energies of CO₂ interacting with a cellobiose pair, shows that the COMPASS force field correctly predicts that compact structures – where there is strong intermolecular bonding between the cellobiose molecules – have lower energies than structures that resemble the amorphous phase. The simulations show significant disruption of the crystal structure during the loading of SC-CO₂, and subsequent explosion does not lead to additional significant distortion of the crystal structure. This is observed, for example, by large changes in the centres of mass of cellulose chains from the centre of the crystal structure, as well as increased separation of the non-reducing and reducing ends of chains from the neighbouring chains. Increasing the

* Corresponding author. Tel: +46 33 435 45 34.
E-mail address: faranak.bazooyar@hb.se
pressure decreases disruption of the crystal structure, while increasing temperature typically
increases the displacement of cellulose chains. There is no significant correlation between the
change in centres of mass of the chains and changes in their radii of gyration. The extent of
disruption observed in the simulations is less than that observed for steam explosion (under
conditions that are relevant to experimental studies of steam explosion).

Keywords: cellulose, density functional theory with dispersion correction, molecular
dynamics, grand canonical Monte Carlo, super critical CO₂ explosion

1. Introduction

Continued depletion of fossil fuels, increasing energy demands and the negative
environmental impacts of current fuel usage requires the identification and development of
new energy sources. Lignocellulosic materials are the most abundant resources that can be
converted into biofuels, but the crystalline structure of cellulose as well as the presence of
lignin and hemicellulose hinders enzymatic hydrolysis [1].

The most important lignocellulosic biomass constituents are lignin, hemicellulose and
cellulose. The relative quantities of these components vary depending on the feedstock, but
are typically 15-25 % lignin, 23- 32 % hemicellulose and 38- 50 % cellulose, in addition to
the extractives and inorganic materials [2]. Accessibility of the hemicellulose and cellulose is
crucial for enzymolysis, where the cellulose chains are cut into β-(1, 4)-D-glucan units for
subsequent fermentation. Different chemical, physical and physico-chemical pretreatment
methods have been used to remove lignin and hemicellulose, as well as to disrupt the
crystalline cellulose material that is required to increase the accessibility of the cellulose
chains to enzyme attack.
Ding and Himmel [3] have suggested a cellulose structure where each elementary fibril contains thirty-six cellulose chains. In this model, which is shown in Fig. 1, the outermost layer contains eighteen chains (green) that surround eighteen inner cellulose chains. The inner chains contain six core chains (shown as brown) that are bonded to twelve chains in the middle shell (orange). As reported previously [4], both hydrogen and van der Waals interactions are important for the intermolecular bonding between the chains.

Figure 1- Cross section of a cellulose elementary fibril containing thirty-six cellulose chains [3].

Supercritical fluids are widely used for separating and purifying high value products [5], and pretreatment of cellulose-containing materials using supercritical fluids enhances enzymatic hydrolysis [6]. For example, in 1995 Zheng [7] proposed that supercritical carbon dioxide (SC-CO₂) could be used as a green solvent for dissolving lignocellulosic biomass. This assists in biofuel production either with or without explosion. CO₂ has a low critical temperature and pressure (31.1 °C and 1067 psi), and under supercritical conditions the CO₂ has gas-like mass transfer and liquid-like solvating power with low viscosity [8, 9]. In addition, SC-CO₂ is economical, non-flammable, non-toxic and easy to recycle [10]. SC-CO₂ explosion enhances the penetration of chemicals into lignocellulosic materials during pulp production [11]; also in many pretreatment processes SC-CO₂ has been used for materials such as corn stover, switchgrass, aspen, rice straw, southern yellow pine (SYP), cellulose-containing waste from
cotton production, cotton fibre, Avicel, wheat straw, sugarcane bagasse and other feed stocks [6, 11-20].

Experiments show that the effectiveness of SC-CO$_2$ pretreatment depends on the feedstock. For example, while pine wood shows no significant change in its microstructure arrangement during SC-CO$_2$ pretreatment, the method is effective for Avicel and increases the glucose yield by 50% [17, 21]. It is believed that SC-CO$_2$ pretreatment is effective for Avicel since it decreases the crystallinity of the cellulose thereby increasing the surface area [17].

Experimental studies have investigated different methods for SC-CO$_2$ pretreatment, both with and without explosion. They have used different temperature, pressure, and residence time for different feedstock. For instance, combinations of 40-110 °C/ 1450-4350 psi/ 15-45 min were used for rice straw [13], 25-80 °C/ 1100-4000 psi/ 60 min were used for bagasse [11], 160-210 °C/ 2900 psi/ 60 min for switch grass [12], 80-160 °C/ 2900 and 3500 psi/ 10-60 min for corn stover [12] and 112-165 °C/ 3100 psi/10-60 min was used for aspen [21] and SYP [15].

SC-CO$_2$ pretreatment with explosion is comprised of two stages. In the first stage, known as loading, the feedstock is submersed in CO$_2$ at a supercritical temperature and pressure. In the second stage, known as explosion, there is a rapid pressure drop to atmospheric pressure. SC-CO$_2$ explosion not only helps to remove, dissolve and depolymerise the lignin and hemicellulose, but also reduces the size and crystallinity of the cellulose structure [22].

