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Center for Applied Intelligent Systems Research (CAISR), Halmstad University, