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Abstract

A fundamental entity in quantum mechanics is the quantum mechanical state.
The only connection between the theory of quantum mechanics and our observ-
able world is provided by state measurements, and in this interference between
quantum states plays a key role.

Recent interference experiments probing the world of quantum mechanics
have started to resolve paradoxes and give new insights. While the classical
concepts of phase and polarization are well established, the understanding of
their quantum mechanical counterparts is not complete. While examining those
concepts the increased understanding of quantum interference give rise to new
applications: In quantum cryptography, secure (protected by the laws of physics)
secret quantum key distribution has been set-up between places tens of kilometers
apart. Quantum computers can be viewed as complex quantum interferometers.
This emerging technique anticipates the construction of a new class of computers
that can process data (superposition states) in parallel. Certain algorithms exist
that can solve problems that groves exponentially for classical computers on a
much faster polynomial growing time using quantum computers.

The thesis is focused on the generation and detection of some non-classical
few-photon states, and in particular on entangled states. A common aspect be-
tween the experiments of the thesis is the use of quantum interference. In paper
A, the complementary wave-particle duality of light is examined. Paper B, C
and D implements relative phase and polarization rotation experiments based
on analogous theories. Using two photons, three orthogonal states of the rel-
ative phase operator and the polarization rotation operator can be generated.
The techniques give a linear increase of the sensitivity of relative phase shifts
and polarization rotations with the number of available photons. The sensitiv-
ity of classical measurement techniques are limited to the square of the number
of available photons. Paper E uses the complementary wave-particle duality of
light in an interference experiment. The technique called interaction free mea-
surements enables (at least in principle) the perfect detection of an absorbing
object without the object absorbing any photon. Our method is based on the
principle that a Fabry Perot interferometer tuned to resonance transmits an im-
pinging photon. In contrast, when placing an object between the mirrors of the
Fabry Perot Interferometer, the impinging photon will be re
ected from the �rst
mirror. This technique using quantum objects could be used to produce entan-
gled multi-photon states that can be used to improve the schemes of papers A,
B, C, and D by going to an higher manifold (using a higher number of photons).
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Preface

This thesis is divided into three parts. Part I contains of �ve chapters that
introduce the reader into the aspects of quantum optics considered in the original
work. There are no new results in these chapters. Instead, I have written these
chapters to give an intuitive and simpli�ed background of the research area in
order to give an introduction to the original work. Most of the contents could
be refereed to as \common knowledge" in the quantum optics community, and
other parts come from the cited sources.

In Part II I give a review of the new theory and the experimental setups that
are presented in the thesis. The relationship between the various experiments is
also shown in greater detail.

Part III contains two chapters. In chapter 9, a summary of the each paper
in the original work is provided, including a description of my own contribution.
The focus has been put on the scienti�c relevance of the results and on the
relation to the work of other groups. Finally conclusions of the work are drawn
in chapter 10.

The scienti�c news, that is, my contribution, through my thesis work to the
scienti�c progress, is found in the original work. The reprinted papers are found
at the end of the thesis.
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Chapter 1

Introduction

Quantum theory has been the basis for most of the modern twentieth century
physics. Now, at the beginning of the twenty-�rst century, several conceptual
questions still puzzle physicists. This thesis will not try to give a broad view
of all the troublesome conceptual issues. However, some of these issues form
the basis for the original work and in this part I will try to give a very brief
introduction to the concepts of entanglement and complementarity. In quantum
optics the aspect of complementarity most often examined, namely wave-particle
duality, is closely interconnected with quantum interference and thus with the
quantum description of phase properties. Recently there has been some work
on the resemblance between, the polarization properties of an electro-magnetic
�eld and the relative phase properties between two �elds [1, 2].

A large part of this thesis is devoted to novel experiments closely related to
the generator of relative phase shift between two modes (Paper B and C) and
rotation of polarization (Paper D) respectively. Paper A is a recent experiment
on the wave-particle duality and quantum erasure [3, 4, 5]. Paper E describes a
high e�ciency \interaction-free" measurement [6] that utilizes the wave-particle
duality of optical �elds. An alternative approach uses the rotation of polarization
[7].

The techniques presented in the thesis are all based on quantum interference.
The power of quantum interference can be exempli�ed by giving a few application
examples.

� Quantum interference forms the basis behind absolutely secure quantum cryp-

tography systems [8, 9, 10].

� Quantum interference allows the construction of qualitatively new types of logic

gates [11, 12], which in the future can open a whole new arena of quantum com-

puting and information [13, 14].

� Quantum interference makes novel communications schemes in the future pos-

sible. E.g. quantum dense coding where two bits of information are sent by one

3



4 Chapter 1. Introduction

physical bit [15, 16] and quantum teleportation where an unknown quantum bit

(state) is reproduced exactly on another location after sending two classical bits

[17, 18].

It will be assumed that the reader is familiar with linear algebra, Dirac no-
tation and basic quantum mechanics. Below I will give a brief review of the
notations and elementary concepts that are used in the rest of the thesis.

I prefer to treat light and atoms using the same basic theory, namely quantum
mechanics. Such a consistent treatment makes certain optical phenomena easier
to interpret and classify. An alternative approach is a semiclassical theory, where
light is described by the classical Maxwells equations. In some applications this
is an adequate description while, as should be noted below, other applications
and optical phenomena are impossible to interpret using only classical concepts.

The step \ladder" operators (â and ây) and the number operator N̂ = â
y
â

are of special interest. The number state jNi; N = 0; 1 : : : is an eigenstate of the
number operator (with eigenvalue N) and the coherent state j�i is the eigenstate
of the annihilation operator â (with eigenvalue �). The number states form a
complete orthonormal basis which span the single mode Hilbert space. The
superposition principle simply says that the wave function of any other pure
state can be expressed as a superposition of several of those eigenstates. For
example the coherent state can be expressed as a superposition of the number
states:

j�i = e
�j�j2=2

1X
n=0

�
n

p
n!
jni: (1.1)

States that can not be described by a wave function are called statistical
mixture states or, in short, mixed states. One state often referred to, as an
example is the thermal state. The mixed states are described by the density
matrix �. The density matrix can also be used as an alternative description for
states that can be described by a wave function, i.e. pure states. The relationship
between the density matrix and the wave function (for pure states) is � = j	ih	j.
The density matrix for a thermal state is,

� =
�
1� e

���
e
��âyâ

; (1.2)

where � is a real number > 0. The thermal state describes radiation from a
blackbody source and the constant � = �h!=kBT , where ! is the frequency and
T is the temperature of the blackbody.

The operator associated with the a multi mode electrical �eld can be ex-
pressed as:

Ê(x) = Ê(r; t) = Ê(+)(r; t) + Ê(�)(r; t) = Ê(+)(x) + Ê(�)(x); (1.3)

x = [r; t] is a generalized space-time coordinate. The �rst term in the equation
above is:
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Ê(+)(r; t) =
X
l;�

clel;� âl;�e
�i(kl;�r�!lt); (1.4)

The index l denotes the spatial mode and the index � denotes the polarization
mode. kl;� is the k-vector of the mode, !l is the frequency of the mode, cl is a
normalization constant, el;� is the unit vector of the E �eld, and âl;� is the anni-
hilation operator for the mode. The second component of eq. 1.3 corresponding
to the creation operator is the hermitian conjugate of 1.4

Ê(�)(r; t) = (Ê(+)(r; t))y; (1.5)

For a single mode �eld the electrical �eld can be expressed as:

Ê(r; t) = âe
�i(kr�!t) + â

y
e
+i(kr�!t)

: (1.6)

Since the harmonic oscillator is described by the \ladder" operators, a single
mode of the electrical �eld can be viewed as an harmonic oscillator that can be
in an arbitrarily state, e.g. in a number state, in a coherent state or in a thermal
state mentioned above. The next chapter examinees some correlation properties
of those states.
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Chapter 2

Coherence and quantum

interference

The 1:st and 2:nd order correlation functions are de�ned by:

G
(1)(x1; x2) = hÊ(�)(x1)Ê

(+)(x2)i; (2.1)

G
(2)(x1; x2) = h: Ê(�)(x1)Ê

(+)(x1)Ê
(�)(x2)Ê

(+)(x2) :i
= hÊ(�)(x1)Ê

(�)(x2)Ê
(+)(x1)Ê

(+)(x2)i; (2.2)

where xi are generalized space-time coordinates. The notation h: X :i is called
normal ordering. This means that all operators Ê(�) should be placed to the
left of all operators Ê(+). The normal ordering follows from \the nature of the
intensity measuring process" [19]. The de�nition of G(1) above directly relates to
the intensity of the �eld for x1 = x2. The de�nition of G(2) is directly related to
the correlation between two intensities at x1 and x2 respectively [20]. This kind
of correlation technique, known as coincidence technique, where used in papers
A, B, C and D of this thesis.

The 1:st order coherence function is the normalized, 1:st order normally or-
dered correlation function. It is de�ned by:

g
(1)(x1; x2) = G

(1)(x1; x2)=

q
G(1)(x1; x1)G(1)(x2; x2): (2.3)

I will, in this chapter, limit my interest to single mode light. The �rst order
coherence function thou reduces to:

g
(1)(r0; t; r0; t+ �) = hâyâie�i!�=hâyâi = e

�i!�
: (2.4)

Since jg(1)j = 1 regardless of the state, it can not be used to discriminate clas-
sical behavior from quantum mechanical. However quantum interference may

7



8 Chapter 2. Coherence and quantum interference

be seen in the intensity correlation. That is why the interferometers I will de-
scribe later use coincidence technique to measure correlation of photocurrents
(i.e. correlation between intensities rather than between �eld amplitudes). Such
measurements are described by the 2:nd order coherence function which is the
normalized, 2:nd order normally ordered correlation function. It is de�ned by:

g
(2)(x1; x2) =

G
(2)(x1; x2)

G(1)(x1; x1)G(1)(x2; x2)
: (2.5)

For the single mode light we have:

g
(2)(r0; t; r0; t+ �) = hâyâyââi=hayai2; (2.6)

g
(2)(r0; t; r0; t+ �) = (hNi2 + h�N2i � hNi)=hNi2: (2.7)

In a classical description the normal ordering is ignored and the classical coher-
ence function is:

g
(2)
classical

= hN2i=hNi2 = (hNi2 + h�N2i)=hNi2: (2.8)

Using the fact that both terms in the denominator of the right hand side of eq.

2.8 are positive we see that g
(2)

classical
� 1.

Two examples of states that have a classical description are coherent states

for which g
(2)
classical

= g
(2) = 1 and thermal states for which g

(2)
classical

= g
(2) = 2.

For the number state with N photons on the other hand g(2) = 1�1=N . This so-
called sub-poissonian behavior is most clearly seen from single photon emitters.
Large e�orts have been undertaken on �nding suitable single photon emitters for
various applications. One goal of our group is to make single photon emitting
quantum dots [21].



Chapter 3

Complementarity and

entanglement

The principles of complementarity and entanglement led to many controversies
in the early days of quantum mechanics. Bohr wrote about complementarity
that \Complementarity: any given application of classical concepts precludes
the simultaneous use of other classical concepts which in a di�erent connection
are equally necessary for the elucidation of the phenomena" [22]. Regarding en-
tanglement Feynman wrote \It [The superposition principle] contains the only

mystery in [quantum mechanics]" [23]. The combined e�ects of complementar-
ity and entanglement for space-time separated systems was highlighted in the
Einstin-Podolsky-Rosen (EPR) paradox paper [24] where the authors exclaimed:
\No reasonable de�nition of reality could be expected to permit this."

I am not intending to give a complete coverage of all aspects of those princi-
ples. Instead I will introduce some properties that will be used in later chapters
of this thesis.

3.1 Complementarity

Complementarity expresses the fact that that any quantum system has at least
two properties that cannot be measured simultaneously. One of those comple-
mentary property pairs, and perhaps the historically most important, is the
wave-particle duality. A quantum system has both particle-like and wave-like
behavior. However, observation of one property precludes the observation of the
other. For example when observing the path of a particle in one arm of a Mach
Zender interferometer any interference e�ects vanish. Complementarity is also
closely interconnected with the uncertainty principle [25].

Two set of bases fjAiig and fjA0
j
ig over an N +1-dimensional Hilbert space

are said to be \maximally non-commutative" [26] or \mutually unbiased" [27] if

9



10 Chapter 3. Complementarity and entanglement

all inner products between pairs of vectors with one vector from each basis have
the same magnitude,

jhAijA0
j
ij = 1p

N + 1
;8i; j = 1; 2; : : : ; N + 1; (3.1)

Schwinger called operators corresponding to such bases complementary and
Kraus, Maassen and U�nk have shown that such bases yield the strongest con-
ceivable bound on an information-theoretic statement of the uncertainty relation
[28, 29]. The number of such complementary operators/mutually unbiased bases
have been discussed by Wooters [27] and Ivanovic [30]. In this thesis we can
limit the analysis to states with either one or two photons in any or both of two
modes. For the case of one photon in one of two modes, where the bases are
over one 2-dimensional Hilbert space, we have three mutually unbiased sets of
bases and thus three mutually complementary operators. In the case of two pho-
tons photon in one of two modes where all such vectors de�nes a 3-dimensional
Hilbert space, we have four mutually unbiased sets of bases and thus four mu-
tually complementary operators.

3.2 Entanglement

When a multi-mode description is combined with the superposition principle
interesting things occurs. For pure states it is always possible to describe both
modes by a common wave function. It is su�cient for this discussion to consider
only two two-level systems. The states can be expressed in a basis consisting
of eigenstates jA1i and jA2i to some operator Â in mode A and of jB1i and
jB2i to some operator B̂ in mode B. The superposition principle simply says
that the wave function of a state can be in a superposition of the eigenstates
(e.g. j	AiA = c1jA1i+ c2jA2i, where c1 and c2 are arbitrary constants ful�lling
jc1j2 + jc2j2 = 1). If the states of the two modes are independent of each other,
the state is said to be in a product state

j	i = j	AiAj	BiB ; (3.2)

where j	AiA and j	BiB are arbitrarily superpositions of the states jA1i and
jA2i, and jB1i and jB2i, respectively in mode A and B.

Pure states that cannot be written as product states have some degree of
entanglement. A subset of the form:

j	i = c1jA1iAjB1iB + c2jA2iAjB2iB ; (3.3)

where c1 and c2 are con�guration dependent constants ful�lling jc1j2 = jc2j2 =
1=
p
2, is of special interest. Those states are called maximally entangled states.

When measurements are performed on one of the modes (e.g. mode A) of the
entangled two-mode state, the state in mode A is immediately reduced to one
of the measurement eigenvalues (e.g. A1) of the corresponding operator. The
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� �1,00,1
2

1
1 ��

Figure 3.1. A single photon impinging on a beam splitter is transformed to the

state (3.4). A measurement on the photon numbers of the transmitted beams

will revile that the photon is either transmitted or re
ected.

total superposition state reduces in the same instant into the term containing
the eigenstate jA1i and thus the state in mode B collapse to the state jB1i.

A physical implementation of the state 3.3 is when a single photon state hits
a beam splitter (�g. 3.1). The state after the beam splitter can be written as:

j	i = c1j1iAj0iB + c2j0iAj1iB (3.4)

where c1 and c2 are arbitrary constants ful�lling jc1j2 + jc2j2 = 1. Observer A
and B have a limited choice of possible measurements for the state above. They
can measure whether the photon is transmitted (ÂB̂j	i ) jA1 = 1; B1 = 0i)
or re
ected (ÂB̂j	i ) jA2 = 0; B2 = 1i). It is not a big surprise that an
observation of the (only) photon by e.g. observer A excludes the observation by
observer B. Tan et. al. [31] shows in a elaborate scheme that the state 3.4 may
be utilized to show non-classical correlation behavior.

A more direct example of this non-classical correlation behavior is achieved
when allowing states for which measurements in di�erent bases are \natural"
(based on the simplest method to detect quantum systems, i.e. a measurement
of the second order coherence function eq. 2.5). One example is the state below
see �g. 3.2:

j	i = 1p
2
(jHiAjV iB � jV iAjHiB) (3.5)

The state consists of two photons, one in each of two spatial modes. The photons
are orthogonaly polarized, but the polarization of each photon is undetermined.
By expressing the state in an arbitrarily orthogonal linear (or circular) polariza-
tion basis one can observe that the maximal entanglement is preserved. That
is, if observer A measures the polarization of his photon to be in an arbitrarily
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-

� � � �X,90X90X,X
2

1
H,VV,H

2

1 oo �����

X

Figure 3.2. An entangled state produced by non - collinear degenerate Type

II down conversion. The modes are selected so that the polarization of each

individual photon in the two-mode system is undetermined. However the phase

matching condition requires the two photons to have orthogonal polarization.

Hence the state is entangled on the form (3.5). The entangled properties remain

when measuring arbitrary orthogonal polarizations.
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angle X , observer B's photon's polarization immediately collapse to X + 90�

degree's. This e�ect for continuos variables (momentum and poition was called
spooky action at a distance by Einstein, Podolsky and Rosen [24] and have since
then gained a tremendous interest. Bohm [32] later considered discrete variables
that shows the same e�ect. In 1964 Bell [33] derived a famous inequality on
the allowed correlation e�ects that should be obeyed by any classical so called
hidden variable theory, which obeys local realism. Following Aspect et. al. [34],
many experiments have been performed where the results shows stronger cor-
relation than allowed by locally realistic models. Most of the experiments have
been done with parametric down conversion following the proposal of Ou, Hong
and Mandel [35]. Even though some theoretical objection about loopholes ex-
ist [36], it is generally believed that nature follows the non-local (and in many
people's opinion non-intuitive) predictions of quantum theory. Measurements of
this e�ects have been conducted as a preparation for the experiments in papers
A,B,C, and D.

The state (3.5) could alternatively be viewed as a four mode state:

j	i = 1p
2
(j1iAH

j0iAV
j0iBH

j1iBV
� j0iAH

j1iAV
j1iBH

j0iBV
) (3.6)

Instead as expressing (or viewing) the state in terms of a pair of horizontally
or vertically polarized photon in a spatial mode (e.g. A), the horizontally or
vertically polarized modes are viewed as individual modes (e.g AH and AV ).
This method of notation will be used in the rest of the thesis since it will allow
us to consider arbitrarily number of excitations in the horizontally or vertically
polarized modes.
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Chapter 4

Quantum mechanical phase

and polarization

The \phase problem" has been discussed intensively since the early days of quan-
tum mechanics [37, 38]. Various proofs of the non-existence or impossibility of
a phase operator of a single optical mode were constructed in the sixties [38].
The problem is based on the fact that there is no operator that is canonically
conjugate to the number operator.

Since phase is a well-established classical concept, a large e�ort has been put
into the solution of the quantum mechanical phase problem. Various solutions
used �rst the method of enlargement of the original Hilbert space, and later
restriction of the original Hilbert space [38].

During recent years much e�ort have been put on a relative phase description
[39] rather than the absolute phase description. The reason for this is the insight
that phase must be de�ned in relation to a reference phase in order to be mea-
sured. Therefore all of the experimental implementations of phase measurement
are two-mode (or two harmonic oscillator) schemes measuring the relative phase
between the two modes (oscillators).

4.1 Classical description using Stokes

parameters

In �g. 4.1 I show some examples of two mode systems. Fig. 4.1 (a), represents
a two-mode system where the modes have the same frequency and polarization
but are spatially di�erent (e.g. the modes in the arms of a Mach-Zender interfer-
ometer). Fig. 4.1 (b), represents two orthogonal polarized modes (in the same
spatial and frequency modes). Any linear loss-less bosonic two mode system
can mathematically be described by the group SU(2). I will here mainly look

15
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�

�

a)

b)

Figure 4.1. a) A spatial two-mode state, that undergoes mixing of modes

through a beam splitter and a relative phase shift. b) A two-mode state in

polarization, that undergoes mixing of modes through a rotation of polarization

and a relative phase shift.

at polarization modes but the mathematical structure is analogous for any two-
mode system. Only two kinds of operations are allowed. One corresponds to a
rotation of the polarization modes (generally mixing of the modes). The second
one corresponds to a di�erential phase shift inserted at some arbitrary angle (for
a general two mode system this can be constructed as a speci�c mixing followed
by a phase-shift in a �xed angle and thereafter another speci�c mixing of the
modes).

The Stokes parameters are widely used for the description of two mode �elds
in classical physics. Even though they are most often considered for description
of the polarization state of a transverse �eld (which is a particular two-mode
system), they can be used to describe arbitrary two mode states. The time
independent Stokes variables (S0;S) = (S0; Sx; Sy; Sz) are de�ned as:

S0 = a
?

1a1 + a
?

2a2;

Sx = a
?

1a2 + a
?

2a1;
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Sy = i (a?2a1 � a
?

1a2) ;
Sz = a

?

1a1 � a
?

2a2; (4.1)

where a1 and a2 are the complex amplitudes of the two �eld modes and
� denotes

complex conjugation. The Stokes parameters (s0; s) = (s0; sx; sy; sz) are de�ned
as the time and ensemble average of eq. 4.1, sj = hSji.

If the modes 1 and 2 represents horizontally and vertically polarized light,
the degree of polarization V is given by

V =
p
s2=s0; (4.2)

and 0 � V � 1. When completely polarized (V = 1), the polarization can be
described by two angles, � and �

cos(�) = Sz=S0;

� = arg(a?1a2) = arg(Sx + iSy): (4.3)

� is not de�ned for � = 0 and � = �.

A scheme for simultaneously measuring the Stokes parameters is given in �g.
4.2. The �eld amplitudes a1 and a2 are split and part of the light is guided
into a measurement scheme for each of the Stokes parameters Sj . The measure-
ments for polarization modes are given below. Sx corresponds to a measurement
with a polarizing beam splitter separating light polarized at 45 degrees and -45
degrees. Sy corresponds to a measurement with a circularly polarizing beam
splitter separating right hand- and left hand- polarized light. Sz corresponds to
a measurement with a polarizing beam splitter separating light polarized at 0
degrees and 90 degrees. S0 is extracted as the sum of the intensities detected
in all detectors. Since we know the splitting ratios of the beam splitters we can
also easily normalize the values for the other Stokes parameters.

The generator of a relative phase shift between the two modes 1 and 2 is Sz.
Using the transformation from horizontally/vertically polarized modes to modes
polarized along angles � 45 degrees,(

b1 =
1p
2
(a1 � a2)

b2 =
1p
2
(a1 + a2)

; (4.4)

we see that Sx generates a relative phase shift between those modes,

Sx(a) = (a?1a2 + a
?
2a1) =

= 1
2
((b?1 � b

?
2) (b1 + b2) + (b?1 + b

?
2) (b1 � b2)) =

= (b?1b1 � b
?
2b2) = Sz(b):

(4.5)

A rotation of linear polarization modes is generated by Sy which transforms
light polarized along one mode into another polarization mode at another an-
gle. Light invariant under rotation is called circularly polarized light. Using the
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�

a1

a2

-

-

-

~Sz

~ Sy

~ Sx

a1

a2 -

-

-

~Sz

~ Sy

~ Sx

	


��


�


a)

b)

Figure 4.2. Measurement of the Stokes parameters. The incoming beams are

split in three di�erent measurement schemes, each measuring a signal propor-

tional to one of the Stokes parameters (Sx; Sy; Sz). Knowledge of the splitting

ratios of the beam splitters gives the absolute value. a) A spatial two-mode state.

b) A two-mode polarization state.
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transformation from horizontally/vertically polarized modes to circularly polar-
ized modes,

(
c1 =

1p
2
(a1 � ia2)

c2 =
1p
2
(a2 � ia1)

; (4.6)

we see that Sy generates a relative phase shift between the circularly polarized
modes,

Sy(a) = i (a?2a1 � a
?
1a2) =

= i

2
((c?2 � ic

?
1) (c1 + ic2)� (c?1 � ic

?
2) (c2 + ic1)) =

= (c?1c1 � c
?
2c2) = Sz(c):

(4.7)

A phase shift between two circularly polarized modes is the same as a rotation
of the linearly polarized modes.

If we instead start from mode 1 and 2 being the circularly polarized modes
the set of Stokes parameters are,

S
0
0 = c

?

1c1 + c
?

2c2;

S
0
x

= c
?

1c2 + c
?

2c1;

S
0
y

= i (c?2c1 � c
?

1c2) ;
S
0
z = c

?

1c1 � c
?

2c2; (4.8)

.

Here S0z generates a phase shift between the two circularly polarized modes (or
a rotation of the linearly polarized modes). S0

x
and S0

y
generates a phase shift

between the linearly polarized modes in the horizontal/vertical bases and the
�45� bases respectively.

4.2 Quantum mechanical description

In a quantum mechanical description the complex amplitudes in eq. 4.1 are
replaced by the operators â1 and â2. This transforms the Stokes parameters Sj
to the Stokes operators Ŝj ,

Ŝ0 = â
y
1â1 + â

y
2â2;

Ŝx = â
y
1â2 + â

y
2â1;

Ŝy = i

�
â
y
2â1 � â

y
1â2

�
;

Ŝz = â
y
1â1 � â

y
2â2; (4.9)

which satisfy the commutation relations,
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h
Ŝx; Ŝy

i
= 2iŜz (cycl:); (4.10)

h
Ŝ; Ŝ0

i
= 0: (4.11)

This operators are closely related to the Pauli Spin operators that are commonly
used to describe another two-level system namely spin 1=2 particles. Eq. 4.10
implies that the values of Ŝx, Ŝy, and Ŝz can not be known simultaneously in
contrast to the classical Stokes parameters. The condition eq. 4.11 can be viewed
as the conservation of the total exitation number in the two modes upon rotation
or di�erential phase shifting. The total Hilbert space H1 
H2 of the two-mode
�eld, can be split into a direct sum of Hilbert subspaces HN , each subspace
forming a closed space under the action of the Stokes operators Ŝj ,

H1 
H2 =

1M
N=0

HN ; (4.12)

All the subspaces (manifolds) HN are �nite dimensional Hilbert spaces of di-
mension N + 1 and they are spanned by the basis vectors jn;N � ni, where
n = 0; 1; ::; N .

4.3 Heisenberg limited interferometry

The generator of a relative phase shift between two linearly polarized modes is
the Hamiltonian

Ĥ� = �h�Ŝz ; (4.13)

which is just the number di�erence operator of the two modes multiplied by a
constant. The eigenvectors to the operator Ĥ� in a given manifold N are the
number-di�erence states jn;N �ni+, with eigenvalues 2n�N . The subscript +

symbolize that the two modes are orthogonal linearly polarized (in the classical
sense). E.g. the �rst index represent the occupation of the horizontal polarized
mode and the second index represent the occupation of the vertical polarized
mode.

The number di�erence states are invariant under a di�erential phase shift
and can therefore not be used to resolve a phase shift. The smallest phase shift
that can be resolved with certainty using N photons is �=N . By constructing
a symmetrical superposition state of the eigenstates of Ŝz with the maximal
di�erence in eigenvalues,

j i+ =
1p
2

�j0; Ni+ + e
i�jN; 0i+

�
; (4.14)

where � is an arbitrary real number, this phase resolution sensitivity can be
achieved. In ordinary interferometry the phase resolution is scaled as � 1=

p
N .
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This limit is known as the standard quantum limit. For a large number of pho-
tons, the scaling � 1=N , known as the Heisenberg limit, provides a signi�cantly
higher resolution.

States of the form (4.14) have been constructed for 1 [40] and 2 [41] photons.
For more than two photons a highly nonlinear device such as the Davidovich
switch [42] is required, which transforms the excitation in an impinging mode
into a superposition of all the excitation either being transmitted or re
ected in
two di�erent modes.

The increased phase resolution can also be viewed as an aspect of de Broglie
wave interference [43, 44]. The N-photon state is viewed as an virtual particle
with a de Broglie wavelength of �=N , and hence the resolution increases from �

for an individual particle to �=N for the de Broglie wave-package.

4.4 Heisenberg limited polarometry

A rotation of a linearly polarized mode is generated by the Hamiltonian

Ĥ� = �h�Ŝy; (4.15)

which is also known as the Jaynes-Cummings interaction Hamiltonian. It is
used extensively in atomic physics (in this case one mode refers to the state of
an atom and the other mode to the state of a light �eld) and in cavity quantum
electro-dynamics. The eigenstates to Ĥ� are rotationally invariant.

