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Abstract

The purpose of this thesis is to improve numerical simulations of surface problems. Two novel com-

putational concepts are analyzed and applied on two surface problems; minimal surface problems

and elastic membrane problems. The concept of tangential projection implies that direct computa-

tion on the surface is made possible compared to the classical approach of mapping 2D parametric

surfaces to 3D surfaces by means of di�erential geometry operators. The second concept presented

is the cut �nite element method, in which the basic idea of discretization is to embed the d − 1-

dimensional surface in a d-dimensional mesh and use the basis functions of a higher dimensional

mesh but integrate over the surface. The aim of this thesis is to present the basics of the two main

approaches and to provide details on the implementation.
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Introduction

Introduction and motivation

Surface problems are found in many places in industry. These include, for instance, sheet metal

forming which can be modelled as shells, membranes such as sails and structures, heat transfer

accross a curved geometry, distance between two points on a curved surface (also called geodesic

distance �eld [8]), for form �nding, curvature driven problems and composite materials where thin

layers add sti�ness to the bulk (sandwich constructions in airplane industry and glue laminated

timber). In order to create models of these types of surface problems it is important to have an

analytical model that can be used to verify the numerical model. Another important property of

surface models is to be general and rapidly implementable.

Traditionally three dimensional surface problems were modeled in a two dimensional parameter

space and mapped to the real surface in three dimensions [7, 6], also known as the parametrization

of a surface or parametric approach to surface problems. This requires the use of an exact sur-

face representation and additionally di�erential operators that are de�ned on a curved space using

base vectors. This might be computationally tedious, cumbersome to implement and expensive to

compute. Besides, an exact surface representation is not always available; a CAD surface is typi-

cally de�ned by a set of parametrized surface patches that are not necessary continuous across the

interfaces between the two surfaces.

Another classic engineering approach is to model the surface as a set of �at triangles and rotate

each into three dimensional space [24].

An approach of modeling �nite element methods for surface partial di�erential equations (PDEs)

without the use of parametric mapping was used by Dziuk [13] for the Beltrami operator, where

(using a signed distance function) a tangential gradient was introduced and the resulting numerical

scheme was rather clean and simple. The same geometric di�erential operator is used by Delfour

and Zolésio in [10, 11, 12], where, again, a signed distance function is used to represent the surface

and from which the tangential di�erential operator is derived and used to create a linear shell model
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without parametric mapping. This approach was followed by Hansbo and Larson in [16], where a

FEM was created for a general curved linear membrane shell, and Hansbo, Larson and Larsson in

[18] for large deformations theory. A recent overview of FEM for surface PDEs is given by Dziuk

and Elliot in [15], where the tangential approach is applied on a large set of surface PDEs and

discussed in the paper and references therein. The ideas by Dziuk and Elliot are applied on �at

triangular elements and there is a need to develop more general �nite element methods.

For evolving surface problems a novel FEM was proposed by Olshanskii, Reusken and Grande

[20] for elliptic PDEs, where the surface was embedded into a higher dimensional mesh (also called

background mesh) and allowed to arbitrarily cut through the mesh. The PDE was then discretized

using the basis functions of the background mesh but integrated over the approximated surface.

That triggered an avalanche of studies following this new approach and the reader is referred to

Chapter 3 of this thesis for a detailed overview of some recent work on surface and �ctitious domain

problems, called the cut �nite element method (CutFEM). This approach provides robust and

general methods for dealing with a surface geometry that does not necessary respect the background

mesh (the surface is allowed to cut through the background mesh), see e.g. [3, 4, 17]. The work

done in this thesis further develops surface PDEs using the tangential calculus approach within the

CutFEM framework, see Supplements 1 and 2.

Aim and limitations

The purpose of this thesis is to give a brief overview of the ideas of the various approaches used in

the supplements and to show the details of the implementations. The implementations and their

details are limited to small proof of concept scripts in the high level language MATLAB1 and are not

intended for production code without rework. The algorithms provided in the Supplements are kept

general and without extensive implementation details. With this in mind no complexity analysis

was done since the aim was convergence analysis, readability, share-ability and short implementation

times. It is the hope of the author that this thesis will be useful to anyone who wants to implement

the ideas of the approaches introduced herein.

1http://mathworks.com/products/matlab/
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1 Veri�cation and Validation

CHAPTER INTRODUCTION

Solving partial di�erential equations on surfaces is done by creating computational models that

are based on the �nite element method and approximate the true solution �eld. How good this

approximation is depends on the errors that are introduced. In order to make computational

methods comparable we need a way of estimating the error. This chapter gives an introduction to

the di�erent types of errors that are introduced in various ways and gives an overview of ways to

verify and validate the approximations that introduce these errors.

The analysis of the error consists of two aspects:

1. Veri�cation:

Checking whether the model returns expected results.

2. Validation:

Checking how well the model describes reality.

1.1 Modeling errors

Modeling errors are introduced by idealization of the �true� physical system to a simpli�ed system -

a mathematical system. Computational models are only as good as the mathematical models that

they are based on. Choosing the right mathematical model for a certain application is not trivial

due to a trade o� which the user must make. A larger, more speci�c and thorough model will be

closer to reality, but the mathematical system will most certainly be more complicated and take

longer time to solve than a simpler and less accurate model. Depending on how accurately the user

wants to model a particular application there might exist several di�erent models to choose from,

depending on what is asked of the model and how accurate the answer is supposed to be.

1.2 Discretization errors

A mathematical model is, though a simpli�cation of reality, still hard to solve. The models contain

partial di�erential equations, often coupled, and can be linear or non-linear. Finite element methods

3



1 Veri�cation and Validation

introduce a discretization error that can be analyzed and used as a tool for choosing between di�erent

FE-methods.

1.3 Supermodels

Partial di�erential equations on surfaces can be modeled on a three dimensional manifold. The

corresponding three-dimensional mathematical model is called a supermodel which is used to verify

other simpler surface models by trying to prove that the models are equivalent under certain con-

ditions. The proof can be mathematical (if possible) or numerical in the sense that a solution �eld

is compared from both models and the error is analyzed.

Similar to a supermodel, a representative volume element (RVE) can be created and experimen-

tally validated in order to be used as veri�cation for other simpler, homogeneous models. The

validation of an RVE is done experimentally and usually involves tweaking of RVE speci�c param-

eters, see Supplement 3.

1.4 Method of Manufactured Solutions

A method used to verify the computational model is the so called method of manufactured solutions.

It is used everywhere but yet is seldom explained in the literature, maybe due to its seemingly trivial

nature. The method involves assuming a solution �eld and then working out the analytical right

hand side of a linear equation, initial conditions and boundary conditions that �t that solution

�eld. The right hand side, initial- and boundary conditions are then used in the computational

algorithm to arrive at a solution. The error between the computed solution and the assumed

solution is evaluated to determine how well the computational model is compared to other models.

An example can be seen in Section 4.5.

1.5 Validation

Since not all problems are linear, using the method of manufactured solutions is not always possible

to verify the computational model. In order to test the validity of such a model, physical tests must

be carried out and then compared to the simulated results from the computational model. If the

observations agree with the predictions, the model is considered accurate. See Supplement 2 for

techniques regarding validation.
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2 Surface problems

CHAPTER INTRODUCTION

This chapter introduces surface problems that are modeled using the tangential approach which is

one of the central aspects to this thesis. An overview of this approach is given. The two main

surface representations are introduced.

2.1 Tangential calculus

This section gives an overview of what is here called the tangential approach to surface problem

modeling, which was introduced in computational practice by Dziuk in [13] and analyzed for shells

by Delfour and Zolesio in [10, 11, 12] and adapted by Hansbo and Larson in [16] for a general

membrane shell model. Traditionally, surface problems were modeled in a parametric setting and

mapped to Cartesian three dimensional space using various di�erential operators, see [7, 6]. The

tangential approach makes it possible to work in Cartesian space directly by use of the signed

distance function of an implicit surface. This is due to the property that the tangential derivative

of a function, at the surface, is the tangential projection of its three dimensional Cartesian gradient

[11].

y

x

z

n

vΓ

v
Γ

(a) 2D surface in 3D

y

x

h

Γ=∂Ω

Ω

Ωc

Σ

n

b <0

Σ
b >0

(b) Surface manifold

Γ

b(x)
h

h n

} x

p(x)

(c) Tubular neighborhood Ωh

Figure 2.1: Surface Manifold
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2 Surface problems

Consider a smooth d− 1-dimensional surface Γ embedded in Rd, where d is typically 2 or 3, and

contained by Ω which is a subset of Rd. The surface is modeled as a thin domain around Γ with the

thickness 2h. It is assumed that the thickness is small relative to the size of the surface. A signed

distance function b : Rd → R is given by,

b(x) =





b(x) < 0 in Ω

b(x) = 0 on Γ

b(x) > 0 in Ωc

∀x ∈ (Ω ∪ Ωc), (2.1)

where Ωc = {x ∈ Rd : x /∈ Ω}. If the surface is su�ciently smooth, then for a small h > 0 a

neighborhood around Γ can be de�ned as

Ωh = {x ∈ Rd : |b(x)| < h}, (2.2)

where |∇b| = 1 and b(x) = n(x) for x ∈ Γ.

The nearest point projection map p : Ωh → Γ is given by

p(x) = x− b(x)∇b(x) (2.3)

The Jacobian matrix is then given by di�erentiating p(x), the �rst component yields

∂

∂x1
p1 = 1− ∂

∂x1

(
b(x)

∂b(x)

∂x1

)
= 1− ∂b(x)

∂x1

∂b(x)

∂x1
− b(x)

∂2b(x)

∂x2
1

,

where b(x) = 0 for x ∈ Γ so b(x)
∂2b(x)

∂x2
1

= 0 on the surface. Thus for a x ∈ Ωh, the linear projector

onto the tangent plane at p(x) is given by

Dp(x) = I −∇b(x)⊗∇b(x) =: PΓ(x), (2.4)

where ⊗ denotes the tensor product ((a⊗ b)ij = aibj).

The tangential operator PΓ is the main di�erential geometric tool used in the tangential approach

and is used extensively in this thesis on all surface problems. For notational convenience the

subscript of PΓ will frequently be omitted. Note that the operator is natural in tensor analysis, see

e.g. [19], where it is de�ned as the projection of a function v onto the plane de�ned by the normal

n see Figure 2.2.
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2.1 Tangential calculus

n

v

t

vt

Γ

(a) 2D case

n

v

t
v
t

n(n.v)

(b) De�ning vn = n(n · v)

y

x

z

v

n
tangent plane

vt

Γ

(c) 3D case

Figure 2.2: Projection of v onto the surface Γ

Using the de�nition in Figure 2.2b, we have

vt = v − vn = v − n(n · v). (2.5)

Recalling the tensor product ((a⊗ b)ij = aibj), we can use the tensor product rule

(a⊗ b)c = a(b · c), (2.6)

(which is what Dziuk used in [13]) and get

vt = v − (n⊗ n)v, (2.7)

where v is linearly transformed along the direction n by the second order tensor (n ⊗ n) =: P||.

This can be further rewritten into

vt = (I − n⊗ n)v = Pv, (2.8)

where P is a second order projection tensor that maps onto the tangent plane of Γ and P|| maps

onto the direction of n.

Remark 1. A detailed look at the tangential part of a vector v at a point on a surface where n=

(1,0,0). Let v = (vx, vy, vz) then,

vt = Pv =




0 0 0

0 1 0

0 0 1







vx

vy

vz


 =




0

vy

vz


 . (2.9)

The x component of v has been eliminated by the projection operator and thus the other com-

ponents are all in-plane, i.e. n · vt = 0 holds.

Remark 2. Another detailed look at the tangential part of a tensor V at a point on a surface where

7



2 Surface problems

n = (0, 1, 0). Let

V =




Vxx Vxy Vxz

Vyx Vyy Vyz

Vzx Vzy Vzz


 , P =




1 0 0

0 0 0

0 0 1


 , (2.10)

then

Vt =




1 0 0

0 0 0

0 0 1







Vxx Vxy Vxz

Vyx Vyy Vyz

Vzx Vzy Vzz


 =




Vxx Vxy Vxz

0 0 0

Vzx Vzy Vzz


 . (2.11)

Note that the row corresponding to the normal direction is eliminated. In some cases it is required

that both the rows and columns are eliminated so that no components of the tensor are out of plane.

This can be accomplished by applying the operator to both sides of the tensor, i.e.

V P
t = PV P =




Vxx Vxy Vxz

0 0 0

Vzx Vzy Vzz







1 0 0

0 0 0

0 0 1


 =




Vxx 0 Vxz

0 0 0

Vzx 0 Vzz


 , (2.12)

where the superscript P denotes that the operator is applied on both sides. Note that no com-

ponents exist in V P
t that correspond to the normal direction.

2.1.1 The discrete tangential projection

In the discrete setting where the surface is discretized in a piecewise linear fashion the projection

operator will depend on the discretization such that P − Ph 6= 0, where P = I − n ⊗ n and

Ph = I −nh⊗nh, see Figure 2.3. This means that we have have introduced another discretization

error through the projection operator. For a in depth discussion on this error see [4].

Γ

Γh

n

nh

x

p(x)
h

Figure 2.3: Discrete normal nh compared to exact surface normal n
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2.2 Surface representation

2.2 Surface representation

Surfaces can be represented in various ways; in the setting of solving partial di�erential equations

on surfaces using the �nite element method we have two types of surfaces to consider, explicit- and

implicit surfaces. The former is a surface discretized using polygons in 3D or line segments in 2D,

usually from a parametric (CAD) representation. If the explicit representation is of good quality,

i.e., if the elements have a good aspect ratio and are oriented in the same direction, then the mesh

can be used in the FEM simulation. In many problems re-meshing is needed as the surface undergoes

large deformation such that the mesh quality su�ers. Re-meshing techniques are quite expensive

and add complexity. Another drawback of computational methods requiring explicit surfaces is the

computational cost of preprocessing of raw data, usually point cloud data.

Implicit surfaces on the other hand can be used to represent complex evolving surfaces without

the need of re-meshing. There are a number of ways to generate an implicit surface for analysis.

An implicit surface can be approximated from a CAD surface or from point cloud data using

surface reconstruction techniques, see, e.g., [1, 5]. Another way is to use analytical implicit surfaces

descriptions, see Burman et al. [3] for an overview. Complex geometries can be created from simple

geometries using analytical functions together with boolean operations. Simple boundaries can be

created by embedding the surfaces into the domains such that the boundaries are de�ned by the

borders of the domain.

An implicit surface φ is visualized using the discrete faces that are generated by intersecting φ

with a mesh, see e.g., Figure 2.4.

The following analytical surface descriptions are used in the supplements.

Cylinder function:

φ(x, y, z) =
√

(x− xc)2 + (y − yc)2 − r

where [xc, yc] is the center of the cylinder. See Figure 2.4a.

Oblate spheroid:

φ(x, y, z) = x2 + y2 + (2z)2 − 1

See Figure 2.4b.

9



2 Surface problems

(a) Cylinder (b) Oblate spheroid

Figure 2.4: Implicit surfaces
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3 Cut Finite Element Method

CHAPTER INTRODUCTION

The cut �nite element method (CutFEM ) makes it possible to discretize a surface independently of

its description, e�ectively removing the need for �tting a mesh to the surface. Instead the surface

is embedded into a �xed background mesh and allowed to arbitrarily intersect it. In this chapter

an overview of the method is given. The original approach was suggested by Olshanskii et. al. in

[20] where a new technique was introduced for hyper-surfaces.

CutFEM is a general method for dealing with complicated cases involving interface problems,

complex and evolving geometries, see Burman et al. [3] for a review of CutFEM, where it is

applied on a broader range of problems, not just surface problems. For surface problems the idea

of CutFEM is to use a higher dimensional background mesh to discretize the surface problem but

integrate only over the intersection between the background mesh and the discrete surface. This

approach is suitable for evolving surface problems such as the one in Supplement 1, but it also allows

for embedding arbitrarily shaped reinforcement to an elastic domain. The CutFEM approach needs

stabilization due to ill-conditioning of the linear system (see [4] for details) and model dependent

instability (see, e.g., [17]). The following sections will introduce the idea in the �nite element space

and provide an overview of the stabilization.

3.1 Domain

Let x denote Euclidean co-ordinates in Rd, where d = 2 or 3, such that x ∈ Ω, where Ω is a

bounded domain. Let Γ denote the smooth d−1-dimensional interface contained by Ω and dividing

the domain into sub-domains such that Ω = Ω1 ∪ Ω2 ∪ Γ. The interface can represent a surface in

3D or a curve in 2D. See Figure 3.1.

11



3 Cut Finite Element Method

Ω1

Ω2

Γ

Figure 3.1: 2D representation of the problem domain

3.2 Discretization

The discretization is done by letting K̃h be a tessellation using polyhedrons (3D) or polygons (2D)

of the domain Ω, with an element size parameter 0 < h < h0, containing Γ. Note that Γ needs to

be su�ciently smooth in order not to intersect the same element more than once, i.e., the mesh

size parameter must be chosen small enough to resolve the curvature of Γ. Recalling the interface

representation in Section 2.1, we let φh denote the continuous piecewise linear approximation of the

signed distance function φ to de�ne the discrete surface Γh as the zero level set of φh such that

Γh = {x ∈ Ω : φh(x) = 0} (3.1)

and note that Γh is a �at polygon (3D case) or a line segment (2D case). Let nh denote the

piecewise constant outward unit normal to Γh. The Dirichlet boundary to the interface is denoted

by ∂Γh,D. In the case of surface problems, the background mesh used for the discretization of the

problem is a subset of the whole mesh. We denote this as the active background mesh Kh ⊆ K̃h
such that

Kh = {K ∈ K̃h : K ∩ Γ = ∅}, (3.2)

see Figure 3.2.
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3.3 Dirichlet conditions

Γ

h

h

~
K

K

Figure 3.2: Interface elements in 2D

3.3 Dirichlet conditions

A simple way of dealing with Dirichlet boundary conditions in this setting is to directly prescribe

the degrees of freedom on the background mesh. If ∂Γh,D is intersecting the boundary of Ω then we

can denote this by ∂Kh,D, see Figure 3.3. This situation occurred in Supplement 1 and was straight-

forward. If however ∂Γh,D is completely contained by Ω then the conditions are mesh-dependent

and ∂Kh,D must be carefully constructed or the mesh modi�ed to facilitate proper Dirichlet con-

ditions. This was the situation in Supplement 2 and was straightforward for the pulled cylinder

problem, but in the case of the oblate spheroid problem, the mesh needed modi�cation since it was

unstructured. A more sophisticated method is needed when dealing with more complex situations.

3.4 Finite element space

In the setting of the CutFEM the �nite element space is de�ned on the background mesh, and in

particular when it is applied to surface problems, the �nite element space is only de�ned on the

active background mesh.

Let the �nite element space be de�ned as the space of continuous piecewise linear (triangles in

2D and tetrahedra in 3D), bi-linear (quadrilaterals in 2D) or tri-linear (hexahedra in 3D) denoted

as Ṽh and de�ned on K̃h. The corresponding discrete space Vh is de�ned on Kh by

Vh = {v ∈ Ṽh|Ωh
: v = 0 on ∂K̃h,D}. (3.3)

Consider for example di�usion on a surface
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3 Cut Finite Element Method

Γ

h,DK∂

(a) Simple way of handling ∂Γh,D

Γ

h,DK∂

h,DK∂

1

2

hK

(b) ∂Kh,D = ∂K1
h,D ∪ ∂K2

h,D must be chosen carefully

Figure 3.3: Handling Dirichlet boundaries

−∇Γ · ∇Γu = f on Γ, (3.4)

where

∇Γu = P∇u, (3.5)

and

∇Γ · v = tr(∇Γ ⊗ v) (3.6)

The �nite element method on Γh is then given by: �nd the solution �eld uh ∈ Vh such that

ah(uh,v)Γh
= lh(v)Γh

∀v ∈ Vh, (3.7)

where

ah(uh,v)Γh
=

ˆ
Γh

∇Γh
u · ∇Γh

vds (3.8)

and

lh(v)Γh
=

ˆ
Γh

fvds (3.9)

14



3.5 Stabilization

Γ

{K}
ill

Figure 3.4: Elements {K}ill that cause ill-conditioning of the linear system.

3.5 Stabilization

Because of the arbitrary cuts by the interface through the background mesh there might be a large

variation in the area of the resulting surface elements, see Figure 3.4. This leads to a severely

ill-conditioned linear system of (3.7) that needs to be addressed see e.g. [4]. Furthermore a �nite

element method of surface problems using higher dimensional shape functions can be unstable (see,

e.g., [17], Supplement 1 and 2). For these reasons a stabilization method is introduced. We begin

by introducing additional quantities on the mesh.