The effect of varying the temperature and pressure has also been studied for some feedstock. Increasing the temperature typically improves the conversion of the feedstock to biofuel [19]. Zheng et al. (1998) showed that pretreatment of Avicel with subcritical CO$_2$ at 25 ºC gave a small yield of glucose, and increasing the temperature to 35ºC increased the yield
significantly. Further increase in temperature did not result in additional enhancement in the glucose yield [11]. The effect of pressure is not as clear, and appears to depend on the feedstock. For example, Narayanaswamy et al. showed that increasing SC-CO$_2$ pressure from 2500 to 3500 psi during pretreatment of corn stover doubled the glucose yield [12]. In contrast, increasing the pressure from 3100 to 4000 psi during pretreatment of aspen resulted in a lower glucose yield [21].

Many of the SC-CO$_2$ pretreatment methods include water, which is believed to increase the enzymatic hydrolysis [11]. For example, dry lignocellulosic materials like aspen and SYP show no significant glucose yield after SC-CO$_2$ pretreatment, but the presence of 40-73% water increases the yield. More than 73% water content did not show more glucose yield [21]. The reason for the improved hydrolysis in the presence of water may be due to the formation of carbonic acid, which may hydrolyse some of the hemicellulose that surrounds the crystalline cellulose. This would break the cellulose-hemicellulose hydrogen bonds (H-bonds) and the H-bonds between cellulose microfibrils. A second reason for the improved hydrolysis in the presence of water is that it may lead to swelling of the biomass, thereby increasing susceptibility to CO$_2$ penetration [11, 12]. It may also be noted that enzymes are also active in microaqueous environments [16].

Experimental studies of chemical reaction mechanisms and rates are complemented by computational studies, which offer easy manipulation and analysis at the molecular level. These types of calculations are often based on model systems and empirical force fields, which allows for the study of sufficiently large systems and long times so that statistically converged results can be obtained under conditions relevant to experiment. It is important that both the model and the force field provide a valid description of the system [23, 24].
This contribution describes the results obtained from density functional theory calculations as well as Grand Canonical Monte Carlo (GCMC) and molecular dynamics (MD) based on the COMPASS force field. This force field is first validated for the system studied here by comparing structures and energies obtained from the force field with those obtained from density functional theory, and then applied in the GCMC and MD simulations to study the loading and explosion of a cellulose crystal model using SC-CO₂. The crystalline model is based on a model proposed by Ding and Himmel [25], shown in Fig. 1. The temperature-pressure combinations that have been studied, (and that) are relevant to experimental studies, are listed and named A to G in Table 1. Systems A-D enable analysis of the effect of change in pressure on the CO₂ explosion, whereas systems C, E-G enable analysis of the change in temperature. It can be noted that these studies are based on a model system of a cellulose crystal, and is the first step in modelling material that contains lignin and hemicellulose. The studies are therefore more relevant to systems that contain little or no lignin or hemicellulose, such as Avicel. The simulations also consider SC-CO₂ explosion under dry conditions (such as those used in experimental studies of Avicel) and the effects of including water are left for future studies.

Table 1- Temperature and pressure of systems A-G.

<table>
<thead>
<tr>
<th>System</th>
<th>Temperature (°C)</th>
<th>Pressure (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>110</td>
<td>2500</td>
</tr>
<tr>
<td>B</td>
<td>110</td>
<td>3000</td>
</tr>
<tr>
<td>C</td>
<td>110</td>
<td>3500</td>
</tr>
<tr>
<td>D</td>
<td>110</td>
<td>4000</td>
</tr>
<tr>
<td>E</td>
<td>135</td>
<td>3500</td>
</tr>
<tr>
<td>F</td>
<td>165</td>
<td>3500</td>
</tr>
<tr>
<td>G</td>
<td>200</td>
<td>3500</td>
</tr>
</tbody>
</table>

2. Methods
2.1. The COMPASS force field

Molecular-level simulations of cellulose have been based on several force fields, including PCFF [26], modified charmm02 [27], Hybrid [28], GLYCAM06 [29], GROMOS 45a4 [30] and Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies (COMPASS) [31]. The COMPASS force field, which was developed to study for a variety of materials including organic molecules and polymers [32], is used here. As discussed below, this force field provides a valid description of crystalline cellulose and yields correct structures and energetic trends for CO$_2$ interacting with a cellobiose pair (cellobiose is the smallest repeat unit in a cellulose chain). It is described in detail elsewhere [4], and is briefly presented here for the sake of completeness.

The COMPASS force field includes valence and non-bonded terms. The valence terms include bond stretching, angle bending, torsions, wags and cross-coupling terms, while non-bonded interactions are described by LJ 9-6 functions for van der Waals (vdW) interactions and electrostatic functions for charge-charge interactions. The valence parameters and electrostatic terms are fitted to ab initio data, while the vdw parameters are derived from experimental data [32-34].

Several studies have shown that the COMPASS force field yields valid structures and mechanical properties of cellulose crystal structures [26-30]. For example, Aldred [35] evaluated the validity of this force field by performing canonical (NVT) MD simulations of the cellulose Iβ crystal structure. The calculated unit cell parameters, that are shown in Fig. 2, (a= 7.44 Å, b= 8.02 Å, c= 10.42 Å and γ= 98.33°) deviate by only 5.2, 3.0, 0.4 and 2.1% from the experimental data (a= 7.85 Å, b= 8.27 Å, c= 10.38 Å and γ= 96.3°) measured by Sarko and Muggli using X-ray spectroscopy [36].
Figure 2- Numbering of the chains in the model of the crystal structure used in this work and the cellulose unit cell parameters \((a, b, c\) and \(\gamma\)).

