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Abstract

This dissertation concerns structural topology optimization in conceptual design
stages. The objective of the project has been to identify and solve problems that
prevent structural topology optimization from being used in a broader sense in the
avionic industry; therefore the main focus has been on stress and fatigue constraints
and robustness with respect to load uncertainties.

The thesis consists of two parts. The first part gives an introduction to topology
optimization, describes the new contributions developed within this project and
motivates why these are important. The second part includes five papers.

The first paper deals with stress constraints and a clustered approach is presented
where stress constraints are applied to stress clusters, instead of being defined for
each point of the structure. Different approaches for how to create and update
the clusters, such that sufficiently accurate representations of the local stresses are
obtained at a reasonable computational cost, are developed and evaluated.

High-cycle fatigue constraints are developed in the second paper, where loads de-
scribed by a variable-amplitude load spectrum and material data from fatigue tests
are used to determine a limit stress, for which below fatigue failure is not expected.
A clustered approach is then used to constrain the tensile principal stresses below
this limit.

The third paper introduces load uncertainties and stiffness optimization consider-
ing the worst possible loading is then formulated as a semi-definite programming
problem, which is solved very efficiently. The load is due to acceleration of point
masses attached to the structure and the mass of the structure itself, and the un-
certainty concerns the direction of the acceleration. The fourth paper introduces
an extension to the formulated semi-definite programming problem such that both
fixed and uncertain loads can be optimized for simultaneously.

Game theory is used in the fifth paper to formulate a general framework, allowing
essentially any differentiable objective and constraint functions, for topology opti-
mization under load uncertainty. Two players, one controlling the structure and
one the loads, are in conflict such that a solution to the game, a Nash equilibrium,
is a design optimized for the worst possible load.






Popularvetenkaplig sammanfattning

Lag vikt och effektivare produktutveckling &r intressant i manga industriella tillamp-
ningar, speciellt inom flygindustrin. Genom att anvinda strukturoptimering tidigt
i produktutvecklingsprocessen kan en betydande andel vikt sparas jamfort med
traditionell, manuell, design. Dessutom, om strukturen redan i tidigt skede &r
optimerad med avseende pa de strukturella krav som stélls senare i processen sa
minskar antalet designdndringar som krévs, vilket gor processen effektivare.

Topologioptimering &r en form av strukturoptimering som lampar sig att anvinda
tidigt 1 produktutvecklingsprocessen. I topologioptimering utgar man inte ifran en
befintlig design utan man definierar ett designomrade, som strukturen ska halla
sig inom, och utifran de laster som strukturen ska bdra och hur den monteras
hittar optimeringen en struktur som uppfyller bivillkoren och didr malfunktionen
dr minimerad. Resultatet dr en mer eller mindre grov modell, som anvénds som
grund for att skapa den geometriska modell som traditionellt 4r det forsta steget i
produktutvecklingsprocessen.

For att den optimerade strukturen ska vara anvindbar och inte krdva stora &n-
dringar i senare designskeden maste de krav som stélls pa strukturen vara beaktade
redan i topologioptimeringen.

Denna avhandling presenterar metoder for hur bivillkor pa spinning och utmat-
tning kan anvdndas i topologioptimering och dven metoder fér hur man far en
design som dr robust mot osékra laster. Spanningsbivillkor innebér att strukturen
skapas pa ett sadant sitt att massan minimeras utan att ett statiskt brott uppstar
pa grund av de palagda lasterna. Utmattningsbivillkor innebér att strukturen dven
ska halla for upprepade belastningar, déir alla laster strukturen utsétts for under
den berdknade livslangden beaktas.

Med robusthet avses hér att optimeringen hittar den vérsta lasten som kan uppsta
och optimerar strukturen for den lasten, strukturens prestanda dr darfor béttre
eller lika bra for alla andra laster. Strukturen &r ddrmed robust, eftersom ingen
last kan fa forodande konsekvenser, vilket kan vara fallet om bara en, eller ett fatal,
lastfall beaktas.
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Part 1

Theory and background






Introduction

Light weight designs are desirable in many industrial applications, in particular
within the avionic and automotive industries. Decreasing the structural mass of
aircrafts, cars and trucks has several immediate results, such as improved perfor-
mance and reduced fuel consumption which in turn gives reduced emissions and
an increased range. A lighter design also gives the possibility to increase pay-load.

The work presented in this thesis strives to generate lighter designs in a concep-
tual design phase. This is achieved by the use of topology optimization, for which
methods have been developed such that the result is a mature optimized design
that will require as little manual work as possible in later design phases. As this
work concerns the mathematical, rather than the organizational, framework of op-
timization, a simplified design chain is sufficient to describe how the optimizations
presented in this thesis fit into the product development process; the conceptual
design gives a first basic idea of the design and all remaining design phases are here
denoted detailed design.

Conceptual design 1|
:E/ossibly Shape & Size opt.

Structural
analysis

Figure 1: Simplified product development process involving topology optimization
methods that are well adapted to the industrial problem.

By introducing structural optimization at an early stage of the product develop-
ment process, a lighter design can be achieved without necessarily increasing the
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CHAPTER 1. INTRODUCTION

Manual adjustments

v |

Structura Final
CAD analysis design

Figure 2: Simplified manual product development process, without any optimiza-
tion.

amount of development work required. The basic idea is that if structural opti-
mization is well incorporated into the methods used for product development, the
process can be made much faster than conventional product development, as the
number of manual iterations between the “design office” and “structural analysis
office” are significantly reduced, or perhaps even eliminated. A simplified flowchart
of a product development process is shown in Figure 1, and can be compared to
the simplified flowchart for manual design shown in Figure 2; at least one step is
added, but the need for time consuming trial-and-error in the form of structural
analysis followed by manual re-design is reduced. This means that a reduction of
working time, and thus of development costs, are other positive effects of using
structural optimization.

The work presented in this thesis contributes with methods for using constraints in-
volving allowable stresses and fatigue life in topology optimization. It also confronts
one of the main problems of optimization in general and of topology optimization
in particular, namely that an optimized design is traditionally not robust and may
not be able to carry any other loads than those for which it was optimized. This
has been done by introducing uncertainties in the applied load. These uncertainties
can be actual uncertainties involving loads that are expected to occur, or fictitious
uncertainties that are introduced to make the design more robust in general, so
that it stands a better chance to withstand unexpected loads due to handling or
redesign in a later design stage.



Structural optimization

Structural optimization is a general term involving several techniques used to opti-
mize the design of a load carrying structure. The design variables x influence the
design of the structure under consideration and these are updated in an automated
way such that the objective function go (x) is minimized and the constraints are
satisfied.

A general structural optimization problem reads

Inin go ()
(P) gZ (w) §§77 Z:17 7C7
s.t.
lchegfa 6:17"'7m7

where “s.t.” reads “subject to”; the ¢ constraints state that the functions g; () need
to return a value not greater than the upper limits g, and the m design variables
have the lower and upper bounds z, and 7., respectively.

In this thesis, the functions g; (), j = 0,...,c are calculated using the finite
element method (FEM) [18] for linearly elastic structures. A nested formulation is
used, meaning that the nodal displacement vector w € R™, where n is the number
of degrees of freedom of the model, is found as the solution of the state equation

K(@)u=f(zr), (1)

where the stiffness matrix K (z) € R™" is influenced by the design variables and
f (z,r) € R™ is the force vector, which may be influenced by the design variables
and which may also be controlled by some external vector . This means that the
stiffness matrix needs to be invertible, so that the displacements become implicit
functions of x, i.e. u = u (x) = K ()" f (z, 7).

2.1 Different optimization areas: size, shape and topology

Structural optimization is usually divided into three main areas: size, shape and
topology optimization. In size and shape optimization, an existing design is pa-
rameterized by, usually, a moderate number of design variables, and finding an



CHAPTER 2. STRUCTURAL OPTIMIZATION

optimized design often means that the end of the design chain is reached. That is,
the optimized design constitutes the design as it will be manufactured. In size op-
timization, the design variables can control parameters such as the cross-sectional
area of a beam or the thickness of a plate and a fixed FE-mesh is used. In shape
optimization, the variables influence the shape of the discretized structure by mod-
ifying the shape of the elements, e.g. using pre-defined shapes parameterized using
spline functions.

In contrast to size and shape optimization, topology optimization does not start
from a known design and usually does not generate a structural design that is
ready for manufacturing; instead, it generates a very first conceptual design that
needs to be interpreted into a geometric model before its performance can be
evaluated with greater confidence. A design domain that defines the geometric
restrictions on the design is defined, and the entire design domain is discretized by
a finite element mesh. A design variable is related to each element in the design
domain and determines if the element will represent structural material or a hole.
The connectivity of the structure, while connecting the applied loads to the given
supports, is thus changed such that the objective function is minimized subjected
to the specified constraints. This means that the number of design variables in a
topology optimization problem is typically very large. Compared to size and shape
optimization, topology optimization allows more freedom, as it does not rely on
an existing and typically non-optimal design, and therefore topology optimization
allows for the greatest gain in performance.

The focus of this thesis is on topology optimization.

2.1.1 Short historical background to topology optimization

The first steps towards what today is called topology optimization were made in
the mid 1960s, when a number of papers on optimization of truss structures were
published, e.g. by Dorn et al. [22]. The first practical implementation of optimiza-
tion in the form of point-wise material or voids on a fixed finite element mesh, in
order to obtain an optimized shape, was performed by Bendsge and Kikuchi in 1988
[5]. This was based on earlier work by e.g. Kohn and Strang in 1986 [56], [32], but
was also inspired by papers concerning optimization of the thickness distribution
of elastic plates, such as that by Cheng and Olhoff from 1981 [15].

The concept of topology optimization that is common today, i.e. penalization of
stiffness for intermediate design variable values in order to achieve a design with
only solid material and voids, was introduced by Bendsge in 1989 [4] and it was
later named SIMP, Solid Isotropic Material with Penalization, by Rozvany [48].
An extensive historical discussion of the SIMP method is given by Rozvany in [45]
and [46]. The word topology optimization originates from the Greek word topos
which means landscape or place [52].

From the very beginning, topology optimization has been synonymous with finding
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2.2. SOLVING THE OPTIMIZATION PROBLEM

the stiffest topology, given a limited amount of material. Such a problem is formu-
lated as minimizing the compliance C (x,r) = 1/2f (&, )" u; the lower the com-
pliance, the higher the stiffness for the loads f (x,r). This traditional minimum
compliance formulation has gained its popularity much because the compliance is
a convex function when K () depends linearly on @ and because C (x,7) is a
so-called self-adjoint function, as will be described in Chapter 2.3, which makes it
computationally efficient.

2.2 Solving the optimization problem

There are a number of different methods for solving (IP); the choice depends mainly
on the nature of the functions involved. Problems involving noisy functions, or
functions that are non-differentiable due to e.g. re-meshing of the FE-model, are
often solved using Response Surface Methodology (RSM) [38]. In RSM, meta-
models, or response surfaces, are built by running FE-analyses with different set-
tings on the design variables and evaluating the function values g; (), j =0,...,c.
A response surface is built by a polynomial based on the function values for the
different & such that it approximates the response of the real model as well as
possible. Optimization may then be performed on the response surfaces rather
than on the full model. Obviously, if the number of variables is large, the cost of
creating a response surface will be overwhelming. Moreover, an error is introduced
when a response surface is created, so this method should only be used when no
other method is available.

This work focuses on differentiable functions which are solved using first order,
gradient-based methods. In these methods gradients of the functions g; (x) with
respect to the design variables & are calculated, upon which design variable changes
are determined. How these gradients, or sensitivities, are calculated is the topic of
the following section.

Two different optimization solvers have been used in this work: the Method of
Moving Asymptotes (MMA) developed by Svanberg [58]; and the interior-point-
solver IPOPT [67]. Structural optimization problems are generally non-convex,
which is why optimization solvers typically create convex approximations at the
current design . These approximations are only reasonably accurate for small
design updates, which is why the size of the step is restricted and the optimization
problems are solved in an iterative manner. In this work, relatively fine convergence
criteria and conservative settings of the solvers have been used, so that no numerical
problems with the solvers are expected.

As a note, there are non-gradient based topology optimization methods, but mo-
tivated by the critical review by Sigmund [54], these methods are not discussed in
this work.



CHAPTER 2. STRUCTURAL OPTIMIZATION

2.3 Sensitivity analysis

The structural optimization problem (P) is often solved using a first-order method,
where an initial design is updated in an iterative manner, based on gradients
0g; () /Oxe, j = 0,...,¢,e = 1,...,m. The computation of these gradients is
called sensitivity analysis and is performed using either approximate, numerical
methods or, exact, analytical methods. In the numerical analysis, the sensitivity of
g; (z) with respect to one variable is approximated by giving it a small perturbation
and performing a new FE-analysis with this value, the response is then compared
to that obtained for the nominal value. This means that numerical gradients can
be used if the functions are not available analytically, typically if the FE-solver is
used as a “black box”. However, at least one additional linear system (1) needs to
be solved for each variable, making this method expensive for problems involving
a large number of design variables.

Analytical sensitivity analysis means that the functions g; (), j = 0,...,c are
differentiable and available in the formulation, such that they may be differentiated
analytically and then implemented into the optimization and FE software.

In structural optimization, the objective function and the constraint functions are
often dependent on the displacements. Due to the nested formulation, the displace-
ments are implicitly functions of &, meaning that the functions may be written as
gj () = g; (x,u(x)). The sensitivity with respect to design variable z, follows
from the product rule and the chain rule, and reads

9g; (x) _ 0g; (®,u(x)) 95 (z, u(x)) u(x)
or, 0, + ou (x) Oz, @)

The sensitivity of the displacements is calculated by differentiating the state equa-
tion (1):

0K (x) Ou(x) Of (z,7)
oz, @ TE@ G ==
which after rearrangement of terms reads
ou(x) i [of (x,7) OK (x)
or, K (@) 0, O, u(@)]- 3)

Inserting (3) into (2) yields

9g; (x) _ 0g; (x,u(z))
0%, 0z,
+ 6gj(;z7('l;)(w))K (m>71 |:8.f8(:€7 T) _ aI;x(::)u (w) ) (4)

This formulation (4) is known as the direct method. Here we find that the linear
system (3) needs to be solved m times — once for each design variable. Therefore,

8



2.3. SENSITIVITY ANALYSIS

obtaining the sensitivities in (4) will be too expensive if the number of design
variables is large.

For problems involving a large number of design variables the adjoint method is
preferable. In the adjoint method, another set of linear systems is created from (4)
by introducing the vector A; as

T VK (x) 7 (5)

The linear system in (5) needs to be solved ¢ + 1 times' and )\]T is then inserted
into (4), which gives the adjoint sensitivity formulation:

dg; (x) _ 0g; (x,u (z))

of (x,r) 0K (x)
0x, 0z, B “

or. oz, @) (6)

+ AT

From (4) and (6) it is clear that the direct method is to be preferred when the
number of constraints is greater than the number of design variables, and that the
adjoint method is preferable for the opposite situation.

The popularity of the traditional compliance formulation hinges partly on its
self-adjoint property: with g; (z,u (x)) = 1/2f (z,7)" u, the gradient with re-
spect to u (x) times the inverse of the stiffness matrix in (4) and (5) becomes
1/2f (x,7)" K (€)' = 1/2uT, where the equality follows from (1). Thus, no
additional linear system needs to be calculated to obtain the gradients.

For topology optimization problems, analytical gradients and the adjoint method
are used almost exclusively — this is the case also in this thesis.

1Usually, less than ¢ + 1 are required as not all g; (), j =0,...,c are functions of u.






3

Discretization of the continuum problem

In structural topology optimization, the finite element method is used to discretize
the continuum problem and to solve the static equilibrium problem (1). The finite
element mesh is also used to define the design variables. The continuum problem
is defined on the design domain €2, which in topology optimization often has a box
shape, as in Figure 3, within which the structure should be contained.

3.1 Design variables

One design variable, z., is used for each finite element that discretizes the design
domain 2. The design variables are often initially presented as discrete variables,
where the value is either 1, implying that the element represents material, or 0
meaning that the element represents a hole. Thus, the design variables determine
the connectivity of the structure within the given design domain.

However, for the large number of design variables imposed by relevant topology
optimization problems, integer programming problems become far too expensive
to solve. Instead, a relaxation approach is used where the variables are continuous
and penalization is introduced in order to obtain a design in which the design
variables are as close to 0 or 1 as possible. The penalization is such that a non-
linear behaviour of some structural property with respect to the design variable
is obtained, making intermediate design variable values non-favourable and thus
avoided in the final design.

The first penalization technique was introduced by Bendsge in 1989 [4] and it is still
used very frequently. This penalization technique is called SIMP, Solid Isotropic
Material with Penalization, and penalizes the stiffness matrix as

m

K(:I?) = ZISKE: (7)

e=1

where K, € R™" is an expanded element stiffness matrix and p > 1 a parame-
ter that is usually set to 3. SIMP makes the stiffness unproportionately low for
intermediate design variable values. Thus, if the available mass is constrained or
minimized, it is more efficient, from a stiffness point-of-view, to let the design
variables approach their bounds.

11



CHAPTER 3. DISCRETIZATION OF THE CONTINUUM PROBLEM

e 2 ®

()

Figure 3: A typical design domain ) and boundary conditions for a topology
optimization problem.

As the stiffness matrix is required to be positive definite, a non-zero lower bound
is enforced on the box constraints in (P). These read 0 < ¢ < z, < 1, where ¢ is
a small value. Bendsge and Sigmund [7] recommend a typical value of about € =
1073, meaning that an element that represents a hole has actually not zero stiffness,
but (1073)® = 107 times the element stiffness matrix. This causes numerical
problems in some formulations that will be discussed later in the thesis.

No physical interpretation of what the design variables represent is given in this
thesis; they are simply mathematical scale factors of element properties. As the
final design should represent only solid material and voids, no physical interpreta-
tion of intermediate design variable values is required. However, several physical
interpretations have been suggested in the literature, and among the most popular
interpretations are element thickness in 2D-problems [45], material density [8], [10],
[51], [11] or as composite material [6].

3.2  Numerical instabilities

The introduction of SIMP for p > 1 makes the optimization problem non-convex.
Non-convexity means not only that a minimum is not necessarily the global one,
but also that small changes to the original problem, such as another starting point
or changed parameter value, may result in another local optimum and thus, another
optimized design. This is a known problem in topology optimization and it has
not been addressed in this work.

There are also a number of other problems that arise in topology optimization.
To start with, topology optimization in a continuum case may not be a well-posed

12



3.2. NUMERICAL INSTABILITIES

(a) (b)

Figure 4: Compliance minimization on the domain in Figure 3. a: No filter and
thus checkerboards, b: Using a design variable filter with radius 1.5 times the
element size; no checkerboards appear but a (grey) transition layer between solid
and void remains in the final design.

problem and no solutions may exist. This is because several thin structural mem-
bers give a stiffer structure than one thick. Thus, an infinite number of infinitely
thin structural members would represent the stiffest structure. This problem is to
some extent avoided by the discretization, but still causes difficulties which appear
as mesh-dependence, meaning that two different discretizations, one coarse and one
fine, typically do not result in the same topology. A discretization with smaller
elements leads to an increasing number of thinner structural parts.