It is tedious (but straightforward) to calculate the eigenstates of Ŝy in the lin-
ear polarized bases, in paper D we do calculate them for N = 2. Since circularly
polarized light is a more appropriate base to describe rotation invariance I will
here do a transformation from linearly polarized bases into circularly polarized
bases, (

ĉ1 =
1p
2
(â1 � iâ2)

ĉ2 =
1p
2
(â2 � iâ1)

(4.16)

The equation above describes the transformation from the linearly polarized an-
nihilation operators â1 and â2 onto the circularly polarized annihilation operators
ĉ1 and ĉ2.

Classically, a transformation of two linearly polarized modes along mode 1
and 2 into circular polarized modes transforms Sy to Sz (4.7). Below I show that

Ŝy is transformed to Ŝz under the transformation from the linearly polarized
modes base onto the circularly polarized modes base (4.16),

Ŝy(â) = i

�
â
y
2â1 � iâ

y
1â2

�
=

= i

2

��
ĉ
y
2 � iĉ

y
1

�
(ĉ1 + iĉ2)�

�
ĉ
y
1 � iĉ

y
2

�
(ĉ2 + iĉ1)

�
=

=
�
ĉ
y
1ĉ1 � ĉ

y
2ĉ2

�
= Ŝz(ĉ):

(4.17)
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The eigenvectors, to the operator Ĥ� in a given manifold N are the number
di�erence states of the circularly polarized modes jn;N�ni� (e.g. the �rst index
represents the excitation of the right hand polarized mode and the second index
the excitation of the left hand polarized mode).

The number di�erence states are invariant under rotation and can not be used
to resolve a rotation. The smallest rotation that can be resolved with certainty
using N photons is �=(2N). By constructing a state of the form,

j i� = 1p
2

�j0; Ni� + e
i� jN; 0i�

�
; (4.18)

where � is an arbitrary real number this rotation resolution sensitivity can be
achieved. In ordinary polarometry the rotation resolution is scaled as � 1=

p
N .

The state (4.18) has been constructed for 2 [45] photons.



Chapter 5

Spontaneous parametric

down conversion

When light passes through a transparent homogenous media some photons may
be scattered by the atomic structure of the material. One example of scattering
is normal elastic scattering where the frequency of the atoms is not changed.
At low temperatures the atoms are �xed and light only changes it's direction of
propagation. Another example is Raman scattering where the frequency of the
phonons (normal vibrations of the atom lattice in the medium) in the material
is added or subtracted from the frequency of the incident light. The scattered
light consists of several discrete components at the sum or di�erence frequencies.

In parametric scattering [46] the spectrum is continuous. The dispersion
of the refractive index of the material governs the direction and energy of the
radiated light. The scattered light has to ful�ll the energy and momentum
conservation laws1:

!1 + !2 = !3; (5.1)

k1 + k2 = k3: (5.2)

For optically isotropic (non-birefriegent) materials the above equations (the
energy conservation (eq. 5.1) and phase-matching conditions (eq. 5.2)) are not
possible to ful�ll simultaneously because of normal dispersion. Since !1 and
!2 < !3, due to normal dispersion the refractive indexes n1 and n2 < n3 and
hence k1 + k2 < k3.

Like other multi-photon phenomena the intensity of parametric down con-
version is governed by the (optical) nonlinearity of the material,

1The conservation laws are limited by the uncertainty principle, they are strictly true only

for modes with in�nite extent (�t!1;�x;�y;�z !1)

23
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P (E) = �
(1)
E + �

(2)
E
2 + �

(3)
E
3 + : : : (5.3)

The strength of the parametric photon pair creation process is governed by the
second order nonlinear dielectric susceptibility �(2).

In uniaxial crystals a principal axis, called the z-axis, exists. The z-axis
and the wave-vector k de�nes a plane called the principal plane. Light with
polarization normal to the principal axis is said to be ordinary (o) polarized.
Light with polarization in the principal plane is said to be extraordinary (e)
polarized. The refractive index for the o-beam (no) does not change with the
angle between the z-axis and the wave-vector whereas for the e-beam it does.
The refractive index for the e-beam as function of the angle � between the k
vector and z axis is

n
e(�) = no

s
1 + tan2 �

1 + (n0=ne)
2
tan2 �

: (5.4)

The di�erence between the refractive index for the e-beam and o-beam is �n(�) =
n
e(�) � no. When the light travels along the optical axis the refractive index is

independent of the polarization so that �n(0�) = 0. The di�erence in refractive
index between the e-beam and the o-beam is largest when the z-axis and the
wave-vector are orthogonal �n(90�) = ne � no.

Most crystals used in applied nonlinear optics (including the crystal we used,
� � BaB2O4 Beta-Barium Borate (BBO)) are uniaxially negative (ne < no)
birefringent crystals. The dependence of the refractive indexes (at T = 20�C)
on the wavelength for BBO are approximately given by the dispersion relations
[46]

n
2
o = 2:7359+

0:01878

�2 � 0:01822
� 0:01354�2; (5.5)

n
2
e

= 2:3753+
0:01224

�2 � 0:01667
� 0:01516�2; (5.6)

where � is to be expressed in �m units.
There are thus two possibilities for phase matching ko1 + ko2 = ke3(�) and

ko1 + ke2(�) = ke3(�). The �rst case is called Type I phase matching condition
and the down converted photons have the same polarization. In the second case
(Type II phase matching) the down converted photons have mutually orthogonal
polarization.

Type I phase matching was used in the down conversion experiment of paper
B. We used a phase matching angle so that the conversion become degenerate
(!1 = !2) for speci�c angles of the down converted light. There are several
solutions to the phase matching condition with di�erent frequencies travelling
in di�erent directions (�g. 5.1). By using pinholes and �lters speci�c temporal
modes of light with the same frequency, can be chosen for certain rotation angles
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Figure 5.1. Several combinations for wave vectors/energies of the down con-

verted light ful�ll the phase matching condition given a certain pump. We can

also �nd certain angles where the down converted photons have the same energy.

� between the wave vector of the impinging light and of the optic axis of the
crystal.

The down conversion experiments in papers A, C and D used collinear degen-
erate Type II down conversion. This directly produced the desired j1; 1i state
in co-propagating linear polarization modes. While for the method of paper B,
where degenerate Type I down conversion with a non-collinear phase matching
angle was chosen, a careful alignment is needed as shown in the paper.

Since we have dispersion in the crystal, orthogonal polarized photons pro-
duced (by Type II parametric down conversion) in the beginning of the crystal
will exit the crystal at di�erent times. To the �rst order, the time mismatch can
be written as

�t =

�
1

ue
� 1

uo

�
L; (5.7)

where L is the length of the crystal and ue and uo are the group velocities for
the e and o beam respectively.