Canonical MD simulations performed by us at 25 °C in vacuum for 1 ns yielded unit cell parameters of \(a = 7.85\,\text{Å}, b = 8.32\,\text{Å}, c = 10.50\,\text{Å}\) and \(\gamma = 97.5^\circ\), and the same data at 250 °C are \(a = 8.12\,\text{Å}, b = 8.35\,\text{Å}, c = 10.44\,\text{Å}\) and \(\gamma = 99.6^\circ\). These are in good agreement with experimental values [37, 38] with maximum deviations of 1.5% for \(b\) at 25 °C and 3.3% for \(\gamma\) at 250 °C. These maximum deviations are comparable with those obtained from other force fields which, at 25 °C, are 4.4, 3.2, 3.8, 2.0 and 7.7 % for the PCFF, modified charmm02, Hybrid, GLYCAM06 and GROMOS 45a4 force fields, respectively [26-30].

2.2. First principles methods

Geometry optimised structures of a CO\(_2\) molecule interacting with a cellobiose pair were also studied to test the validity of the COMPASS force field. The structures and their relative energies were compared with the same data obtained from density functional theory (DFT) calculations. This system was chosen since cellobiose is the smallest repeat unit of a cellulose chain, and the cellobiose pair includes inter-chain interactions that are present in the cellulose structure. In addition, this system is sufficiently small to study a range of minimum energy structures that have both low and high total energies.
First principles methods are expected to give reasonably accurate data for disaccharides, including the glycosidic bond strength, which may be affected by the electron pairs on the oxygen atom that is involved in the bond as well as those of nearby oxygen atoms [39]. Previous studies have shown that, among the different DFT methods, the B3LYP functional [40-42] combined with a basis set that includes diffuse and polarization terms yields accurate relative energies and structures of hydroxyl-containing compounds like carbohydrates [23, 43]. The presence of the diffuse functions also reduces the effect of the basis set superposition error, so that it does not specifically need to be taken into account [44]. Hence, similarly to these studies, the B3LYP/6-311++G** method is used here.

Since DFT methods underestimate van der Waals energies, which are expected to be important between the cellobiose molecules and between the CO₂ and the cellobiose pair, the effect of dispersion corrections to the B3LYP/6-311++G** results were studied. This was done by including Grimme’s dispersion corrections [45-47] in the B3LYP/6-311++G** calculations. Although the DFT calculations were performed with the dispersion correction, we also present the relative energies without the correction for comparison. For the sake of brevity, the relative energies without the dispersion correction are referred to as DFT, and when including the correction it is called DFT-D (DFT with dispersion corrections). The first principles calculations were done using the General Atomic and Molecular Electronic Structure System (GAMESS) program [48].

As described below, the initial structures for most of the DFT-D geometry optimizations were obtained from annealing simulations using the COMPASS force field. Since none of the structures had the CO₂ molecule between the cellobiose molecules (since this was not a preferred structure according to the COMPASS force field), three DFT-D geometry optimisations were initialised with the CO₂ between the cellobiose molecules. These
geometries were therefore constructed by hand. The CO\textsubscript{2} and the cellobiose molecules were initially in their minimum energy structures and the cellobiose molecules were parallel to each other (since, as discussed below, this is the energetically preferred cellobiose geometry). The CO\textsubscript{2} was placed between the centre of masses of the cellobiose molecules or between neighbouring glucose units, with the separation between the nearest atoms on the CO\textsubscript{2} and the nearest atom on cellobiose molecules ranging from 1.6 to 4.7 Å (to avoid starting with a structure that was too high in energy). All of these geometry optimisations resulted in the CO\textsubscript{2} moving from being between the molecules to the outside of the cellobiose pair. That is, in the geometry optimised structures the CO\textsubscript{2} bonded to the outer surface of the cellobiose pair (similar structures are discussed below with reference to Fig. 5). The same trends were observed when using the COMPASS force field. Hence, the DFT-D and COMPASS methods predict that the CO\textsubscript{2} prefers to bond to the outer surface of the cellobiose pair, and the COMPASS force field was used to identify many CO\textsubscript{2}-cellobiose pair local minimum energy structures, which were used as input for the DFT-D geometry optimisations.

These structures were obtained using simulated annealing. Since the goal was to obtain different high and low energy local minimum energy structures, 50–100 cycles with 4-8 million simulation steps per cycle were simulated. The Verlet integration algorithm, which has the advantage of being formally time-reversible [49], was used with a step size of 1fs. The mid-cycle temperature was between 170 and 275 K. These temperatures were sufficiently high to allow for sampling of large regions of configuration space while still preventing excessive evaporation of the CO\textsubscript{2} molecule from the cellobiose pair.

Ten geometries were used as input for the annealing to further increase the configuration space that was sampled. These geometries had different orientations of the cellobiose molecules relative to each other (parallel, anti-parallel, perpendicular and when one of the
cellulbiose was rotated so that there was a 90° angle between the molecular planes of the cellulbiose molecules) and where the CO$_2$ molecule was placed between the cellulbiose molecules or at different sites on the surface of the cellulbiose pair. These structures were geometry optimised before being used as input for the annealing simulations. The choice of the annealing parameters enabled identification of local minimum energy structures from all of these regions of configuration space, and many of the annealed structures obtained from the different initial structures were very similar (i.e., the annealing linked the regions of configuration space spanned by the initial structures).