Another issue is related to the fact that the optimization is made on the FE-model,
not on the continuum. All weaknesses of the FE-formulation are also present in
the optimization and will influence the design. One such problem, that occurs
for example in models discretized by two-dimensional four-node quadrilateral el-
ements, is that if the material distribution varies between solid and void in con-
secutive elements, such that the material distribution forms a checkerboard pat-
tern, the structure becomes artificially stiff as shown by Diaz and Sigmund [21].
Such checkerboard patterns with artificial stiffness are created by the optimiza-
tion. One such solution is seen in Figure 4(a), where the compliance has been
minimized by distributing a limited amount of mass, i.e. with reference to (P),
go (®) = 1/2f ()" w (x) and g () = 37, M.x,, where M, is the mass of ele-
ment e.

The problems due to mesh-dependency and checkerboard patterns are avoided by
introducing some operator that enforces a minimum size on structural members.
This is known as a filter, from the filters used in image processing [53].

13



CHAPTER 3. DISCRETIZATION OF THE CONTINUUM PROBLEM

Finite element mesh
/

R __ Centroid of element e

Centroid of element 5

Figure 5: Visualization of a filter for design variable z..
3.3 Filtering techniques

Filters are introduced in topology optimization in order to remove checkerboard
patterns and mesh dependency [55]. The first filter that was introduced was the
sensitivity filter by Sigmund [51] which modifies the sensitivities (2) such that they
are averaged based on the sensitivity with respect to design variables related to
neighbouring elements.

Since the sensitivity filter was first published about 20 years ago it has been used
extensively in different applications and has provided good solutions. Several tests
with the sensitivity filter have been performed in this work, using the methods in
this thesis, and they also point in this direction. However, the sensitivity filter has
not been used in any of the examples shown in this thesis, because it is heuristic;
when the sensitivities are modified they are no longer the correct sensitivities to
the problem formulation and there is no mathematical justification of the theory.
Indeed there are situations when the sensitivity filter does not perform as intended,
as was noticed by Svanberg and Svird [59].

The filter that is used in this thesis is the design variable filter (often called density
filter) developed by Bruns and Tortorelli [12]. This filter is simply a change from
one set of variables to another. A set of filtered variables p. (x) are created by
taking a weighted average of x. and the values of its neighbouring elements. The
filter reads

pe(m):zllfejzj, e=1,...,m, (8)
J=1
in which
v Vet _
e = te; = max (0, R — r¢;) ,

ZZLI %wk ’

where v; is the volume of element j, R is the filter radius and r.; is the distance
between the centroid of elements e and j. See Figure 5 for a visualization.

The filtered variables p (z) will be referred to as physical variables, as they are
used to define the properties of the structure, such as the stiffness, the stress and
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3.4. OBTAINING A BLACK-AND-WHITE DESIGN

the mass. Using the SIMP-approach the stiffness matrix now reads

m

K(2)= 3 pla) K. )

If the filter (8) is used when solving (P) for minimum compliance with a limited
amount of material, designs such as that in Figure 4(b) are obtained.

3.4 Obtaining a black-and-white design

A drawback with both the sensitivity filter and the design variable filter is that a
grey transition layer of elements which have intermediate design variable values is
created between material and void. The boundaries of the structure are therefore
blurred, as in Figure 4(b), and it is not clear how the design should be interpreted.
Further, due to the penalization of intermediate design variable values, the response
is non-physical.

Several ways to remove this transition layer have been suggested in the literature
and a comprehensive review and comparison is presented by Sigmund [53]. Most
techniques rely on some differentiable approximation of minimum or maximum
operators, where a minimum operator sets the design variable value to the lower
bound if any element within the distance R equals the lower bound, and the maxi-
mum operator does the same but with the upper bound. One such approximation
is the Heaviside projection filter suggested by Guest et al. [26], where a Heaviside
step function is approximated and the curvature is controlled by a parameter that
is increased successively. However, the experience from studies conducted for this
thesis is that the large change of the structure that occurs when the curvature
parameter is updated causes difficulties when non-linear constraints, e.g. stress
constraints, are present and convergence to a feasible point seems very difficult.

In this thesis a simple two-step strategy is proposed for obtaining a black-and-white
design without transition layers, as proposed in paper III. First the optimization
problem is solved using the design variable filter (8), then the optimization con-
tinues with modified restrictions on the design space; no filter is used and some
variables are fixed. Only those design variables for which the corresponding physi-
cal variable has an intermediate value are allowed to vary in this second step. If p,
is (close to) € or 1, this means that the x; that are included by the filter are also
(close to) € or 1 and element e is thus not at a boundary, such variables are fixed
to their current value. The variables in this second optimization step are defined
by
:c—{ e<z. <1 if 2e<pP<l—cg,
Lz, = pSP*  otherwise,

where p°P* is the design obtained after convergence with the filter. The second

optimization step is initialized from the physical design variable values at the end
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CHAPTER 3. DISCRETIZATION OF THE CONTINUUM PROBLEM

of the first step, and since no filter is used, p (x) = & = p°"*. Thus, there is no
sudden change in the topology between the two steps.

There are also some obvious drawbacks with this method. Compared to using only
the design variable filter, additional iterations are required before the final design
is obtained and if the filter radius R is much greater than the average element size,
meaning that the width of the transition layer spans a high number of elements,
checkerboard patterns may form in the second optimization step. However, for
filter radii equal to 1.5-2.5 times the average element size, which are used in this
work, no such checkerboard patterns are experienced.

3.5 Stress singularity and penalization of stresses

One problem when stresses are considered in topology optimization is the so-called
singularity phenomenon, which is due to non-zero stresses in elements representing
voids. These stresses can be so high that stress constraints are violated, thus
preventing holes from being created. Of course, this stress is artificial and is a
result of the mathematical modelling.

The singularity problem was first discovered on a truss design by Sved and Ginos
[61] and is discussed by Kirsch [31], Cheng and Jiang [13], Rozvany and Birker [47],
Guo and Cheng [27], among others.

In this work, stress singularity is avoided by using a stress penalization which has

the same form as the stiffness penalization, but with an exponent 0 < ¢ < 1. The
penalized stress vector,

T
o@)=(0.(x) oy(x) 0.(®) 7oy (@) 7 (2) T () ), (10)
in the element related to design variable p, (x), is calculated as
oc () = (pe (%)) EBeu (), (11)

where F is the constitutive matrix and B, is the strain-displacement matrix cor-
responding to the stress evaluation point in element e. For notational simplicity,
it is assumed that only one stress evaluation point is used for each element.

The penalization in (11) gives further penalization of intermediate design variable
values, but also the desired property

lim o, x)) =0,
M o (p (@)

and thus, there is no singularity problem.

Using the stress penalization (11) and the stiffness penalization (9) gives an in-
consistent relationship between stiffness and stress for intermediate design variable
values. However, the penalization functions do not affect the stiffness or stress
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when a physical design variable is at its upper bound and they approach zero when
the physical design variable does. As the reason for introducing the penalization
is to result in a black-and-white design, the stress and stiffness in the final design
will be both physical and consistent. This was used by Bruggi [10] in the so-called
qp-approach, where the effect of different penalization exponents ¢ and p were eval-
uated. One specific choice was ¢ = 1/2 and p = 3 which is also used in this work.
A plot of the penalization functions is shown in Figure 6.
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Figure 6: Penalization functions used for stress, mass and stiffness.

In the literature the SIMP penalization is often introduced as a “material” penal-
ization, applied directly on the constitutive matrix E, rather than on the stiffness
matrix as in (9). Of course, in the traditional compliance formulation this gives
exactly the same result as E enters linear in K (x). However, if for example
stresses are included in the formulation, the same penalization is then also applied
to the stresses, which has the undesired effect that the stresses are lowered for
intermediate design variable values. This was noted by Duysinx and Bendsge [23]
who suggested that the stresses, calculated with a “SIMP-penalized” E, should be
divided by the same penalization, giving an expression similar to that in (11) but
with the exponent ¢ = 0 (which is not allowed in this thesis). Efficiently, this
means that the strain is calculated on the penalized, lower, stiffness, but that the
stress is always calculated as if the element was solid. This resulted in singular-
ity problems and this issue was circumvented by modifying the stress limit using
the e-relaxation approach, developed by Cheng and Guo [14], where the allowable
local stress is increased as p. (&) — 0. That is, the basic problem that stresses
become high in voids remains, but the limit is scaled such that the constraint is
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CHAPTER 3. DISCRETIZATION OF THE CONTINUUM PROBLEM

not violated. The original form of the e-relaxation approach also gives an increase
of the allowable stress at p. (&) = 1, implying that the optimized design will have
stresses which are too high, as discussed by Bruggi [10]. An issue with this ap-
proach is that the parameter ¢ must be chosen appropriately and updated during
the optimization. For these reasons, the stress penalization (11) is used instead of
the e-relaxation approach in this thesis.

3.6 Mass penalization

In some circumstances it might be of interest to penalize the mass, but in this
work the element mass M, is scaled linearly with p, () when the mass is used as
objective or constraint function.

For self-weight loaded problems another linear scaling was suggested in paper III.
This scaling applies to the mass matrix when the self-weight load is calculated and
reads (p. (x)—¢)/(1—¢), meaning that the self-weight load is zero when p, (z) = ¢,
so that no self-weight load is applied in voids, and that the full load is obtained
for p () = 1.
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Stress and fatigue constraints

4.1  On the importance of using constraints adapted to the
application

Topology optimization is traditionally used as a tool for finding optimal load paths
with respect to stiffness. However, from an engineering point-of-view, few appli-
cations have maximum stiffness as the main design criterion. Usually, the design
needs to have sufficient stiffness, so that buckling is avoided or the eigenfrequency
is above some critical value, and the main design criteria include stress and fatigue
requirements and mass minimization.