Note that for any element K ∈ Kh there exist at least one neighbor KN ∈ Kh such that K and

KN share a face, see Figure 3.5. De�ne a set of interior faces of Kh by

Fh = {F = K ∩KN : K,KN ∈ Kh}. (3.10)

Each internal face de�nes a unit normal vector nF that is perpendicular to the face and oriented

exterior to K , see Figure 3.5. The jump of the gradient of v across the face F of elements K and

KN is de�ned on each side of F as

J∂nFvK = nF · ∇v|F∈K − nF · ∇v|F∈KN , (3.11)

where ∇v|F∈K denotes the gradient on the face F of element K. The stabilizing term jh(·, ·) is

then given as the sum of all gradient jumps as

jh(v,w) =
∑

F∈Fh

ˆ
F
γJ∂nFvK · J∂nFwKds, (3.12)

where γ is a positive constant that penalizes the jump. The stabilized form of (3.7) becomes

15



3 Cut Finite Element Method

F

Fn
KN

K

(a) 2D case, where F is actually a set of edges

K

KN

Fn

F

(b) 3D case

Figure 3.5: Interior faces of Kh

Ah(uh,v) = lh(v) ∀v ∈ Vh, (3.13)

where the bilinear form Ah(·, ·) is de�ned by

Ah(v,w) = ah(v,w)Γh
+ jh(v,w) ∀v,w ∈ Vh. (3.14)
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4 Implementation Details

4.1 Choice of software

The prototypes of the algorithms throughout this thesis have been implemented in MATLAB which

allows for vectorization of the code in order to improve performance. Note that the main focus

was generating scripts to test a concept and therefore little time was spent on the analysis and

optimization of the implementation. There is thus much room for optimizing the performance of

the algorithm and implementation. The main reason for the lack of performance optimization and

complexity analysis is that the code was written to be as readable as possible in order to minimize

implementation error. We have to create working code before we can focus on optimizing it for

performance. High level languages o�er faster implementation times with a trade-o� in performance.

Furthermore, MATLAB, while getting increasingly better at its JIT1 is still an interpreted language

with its primary use in generating prototypes for testing and creating proofs of concept. Performance

can however be improved through some extra e�ort in the assembly process, where an indexed

approach [9] is utilized.

4.2 Zero level surface approximation

Starting from a mesh K̃ in Rd on the domain Ω in which the implicit surface Γ is embedded we

have the approximate piecewise linear signed distance function φ(x) (in the following we make no

distinction between φ and φh) such that Γh = {x ∈ Ω : φ(x) = 0}, see Section 2.2 for details on how

to construct implicit surfaces. The overall procedure is to use linear interpolation on the discrete

φ values for each element edge in order to �nd the zero level surface point, see Figure 4.3. What

follows is an algorithm describing how to extract the discrete surface Γh and the corresponding set

of normals {nh}.

1. Find the set of elements Kh, referred to as the background mesh, that is intersected by the

1http://mathworks.com/products/matlab/matlab-execution-engine/
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4 Implementation Details

surface by using the discrete distance values (φ > 0 and φ < 0) in some nodes of element Ki,

see Figures 4.1 and 4.2.

2. For every parent element Ki ∈ Kh loop over all edges ei.

a) For every edge ei check the sign of the two discrete function values φ|ei to determine if

the edge is cut.

b) Linearly interpolate the cut point xΓ,i along the edge ei using the two vertex coordi-

nates xmei and xnei , at nodes m and n (endpoints of ei) and the function values φ|ei =

{φ(xmei ), φ(xnei)}.

c) Let xei,1 = xei |φ|ei>0 (the coordinate corresponding to the highest value of φ) and xei,0 =

xei |φ|ei<0 and compute the vector ni = xei,1 − xei,0. See �gure 4.3b.

3. Compute the element vector nφ =
∑
ni. Note that nφ is pointing in the general direction of

∇φ and is only used to determine the orientation of the face normals.

4. Depending on the number of nodes in element KΓ
i and the orientation of the cut, several cut

cases must be considered, see �gure 4.4 for tetrahedral element and �gure 4.5 for hexahedra.

5. The resulting polygon is tessellated into triangles by rotating the arbitrary polygon from R3

into R2 and applying a convex hull algorithm, see Figure 4.6.

6. The complete tessellation of all triangles on Γh is then processed by a triangulation algorithm

to create a compact topology list which is used for the linear interpolation of the solution

on Kh to Γh (see Section 4.4.2 for a discussion on the topology) and for visualization (easier

handling and interpolated surface shading).

1
ϕ(x )<0

2
ϕ(x )<0

3
ϕ(x )<0

(a) All φ values are in-
side the interface.

1
ϕ(x )>0

2
ϕ(x )>0

3
ϕ(x )>0

(b) All φ values are out-
side the interface.

ϕ(x)=0

1
ϕ(x )>0

2
ϕ(x )>0

3
ϕ(x )<0

(c) φ is both negative and
positive inside an ele-
ment.

Figure 4.1: Element categories
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4.2 Zero level surface approximation

Ω1
hK

Ω2

Figure 4.2: Mesh categorisation
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Γh,i={v 
Γ,1 , v }

K 
Γ

Γ,1

Γ,i

Γ,2

Γ,2

e1

e3

e2

 ϕ
1<0

ϕ
2>0

ϕ
3>0

(a) 2D case

v1
 

3
 v

2
 v

 

v 

 

 
Γ

Γ,2
 ϕ
1<0

ϕ
2>0

ϕ
3>0

Γh,i

nϕ=|n1+ |n2

n1

n2

nh,Γ

(b) Surface element normal

KΓ,i

h,iΓ Γ

e1
e2

e3

e5

e4

e6

ϕ
1<0

ϕ
2<0

ϕ
3<0

ϕ
4>0

v1

v2

v3

v4

(c) 3D case

Figure 4.3: Surface element Γih and parent element Ki
Γ in 2D and 3D

(a) Triangular (b) Quadliteral

Figure 4.4: Tetrahedral cut cases
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4 Implementation Details

(a) Triangular (b) Quadliteral (c) Pentagon (d) Hexagon

Figure 4.5: Hexahedra cut cases

1

2

3

4

6 5

y

x

z

(a) Wrong numbering

1

3

2

6

5

4

y

x

z

(b) Proper numbering
order

Figure 4.6: Numbering order for arbitrary polygon in R3. The order without rotation to R2 is shown
in a). In sub-�gure b) the polygon is rotated into R2 and using an convex hull algorithm
the proper numbering order can be established for any convex polygon.

4.3 Curvature �ow

The minimal surface problem is a classical example of a certain type of partial di�erential equations

on surfaces called form �nding. This section gives an overview of the approach taken in Supplement

1 to compute the curvature of a surface and iteratively �nd the design that minimizes it. In the

following we drop the distinction between Γ and Γh. Recall, however, that the FEM is discretized

replacing Γ with Γh.