This timing information will reduce the visibility, but by introducing a bire-
frigent plate that compensates for the birefringence of the nonlinear crystal the
time information vanishes and the visibility is increased (The optical time delay
of the birefrigent plate should be half of eq. 5.7, since eq. 5.7 refers to the case
when a photon pair is produced in the beginning of the crystal).
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Chapter 6

Relative phase states and

polarization states

6.1 Relative phase states

In order to express the relative phase between two modes the natural basis to
consider are the modes (1 and 2) that the relative phase is applied between. The
generator of a relative phase shift between the two modes is as discused in chapter
4.3, the Hamiltonian Ĥ� is explicitly expressed in (4.13). We denote here the

eigenvectors to the operator Ĥ� in a given manifold N (the number-di�erence
states) by j'n;N i

j'n;N i = jn;N � ni+; (6.1)

The eigenvectors of an operator that is complementary to the operator Ĥ� will
form a suitable base in order to measure a relative phase between the modes. We
denote the relative-phase eigenstates (the eigenvectors of such a complementary
operator) by j�n;N i. A mutually unbiased base can be constructed by making
the �rst vector to be any arbitrary equipartion of the eigenvectors j'n;N i,

j�0;N i = 1p
N + 1

NX
n=0

e
i&n j'n;N i; (6.2)

where &n are arbitrary real numbers. The rest of the eigenvectors representing
the relative-phase states can be constructed by operating with Ĥ�,

j�k;N i = e

iĤ�

�h
�k j�o;N i , �k = 2�k

N + 1
; (6.3)

where k = 1; 2; : : : ; N .
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The relative-phase operator can then be expressed using the relative-phase
states as,

�̂n;N =
X
n

�n;N j�n;N ih�n;N j; (6.4)

6.2 Polarization

A mixing of the two modes (e.g. rotation of polarization modes or mixing the
modes in a beam splitter) is generated by the Hamiltonian Ĥ� (eq. 4.15). The
rotation operator expressed in the circular polarized base (c) is the number
di�erence operator of the circular polarized base. The eigenstates in a given
manifold N is denoted j#n;N i and expressed in the circular polarized base they
are the number di�erence states,

j#n;N i = jn;N � ni�; (6.5)

where n = 0; 1; ::; N . The eigenvalues of Ĥ� are 2(n � N=2). These states are
invariant under a geometric rotation.

In order to measure a polarization rotation we should �nd a operator that
is canonical conjugate/complementary to the operator Ĥ�. We denote its eigen-
vectors, the polarization rotation eigenstates, by j�n;Ni. A mutually unbiased
base can be constructed by making the �rst vector be any arbitrary equipartion
of the eigenvectors j#n;N i,

j�0;N i = 1p
N + 1

NX
n=0

e
i%n j#n;N i; (6.6)

where %n are arbitrary real numbers. The rest of the eigenvectors can be con-
structed by operating with the operator Ĥ�,

j�k;N i = e
iĤ�
�h

�k j�o;N i , �k = 2�k

N + 1
; (6.7)

where k = 1; 2; : : : ; N .
The polarization-rotation operator can be expressed using the relative-phase

states as,

�̂n;N =
X
n

�n;N j�n;N ih�n;N j; (6.8)

Just like circularly polarized light in classical optics, the states j#n;N i are
invariant under rotation. Therefore we call them \circularly" polarized. It should
be noted that the number of orthogonal circularly polarized states are N + 1 in
each manifold N . For classical light, right (left) hand circularly polarized light
is transformed to left (right) hand polarized light under a di�erential phase shift
(in any linear basis) of �. This can be accomplished experimentally by inserting
a �=2-plate at any angle in a beam. Similarly under such transformation the
eigenstates j#n;N i = jn;N � ni� ) j#N�n;Ni = jN � n; ni�. Note speci�cally



6.3. The First Manifold 31

that in all odd (N+1) dimensional two-mode Hilbert-spaces there exist one state
jN
2
;
N

2
i� which lacks chirality although it is circularly polarized (invariant under

rotation).

The \complementary" polarization's to circular in classical optics are linear.
A classical linearly polarized light evolves to an orthogonal polarized light under
the rotation of �=2. The states j�n;N i will evolve to mutually orthogonal polar-
ized states for the rotations �k = �=(N + 1) , k = 0; 1; : : : ; N . Therefore we call
these states \linearly" polarized.

6.3 The First Manifold

The eigenstates to the Stokes operator Ŝx, Ŝy and Ŝz in the horizontal vertical
basis are,

�
1p
2

�
1
1

�
;
1p
2

� �1
1

��
;

�
1p
2

�
1
i

�
;
1p
2

�
i

1

��
;

��
1
0

�
;

�
0
1

��
;

(6.9)

respectively. The set of linearly polarized light are given by,

�
cos v
sin v

�
: (6.10)

These are the eigenstates to,

Ŝv = cos(2v)Ŝz + sin(2v)Ŝx: (6.11)

A third unique Stokes operartor is then:

Ŝv? = cos(2v)Ŝx � sin(2v)Ŝz; (6.12)

with eigenstates, �
cos
�
v + �

4

�
sin
�
v + �

4

� � : (6.13)

The sets of linearly polarized states for an angle v are invariant under a
relative phase shift at that angle. Thus the linearly polarized states are also the
number-di�erence eigenstates along those modes.

The relative phase states are complementary to the number-di�erence eigen-
states along a given direction v. Thus single photon circularly polarized light and
light polarized along v+�=4 are simultaneously relative phase states. The solu-
tions closely resemble the classical case. However, we are still limited to measure
only one Stokes operator and need an ensemble of identically prepared states on
which we perform the di�erent measurements in order to fully characterize the
state if is initially unknown.



32 Chapter 6. Relative phase states and polarization states

6.4 Higher manifolds

Already for two photons the situation is changed. Using (4.16), the circularly
polarized states (6.5) can be expressed in linearly polarized modes as:

j#0;2i =
1

2

�
j0; 2i+ � i

p
2j1; 1i+ � j2; 0i+

�
;

j#1;2i =
1p
2
(j0; 2i+ + j2; 0i+) ;

j#2;2i =
1

2

�
j0; 2i+ + i

p
2j1; 1i+ � j2; 0i+

�
: (6.14)

We se here that the circularly polarized states are not complementary to the
number di�erence states (e.g. jh'1;2j#1;2ij = 0) where we recall the de�nition
of complementarity in a �nite Hilbert-space given by (3.1). Hence the number
di�erence states are not \linearly" polarized states and the circularly polarized
states are not relative phase states.

In paper B and C we construct a speci�c relative phase state. When intro-
ducing a phase shift of �2�=3 the state is transformed onto orthogonal relative
phase states. This is an example of Heisenberg limited interferometry, since the
scaling of phase the resolution is 2�=(N + 1) � 1=N .

In paper D we construct a speci�c linearly polarized state. When introducing
a geometric rotation of ��

3
the state is transformed onto orthogonal linearly

polarized states. This is an example of Heisenberg limited polarometry, since
the scaling of the rotation resolution is �=(N + 1) � 1=N .

A better resolution in interferometry ([47, 41] and Paper A) and polarimetry
[45] is achieved by constructing \Schr�odinger kitten states",

j i+ =
1p
2

�j0; Ni+ + e
i� jN; 0i+

�
; or

j i� =
1p
2

�j0; Ni� + e
i� jN; 0i�

�
; (6.15)

where � is an arbitrarily phase. However the method with the relative phase
states/linearly polarized states allow in theory to construct a measurement where
you can distinguish between N + 1 di�erent phase-shifts/rotation angles, while
the method of constructing \Schr�odinger kitten states" only allows dsitinction
between two orthogonal states in every manifold.
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Complementarity with

Schr�odinger kitten states

Paper A presents a quantum erasure experiment on a de Broglie wave-package
in a superposition state of being in either of two modes. The state is of the
form (4.14) with N=2. The state exhibits interference fringes, when a relative
phase � is introduced, with a period �=N = �=2. In the experiment the internal
state of the wave-package is changed, by symmetrically tapping one photon from
either of the two-modes, into a four-mode entangled state. Using a coincidence
technique, only states in which one photon is tapped into the meter and the
remaining photon (the object) is transmitted are post selected.