In structural optimization in general, and in topology optimization in particular, it
is important to consider all major design requirements in the formulation. Other-
wise, these might be very difficult to satisfy in later stages. One popular example is
the minimum compliance design obtained using an L-shaped design domain, Fig-
ure 7. The minimum compliance design creates an internal corner where the stress
(in the continuum) becomes infinite, see Figures 8(a) and 8(c). Major topological
changes, obtained by manual adjustments or by using shape optimization, would
be required to obtain a design with reasonable stresses. Such large changes to an
optimized design typically mean that the new design is far from optimal and the
necessity of the initial topology optimization might be questioned. If, instead, a
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Figure 7: The L-beam problem.
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() (d)

Figure 8: Optimized topologies and von Mises stresses in the final designs. (a,c):
Traditional compliance formulation, (b,d): Mass minimization problem with one
stress constraint.

stress constraint is used to limit the maximum allowable stresses and the mass is
minimized, the optimized topology and corresponding stress plot in Figures 8(b)
and 8(d) are obtained. This design would be a better starting point for further
design work since only sizing, and no change of the topology, might be necessary.

Thus, searching for the minimum mass design that satisfies stress and fatigue life
constraints is of interest for design engineers in a large variety of applications.

4.2  Stress constraints

Stress constraints have been discussed since the very beginning of topology opti-
mization. For example, the pioneering works by Bendsge and Kicuchi from 1988
[5] and by Bendsge from 1989 [4] mention stress constraints, even though these
were not used in the optimization. But it is not until quite recently that promising
results have been published.
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4.2. STRESS CONSTRAINTS

There are mainly two problems related to stress constraints: singularity and com-
putational cost. The singularity problem was discussed in Chapter 3.5 and is
accounted for by stress penalization (11). The high computational cost is because
stress is a local measure, meaning that the stress at all points in the structure need
to be considered. Thus, the most correct way is to use so-called local stress con-
straints, where one stress constraint is used for every element (or stress evaluation
point). This, however, results in m number of linear systems (5) that need to be
solved in each iteration and a more expensive problem for the optimization solver,
making local stress constraints too expensive for anything other than very small
problems.

In order to decrease the computational cost, Duysinx and Sigmund [25] formulated
a global stress constraint, where there is only one stress constraint, which is formu-
lated upon a global stress measure. The global stress measure needs to be created
such that it gives a differentiable expression that is a good representation of the
maximum stress in any element of the model.

A third alternative, in this work called clustered stress constraints, is where local
stresses are clustered into a small number of clustered stress measures, and one
stress constraint is applied to each cluster. The idea behind the clustered stress
constraints is the same as that in the “block aggregated” approach by Paris et al.
[42] or the “regional constraints” by Le et al. [33]; that is, to get a better represen-
tation of the local stresses than in the global stress constraint and at a reasonable
computational cost. Clustered stress constraints were developed in paper I, where
different clustering techniques and suitable clustered stress measure were evaluated,
as will be discussed in Chapter 4.2.1.

Some commercial software can handle stress constraints. One of these is Optistruct
[40] where the stress constraint is based on a single von Mises measure. However,
the approach appears to be too rough and Optistruct finds a solution for the
L-shaped beam in Figure 7 that does not avoid the singularity in the internal
corner. For comparison purposes, a stress constrained topology optimization for
minimum mass is first made in Optistruct and then using the methods in this
work, implemented in TRINITAS [66] and using three clusters. Both models are
created by four-node quadrilateral elements. The optimized designs are seen in
Figure 9. The solution in Optistruct, Figure 9(a), is comparable to a compliance
based design, like that in Figure 8(a), as no radius is created in the internal corner.
A “minimum member size control”, i.e. a filter, as described in [70], was used in
Optistruct with the same radius R in (8) as that used in TRINITAS. The design
obtained in this work, Figure 9(b), is much lighter, about 2/3 of that obtained by
Optistruct, and also creates a radius in order to avoid the stress concentration in the
internal corner, where the stress will approach infinity in the design in Figure 9(a).
The suggested approach for removing the stress concentrations in Optistruct [40]
is to continue with local shape optimization. However, local changes will not be
sufficient for the design in Figure 9(a).

The design in Figure 8(b) was obtained with another element type (eight-node
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CHAPTER 4. STRESS AND FATIGUE CONSTRAINTS

quadrilaterals) and another load, but shows that also a global stress constraint, if
formulated appropriately, is sufficient to obtain a design without the sharp internal
corner.
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Figure 9: Comparison between commercial software and this work, for a stress
constrained mass minimization problem. a: Solution obtained using Optistruct, b:
Solution obtained using this work with 3 clusters.

4.2.1 Global and clustered stress measures

The clustered approach allows for a trade-off between accuracy and computational
cost. The main reason for using clusters is to reduce the m number of local con-
straints (one for each element) to d < m number of clustered constraints (one
for each stress cluster) and still maintain the possibility of controlling the local
stresses. We may think of the two extremes, d = 1 and d = m, which bring us
back to the global and local approaches, respectively.

In this thesis, the local stress measure used for the stress constraints is the von
Mises stress', which in this work is based on the penalized stress vector (10).
Omitting the element index and the design dependence, the von Mises stress reads

1
vM 2 2 2 2 2 2\3
oM = (O’z +o,+0; — 0,0y — 0,0, — 0.0, + 37, + 37, + 37'21) .

The clustered stress measure used in this work is a modified P-norm of penalized
local von Mises stresses. A P-norm has been used in earlier work, [69], [25] and [33],
to group local stresses, but the modification used here is different. The clustered
stress measure for cluster i is defined by

o () = (;Z (0" <:c>>”> , (12)

Y ee);

I'The method is not restricted to von Mises stresses, e.g. principal stresses are clustered in
Chapter 4.3.
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4.2. STRESS CONSTRAINTS

where N; is the number of elements that belong to the set ; C Q of elements in
cluster ¢ and P > 1 is the P-norm exponent.

The clustered stress measure (12) is such that if all local stresses in the cluster

are the same, i.e. o™ (x) = o™, Ve € Q;, we obtain the desired clustered stress
measure
L 1
c 1 M P " L\” M\ P ¥ M
@)= (g @) = (5) () =y
leeﬂl v

For all other cases, of (x) will underestimate the local stresses, which means that
the highest local stresses will not be below the stress limit. However, slightly higher
local stresses can be allowed because the topology optimization is performed in a
conceptual design phase, where the aim is to find a good structural shape, not to
do the final sizing.

Based on the result in (13), the Stress level approach for creating the clusters, was

suggested in paper I. In the stress level approach the elements are clustered such

that the stresses in each cluster are as similar as possible, given d number of clusters

and the same number of members in each cluster. That is, the elements are not

clustered on the basis of the geometric position, but on the stress level. Sorting the

von Mises stresses in descending order and using the notation o}™ > o3 > ... >
vM vM

v where o}™ is the highest von Mises stress in the model, the clustering scheme
for the Stress level approach reads

a,

oM >oM>oM > > O"%ﬂ > > O"% > . >0 ym > e > o,
d N——
—_———
cluster1 cluster2 clusterd

Another important issue regarding the clustering is that the clusters may have
to be updated periodically. If the clusters are fixed, e.g. created on the basis
of the stresses in the initial design, then after a few iterations when the stress
distribution is different the points are no longer sorted into the clusters in the way
that was intended. This means that the clustered stress measure may not be a
good representation of the maximum local stresses. If the clusters are updated the
local maximum stress representation is better, but the problem changes slightly
as the clustered stress measure is calculated from a different set of points in two
consecutive iterations. However, experience from paper I and paper II shows that
this update is sufficiently small so that no numerical problems occur; the best result
is obtained when the clusters are updated each iteration.

The exponent P in (12) has a great influence on what the clustered stress measure
represents: P = 1 gives the mean stress for each cluster whereas an increasing
P brings the clustered stress measure closer to the maximum local stress of each
cluster. As shown in [25], the limit value of (12) when P approaches infinity reads

. 1 vM P ’ _ vM
Jim. (NZ(% (@) ) = maxo;" ().

Zceﬂl
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A large P is therefore desirable, but to avoid numerical problems it should not be
too large. In this work, values of P between 8 — 24 have been used on numerous
examples without encountering any numerical problems. These values are larger
than the values reported in e.g. [33] and [25] where P-norms are also used.

If a global stress constraint is used, the local stresses of which it consists will
range from approximately zero (in voids) up to the highest stress. For such a
large variation of local stresses, the stress measure in (12) will not be a good
approximation of the highest stress. Therefore, Holmberg et al. [28] suggested
and motivated numerically that for a global stress constraint, the stress measure
should be created by a regular P-norm, without the 1/N;-factor. This global stress
measure was also used in paper V, and reads

ot (z) = <Z (o™ (w))P) : (14)

e=1

The global stress measure (14) will instead overestimate the highest local stress,
so that the highest stress in the final design will be lower or equal to the stress
limit when a global stress constraint is used. That is, the relationship between the
clustered stress measure, the highest local stress and the global stress measure can
be summarized as

f] < vM < G ) — . .
o () < max o] () <o®(x), i=1,...,d
The design in Figure 8(b) was obtained using a global stress constraint. The stress
limit was 350 MPa and as seen in Figure 8(d), the highest local stress in the
optimized design was approximately 300 MPa.

4.3 High-cycle fatigue

Fatigue is a structural failure that occurs due to repeated loading conditions. High-
cycle fatigue implies that the number of cycles, or load repetitions, before failure
is high; typically in the order of 10° or more [49]. As fatigue is the reason for
most failures it is an important design criterion and fatigue life aspects should
therefore also be considered in topology optimization. The aim of introducing
fatigue constraints into topology optimization in this work is not to replace a final
fatigue analysis, but to find an optimized conceptual design that with the fewest
changes possible can be changed into a final design, for which fatigue failure will
not occur.