In Supplement 1 the minimal surface problem is modeled as a level set surface that is incrementally

advected by a velocity �eld,

ẋΓ = ∆ΓxΓ = −2Hn. (4.1)

Here ∆Γ denotes the Laplace-Beltrami operator de�ned by

∆Γ = ∇Γ · ∇Γ, (4.2)

where ∇Γ is the surface gradient given by
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4.3 Curvature �ow

∇Γ = P∇. (4.3)

The curvature measure is given by

H =
κ1 + κ2

2
, (4.4)

see e.g. [2].

The surface is deformed by advection, see e.g., [22, 21] for more information on the level set

method. The level set function φ is updated using the computed velocity from (4.1) by

dφ

dt
=
∂φ

∂t
+ ẋΓ · ∇φ = 0 (4.5)

The advantage of this method is that the surface is treated as an implicit surface and is not

bound by the computational requirements of an explicit surface. The surface is instead free to

evolve through a domain and can naturally be split and merged without complicated meshing

techniques. This is made possible by driving the surface using advection (4.5). The discretization

of surface problems using implicit surface representations can be done using the cut �nite element

method, see Section 3.

An interesting aspect of this is to use adaptivity to re�ne the mesh in areas close to the boundary

or where the curvature is high.

An interesting area for future work is form �nding coupled with topology optimization.

For the normal curvature �ow from (4.1) we have

(ẋΓ,v)Γ + j(ẋΓ,v) = a (xΓ,v)Γ ∀v ∈ Vh, (4.6)

where

Vh = {v ∈ piecewise linear polynomial de�ned on the background mesh , v = 0 on ∂Γ},

and (u,v)Γ =
´

Γ u · vdΓ is the L2 inner product on Γ. We thus have

ˆ
Γ

dx

dt
· vdΓ +

∑

F∈F

ˆ
F

[nF · ∇ẋΓ] · [nF · ∇v]ds = −
ˆ

Γ
∇xΓ · ∇vdΓ (4.7)

which leads to the discrete system

M
1

kn
(xn+1 − xn) = −Sxn+1, (4.8)

where M is the stabilized mass matrix,
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M =

ˆ
Γ

ΦTΦdΓ +
∑

F∈F

ˆ
F

[nF · ∇ẋΓ] · [nF · ∇v]ds, (4.9)

and

Φ =




ϕ1 0 0 ϕ2 0 0 . . .

0 ϕ1 0 0 ϕ2 0 . . .

0 0 ϕ1 0 0 ϕ2 . . .


 , (4.10)

with ϕ denoting the basis functions of Vh, xn denotes the nodal surface values, i.e., the coordinates

of the underlying mesh, at the current virtual time step n of the narrow band of the mesh around

the interface and xn+1 denotes the nodal values at the next virtual time step, kn is the time step

length and S is the sti�ness matrix given on Voigt form by

S =

ˆ
Γ

BT
ΓBΓdΓ, (4.11)

where

BΓ =




ϕ1
Γ,x 0 0 ϕ2

Γ,x 0 0 0 . . .

ϕ1
Γ,y 0 0 ϕ2

Γ,y 0 0 0 . . .

ϕ1
Γ,z 0 0 ϕ2

Γ,z 0 0 0 . . .

0 ϕ1
Γ,x 0 0 ϕ2

Γ,x 0 0 . . .

0 ϕ1
Γ,y 0 0 ϕ2

Γ,y 0 0 . . .
...

...
...

...
...

...
...

. . .




,

and ϕ1
Γ,x denotes the tangential x derivative of the �rst basis function since we have

∇Γϕ = P∇ϕ,

with

∇ϕ =




ϕ1
x ϕ2

x . . .

ϕ1
y ϕ2

y . . .

ϕ1
z ϕ2

z . . .


 ,

and ϕ1
x =

∂ϕ1

∂x
. The discrete Laplace equation (4.8) can be rewritten according to

M
1

kn
xn+1 −M

1

kn
xn = −Sxn+1 (4.12)

⇔M
1

kn
xn = Sxn+1 + M

1

kn
xn+1, (4.13)
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4.3 Curvature �ow

where (4.13) was proposed by Dziuk in [14]. We need to compute xn+1 by

M
1

kn
xn =

(
S + M

1

kn

)
xn+1 ⇔ (4.14)

xn+1, =

(
S + M

1

kn

)−1

M
1

kn
xn. (4.15)

The surface velocity �eld towards the lower curvature (around the interface Γ) is then given by

vn =
xn+1 − xn

kn
. (4.16)

4.3.1 Level set advection

The level set advection equation is given by

∂φ

∂t
+ ẋΓ · ∇φ = 0. (4.17)

The time derivative of the distance function is discretized by

∂φ

∂t
≈ φn+1 − φn

kn
,

which yields the updated implicit surface

φn+1 = φn + knvn · ∇φ. (4.18)

A �nite element method is used in order to compute the discontinuous gradient �eld ∇φh on the

narrow band Kh,N , see Figure (4.7) .

hK

Γh

Figure 4.7: Discontinuous gradient �eld on Kh

We begin by computing the element gradient of the distance function ∇φe and then projecting it

to the nodes on the grid using an L2 projection (see Section (4.3.2) for details on the L2 projection).
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4 Implementation Details

∇φ = M−1

ˆ
Kh,N

∇φe · vdV

where ∇φe is the element gradient of φ given by

∇φe =

(ˆ
K
φK · ∇ϕKdK

)
.

Finally ∇φ has to be normalized by

∇φ =
∇φ
|∇φ| .

It is assumed that ∇φ = n at φ = 0, so it must hold that |∇φ| = 1 i.e. φ must be a signed distance

function for all virtual time steps n. After computing φn+1 using (4.18) the property |∇φ| = 1 gets

degraded and the distance function needs to be reinitialized. This can be done in various ways e.g.

[23, 22] the naive approach is to compute the closest distance from each node on the narrow band

of the mesh to the discrete interface.

4.3.2 The L2 projection

The L2 projection takes an arbitrary function u into the �nite element space Vh by minimizing the

L2 norm of (uh − u) such that

(uh,v) = (u,v) ∀v ∈ Vh.

See Figure (4.8). Or equivalently

MuN = f ,

where

f =

ˆ
Ω

ΦTUdΩ,

with U being the element value for u and letting Φ be the Voigt form of the basis functions in Vh

similar to (4.10) we have

M =

ˆ
Ω

ΦTΦdΩ.
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4.4 Linear Elastic Membrane Shell

Figure 4.8: L2 projection for averaging the element values (black arrows) onto the nodal values (blue
arrows)

4.4 Linear Elastic Membrane Shell

4.4.1 Surface strain and stress

The surface strain tensor is de�ned by

εΓ(u) :=
1

2

(
∇Γ ⊗ u+ (∇Γ ⊗ u)T

)
(4.19)

and the in-plane strain tensor is given by:

εPΓ (u) := εΓ(u)− ((εΓ(u) · n)⊗ n+ n⊗ (εΓ(u))) (4.20)

The model problem is then to �nd u : Γ→ R3 and σPΓ : Γ→ R3 such that

−∇Γ · σPΓ (u) = f on Γ (4.21)

σPΓ (u) = 2µεPΓ + λ0trεPΓPΓ on Γ (4.22)

u = 0 on ∂ΓD (4.23)

where ∂ΓD are Dirichlet conditions and f : Γ→ R3 is a load per unit area. The Lamé coe�cients

are given by

λ0 :=
2λµ

λ+ 2µ
=

Eν

1− ν2
, λ =

Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
(4.24)

where E is the Young's modulus and ν is the Poisson's ratio. λ0 is used in the in-plane strain

case when small thickness is assumed.