Ten geometries were typically chosen from each of the ten annealing simulations for further analysis. The selection was done so that both high and low energy (including the lowest energy) structures were included. These structures were geometry optimised with the COMPASS force field using a combination of conjugate gradient [50], Newton-Raphson [51] and steepest descent [52] methods. The structures were considered to be minimized once the change in energy between subsequent steps was less than 2.0×10^{-5} kcal/mol. Since some of these structures were the same, this procedure resulted in 80 unique structures for the CO$_2$-cellulbiose pair. These structures were used as input for the DFT-D geometry optimisations. These geometry optimizations were performed using a gradient convergence tolerance of 6.28×10^{-3} kcal/ (mol×Bohr) and a RMS gradient tolerance of 2.09×10^{-3} kcal/ (mol×Bohr).

2.3. Model of the cellulose crystal

Several models have been proposed for the cellulose crystal structure [23, 24]. As mentioned above, the model used here is based on the structure of cellulose I$_\beta$ proposed by Ding and Himmel [3] which, as shown in Fig. 1, contains a central core of six cellulose chains surrounded by a middle and outermost shell. The largest difference between these regions is that the core and middle shell are surrounded by cellulose chains, whereas the outermost shell
is directly in contact with the CO₂ solvent. Hence, in order to capture this effect and use a model that is sufficiently small to enable statistically converged calculations in a tractable time, the model used in this study consisted of a core containing six chains that is surrounded by an outer shell containing twelve chains. This model is shown in Fig. 2. The outer shell is exposed to the SC-CO₂ during the loading and explosion, and the chains in the core are completely surrounded by other cellulose chains. Hence, the model captures the property that the cellulose-cellulose interchain van der Waals and H-bonds are smaller for the chains in the outer shell than for chains in the core. It may therefore be easier to distort the crystal structure of the chains in the outer shell. This is analysed in this work, where disruption of the chains in the inner core is compared to that of the chains in the outer shell. Each cellulose chain in the model consisted of six glucan units (three cellobiose units). Simulations performed on longer and shorter chains showed that this is sufficiently long to yield data that are converged with respect to chain length.

2.4. Simulation methods

A combination of the conjugate gradient [50], Newton-Raphson [51] and steepest descent [52] methods was used to geometry optimize the initial cellulose structure before exposing it to SC-CO₂. All simulations were done using the Accelrys Materials Studio suite of programs.

2.4.1. SC-CO₂ loading

The geometry optimized cellulose crystal was positioned in a 48×50×35 Å³ periodic box. This is sufficiently large to prevent interaction of the cellulose crystal with its periodic images. The GCMC method was used to insert (load) the CO₂ molecules into the simulation box at the desired temperature and pressure (given in Table 1). Attempts for conformational, rotational and translational changes were each selected with a probability of 0.2, attempts to
create or delete CO₂ molecules were each selected with a probability of 0.19 and re-growth of CO₂ molecules was selected with a probability of 0.02. All systems were equilibrated, which was seen by a constant average number of adsorbed water molecules, within 10⁸ MC steps.

Three equilibrated systems, with different number, position and orientation of CO₂ molecules, were randomly selected for each combination of temperature and pressure. Since there were seven different temperature and pressure combinations, this means that twenty one systems have been considered in this study. The error bars shown below are standard deviations from these three systems, and show that this is a sufficient number of systems to obtain statistically converged results.

Since the Materials Studios program constrains the cellulose chains during GCMC, canonical MD simulations were performed at the same temperature and volume used in the GCMC simulations. The simulations were for 300 ps, which enabled relaxation of the cellulose (and CO₂) molecules. Integration was performed using a 1 fs time-step and the Verlet algorithm. The temperature was controlled using the Nose thermostat [53-55]. The final equilibrated structure from the MD simulation was used for further GCMC equilibration. The number of CO₂ molecules that were inserted during the second GCMC was very small, with a change of less than 0.5% compared to the first GCMC simulation. A second MD simulation was performed for the system and the equilibrated configuration obtained at the end of this simulation showed no tendency for absorbing more CO₂ in the subsequent GCMC simulation.

2.4.2. Explosion

The structures obtained from the combined GCMC-MD loading simulations were used as input for explosion simulations. These calculations were performed using MD with period
boundary conditions in the microcanonical (NVE) ensemble with the same energy that was
obtained from the GCMC simulations. The MD simulations were propagated for 300 ps using
a time-step of 1 fs in a box that was 700 times larger than the box used in the loading
simulations. This box is sufficiently large to allow the pressure of the CO₂ to drop to 1 atm
(MD simulations of CO₂ at 1 atm in the NpT ensemble yielded a box that was at most 700
times larger for all temperatures investigated). The integration time of 300 ps is sufficient to
obtain equilibration, as seen by a constant average temperature during the last 200 ps. Hence,
longer trajectories were not required.