In this work, a traditional high-cycle fatigue methodology is used where no distinc-
tion is made between crack initiation, crack propagation and fatigue failure. The
fatigue calculations have been performed using an in-house code from Saab AB [1].
Detailed descriptions of the methodology are given by e.g. Suresh [57], Schijve [49]
and Dahlberg and Ekberg [19].
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The work in this thesis focuses on structural parts of a military aircraft, for which
fatigue life is often expressed in terms of flight hours. The aircraft is designed for a
specific number of flight hours and a so-called safe-life approach is used, where the
aircraft or part is taken out of service when the calculated life is reached. Therefore,
structural optimization can be used to design a part such that fatigue will not occur
during the specific finite life or before predetermined service intervals.

Fatigue constrained topology optimization is a research area that has not been
explored until recently. This is to a large extent due to the problems that occur for
stress constraints, but also due to the statistical and stochastic nature of fatigue
analysis. Optistruct [40] has an integrated fatigue analysis software and can apply
fatigue constraints in topology optimization. However, because of the performance
of the stress constraint shown in Figure 9(a), the method has not been evaluated
in this work.

A few authors have recently addressed topology optimization with respect to fa-
tigue life. In paper II in this thesis, variable-amplitude loading was considered
and this will be discussed in more detail below. In Svérd [60] the probability
of failure for constant-amplitude loading was minimized or constrained by adapt-
ing the weakest link model by Weibull to a format similar to the P-norm (14),
and a stress measure developed from that of Sines was used. The abstracts and
presentations by Duysinx et al. [24] and Collet et al. [17] investigate the criteria
proposed by Sines, Crossland and Goodman and perform fatigue constrained topol-
ogy optimization using constant-amplitude loading. Different fatigue criteria for
use in structural optimization were discussed by Mrzyglod and Zielinski in [36] and
[37], and Mrzyglod used the Dang Van criterion and loading simplified to constant-
amplitude to perform topology optimization with an evolutionary algorithm in [34]
and [35]. Desmorat and Desmorat [20] considered elasto-plastic low-cycle fatigue
and maximized the fatigue life in a 3D topology optimization problem. Jeong et al.
[30] applied fatigue constraints using criteria according to Goodman, Soderberg or
Gerber, the response due to the alternating load was determined from a harmonic
FE-analysis and the local stresses were clustered using P-norms.

4.3.1 Load spectrum and material data

A local load spectrum, that describes the variation of the applied load, has to be
available for the fatigue analysis. The local load spectrum can be determined from
a global spectrum, e.g. by the use of a global FE-model, where the global spectrum
describes all the missions the aircraft is intended to fulfil during its entire life. Each
mission, which for a fighter aircraft can for example be training, combat or show,
is usually flown a large number of times and the loads for the manoeuvres in the
missions are estimated.

Given the local load spectrum, load pairs are identified from peak and trough values
using some cycle counting method, such as Rainflow count [19]. Figure 10 shows
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Figure 10: Load spectrum representing the load factor f on the ordinate and the
logarithm of the number of cycles n on the abscissa.

an example of a load spectrum where load pairs have been identified. It specifies a
load factor f, which is a multiplier of the external force F', and gives the number of
cycles n; of each load pair [. The corresponding load at each load level is f = F'f.

The number of cycles allowed are determined from Wohler- or Haigh diagrams,
which are based on numerous fatigue tests made on polished test specimens. A
Wohler diagram describes the number of cycles to fatigue failure as a function of
the stress amplitude for a constant load ratio Finn/Fmax, where F' is the load in
a uniaxial fatigue test. A Haigh diagram represents a series of Wohler diagrams,
obtained by varying the load ratio. It describes the allowable number of cycles N
for combinations between the mean stress 0™" = (Opax + Omin) /2 and the stress
amplitude 0®™ = (0yyax — Omin) /2, as shown in Figure 11.

Several factors influence the local resistance to crack initiation for a structural
part. The loading conditions, the local stress and material properties are perhaps
the most obvious and also have the greatest influence. However, the local stress
might be affected by a stress concentration, which also has a prominent effect on
the fatigue life. This is because the volume affected by the high stress is smaller if
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Figure 11: Haigh diagram, the curves represent constant life, i.e. different N.

it occurs at a stress concentration; the probability that a material defect exists in
that volume is thus smaller. Using the same argument, the volume affected by a
certain stress compared to the volume of the test specimen influences the expected
life. The local resistance also depends on e.g. the surface roughness and surface
treatment used, as well as on environmental wear. Notched test specimens are
used to create Haigh diagrams for different stress concentration factors and the
diagrams are constructed such that the probability of failure, based on data from
the test specimens, should be below a certain percentage. The data is then reduced
in order to make the diagrams valid for the specific point of interest rather than
for the test specimen. Some simplifications concerning the reduction of material
data are made in the optimization, as will be discussed in Chapter 4.3.3.

4.3.2 Fatigue analysis
In the high-cycle fatigue methodology used, the damage for each load pair in the
given load spectrum is calculated and accumulated. The following describes the

main steps for performing a fatigue analysis for one, pre-defined, point.
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As linear elastic material is considered, a unit load f,,;, is used in the FE-analysis
and the corresponding stress oy (), at the point being analyzed, is then scaled
according to the load levels in the load spectrum in order to obtain the stress at
each load level as oyt () F f.

The FE-analysis is here expressed as an operator FE that maps a design  and the
unit load to a corresponding stress, that is

Ounit (CE) = FE (funit’ 113) . (15)

For each load pair [ in the load spectrum, the corresponding mean stress o}***" ()

and amplitude stress 07" () are determined by operators S;, such that

(07" () , 07" (@) = St (i (®)) - (16)

The number of cycles allowed for each load pair N; is then determined from the
Haigh diagram by operators H;, as

Ny =Hy (0" () , 0, () = Hi (S (Ounie ())) - (17)

The cumulative damage D (0unit (€)) is determined according to Palmgren-Miner’s
rule [57], by comparing the actual number of cycles n;, given by the load spectrum,
with the allowable number of cycles, N;, for all L load pairs in the spectrum.
Palmgren-Miner’s rule reads

L

D (o (2)) = Y = Zm "

=1

and fatigue failure is not expected as long as D < 1.

4.3.3 Fatigue constraints

Paper II introduces high-cycle fatigue constraints, which are based on a variable-
amplitude load spectrum, in topology optimization. The proposed method suggests
some simplifications to the fatigue analysis which allows the fatigue analysis to be
separated from the topology optimization by removing the design dependence from
(16)-(18). The design dependence is removed by assuming that fatigue failure will
occur at a point with a certain stress concentration. Material data for this stress
concentration is therefore used for the entire model and the volumetric influence
is neglected. In paper II, material data for a stress concentration of 1.5 was used,
experience is required to determine if this is an appropriate choice or not. If it is
too conservative, the fatigue life will be underestimated, which will result in heavy
structures. If it is not conservative enough, the optimization will find structures
with low mass that will not satisfy the fatigue life in later design phases. The
surface roughness and the surface treatment are likely to be the same for the entire
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Figure 12: Flow scheme for fatigue constraints.

structure, as well as the environment it will operate in, meaning that the same
reductions can be used for all points and will not change during the optimization.

The problem is thus solved in two steps. First, the critical fatigue stress &/, which
is the highest stress that gives an allowable cumulative damage D < 1, is found by
solving the problem

max o/

af

L
n; —
s.t. — < D.
\ Sawe
Then, in the second step, the critical fatigue stress is used as a constraint limit
in the topology optimization, i.e. the second step is to find the design « in (15)
such that the stress for the unit load does not exceed 7. The flow scheme of the
suggested methodology for fatigue constrained topology optimization is shown in
Figure 12.

Fatigue is a local phenomenon, meaning that fatigue failure will occur in any point
where the local resistance is not sufficient. When a fatigue analysis is made on
an existing design, a relatively low number of fatigue critical spots can usually be
identified and analyzed. This is not the case in topology optimization where the
design is achieved iteratively. For this reason, all points need to be considered,
but as for stress constraints it is not possible to use local constraints because the
computational cost would be too high. Therefore, the clustered approach (12) is
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CHAPTER 4. STRESS AND FATIGUE CONSTRAINTS

(a)

Figure 13: Minimum mass with only (tensile) highest principal stress constraints.
a: Topology, b: von Mises stresses.

again used to obtain a reasonable control over the maximum local stresses at a low
computational cost. The Stress level clustering technique is used and the clusters
are updated every iteration. The difference is that for the fatigue constraints in
this work, the highest principal stress, representing the highest tensile stress in
the element, is used as the local stress measure in each element. The reason for
this is that tensile stresses have a much higher influence on the fatigue life than
compressive stresses and the material data used in the fatigue analysis is based on
uniaxial fatigue tests; therefore the highest principal stresses correspond better to
the material data than what stresses according to e.g. the von Mises criterion do.
The principal stresses in a point are obtained from the eigenvalue problem

0: (2) Tuy(x) oo ()
Toy (®) 0y (x) 7Y () | = A (@) I ) S () =0,

Tzz (m) Tyz (.’L‘) UZ (m)

in which the stress tensor is built by penalized local stresses (10), I is the identity
matrix, A (x) are the principal stresses and ¢ (x) are the eigenvectors. If the highest
principal stress in element e is denoted A! (z), the clustered stress measure used
for the fatigue constraints reads

1

o (@) = (;2 (! <a:>)’°> .

v ee;

If only the tensile stresses are constrained, an optimized design might have high
compressive stresses, which means that a static compressive failure is to be ex-
pected. The L-shaped beam optimized for minimum mass where only tensile
stresses are constrained, is shown in Figure 13 and confirms that high compressive
stresses are present in the optimized design.
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4.3. HIGH-CYCLE FATIGUE

For this reason, the fatigue constraints are combined with static stress constraints
based on the von Mises stresses. The design in Figure 14 shows the optimized design
for a mass minimization problem with seven clustered fatigue constraints and seven
clustered static stress constraints. The structural members loaded in compression
are now thicker than in Figure 13(a), as they are now dimensioned with respect
to the allowable static stress. Notice also that the right vertical member, loaded
in tension and thus sized with respect to the fatigue constraint, is slightly thicker
than it was in Figure 13(a) where it was sized with respect to the static stress
constraint.