The bilinear form of 4.21 is
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4 Implementation Details

aΓ(u,v) = lΓ(v) ∀v ∈ Vh, (4.25)

where

aΓ(u,v) = (2µεΓ(u), εΓ(v))Γ − (2µεΓ(u) · n, εΓ(v) · n)Γ + (λ0∇Γ · u,∇Γ · v)Γ , (4.26)

and

lΓ(v) = (f ,v)Γ. (4.27)

Which is equivalent to

ˆ
Γ

2µεΓ(u) : εΓ(v)dΓ−
ˆ

Γ
4µ(εΓ(u) · n) : (εΓ(v) · n)dΓ

+

ˆ
Γ
λ0(∇Γ · u)(∇Γ · v)dΓ =

ˆ
Γ
fvdΓ (4.28)

Using Mandel notation we have the strain tensor

εMΓ :=




ε11

ε22

ε33√
2ε12√
2ε13√
2ε23




=




∂
∂xΓ

0 0

0 ∂
∂yΓ

0

0 0 ∂
∂zΓ

1√
2

∂
∂xΓ

1√
2

∂
∂yΓ

0

1√
2

∂
∂xΓ

0 1√
2

∂
∂zΓ

0 1√
2

∂
∂yΓ

1√
2

∂
∂zΓ







ux

uy

uz


 , (4.29)

and using

Φ :=




ϕ1 0 0 ϕ2 0 0 · · ·
0 ϕ1 0 0 ϕ2 0 · · ·
0 0 ϕ2 0 0 ϕ2 · · ·


 , (4.30)

we get

Bε :=




∂
∂xΓ

0 0

0 ∂
∂yΓ

0

0 0 ∂
∂zΓ

1√
2

∂
∂xΓ

1√
2

∂
∂yΓ

0

1√
2

∂
∂xΓ

0 1√
2

∂
∂zΓ

0 1√
2

∂
∂yΓ

1√
2

∂
∂zΓ




Φ (4.31)
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4.4 Linear Elastic Membrane Shell

such that the Galerkin approximation of εΓ(u) : εΓ(v) yields BT
ε BεU and for the �rst term of

(4.28)

ˆ
Γ

2µεΓ(u) : εΓ(v)ds ≈
(ˆ

Γ
2µBT

ε Bεds

)
U. (4.32)

For the second term of (4.28) we have that

εΓ(u) · n =




n1
∂ux
∂x + n2

1
2

(
∂uy
∂x + ∂ux

∂y

)
+ n3

1
2

(
∂uz
∂x + ∂ux

∂z

)

n1
1
2

(
∂uy
∂x + ∂ux

∂y

)
+ n2

∂uy
∂y + n3

1
2

(
∂uy
∂z + ∂uz

∂y

)

n1
1
2

(
∂uz
∂x + ∂ux

∂z

)
+ n2

1
2

(
∂uy
∂z + ∂uz

∂y

)
+ n3

∂uz
∂z


 , (4.33)

introducing the notation system

ϕ1
x :=

(
∂ϕ1

∂x 0 0 ∂ϕ2

∂x 0 0 · · ·
)

(4.34)

ϕ2
x :=

(
0 ∂ϕ1

∂x 0 0 ∂ϕ2

∂x 0 · · ·
)

(4.35)

ϕ3
x :=

(
0 0 ∂ϕ1

∂x 0 0 ∂ϕ2

∂x · · ·
)

(4.36)

ϕ1
y :=

(
∂ϕ1

∂y 0 0 ∂ϕ2

∂y 0 0 · · ·
)

(4.37)

we have

Bn =




n1ϕ
1
x + n2

1
2(ϕ1

y +ϕ2
x) + n3

1
2(ϕ1

z +ϕ3
x)

n1
1
2(ϕ1

y +ϕ2
x) + n2ϕ

2
y + n3

1
2(ϕ2

z +ϕ3
y)

n1
1
2(ϕ1

z +ϕ3
x) + n2

1
2(ϕ2

z +ϕ3
y) + n3ϕ

3
z


 (4.38)

and the second term approximation becomes

ˆ
Γ

4µ(εΓ(u) · n) : (εΓ(v) · n)ds ≈
(ˆ

Γ
4µBT

nBnds

)
U. (4.39)

For the third term we use the notation

Bdiv :=
(
∂ϕ1

∂x
∂ϕ1

∂y
∂ϕ1

∂z
∂ϕ2

∂x
∂ϕ2

∂y
∂ϕ2

∂z · · ·
)
, (4.40)

and get

ˆ
Γ
λ0(∇Γ · u)(∇Γ · v)ds ≈

(ˆ
Γ
λ0B

T
divBdivds

)
U. (4.41)

Finally we have the linear system

(ˆ
Γ

2µBT
ε Bεds−

ˆ
Γ

4µBT
nBnds+

ˆ
Γ
λ0B

T
divBdivds

)
U =

ˆ
Γ
fΦds (4.42)
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or

SU = F (4.43)

4.4.2 Interpolating solution �eld to surface

Because small deformations are assumed the solution �eld of uh|Kh
can be interpolated to the

surface uh|Γh
by

uΓ,K = ϕK · uK ,

for each element K, where uΓ,K denotes the solution �eld on Γh, uK denotes the solution �eld of

the background element and ϕK is the basis function of element K.

4.5 Method of manufactured solutions

The following illustrates an example case of generating a right-hand side to a PDE to be used in

convergence analysis. Consider again the Laplace-Beltrami operator acting on a function u. Let Γ

be a smooth surface of the form of a torus with R and r being the major and minor radius of the

torus. The Laplace-Beltrami equation on the surface Γ is given by

−∇Γ · (∇Γu) = f (4.44)

In order to conduct error analysis on a computational model that solves (4.44) using the �nite

element method, we can assume a solution u and analytically work out the right hand side f in

(4.44). We then plug in f in our computational model and compute the approximate solution uh.

We then can compute the error (uh − u) and analyze the convergence. We begin by assuming

u = x+ y + z, (4.45)

and using the linear tangential operator P we get

−∇ · (PP∇u) = f . (4.46)

The gradient of the solution u is then

∇u =




1

1

1


 . (4.47)

It is clear that the normal to the surface needs to be worked out analytically, i.e. we need to have

n = n(x)Γ. De�ning the torus implicitly in Cartesian coordinates, radially symmetric about the
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4.5 Method of manufactured solutions

z-axis

φ(x, y, z) =
(
R−

√
x2 + y2

)2
+ z2 − r2, (4.48)

where φ(x, y, z) = 0 is the solution to the isosurface Γ. Recalling that the gradient to a distance

function φ coincides with the normal �eld n at φ = 0, we have

∇φ =




x

(
2− 2R√

x2 + y2

)

y

(
2− 2R√

x2 + y2

)

2z




normalized⇒




x

(
1− R√

x2 + y2

)

y

(
1− R√

x2 + y2

)

z




= n. (4.49)

Next we compute PP∇u

û = PP∇u, (4.50)

and �nally

f = −∇ · û = − ∂

∂x
ûx −

∂

∂y
ûy −

∂

∂z
ûz. (4.51)

Working out (4.51) is best done in a symbolic processor such as Mathematica2, see algorithm 4.1.