2.5. Analysis

2.5.1. Centre of mass, radii of gyration and torsional distribution

Several structural properties were monitored in order to analyse the mechanism of SC-CO₂
explosion. These included changes of centres of mass of each of the eighteen chains relative
to the centre of mass of the crystal, as well as changes in the radii of gyration of each chain.
These properties were monitored separately for the loading and explosion stages. Since
equilibrium was reached within the first 100 ps of the 300 ps trajectories, analysis was made
over the last 150 ps. This ensures that the averages and error bars presented below are from
the equilibrated systems.

For each chain, j, the centre of mass was calculated according to Equation (1):

$$r_{\text{CoM}, j} = \frac{\sum_{i=1}^{N} m_i r_i}{\sum_{i=1}^{N} m_i}$$

(1)

where m_i is the mass of atom i, r_i is its position and the summation is over all N atoms in
chain j. Summing $r_{\text{CoM}, j}$ of all eighteen chains gives the centre of mass of the crystal.
The structures of the individual chains were analysed by following changes in their radii of gyration and torsional distribution during the explosion. The radius of gyration of chain j was determined from Equation (2):

\[
RoG_j = \left(\frac{\sum_{i=1}^{N} m_i s_i^2}{\sum_{i=1}^{N} m_i} \right)^{1/2}
\]

where the summation is over all \(N \) atoms in the chain, \(m_i \) is the mass of atom i and \(s_i \) denotes the distance of atom i from the center of mass of the chain.

Previous studies [56] have shown that, for some polymers, distortion of the crystal structure begins at the ends of crystals rather than in the middle (i.e., the crystal becomes frayed). This effect has been studied here by monitoring the separation between the centres of mass of the end glycosidic units of chains in the outer shell and the same ends of neighbouring chains in the core. This was done for both the non-reducing and reducing ends, and changes in these separations were compared to the changes between the middle oxygen (denoted O-link) of the chains in the outer shell and the middle oxygen of neighbouring chains in the core. Fig. 2 shows the non-reducing and reducing ends as well as the O-link.

Interactions between cellobiose units (when comparing COMPASS structures with DFT-D structures) are described in terms of hydrogen and van der Waals bonds. H-bonds are defined by a maximum separation of 2.5 Å between the H and O atoms on the different units and a minimum angle of 90° formed by the H--O bond on one molecule and the H atom on the second molecule. The trends discussed below are not expected to be sensitive to this definition. The atomic numbering that is used when presenting the results is shown in Fig. 3, as is the dihedral angle \(\phi_H = H1–C1–O1–C4' \). A \(\phi_H \) near 180° (or -180°) reveals the anti (flipped) conformer and a \(\phi_H \) near 60° (or -60°) reveals the syn (normal) conformer [57].
3. Results and discussion

3.1. Validation of the COMPASS force field

Fig. 4 shows the relative total energies obtained from DFT-D, DFT and the COMPASS force field. The numbering of the structures is according to the lowest energy structure obtained from DFT-D. DFT energies are obtained from the DFT-D optimisations and where the dispersion corrections have not been added to the total energy.

Fig. 4. Relative energies of local minimum CO₂-cellobiose pair structures obtained from DFT-D, DFT and the COMPASS force field.

Fig. 4 shows that the total energies obtained from DFT-D, DFT and COMPASS follow the same trends, such that the low and high energy structures obtained from DFT and the COMPASS force field are typically the same as the structures obtained from DFT-D.
However, there are quantitative deviations. For example, the lowest energy structure that is obtained from DFT-D (structure 1) has a COMPASS relative energy of 1.1 kcal/mol. Hence, simulations using the COMPASS force field will sample the low energy structures with different probabilities compared to simulations using DFT-D forces. However, as discussed below, all of these low energy structures are similar in geometry and are more compact compared to the higher energy structures. Hence, the COMPASS force field correctly describes the trends of compact structures having lower relative energies than structures where the cellobiose units have shifted relative to each other.

In addition, the COMPASS force field yields an energy of the crystal structure shown in Fig. 2 that is 5905 kcal/mol lower than the energy when the eighteen separate chains are in their lowest energy configuration (this calculation was too expensive to be done using DFT-D). Hence, the COMPASS force field correctly predicts that the crystal structure is far more stable than the separated chains.

The right side of Fig. 5 shows the geometry of the lowest energy CO₂-cellobiose pair structure obtained from DFT-D (structure 1 in Fig. 4). The left side of the figure shows the geometry of the structure obtained from the COMPASS force field and that was used as input for the DFT-D optimisation. It is evident that these structures are similar and that the upper chain lies directly above the lower chain (i.e., the upper chain has not rotated nor moved laterally relative to the lower chain, thereby maintaining a compact structure). Hence, geometry optimisation with DFT-D only leads to small changes in the structure obtained from the COMPASS force field. For instance, the separation between the cellobiose centres of mass is 3.85 Å in the structure obtained from the COMPASS force field and 4.10 Å according to DFT-D. The atoms that are linked by H-bonds are the same in both structures. There are seven H-bonds between O6 -- H-O3’, O3’ -- H-O6, O3-H -- O3, O2’-H -- O6, O3’-
H -- O6', O4'-H -- O5' and O6'-H -- O4' of the cellobiose molecules, where the first number in each bond refers to the upper cellobiose molecule and the second number to the lower molecule (atom numbering is given in Fig. 3). The distance between the centre of mass of the CO₂ molecule and the cellobiose pair is 7.26 Å for the COMPASS structure and 7.51 Å for the DFT-D structure. Both methods yield cellobiose molecules with the *anti* conformation. The structure optimised with the COMPASS force field has a torsion angle of $\phi_H = 179.5$ and 178.0° for the upper and lower molecules, respectively, and the structure obtained from DFT-D has $\phi_H = 177.5$ and 177.0°, respectively.