Figure 14: L-shaped beam optimized for minimum mass, with respect to fatigue
life and static stress.
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Optimization under load uncertainty

One of the main issues with optimized load carrying structures is that they are
typically not able to carry any other loads than those for which they were optimized.
A manually designed structure will usually have some unintended robustness with
respect to the loading, simply because it is not an optimal design. However, for an
optimized design, a small perturbation of one of the loads might have devastating
effects for the structural integrity.

In order to obtain optimized designs that are robust with respect to the loading,
load uncertainties are introduced into the problem formulation and robust topology
optimization is performed. In this work “robust optimization” refers to robustness
with respect to loading; robustness with respect to e.g. manufacturing tolerances
or material defects is not considered.

The load uncertainties might for example be formulated as small perturbations
about a known load, such that the design is robust with respect to the direction of
the applied load. The load uncertainty can also be a case when the loading may
act in any direction in space, e.g. due to accelerations in a fighter aircraft which
due to manoeuvres may have high accelerations in any direction.

Two methods to account for load uncertainties have been developed. The first
formulates a semi-definite programming (SDP) framework for solving minimum
compliance problems and the second solves more general problem formulations in
a game theoretic framework.

5.1 Semi-definite programming approach

The SDP-formulation proposed in papers III and IV is based on the worst-case
compliance, which is the compliance C(x,r) = 1 f(x,7) u for the worst loading.
The loading is here described by

flar)=fo(x)+ L) r, (19)

where fj(x) is a fixed load and L (z) € R**" defines the maximum loads in all
nodes and s spatial dimensions. The design dependence in f, () and L (x) is due
to the possibility of considering self-weight. The uncertainty is accounted for by
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CHAPTER 5. OPTIMIZATION UNDER LOAD UNCERTAINTY

r that varies in the unit ball T = {r € R® | ||r|| < 1}. Since the compliance is
a convex function and T a convex and compact set, the maximum compliance is

taken at [|r|| = 1, [44, Corollary 32.3.1]. Thus, the worst-case compliance reads
1
P(x) = ‘I‘IIHELX Clz,r) = ﬁn“ax i_f(m, ) K (x)"" f(e,r), (20)
r||=1 r|l=1

where (1) is used in the last step.

The optimization problem is now formulated as minimization of the worst-case
compliance for a given mass M:

oin P (@)
M,p, (x) = M (21)
s.t. ; P (:c) ’

ez, <1l,e=1,...,m.

A standard procedure to solve a minmax problem such as (21) is to rewrite it as a
bound formulation using the additional variable z, varying in the non-negative set
R, . The bound formulation reads

min 2z
zeR™, zeRy

f(as,r)TK (a3)71 flxe,r) <z Vrel,

m (22)
s.t. ZMePe (x) =M,

e=1

ez, <1l,e=1,...,m.

As is shown in papers IIT and IV, (22) may be replaced by the semi-definite pro-
gramming problem

min z
zeR™, z€R 4, ueR

(%5 20) - (e )z o) =0
éMepe () = M,

ez, <1l,e=1,...,m,

s.t.

where > 0 means positive semi-definite and p is an additional variable.

Numerically, (23) is solved as an ordinary non-linear optimization problem by not-
ing that a symmetric positive semi-definite matrix A can be written A = CCT,
where C' is a Cholesky factor. By treating the components of the Cholesky fac-
tor as variables, varying in the set of lower triangular matrices with non-negative
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5.1. SEMI-DEFINITE PROGRAMMING APPROACH

diagonal entries £5, a final form of the problem may be written

min z
1
TER™, 2€Ry, uERy LeL

Cgzgu)_<ég%>K“r%“@T“@»_C@1@@
s.t. o

ZMepe (CL') - M7
e=1

ez, <1l,e=1,...,m.

The matrix equality constraint in (24) is of small size (s+ 1) x (s+ 1), and can be
simplified to size s X s if no fixed loading is present, i.e. if f, = 0. This makes (24)
efficient for solving large scale problems. Indeed, the main computational cost in

24) is due to K(z) (L (z)" x) ), which is evaluated by solving the linear
0
systems

K(@R= (L) f,()),

for R € R™(+Y meaning that the computational cost for taking all loads defined
by (19) with » € T into account, can be compared to solving (1) for s 4+ 1 load
cases.

In paper III, a hemisphere design space, shown in Figure 15(a), is discretized by
327493 four-node tetrahedral elements. The structure is allowed to occupy 5% of
the hemisphere, which is rigidly attached at the flat surface and has an attached
point mass that is 10 times heavier than the final structure. The uncertain loading
is due to an uncertain acceleration of the applied point mass and the mass of the
structure. If the acceleration is allowed to act with the same magnitude in any
direction, the optimized design is the tripod structure in Figures 15(b), 15(c) and
15(d).

In paper IV, a cylinder is discretized by 14640 eight-node hexahedral elements and
a fixed load acts in the negative z-direction. There is also an uncertain load, applied
at the same point and acting in any direction, which gives a resultant load varying
as shown in Figure 16(a). The optimized topology is seen in Figure 16(b) and is
intuitively a more robust design than that in Figure 16(c), which is a non-robust
design obtained by applying only the fixed load.

5.1.1 Comparison with eigenvalue formulation

Worst-case compliance problems have previously been solved using an eigenvalue
formulation, [9, 16, 63]. If f, = 0 in (19), a similar formulation may be obtained
from (20). Introducing the notation H(z) = L(z)K(x) 'L(z)", (20) may be
written

1 . 1 N
max or H (@)r =2 (H (2)), (25)
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Figure 15: Hemisphere. a: Mesh, boundary conditions and point mass, b,c,d:
Robust optimized design, isometric view, top view and side view.

where the equality follows from the Rayleigh-Ritz theorem ([29, Theorem 4.2.2])
and the eigenvalues \; (H (x)), i =1,..., s, of the s x s matrix H (x) are ordered
such that Ay > Ay (> A3 in 3D). The problem with the eigenvalue formulation
is that if A; (H (2)) is a multiple eigenvalue, i.e. if \; (H (x)) = A2 (H (x)), the
derivatives are not well defined and only so-called directional derivatives, see [50],
[43] or [41, Theorem 4], can be obtained. As shown numerically in paper III and
repeated in the following example, multiple eigenvalues are likely to be present,
not only in the solution, but also in iterations towards a solution.

In Figure 17, the L-shaped domain is considered again. The point mass, visualized
as a black dot in Figure 17(a), has the same mass as the final structure. The
loading is due to accelerations of the point mass and the mass of the structure
and is restricted to an elliptical region, as the acceleration in the z-direction is
twice that in the y-direction. The robust worst-case compliance design is seen in
Figure 17(c) and it is compared to a non-robust design, Figure 17(d), optimized
for two load cases where the magnitudes of the loads are defined by the ellipse and
the orientations are in the x and y-direction, respectively.
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Figure 16: Cylinder with non-centered load. a: Mesh, fixed displacements, fixed
load (dashed arrow in negative z-direction) and uncertain load (dashed arrow inside
the sphere), b: Robust worst-case compliance design, ¢: Non-robust minimum
compliance design for the fixed load only.

The plots in Figure 17(e) are obtained by plotting the compliance for different
loads which vary in a counter-clockwise manner on the elliptical region, obtained
by choosing 7 = (cos®, sin®)T, # € [0,27]. The compliance for the non-robust
design is varying, i.e. there exists one “worst” and one “best” direction for the
loading and the worst direction for the optimized design was not one of those for
which it was optimized. For the robust design, the compliance is the same for
all allowable loads, which implies robustness. That the compliance is the same
for all loads also implies that the eigenvalue formulation (25) would give multiple
eigenvalues. To show that multiple eigenvalues are also present in iterations towards
the solution, the eigenvalue problem has been solved in each iteration in order to
create the plot in Figure 17(b) which shows the highest and lowest eigenvalue for
each iteration. In this example, multiple eigenvalues were obtained at iteration 20
and the eigenvalues remained multiple throughout the entire optimization.

5.2  Game theory approach

Game theory is a mathematical form of decision making for players that cooperate
or antagonize in order to maximize their profit (or minimize loss). Each player
has a pay-off function which is influenced by the strategy chosen. Usually, there is
a limited amount of resources, meaning that one player’s gain is another player’s
loss. A comprehensive introduction to game theory is given by Aubin [3].

Paper V suggests that robust topology optimization with uncertain loading can
be solved as a two-player non-cooperate game formulated on the form P, where
the optimization variables are the strategies and two objective functions are used.
The first player controls the structure using the standard topology optimization
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Figure 17: L-shaped beam subjected to accelerations in any direction in the plane,
the magnitude is defined by an ellipse where the maximum acceleration in z-
direction is twice of that in y-direction. a: Mesh, boundary conditions and point
mass, b: Convergence history of the eigenvalues of H (x) for the design in Fig-
ure 17(c), the eigenvalues are multiple from iteration 20, c: Robust design, d: Non-
robust design obtained for two load cases, one load in  and one in y-direction,
e: Compliance, for the optimized designs in Figure 17(c) and Figure 17(d), as a
function of loads varying counter-clockwise on the elliptical loading region using

r = (cosf, sind)T, 0 € [0, 27].
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variables & and the second player controls the load using the variables @ € R¥™!,
which are the angles in a polar or spherical coordinate system, for 2D and 3D
problems respectively, which parameterize  in (19) as shown in Figure 18(a). The
force now reads

f(@,7(0)=f(2,0) = fo(z)+ L(x) 7(0),

where L (x), as already mentioned, is built by the maximum nodal loads in the
global coordinate directions, here denoted Zpax, Ymax aNd Zmax, respectively, for a
single point load used in this section. For a 3D-problem 7 (8) reads

sin (¢) cos (6)
r(0) = < sin(¢)sin (6)
cos (¢)

and it simplifies to a polar system for ¢ = 7/2 in 2D. An example of how the
uncertain load L (x)" 7 (@) varies in a 2D-problem is shown in Figure 18(b) for the
case when Tmax = 2Ymax-

F1 Y
T T Ymax
L) 7 (0) oooeet 22
o) | f:l,,,,_jymaxsing‘\\
! ’/‘ T
| - E .
! y L N )
S | \ Tmax COS 0 ;  Tmax
~ | * ’
S | Y . -
0 NN REN "
N S I,
T
(a) (b)

Figure 18: Visualization of how the uncertainty vector and the uncertain load is
defined by €. a: Spherical coordinate system used in 3D, which simplifies to a
polar system for ¢ = 7/2, b: Uncertain loading in 2D.