2https://www.wolfram.com/mathematica/
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4 Implementation Details

Algorithm 4.1 Working out the Laplace-Beltrami load on a torus in mathematica

Laplace-Beltrami load

In[139]:= u = x + y + z;

In[167]:= ▽[u]

Out[167]= {1, 1, 1}

In[168]:= ϕ = R - x2 + y2
2

+ z2 - r2;

In[174]:= ▽[ϕ]

Out[174]= -

2 x R - x2 + y2

x2 + y2

, -

2 y R - x2 + y2

x2 + y2

, 2 z

In[181]:= n = ▽[ϕ] / 2 // Simplify

Out[181]= x -
R x

x2 + y2

, y -
R y

x2 + y2

, z

In[182]:= P = [3] - Outer[Times, n, n]

Out[182]=

1 - x -
R x

x2+y2

2

- x -
R x

x2+y2
y -

R y

x2+y2
- x -

R x

x2+y2
z

- x -
R x

x2+y2
y -

R y

x2+y2
1 - y -

R y

x2+y2

2

- y -
R y

x2+y2
z

- x -
R x

x2+y2
z - y -

R y

x2+y2
z 1 - z2

In[185]:= û = P.P.▽[u];

In[192]:= f = Div[-û, {x, y, z}] // Simplify

Out[192]=

1

x2 + y2
R4 (-(x + y)) + R3 x2 + y2 (9 x + 9 y + z) -

R2 21 x3 + x2 (21 y + 8 z) + x 21 y2 + z2 - 2 + y 21 y2 + 8 y z + z2 - 2 +

R x2 + y2 19 x3 + x2 (19 y + 13 z) + x 19 y2 + 7 z2 - 10 + 19 y3 + 13 y2 z + 7 y z2 - 10 y + z3 - 2 z -

2 x2 + y2 3 x3 + 3 x2 (y + z) + x 3 y2 + 3 z2 - 4 + 3 y3 + 3 y2 z + 3 y z2 - 4 y + 3 z3 - 4 z
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5 Summary of Appended Supplements

5.1 Supplement 1

A �nite element method for �nding minimal curvature on a surface based on computing a discrete

Laplace-Beltrami operator that operates on the Cartesian coordinates of the surface is suggested.

The surface is the discrete interface between a zero level set of a distance function and a linear

tetrahedral mesh. The normal mean curvature �ow is computed by solving the Laplace-Beltrami

equation. The �nite element discretization is done on the piecewise planar surface using the linear

tetrahedral basis functions of the background mesh. Tangential calculus is employed and the tan-

gential operator is used in the modeling of the Laplace-Beltrami operator. A FEM for computing

the mean curvature vector needs stabilization and a recent stabilization method was successfully

employed. In order to propagate the surface in the direction towards minimal curvature, a material

time derivative of the distance function is discretized in time and space. Incremental updates of

the distance function leads to a distortion such that the property of the function being a distance

function is degraded, this needs to be addressed by reinitialization. Numerical experiments show

good convergence with known analytical solutions. This method is suitable for evolving surface

problems in which the surface is free to evolve into complicated shapes.

5.2 Supplement 2

A cut �nite element method for the elastic membrane is suggested. Both free membrane and

membranes coupled to 3D elasticity are considered. The membrane shell is modeled using tangential

calculus embedded in a three dimensional space. The surface of the membrane is the discrete

interface between a zero level set of a distance function and a three dimensional mesh of linear

tetrahedra or tri-linear hexahedra. The mesh does not in general align with the surface of the

membrane, which is instead allowed to arbitrarily cut the mesh. The �nite element discretization is

done on the piecewise planar surface using the basis functions of the background mesh. Due to the

arbitrary cuts of the mesh, the size of the planar surface elements vary greatly in size. An integration
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5 Summary of Appended Supplements

over such surface elements leads, in the free membrane case, to severe ill conditioning of the sti�ness

matrix which needs to be stabilized. A stabilization method is proposed which provides stability

to the solution and gives the right conditioning of the discrete system. This approach allows for

rapid insertion of arbitrarily shaped membranes into already existing 3D �nite element models. The

suggested approach is numerically veri�ed and gives errors comparable to triangulated membranes,

using the same degree of approximation.

5.3 Supplement 3

In order to validate computational models by computing the error between the approximate solution

and solutions from experimental data, one needs to have a proper framework for creating such a

comparison. Let fe denote a solution �eld from some experimental data of some load case. The

corresponding approximate model solution �eld generated by a computational is then denoted fh(x),

where x denotes a set of parameters chosen as the design variables of the computational model.

This is also known as the inverse problem of �nding a set of model parameters that �t the

observations. The validation is carried out considering a set of load cases, where each case yields a

solution �eld fei and a corresponding approximate solution fhi (x) from the computational model.

Next the error for each case is computed by carefully examining the solution �elds and capturing

the crucial parts of the �elds. The L2 error between the two solution �elds is de�ned by

Ei := β||f ie − f ih||L2 , (5.1)

where ||u− v||L2 =
√´

Ω(u− v)2dΩ and β is used for penalization to achieve a better �t. We now

can form an optimization problem of �nding a set of computational parameters x that minimizes

the errors Ei i = 1, 2, ...





min
x

Ei i = 1, 2, ...

subject to





gi(x) ≤ 0 i = 1, 2, ...

xi0 ≤ xi i = 1, 2, ...

xi ≤ xi1 i = 1, 2, ...

(5.2)

where gi are a set of parameter dependent side conditions e.g. stress, displacement etc. The

parameters xi are usually bound by physical limitations.

Material parameters for a previously developed meso mechanical �nite element model of a thin

adhesive layer are optimized using the SPEA2 algorithm. Experimental data from previously per-

formed experiments was compared to simulations in order to compute the L2 error of two di�erent

load cases. From the error measures, two objectives were de�ned and used in a multi objective

optimization study to generate a discrete Pareto set of optimal solutions. Compared to the original

study where the two objectives were combined using a weighted sums approach and the resulting
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5.3 Supplement 3

single objective optimization problem solved using an evolutionary algorithm, this study generated

a Pareto front which can be used to verify the model, get insight into the correlation between

di�erent model parameters and provide good basis for the choice of parameters.

In the context of this thesis, the approach of this paper provides a solid framework for validation

of computational models which are hard to validate without experimental data.
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6 Future Work

During this work, several possibilities for future studies have been identi�ed.

For the elastic material, a possible application is to introduce anisotropy through two sets of

�ber directions and optimize the amount and orientation of the �bers to maximize sti�ness. This

is under development at the time of writing.