Figure 5. CO₂-cellobiose pair structure obtained from DFT-D. The initial structure the COMPASS force field is shown on the left and that obtained from the DFT-D optimization is shown on the right.

Similar agreement between the structures obtained from the COMPASS force field and DFT-D (and DFT) is found for all of the local minimum energy structures shown in Fig. 4. The structures with intermediate energies (~ Structures 20-60 in Fig. 4) also consist of cellobiose molecules that lie parallel to each other, but the cellobiose molecules are shifted relative to each other such that the two glucose units of the first molecule are not directly above those on the second molecule. This results in fewer hydrogen bonds (3-5) and reduced van der Waals attraction [4].
The cellobiose molecules in the structures with the highest energies have almost no overlap of the glucose units. There are only 1 or 2 hydrogen bonds between the cellobiose molecules in these structures.

Hence, the COMPASS force field correctly predicts that the crystal structure has lower energy than the separated cellulose chains. Also, in agreement with DFT-D, the CO$_2$ molecule does not lie between the cellobiose molecules, but is attached to the outer surface of the cellobiose pair. In addition, both the COMPASS force field and DFT-D yield the same trends in the relative energies of CO$_2$-cellobiose pair structures. In the low energy structures the cellobiose units are parallel to each other and have the two glucose units of one molecule directly above those on the second molecule. This leads to a strong van der Waals attraction and 6-7 H-bonds. Higher energy structure are less compact, since the cellobiose units are shifted or rotated relative to each other, with a corresponding decrease in the number of H-bonds. This indicates that the COMPASS force field provides a valid description for the trends of CO$_2$ interacting with cellulose and for the disruption of the cellulose crystal structure. It was therefore used to study these trends during SC-CO$_2$ explosion of cellulose.

3.2. Changes in the centre of mass during loading and explosion

Fig. 6 illustrates the changes in crystal structure after SC-CO$_2$ explosion at 200 °C and 3500 psi. As illustrated by the small error bars presented below, all three trajectories integrated under these conditions yielded similar changes in the crystal structure. The trends seen in the figure are typical for all conditions studied here.
Figure 6- Illustration of the changes in the cellulose crystal structure during loading and explosion at 200 °C and 3500 psi (System G in Table 1).

The changes in the centres of mass for each chain relative to the centre of mass of the crystal are shown in Fig. 7. The centres of mass of the initial structure are given in the left-most column for each chain and are denoted t_0 (zero time), the centres of mass after loading are shown in the middle column and those after explosion are shown in the right column. Only the results for Systems A, C and G are shown for the sake of brevity, although all systems show the same qualitative trends discussed below. The standard deviations are shown as error bars.
Figure 7- Centre of mass of each chain (1-18 in Fig. 2) relative to the centre of mass of the crystal for the initial structure (t_0) and after loading and explosion. Results are for Systems A (110 °C/ 2500 psi), C (110 °C/ 3500 psi) and G (200 °C/ 3500 psi) and the standard deviations are from the three trajectories propagated at each temperature/ pressure combination.

Several features of the change in the crystal structure due to SC-CO$_2$ loading and explosion are revealed in Fig. 7. First, the centres of mass of chains 3-5, 9-11, 15 and 18 decrease while other chains show an increase in centres of mass relative to the centre of mass of the crystal. Comparison with Fig. 2 shows that it is the chains on the left and right sides of the crystal that have a decrease in centre of mass and the chains at the top and bottom of the crystal have an
increase in centre of mass. This occurs since the pressure of the SC-CO₂ make the crystal structure more circular (this is also seen in Fig. 6).

Second, displacement of the chains in the outer layer (chains 1-12) is larger than chains in the core. In addition, changes in the chains in the outer shell affect the displacement of their neighbouring chains in the core. For example, during loading at 110 °C and 3500 psi, chains 1 and 7 move away from the centre of the crystal by about 4.3 and 3.9 Å, while chains 4 and 10 move closer to the centre about 2.7 and 2.1 Å. Similarly, chains 13 and 16, which neighbour chains 1 and 7, respectively, move out by about 1.1 and 2.9 Å, respectively, while chains 15 and 18 move inwards by about 0.7 Å.

Third, most of the changes occur during loading of the SC-CO₂, and explosion has a far smaller effect on the disruption of the structure (in fact, most of the changes occur during the first picoseconds of the loading). For example, during loading at 110 °C and 3500 psi, the absolute value of the change in centres of mass of chains 1-12 is, on average, 1.72 Å and for the chains in the core (chains 13-18) it is 1.26 Å. This is larger than the changes during explosion, which are 0.22 and 0.12 Å for the outer and core chains, respectively. Similarly, at 200 °C and 3500 psi the averages for chains 1-12 and 13-18 are 1.92 Å and 1.10 Å during loading and 0.42 and 0.17 Å during explosion, respectively.