The concept of a solution is not as obvious as in standard optimization problems.
In this work a solution (x*,8") is defined as a Nash equilibrium point [39] which
defines a situation where neither of the players has an incentive to change strategy.
If player one wants to minimize the objective function g(()l) (z,0) and the second

player wants to maximize the objective function g(()z) (z,0), the game theoretic
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problem may be formulated as finding =* € R™ and 6* € R*~!, such that

(2) (o 0
Jnax gy (x7,0)

st. 0,.<0.<0,e=1,...,5—1.

A visualization of a Nash equilibrium point for an unconstrained problem with only
one variable for each player and with simple objective functions, is given in Fig-
ure 19. The Nash equilibrium point (z*, §*) is the point where Z‘)gél) (z*,0%) /0x =0
and 89(()2) (x*,0%) /00 = 0.

0

A

Nash equilibrium

6* 777777

.
v

T T

Figure 19: Visualization of a Nash equilibrium point for an unconstrained problem

with only one variable per player, the circles represent level surfaces of the functions
1 2

gé ) (z,0) and gé ) (z,0).

If both gél) (z,0) and géZ) (z,0) are chosen as the compliance, the problem is in
principle the same type as that solved using (24). However, the game theoretic
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framework presented here is more general, because it can be used to formulate
problems based on any differentiable functions gél) (z,0) and g(()g) (z,0).

A simple algorithm is used where the load and topology problems are solved in
sequence. In paper V it is discussed that the nature of the suggested games is
such that they are difficult to converge; only in special cases does there exist one
specific “worst” load that remains the worst when the topology is changed. These
convergence problems are limited by adding a small number of load cases in the
topology problem.

Figure 20: L-beam design. a: Robust design, b: Non-robust design with only one
fixed load (as shown by the arrow), c: von Mises stresses in the robust design for
the load defined by 6*, d: von Mises stresses in the non-robust design.

In paper V three different games are formulated based on the responses: compli-
ance; global stress; and mass. For example, the mass is minimized under a global
stress constraint using (14) and the loading is chosen such that the global stress is
maximized. Figures 20(a) and 20(c) show the result from such a game solved on
the L-shaped geometry for a load that may act in any direction in the plane and
Figures 20(b) and 20(d) show a non-robust design which is the result of a standard,
one load case, topology optimization problem. As can be expected, more structural
members are created for the robust design in order to keep the stresses below the
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stress limit 350 MPa for all possible loads.

The same game is also solved on the 3D-geometry in Figure 21(a) and the result
is seen in Figures 21(b)-21(c). The maximum stress in Figure 21(c) is close to the
stress limit and all parts should be close to the stress limit for some 6. The few grey
structural members in the optimized design are explained by the discretization; a
finer discretization would be required to obtain a more black-and-white design,
because some structural parts cannot be made thinner without being removed.

0

Figure 21: 3D-bracket. a: Mesh, fixed displacements and the applied (uncertain)
load, b: Robust design, ¢: von Mises stresses for the load defined by 6*.
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Software

Two different software have been used for the optimizations during this work. The
methods in papers I and II were implemented in TRINITAS [66], while papers
III-V used a Matlab-based finite element and topology optimization program that
has been developed within this project.

6.1 Developed FEM and optimization program

A finite element and topology optimization program has been developed in Matlab
[64]. From the very beginning, the main idea of the program has been that it reads
in-data files of FE-models created in commercial pre-processing programs and that
it is written in a general manner, so that it is easy to add e.g. new element types
and objective or constraint functions. The in-data file format of choice is that
used in Optistruct [40] and models can thus be prepared in e.g. the commercial
pre-processing program HyperMesh [2]. This means that CAD-models can be
imported and that modern mesh techniques can be used to create the FE-models.
Additionally, it allows for comparisons with commercial optimization software.

The Matlab program handles several element types and different variations of the
elements, such as lower order and higher order formulations and various integration
schemes. The current element library consists of quadrilateral and triangular ele-
ments in 2D and hexahedral, tetrahedral, pentahedral and pyramid elements in 3D,
as well as rods and mass elements. Shell elements, based on 8-node quadrilaterals,
are also implemented but so far with some limitations.

The optimization problem is defined via a graphical user interface (GUI), see Fig-
ure 22, where a browser is used to select the in-data file and a number of options
and settings are available. Objective functions and constraint functions can be
combined by the user, and among the functions that are available and published in
research papers, are von Mises stress, principal stress, compliance, mass and mass
fraction. Other functions that are available, but not tested sufficiently or used in
a publication, include eigenfrequency and buckling.

Several filtering techniques are implemented, such as the design variable filter (8)
developed by Bruns and Tortorelli [12] as well as a modification of this filter to
create more black and white designs, see Chapter 3.4 or paper III. The derivative

43



CHAPTER 6. SOFTWARE

4 sut [E= )

Objective function and i Select Optistruct indata file Solver options
or use structured mesh

e HMA -

Doyon ) Tapology () Load direction ) Both

variables. ) Use structured mesh Mave

02

Objective @ min [0 Indata file MMA it
M T L_beam_Gnode.fem || B 01
funcion ) max ENEs

MMA incr

Read intal i
] ok Browse
Constraints Constrain imis

Analysis options
) Mass fraction @< > | cument Filter type and radius

@) Opimization *) Static analysss.

@ Mass Current

FRerfme Design variable fiter =B /W ¥ )
5 9 = e () Deactivate design variables
©) complance @< (1= | Coment

© vonMises stress @ < ) > 80 s 15 () Reduced integration

7) Tensile Principal Stress ©) < *1 Shell elements

7 1stEigenfrequency (@) = Penalization factors

1) Lumped mass matrix

*) Bucki @ <
il 2 Stiffress

penalization N © Seff weight
Initialization of parameters Stress i #CPUS "
penaiization
Initial design 1 Plot options
o peczan Plot every mih feration | 10
Lowestomd 0001 Robust optimization Scale factor o ) auto
) Robust optimization () Creats movie () Plot stresses.
P-norm exponent 24
Uncertain LCs o Reset

Clusters
1 Corresponding fixedLCs | O Pause /Kil

Figure 22: The GUI that selects an indata file, sets up the optimization problem
and initiates the program.

filter by Sigmund [51] and dilate and erode filters using Heaviside and modified
Heaviside functions [26, 53] are also available.

For solving the linear systems, such as the state equation (1) and systems arising
in the gradient calculation (5), the Matlab function mldivide (backslash operator)
is used if the available memory is sufficient. Depending on the input, this function
chooses among different direct solver algorithms in order to minimize the compu-
tational time. For larger problems where the available memory becomes an issue,
a preconditioned conjugate gradient method is used instead. The preconditioner
is an incomplete Cholesky factorization of the coefficient matrix and the scaling
introduced in [68] is also used in order to decrease the condition number of the
coeflicient matrix.

The optimization problem is solved using the Method of Moving Asymptotes [58],
IPOPT [67] or the optimization solver in Matlab, fmincon. The minimum compli-
ance problem can also be solved using the optimality criteria algorithm [7].

Robustness with respect to load uncertainties can for stiffness based problems
be solved using the semi-definite program (24), using the eigenvalue formulation
(25), or using game theory. The game theory formulation is more general as is
discussed in Chapter 5.2, and can involve any of the implemented objective and
constraint functions. An optimization problem may also be defined using only
the load variables in order to find the worst load direction for an FE-model when
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performing a stress analysis, for example.

From a user point-of-view, a semi-definite programming problem is formulated on
the standard form () from the GUI, where “Robust optimization” is chosen and the
uncertain and corresponding fixed loads are defined using the identification num-
bers assigned in the pre-processor. The program then formulates the problem (23),
which is then treated by an interface to fminsdp [65], in which it is reformulated
into the standard non-linear optimization problem in (24).

The initial design is an equal distribution using a value chosen in the GUI, or a
design from a previously saved result. Non-design elements, which are part of the
structural analysis but are not assigned a design variable, may be defined from
element sets created in the pre-processor.

So-called superelements [40] can be imported and used in the optimization. Su-
perelements represent stiffness and loads from structural parts that have been
reduced from the model. The number of elements in the model can therefore be
reduced significantly and replaced by direct input to the degrees of freedom related
to the interface nodes. Boundary conditions with correct stiffness and loads can
thus be used at a very low computational cost. The example in the following chap-
ter also uses superelements to be able to include rigid body elements that are not
implemented in the Matlab program.

The topology during the iterations can be plotted in Matlab, together with the
stresses (von Mises or principal stresses) and the convergence history. The plots
can be made on the nominal, undeformed shape, or using the displacements or
mode shapes to plot a deformed shape. The discretized design domain with the
boundary conditions is plotted once and gradients can also be plotted as a contour
plot on the topology, which may be useful during development.

The final design is saved to an indata-file in Optistruct format. This file can be
opened in several commercial software that offer better visualization of 3D-designs
and it also facilitates when distributing the optimization result to others.
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Industrial application

7.1 Topology optimization of a landing gear part

In order to show a typical application for which the optimization techniques in
this work are developed, a part from an early development phase is chosen and
optimized. The lower part of the torque link on a main landing gear, as shown in
Figure 23, was chosen because it is easily visualized and has very simple boundary
conditions. The aim with this example is to show a possible scenario, not to
optimize a design that will be used in service; the loading conditions and the
structural requirements are thus somewhat fictitious.