By observing the path of the tapped photon, knowledge of the path of the
remaining photon is obtained. Thereby the possibility of observing interference
between the two remaining modes is eliminated. When introducing a unitary
rotation of the tapped two-mode states, the path information of the remaining
photon is erased. Hence the interference fringes for the transmitted photon re
appear. Compared to other quantum erasure experiments, a large and deliberate
change is applied to the internal state of the impinging object (the 2 photon de-
Broglie wave package). The outgoing object (a single photon) is fundamentally
di�erent than the impinging object. Half of the momentum of the initial state
is lost to the meter mode. This large, and deliberate, object disturbance which
distinguishes this experiment from previous quantum-erasure experiments is the
principal interest Paper A.
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Chapter 8

Interaction free

measurements

The problem how to optically detect the presence of an absorptive object, with-
out it absorbing any photons, was �rst discussed by Elitzur and Vaidman [48]
who called the procedure an interaction-free measurement.

For an observer limited to classical mechanics this problem seams impossible.
If she lets a classical wave hit the place where the object may or may not be,
some amplitude will interact with (and hence be absorbed by) the object if it is
present. If she does not shine light on the place she can not gain any information
(at least not by optical means) about the absence or presence of the object.

Elitzur and Vaidman realized that since quantum mechanics allows the ex-
istence of superposition states they could use the complementary wave-particle
nature of light to do better. They imagined a single photon impinging on an
interferometer. When the interferometer is empty, the two possible ways to get
to a detector are indistinguishable, and we get interference { the photon behaves
like a wave.

Fig. 8.1 shows an Mach-Zehnder interferometer. The two beam splitters have
equal re
ectivity (R) and transmitivity (T ). The upper and lower path lengths
are set to be exactly equal. Any incident light will always exit to the detector
Dlight while there is complete destructive interference between the interferometer
path probability amplitudes at the port with Ddark.

In the presence of an object in e.g. the upper arm, the interference is de-
stroyed and the photon will act like a particle, the probability of a absorp-
tion of the photon P (abs) = T . The probability of a detection on Ddark is

P (Ddark) = TR = T (1� T )
2
and the probability of a detection on Dlight is

P (Dlight) = R
2 = (1� T )

2
. When the object was absent we never got a click

on Ddark, and the only photon that was sent in was not absorbed. So in the
cases Ddark clicks we have succeeded, we can tell that the object is present and
that it has not absorbed any photon.
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Ddark

Dlight

Ddark

Dlight

a)

b)

Figure 8.1. The original Elitzur and Vaidman interaction free measurement

scheme. a) When no object is present the interferometer is adjusted so that

any impinging photon from the lower arm will exit to the detector Dlight. b)

When the object is present the interference is destroyed, there is now a certain

probability that the object absorbs the photon, but more importantly, if the

photon \goes" through the other path there is a certain probability that the

photon after the second beam splitter is detected by detector Ddark. Hence, for

some outcomes we gain information about the presence of the object without it

absorbing any photons.
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How should one optimally choose the re
ectivity and transmitivity of the
beam splitters? In order to get perfect destructive interference the re
ectivity
and transmitivity of the beam splitters should be the same. The choice R =
T = 1=2 gives a maximum value of P (Ddark) = 1=4. Then the probability
of the object absorbing is P (abs) = 1=2 and the probability of the detector
Dlight clicking is P (Dlight) = 1=4. However since we never get any \wrong"
answers when the object is not present we can choose to redo this experiment
many times (N) as long as detector Dlight clicks until the photon is absorbed or
detector Ddark clicks. A reasonable �gure of merit � that gives what fraction of
the measurements that are interaction-free is given by

� =
P (Ddark)

P (Ddark) + P (abs)
; (8.1)

For R = T = 1=2 � = 1=3, but when R ! 0 � ! 1=2. So in theory, using
arbitrarily week beam splitters and many trials, we achieve a success-ratio of
1/2. This principle has been experimentally implemented by Kwiat et. al. [49].

Fig. 8.2 shows a scheme where the beam splitters in �g. 8.1 are replaced with
polarizing beam splitters and where the polarization of an impinging horizontally
polarized photon is rotated by an angle ��. If no object is present the beam will
exit with the same polarization and the second polarization rotator will rotate its
polarization back to horizontal. Therefore the detector on the vertically polarized
arm Ddark never detects the photon. Let T = sin2 (��) and R = cos2 (��).
If the object is present in the horizontally polarized branch in �g. 8.2, there
will be a certain probability P (Ddark) = TR that the detector Ddark clicks.
The probability that the object absorbs the photon is P (abs) = T and the
probability that the detector Dlight clicks is P (Dlight) = R

2. This scheme based
on polarization rotation gives the same e�ciency � = 1=2 as the original Elitzur-
Vaidman scheme.

However we can do better than � = 1=2. In the clever experimental setup [7]
shown in �g. 8.3 the Los Alamos National Laboratory (LANL) group recycled
the photon into the same stage N times, in each stage the polarization of the
light is rotated by an angle 90�=N . In absence of the object the impinging
photon goes from horizontal to vertical polarization. However, if an object is
inserted in the stage the probability that a photon is transmitted N times and
remain horizontally polarized at the output is P (H) = cos2N (90�=N). When
N is arbitrarily large, the probability P (H) ) 1 and � ) 1. The reported
experimental result was � = 0:73.

Using multiple interference it also possible to achieve high e�ciency interfer-
ometers. In paper E, we present an interference experiment based on a Fabry
Perot interferometer. The interferometer is tuned for maximal transmittance
and in the absence of an object the impinging photon is always transmitted.
However when the object is placed between the mirrors of the cavity the inter-
ference condition is lost and the photon will either be re
ected on the �rst high
re
ectivity mirror or absorbed by the object. We achieved � = 0:92, however
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�

�

O

Ddark

Dlight

Figure 8.2. An alternative interaction free measurement scheme based on po-

larization rotation. The impinging light polarized at a certain angle � is divided

in its horizontal and vertical components by a polarizing beam splitter. In ab-

sence of the object the beam is recombined in phase by a second polarizing beam

splitter and thereafter analyzed in the basis of the original polarization �. One

of the detectors (Ddark) will thus never register any of the impinging photons. If

the object is present in the vertical path, the probability of absorption is propor-

tional to the vertical polarized component of the impinging photon. There will

also be a certain probability of that the detector Ddark �res and that the object

is detected without it absorbing an impinging photon.
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�

�


P

P

Dlight

M
O

Ddark

Figure 8.3. The ingenious scheme introduced by Kwiat et.al. A horizontally

polarized pulse enters the setup from the left and is heavily attenuated by the

mirror (M). The action of the two quarter wave plates are canceled in the �rst

pass of the beam. In the absence of the object (O) the beam bounces back and

fourth through the recycling system for a �xed number of times (N). Each time

the quarter wave plate in the recycling system rotates the polarization by an

angle �� = 90�=N , until the light is entirely vertically polarized. However, if the

object is present there will be a probability sin2 (��) that an impinging photon is

absorbed. The probability that an impinging photon remains horizontal polarized

after N passes is then PH = cos2 (��). After N roundtrips the pulse is coupled

out from the system by rotating the polarizations in the two arms, utilizing the

Pockels cells (P). Detector Dlight clicks if the object was absent and detector

Ddark clicks (with probability PH) if the object was present.
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the probability of transmission when the object was absent was only 76%. One
reason for the reduction of the transmitivity was that the mirrors didn't have
antire
ection coatings on their backsides. Another reason was that the trans-
mission line-width of the cavity was comparable with the relatively broadband
laser we used. Using a narrow band laser and higher re
ectivity mirrors with
antire
ection coatings on the backside, higher values of �, and the transmitivity
of the cavity when the object is absent, can be achieved.