3.3. Effect of temperature and pressure

3.3.1. Temperature

The results in Fig. 7 showed that the centres of mass of chains 1, 6, 7 and 12 increased relative to the centre of mass of the crystal, and that the centres of mass of chains 4, 5, 10 and 11 decreased. These two sets of chains are therefore grouped in the analysis presented below for the sake of clarity. The left panel in Fig. 8 shows the effect of increasing
temperature on the average change in centre of mass of chains 1, 6, 7 and 12 after loading and the combined loading and explosion. The pressure is 3500 psi and the temperature increases from 110 to 200 °C (Systems C, E, F and G). The right panel is the same but for chains 4, 5, 10 and 11.

![Figure 8](image)

Figure 8- Effect of temperature on the average of separation of centre of mass of chains 1, 6, 7 and 12 (left) and chains 4, 5, 10 and 11 (right) from the centre of mass of the crystal. The results are from loading and explosion at 3500 psi, for systems C (110 °C), E (135 °C), F (165 °C) and G (200 °C). The error bars are standard deviations obtained from the three trajectories propagated at each temperature/pressure combination.

The results presented in the figure show that, although there is no significant effect of increasing temperature (within the statistical uncertainty of the error bars), there is a trend of increasing disruption of the crystal structure with increasing temperature. The average change in the centres of mass of chains 1, 6, 7 and 12 when increasing from 110 to 135 °C is 0.35 Å, and this increases to 0.48 and 1.11 Å with a further increase in temperature to 165 and 200 °C. Increasing the temperature has a smaller effect on the average centre of mass of chains 4, 5, 10 and 11, which is about 0.3 Å when the temperature increases from 110 to 200 °C.

Similarly to the discussion with reference to Fig. 7, Fig. 8 shows that explosion does not lead to further disruption of the crystal structure. For example, explosion at 110, 135, 165 and 200 °C changes the average centres of mass of chains 1, 6, 7 and 12 by only about 0.14, 0.19, 0.05 and 0.48 Å (compared to the centres of mass after loading).
The results indicate that increasing the temperature helps to reduce the crystallinity of cellulose, hence increasing accessibility to the hydrolysing enzymes. The largest effect is during loading, and explosion may even cause slight agglomeration of the cellulose chains (although the crystalline structure is not regained). It is possible that, for the materials used in experimental SC-CO\textsubscript{2} pretreatment, the explosion stage is needed to remove hemicellulose and lignin that surrounds the cellulose crystal.

3.3.2. Pressure

Fig. 9 is the same as Fig. 8 but when the pressure is increased from 2500 to 4000 psi at a constant temperature of 110 °C (Systems A, B, C and D). There is a larger change in separation of the centre of mass of the chains relative to the centre of the crystal at lower pressures. This is due to the fact that lower pressures allow chains 1, 6, 7 and 12 to move further away from the centre of the crystal than at higher pressures. This, in turn, means that chains 4, 5, 7 and 10 can move towards the centre of the crystal at the lower pressures. For example, increasing the pressure from 2500 to 3000 psi during loading decreases the average change in centre of mass separation for chains 1, 6, 7 and 12 by 0.48 Å. Further increases in pressure to 3500 and 4000 psi leads to larger decreases of 0.78 and 1.27 Å compared to 2500 psi. Similarly, the average change in centre of mass separation for chains 4, 5, 7 and 10 differs by 0.8 Å between pressures of 2500 and 3000 psi, 1.1 Å between 2500 and 3500 psi and 1.8 Å between 2500 and 4000 psi. Subsequent explosion shows no more disruption of the crystal structure.
Fig. 9- Same as for Fig. 8 but for systems A (2500 psi), B (3000 psi), C (3500 psi) and D (4000 psi). The temperature is 110 °C for all systems.

Fig. 9 shows that increasing the pressure at constant temperature leads to less disruption of the cellulose crystal. This is in contradiction to some experiments [11, 12] that obtained increased glucose yield with increasing pressure. However, it should be noted that these experiments were performed with wet materials. Also, as discussed in the Introduction, this may be due to the fact that the simulations consider crystalline cellulose, whereas the lignocellulosic materials used in experiments typically contain other components such as lignin and hemicellulose. Increasing the pressure may enhance disruption and removal of these components, thereby and increasing the accessibility for the hydrolysing enzymes.

3.3.3. Effect of temperature and pressure on the separation of neighbouring cellulose chains

Fig. 10 shows the change in the separation of centres of mass of the non-reducing end, the O-link in the centre of each chain and the reducing end between the outer chains and their neighbouring core chains during loading and explosion. Only the data for systems C, D and G are shown for the sake of brevity, and the trends seen in the figure are typical for all conditions studied. The reason for choosing these three systems is to show the effect of high temperature and high pressure on the separation of the different parts of neighbouring chains.
Figure 10- Change in the separation of centre of mass of the non-reducing end (Non-Red.), the O-link in the centre of each chain and reducing end (Red.) between the outer chains and their neighbouring inner chains during loading and explosion. The results are shown for loading and explosion at 110 °C and 3500 psi (System C), 110 °C and 4000 psi (System D) and 200 °C and 3500 psi (System G).

The figure reveals that there is a larger disruption at the ends of the chains than in the middle (O-link) during both loading and explosion. Hence, there is larger disruption at the ends of the crystal structure (i.e., at the chain ends) than in the middle of the crystal. This would lead to enhanced accessibility for enzymatic hydrolysis at the crystal ends rather than in the middle of the crystal.