Figure 23: Landing gear with the previous design of the lower torque link.

The existing model, Figure 24(a), of the torque link was modified in Catia [62] to
create a relevant design domain for the topology optimization. The outer shape was
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kept due to clearance, but the cut-outs were filled and the radii were replaced by
slanted edges. The simplified Catia model of the design domain was then imported
into HyperMesh where it was discretized using eight-node hexahedral and six-node
pentahedral elements, in total 39313 solid elements were used and the mesh is
shown in Figure 24(b). The boundary conditions are applied at the center of the
holes, from which rigid body elements connect to the inner surface of the holes. At
the hole where the load is applied the translation in the y-direction is fixed and in
the two other holes all translations as well as the rotations about the x and y-axes
are fixed. It was decided that the attachment lugs would not to be part of the
design domain; therefore a superelement was created for the non-design elements
and used in the optimization. The initial design used in the Matlab program is
seen in figure 24(c).

Figure 24: a: Original model in Catia, b: Design and non-design spaces defined in
HyperMesh, c: Discretized design domain imported in Matlab.

The torque link transfers rotation about the axis of the strut in Figure 23, and
the only loads it is supposed to take are in the z-direction in Figure 24(c). Here,
the von Mises stress measure will be used, meaning that no distinction is needed
between loads in the positive or negative z-direction; therefore only the maximum
absolute value of the loads is used in the optimization. This load is }'
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However, due to friction and jamming a load in the z-direction may occur, as well
as combinations between the z and x-directions. Therefore, robust optimization
with respect to an uncertain loading was performed. The load was varying in the
xz-plane, on the ellipse defined by }' in z and 0.1 }' in z-direction.

First, a worst-case compliance optimization was performed using the SDP-formulation
(24). The mass constraint limit was chosen to 15% of the mass of the full design
space. The worst-case compliance design is seen in Figure 25 and a non-robust
design is seen in Figure 26. The robust design is a more solid topology compared
to the non-robust design, for which the topology is divided into two main parts.

()

Figure 25: Robust design obtained for a worst-case compliance minimization prob-
lem. a: Iso-view, b: Sideview, c: Frontview.

Obviously, robustness is obtained at the price of a higher compliance for any load
compared to a compliance minimization performed solely for that specific load;
however, in this case a better local optimum was found by the SDP-formulation
than the standard compliance formulation, which was solved using MMA. The
compliance for a load in the z-direction is actually slightly lower for the robust
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v x

Figure 26: Design obtained for a non-robust compliance minimization problem
where the load is in the z-direction.

design in Figure 25, it is 0.998C', where C' is the compliance for the non-robust
design in Figure 26.

The problem with the compliance based design is the lack of control over the
stresses and that it may be difficult to choose an appropriate mass limit. Therefore,
the game theory approach is also used to find a minimum mass design where the
global stress measure (14) is below the stress limit @, for the same load uncertainty
as above. The load variable problem is now chosen to maximize the global stress
measure. The optimized design is seen in Figure 27. The maximum local von
Mises stress is now approximately 0.857, as is shown in Figure 27(d). As the mass
in the optimized design is higher (17% of the mass of the full design space) than
that used in the compliance based optimizations, the compliance for a load in the
z-direction is lower, 0.95C, for the stress constrained design.

In Figure 28, the design in Figure 27 is shown together with the attachment lugs in
HyperMesh. The optimized design was imported into HyperMesh from the in-data
file created in the Matlab program, where elements with a design variable value
lower than 0.8 were removed. For the design criteria used in this example, some
adjustments of the attachment lugs would be possible to reduce the mass.

In this example, the robust compliance and robust stress constrained formulations
resulted in quite similar designs. In addition, the compliance based design is almost
a subset of the stress constrained design, this gives confidence in that the stress
constrained topology is a good design which should be suggested as a start for the
following design stages.
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7.1. TOPOLOGY OPTIMIZATION OF A LANDING GEAR PART

(©) (d)

Figure 27: Robust design obtained by solving the game theory problem described
above. a: Iso-view, b: Sideview, c: Frontview, d: von Mises stresses divided by 7,
for the load defined by 6*.

Figure 28: The design in Figure 27, exported to HyperMesh and shown together
with the non-design volumes.
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Summary and conclusions

This work presents a step towards more advanced topology optimizations in con-
ceptual design stages, with the aim of obtaining better designs and facilitating the
further design work. The main objective has been to generate light-weight con-
ceptual designs that are designed with respect to structural requirements such as
stress and fatigue, and that are robust with respect to load uncertainties, so that
they still satisfy their requirements for possible variations of the load.

The clustered approach that has been developed for stress constraints gives a trade-
off between computational cost and accuracy and has proven to work well. Large
stress concentrations are avoided and the stresses in the optimized conceptual de-
signs are reasonably close to the specified limit. The introduced methodology for
high-cycle fatigue constraints with variable-amplitude loading, allows the topology
to be optimized with respect to a specific life, in a manner similar to that used
for stress constraints. The method involves a few simplifications, but the effect of
these are not expected to be more severe than the effect of errors introduced in the
load history and the material data, or by the difference in the stress evaluated in
the topology design compared to that in the actual continuum.

The SDP-formulation provides a computationally tractable and efficient formula-
tion for solving worst-case compliance problems. Only one factorization of the
stiffness matrix is required in each iteration and the main computational cost is for
solving a system of linear equations where the number of right hand sides equals
the spatial dimension plus one, which means that it can be compared to solving the
state equation for the same number of load cases. The game theoretic framework
introduced allows the formulation of robust topology optimization for a very wide
range of problems; for example, stress constrained mass minimization problems
have been solved with uncertain loading which was chosen such that the global
stress was maximized.

The computational cost has always been included as one important aspect when
the methods have been developed, but is obviously higher than for the traditional
stiffness based problem formulation. However, even though the optimization re-
quires more time, the designs obtained in this work are more mature and the total
product development time is therefore expected to be shorter, as the necessity of
manual trial-and-error is reduced.
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Review of included papers

Paper 1

Stress constrained topology optimization

In the first paper, static stress constraints based on von Mises stress criterion are
introduced in topology optimization problems, where the mass is minimized or the
stiffness is maximized. The main focus is on how to formulate the stress constraints
such that the computational cost is reasonable while a good representation of the
local stresses is still maintained. This is achieved by dividing the stress evaluation
points into clusters, where a clustered stress measure is calculated. One stress
constraint is then applied to each cluster instead of each stress evaluation point,
which reduces the number of constraints significantly. Two different methods for
sorting the stress evaluation points into the clusters are evaluated as well as whether
the clusters should be fixed or updated during the iterations. Two examples are
used to confirm the discussed differences between the developed methods.

Paper 11

Fatigue constrained topology optimization

The second paper addresses topology optimization of structures subjected to re-
peated loading conditions, where a fatigue failure might occur even if the stresses
are below the yield limit of the material. A fatigue analysis software is used to
determine the highest stress that gives an allowable cumulative damage for pre-
scribed variable-amplitude loading conditions during a specific life time. Fatigue
constraints are then introduced in order to find a light-weight design that is di-
mensioned by this critical fatigue stress. A clustered approach is used where the
highest tensile principal stress is used as the local stress measure, and the fatigue
constraints are used together with the von Mises based static stress constraints
developed in paper 1. For comparison purposes, the difference between stress con-
straints based on von Mises and the highest tensile principal stress are also evalu-
ated.
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CHAPTER 9. REVIEW OF INCLUDED PAPERS

Paper 111

Worst-case topology optimization of self-weight loaded structures us-
ing semi-definite programming

An issue in topology optimization is that an optimized design tends to be very
weak for any load other than those for which it was optimized. This issue is ad-
dressed by performing worst-case compliance optimization with uncertain loading,
where the structure is optimized for the worst load from an uncertainty set. It is
shown how such a problem can be formulated as a non-linear semi-definite pro-
gramming problem which can be solved efficiently using an interior-point method,
since the constraint matrix involved is of small size and since the problem becomes
computationally tractable, which is not the case for previously existing methods.
The loading is due to the acceleration of the self-weight of the optimized structure
and of point masses applied to it. A new method for topology optimization with
self-weight is also presented, as well as a method to obtain more black-and-white
optimized designs.

Paper 1V

Large-scale robust topology optimization under load-uncertainty

The paper is an extension of the method developed in paper III, but here the load-
ing is due to external forces acting on the structure and both fixed and uncertain
forces may be applied simultaneously. The problem is formulated as a non-linear
semi-definite programming problem and the size of the (square) matrix constraint
is only increased from s to s + 1, where s is the spatial dimension. Thus, the
constraint matrix is still small and the computational cost of introducing this un-
certain loading is comparable to the cost of solving the state equation for s+ 1 load
cases. An example is given where the fixed and uncertain loads act in the same
point, which gives a design that is robust with respect to perturbations of the load
direction.

Paper V

Game theory approach to robust topology optimization with uncer-
tain loading

A game theory framework for solving robust topology optimization problems with
uncertain loading is developed. The game is characterized by two players, the
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structure and the load, that antagonize and it is formulated so that a Nash equilib-
rium point is sought. The optimized structure is found using the standard topology
optimization variables and the load is parameterized by the angles in a spherical
coordinate system (in 3D), which are varied in order to find the worst possible
load. The range of objective and constraint functions that can be used in this
formulation is very broad and three different games are solved numerically. In the
first formulation, the first player (the structure) wants to minimize the compliance
and the second player (the load) wants to maximize compliance. The problem can
thus be compared with the SDP-formulation in papers III and IV. The two other
formulations involve global stress as objective or constraint function.
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