Part III

Epilogue
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Chapter 9

Summary of the original

work

The objective of this section is to make a short commentary of the publications
consisting the scienti�c core of the thesis and to put the papers in the context
of the work by other groups. The publications are results of a cooperation of
several authors, and a short description of the author's contributions is given.
Paper A: Complementarity and quantum erasure have been observed for many
systems. This experiment is the �rst complementarity and quantum erasure
experiment on a \particle" (a two-photon state) where a large and deliberate
change is induced to the internal-state of the object by the measurement. A
quantum-erasure experiment was performed on superposition states of two pho-
tons in either of two spatio-temporal modes. Symmetrical tapping of energy from
the two-mode state creates a four-mode entangled state. A direct measurement
of one photon in two of the modes reveals the path of the second one, thereby
eliminating the possibility of observing interference between the two remaining
modes. It is shown that a unitary rotation of one of the two-mode states erases
the path information; as a consequence the conditioned visibility of the other
two-mode state can be resurrected.

Contributions by the author of the thesis:

The measurement set-up was constructed and the measurement was per-
formed by the author.

Paper B: The �rst experiment on generation and detection of relative phase
states. The observed visibility of 45 % is higher than can be explained without
the two-photon interference e�ect i.e. it cannot be predicted with a \classical"
model.

Contributions by the author of the thesis:

The initial set-up for spontaneous parametric down conversion was partially
set-up by the author. The author constructed the automated measuring scheme
and collected the data for the measurement on the relative phase eigenstate.
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Paper C: An improved measurement on generation and detection of relative
phase states. The observed visibility was 90 %. The paper also include the
results of paper B. The relative phase distribution function was also measured
for various weakly excited two-mode coherent states in addition to the relative
phase eigenstate.

Contributions by the author of the thesis:

The author constructed the measurement set-up for the weakly excited two-
mode coherent states and performed the measurements. The author performed
the improved measurement of the relative phase distribution function of the
relative phase eigenstate in addition to the contribution described under paper
B.

Paper D: The �rst experiment on generation and detection of the polarization
eigenstates. The observed visibility was 90 %.

Contributions by the author of the thesis:

The measurement was constructed and performed by the author.

Paper E: A high e�ency \interaction-free" measurement [48]. The �rst interac-
tion free measurement was performed by Kwiat et. al. [49]. But the e�ciency in
this scheme was limited theoretically to maximum 50 %. Our experiment scheme
based on interefernece of single photons in a cavity and the scheme reported in
[7], which is based on rotation of polarization can theoretically asymptotically
approach 100 % e�ciency. The achieved experimental results are comparable
for both schemes and were about 80%.

Contributions by the author of the thesis:

The experiment was partially constructed by the author. The author aligned
the system and collected the data.
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Conclusions and outlook

To conclude, we have in Paper A performed a complementarity experiment with
a peculiar kind of object. The initial object in our case, the Schr�odinger kitten
state, is in a superposition state of two quanta in either mode while previous
quantum-mechanical experiments have all used \single-particle" objects. Fur-
thermore, in our experiment the interaction Hamiltonian between meter and
object is not of the Quantum-Non-Demolition type, and therefore the state of
the object changes radically as a consequence of the object-meter interaction.
Yet, as the composite post-selected system is a nearly maximally entangled pure
state, quantum erasure still works well. As well as examining the particlelike
and wavelike behaviors, we also examine the intermediate cases in which the
which-path information of the particlelike behavior gradually is erased and is
replaced by visibility and wavelike behavior.

Papers B, C, and D are relative phase and polarization rotation experiments
based on analogous theories. The thesis shows the similarity between the Heisen-
berg limited interferometry and polarometry experiments, and it is also seen that
the Stokes operators are not complementary operators for quantum polarization
in higher manifolds.

In Paper E we have performed an interaction free measurement based on
a Fabry Perot interferometer. The similarities between our interferometry ap-
proach and a polarometry approach are discussed in the Thesis.

Paper E is more applications oriented than the papers A-D. The ultimate,
but at present unrealistic, goal for quantum state generation is to set up a
\machine" in which any quantum optical state could be synthesized (\Dial a
quantum state." [50])

However, due to the limitations set by the existing technology it is hard to
anticipate a completely general quantum state generator without limitations.
To make the task realistic we have to restrict the state-space to states with
�xed wavelength and a few number of photons (three photon entangled states
[51] and four ion entangled states [52] have been experimentally realized). In
addition we will tolerate a low success-rate. The desired states of the form
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(6.1, 6.2, 6.5, 6.6, 6.15) will, however, be di�cult or impossible to produce
without nonlinear e�ects at the few photon level if we use light produced by
parametric down conversion. By combining an interaction free measurement
with an entangled atom, one is able to transfer the quantum superposition of the
atom onto the photon. The interaction free measurement also works for several
impinging photons. Superposition's of de Broglie wave packages of photons could
be made. For example by preparing a pulse of light with 10 photons in it, a
superposition of the form (6.1) or (6.5) could be produced. Thus by using the
techniques of interaction free measurement high sensitivity interferometry and
polarometry measurements could possibly be performed.

Another more direct application of interaction free measurements is X-ray
imaging without absorbtion of harmful X-rays. However, this is a technique re-
lying on interference of waves, which for X-rays would be very di�cult to exploit
in a controlled manner. In the optical regime we believe this technique perhaps
could �nd some use in measurements on very sensitive samples. One example
would be measurements of Bose-Einstein condensates without destroying them,
since very few of the photons actually end up being absorbed by the ultra-cold
condensate atoms. Two-dimensional absorption-free imaging is another example
that recently been examined by our group. Another recently discussed proposal
is what happen if the object is semi-transparent? It turns out that the above-
described schemes do not work as well (after all, they rely on a \collapse" which
in turn depends on the complete absorption or non-absorption of a photon).
However, there are ways to improve them, and perhaps even to use them to
make ultra-sensitive measurements of optical density.

Quantum interference is the basis behind the emerging �elds quantum cryp-
tography and quantum computing. Quantum cryptography provides means for
two parties to exchange an enciphering key over a private channel with com-
plete security of communication. The laws of physics (quantum interference,
Heisenberg's uncertainty principle and the non-cloning theorem [53]) protect the
information of encrypted messages. This is in contrast to classical cryptography
that employs various mathematical techniques to protect encrypted messages
from eavesdropping. Quantum computers are quantum interference system that
performs calculations on a superposition of states simultaneously. The scaling
for certain algorithms are smaller than for classical computers. If realized, they
could constitute a threat to e.g. classical cryptography. The schemes presented
in the original work could perhaps enable the construction of novel quantum
gates, which could be used as the building block of a quantum computer.
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