The figure also shows that, similarly to the results presented above, increasing the pressure has an insignificant effect on separation at the crystal ends whereas increasing the temperature increases the separation between neighbouring chains. For example, the separation between non-reducing ends of the outer chains and their inner neighbours, averaged over all pairs, increases by ~0.74 Å when increasing the temperature from 110 to 200 °C. Increasing the pressure from 3500 to 4000 psi, leads to a change of only ~0.03 Å.

3.4. Correlation between the change in centre of mass of the cellulose chains and their radii of gyration.
No significant correlation was observed between the magnitude of the change in centres of mass of chains during loading and explosion with changes in their radii of gyration. As an example, Fig. 11 shows the change in radius of gyration for each chain as a function of its change in centre of mass during explosion at 200 °C and 3500 psi (System G). The results are typical for all initial structures and temperature/pressure combinations. The lines shown in the figure are best-fit straight lines to the chains in the outer shell (solid line) and the core chains (dashed line). Although the solid line may indicate an increase in radius of gyration with increasing change in centre of mass for the outer chains and the dashed line may indicate the opposite trend for the core chains, these trends are not statistically meaningful since the fits have R-squared values of 0.17 and 0.3 for the outer and core chains, respectively.

![Figure 11](image)

Figure 11 - Change in radius of gyration for each chain as a function of its change in centre of mass during explosion at 200 °C and 3500 psi. The lines are best-fit straight lines to chains 1-12 in the outer shell (solid line) and the core chains 13-18 (dashed line).

3.5. Comparison with steam explosion

Similar studies have also been performed on steam explosion [58]. Comparison of the results obtained here with those results show that the mechanism of crystal disruption during loading and explosion is very similar for the water and CO₂ solvents. For example, disruption occurs mainly during loading and there is larger disruption at the cellulose crystal ends compared to
the central regions of the crystal, irrespective of which solvent is used. However, in general the crystal disruption is larger during steam loading and explosion than SC-CO$_2$ loading and explosion. For example, the average change in the centres of mass of chains 1, 6, 7 and 12 is 4.28 and 3.76 Å when loading the system with steam at 250 °C and 576 psi and 210 °C and 275 psi, respectively. This can be compared to the value of 3.46 Å when loading the system with SC-CO$_2$ at 200 °C and 3500 psi (which, as shown in Fig. 8, yields the largest change). Similarly, the average change in the separation between the non-reducing ends on neighbouring outer and core chains is 2.57 Å for the steam explosion (250 °C and 576 psi) and 1.14 Å for SC-CO$_2$ at 200 °C and 3500 psi. As discussed above, the reason for the larger changes seen in the steam loading and explosion is, at least partially, due to the lower pressures and higher temperatures used in steam explosion (which is also the case in experiments [19]).

4. Conclusion

First principles DFT-D, GCMC and MD methods have been used to study SC-CO$_2$ loading and explosion on the crystal structure of cellulose. This is the first step in a larger study of SC-CO$_2$ explosion of cellulosic waste, where other components such a lignin and hemicellulose are present. SC-CO$_2$ explosion of cellulosic waste is important since it is often used in a pretreatment step for the conversion of this waste into biofuel. Insights gained from molecular-level simulations are expected assist in improving the efficiency of this pretreatment step as well as identifying new solvents or better processing conditions.

The GCMC and MD simulations were based on the COMPASS force field. This force field yields the correct crystal structure for cellulose, and predicts that the crystal structure has lower energy than the separated cellulose chains. Also, in agreement with DFT-D, studies based on a system where a CO$_2$ molecule interacts with a cellobiose pair, shows that the CO$_2$
molecule does not lie between the cellobiose molecules, but is attached to the outer surface of the cellobiose pair. Also, both the COMPASS force field and DFT-D yield the same trends in the relative energies of CO$_2$-cellobiose pair structures. In the low energy structures the cellobiose units are parallel to each other and have the two glucose units of one molecule directly above those on the second molecule. Higher energy structures are less compact, since the cellobiose units are shifted or rotated relative to each other. This indicates that the COMPASS force field provides a valid description for the trends of CO$_2$ interacting with cellulose and for the disruption of the cellulose crystal structure.

The GCMC and MD simulations show that most of the disruption of the crystalline structure of cellulose occurs during loading of SC-CO$_2$, and that explosion only has a small effect. Disruption of cellulose chains in the outer crystal layer is larger than for chains in the core. Also, separation between the non-reducing and reducing ends of neighbouring chains is larger than the separation between the centres of these chains, showing that there is larger distortion of the crystal structure at the ends of the crystal. Hence, these ends are more likely to be accessible to enzyme attack than the central parts of the crystal. In addition, increasing the temperature leads to a small increase in the disruption of the cellulose structure whereas increasing the pressure decreases the disruption. There is no significant correlation between the magnitude of the change in centres of mass of chains during loading and explosion and their changes in their radii of gyration.

5. Acknowledgements

The authors acknowledge the Sparbanksstiftelsen Sjuhärad and the Carl Trygger Foundation for Scientific Research for financial support. The molecular simulations were done using the program from Accelrys Software Inc. GAMESS-US, version 1 OCT 2010 (R1) was used at
the high performance computer cluster Kalkyl at UPPMAX (Uppsala Multidisciplinary Center for Advanced Computational Science), Uppsala Sweden.
References

24. Bergenstråhle, M., et al., Cellulose crystal structure and force fields, in International Conference on Nanotechnology for the forest products industry.