A natural extension of Supplement 2 is to work out an hyper elastic model for large deformation

elasticity. The challenge lies in the fact the deformation map is hard to de�ne on implicit surfaces.

This means that the deformation map is some sense needs to be a function of something else than

the coordinates of the initial con�guration.

Another idea is create anisotropic materials by embedding thin one dimensional �bers into a three

dimensional bulk to add sti�ness. This is interesting for injection molding applications where current

FE software can simulate an object that is injection molded and has a con�guration of discrete 1D

�bers. This could be used as input data to create computational models for such composite objects.

Sandwich constructions is another topic that can be explored. Glue laminated timber for in-

stance can be modeled as elastic bulk material with embedded surfaces of di�erent material. The

coupling between the elements can be modeled with discontinues Galerkin which makes it possible

to introduce weakening and crack propagation in the models.

Structure optimization using cut �nite element method, especially form �nding is an area that

is interesting. Shape �nding traditionally involves meshing techniques which are not needed in the

cutFEM setting.

Techniques relating to the cutFEM need further studies, for instance adaptivity to resolve the

underlying mesh where the curvature of a surface is high is one area that requires attention.

35





Bibliography

[1] Ted Belytschko, Chandu Parimi, Nicolas Moës, N Sukumar, and Shuji Usui. Structured ex-

tended �nite element methods for solids de�ned by implicit surfaces. International journal for

numerical methods in engineering, 56(4):609�635, 2003.

[2] Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez, and Bruno Lévy. Polygon mesh pro-

cessing. CRC press, 2010.

[3] Erik Burman, Susanne Claus, Peter Hansbo, Mats G Larson, and André Massing. Cutfem:

discretizing geometry and partial di�erential equations. International Journal for Numerical

Methods in Engineering, 2014.

[4] Erik Burman, Peter Hansbo, and Mats G Larson. A stabilized cut �nite element method for

partial di�erential equations on surfaces: The laplace�beltrami operator. Computer Methods

in Applied Mechanics and Engineering, 285:188�207, 2015.

[5] Jonathan C Carr, Richard K Beatson, Jon B Cherrie, Tim J Mitchell, W Richard Fright,

Bruce C McCallum, and Tim R Evans. Reconstruction and representation of 3d objects with

radial basis functions. In Proceedings of the 28th annual conference on Computer graphics and

interactive techniques, pages 67�76. ACM, 2001.

[6] Dominique Chapelle and Klaus-Jurgen Bathe. The �nite element analysis of shells-

Fundamentals. Springer Science & Business Media, 2010.

[7] Philippe G Ciarlet. Mathematical modelling of linearly elastic shells. Acta Numerica 2001,

10:103�214, 2001.

[8] Keenan Crane, Clarisse Weischedel, and Max Wardetzky. Geodesics in heat: A new approach

to computing distance based on heat �ow. ACM Transactions on Graphics (TOG), 32(5):152,

2013.

[9] François Cuvelier, Caroline Japhet, and Gilles Scarella. An e�cient way to perform the assem-

bly of �nite element matrices in matlab and octave. arXiv preprint arXiv:1305.3122, 2013.

37



[10] MC Delfour and JP Zolésio. A boundary di�erential equation for thin shells. Journal of

di�erential equations, 119(2):426�449, 1995.

[11] MC Delfour and JP Zolésio. Tangential di�erential equations for dynamical thin/shallow shells.

Journal of di�erential equations, 128(1):125�167, 1996.

[12] Michel C Delfour and Jean-Paul Zolésio. Di�erential equations for linear shells: comparison

between intrinsic and classical models. Advances in mathematical sciences: CRMs, 25:41�124,

1997.

[13] Gerhard Dziuk. Finite elements for the Beltrami operator on arbitrary surfaces. Springer, 1988.

[14] Gerhard Dziuk. An algorithm for evolutionary surfaces. Numerische Mathematik, 58(1):603�

611, 1990.

[15] Gerhard Dziuk and Charles M Elliott. Finite element methods for surface pdes. Acta Numerica,

22:289�396, 2013.

[16] Peter Hansbo and Mats G Larson. Finite element modeling of a linear membrane shell problem

using tangential di�erential calculus. Computer Methods in Applied Mechanics and Engineering,

270:1�14, 2014.

[17] Peter Hansbo, Mats G Larson, and Sara Zahedi. Stabilized �nite element approximation of

the mean curvature vector on closed surfaces. arXiv preprint arXiv:1407.3043, 2014.

[18] Peter Hansbo, M.G. Larson, and Fredrik Larsson. Tangential di�erential calculus and the �nite

element modeling of a large deformation elastic membrane problem. Computational Mechanics,

56:87�95, 2015.

[19] Gerhard A Holzapfel. Nonlinear solid mechanics, volume 24. Wiley Chichester, 2000.

[20] Maxim A Olshanskii, Arnold Reusken, and Jörg Grande. A �nite element method for elliptic

equations on surfaces. SIAM journal on numerical analysis, 47(5):3339�3358, 2009.

[21] Stanley Osher and Ronald Fedkiw. Level set methods and dynamic implicit surfaces, volume

153. Springer Science & Business Media, 2006.

[22] James Albert Sethian. Level set methods and fast marching methods: evolving interfaces in

computational geometry, �uid mechanics, computer vision, and materials science, volume 3.

Cambridge university press, 1999.

[23] Mark Sussman, Peter Smereka, and Stanley Osher. A level set approach for computing solutions

to incompressible two-phase �ow. Journal of Computational physics, 114(1):146�159, 1994.

[24] O. C. Zienkiewicz. The �nite element method in engineering science. McGraw-Hill London,

second edition, 1971.

38



39





Appended Papers

Supplement I Mirza Cennanovic, Peter Hansbo, Mats G Larsson

Minimal surface computation using �nite element method on an embedded

surface

International Journal for Numerical Methods in Engineering, Wiley Online

Library, 2015

Supplement II Mirza Cennanovic, Peter Hansbo, Mats G Larsson

Cut �nite element modeling of linear membranes

Submitted to Computer Methods in Applied Mechanics and Engineering

Supplement III Kaveh Amouzgar, Mirza Cenanovic, Kent Salomonsson

Multi-objective optimization of material model parameters of an adhesive

layer by using SPEA2

11th World Congress on Structural and Multidisciplinary Optimization

41


	Abstract
	Supplements
	Acknowledgements
	Introduction
	Verification and Validation
	Modeling errors
	Discretization errors
	Supermodels
	Method of Manufactured Solutions
	Validation

	Surface problems
	Tangential calculus
	The discrete tangential projection

	Surface representation

	Cut Finite Element Method
	Domain
	Discretization
	Dirichlet conditions 
	Finite element space
	Stabilization

	Implementation Details
	Choice of software
	Zero level surface approximation
	Curvature flow
	Level set advection
	The L2 projection

	Linear Elastic Membrane Shell
	Surface strain and stress
	Interpolating solution field to surface

	Method of manufactured solutions

	Summary of Appended Supplements
	Supplement 1
	Supplement 2
	Supplement 3

	Future Work
	Bibliography
	Appended Papers
	Supplement I
	Supplement II
	Supplement III



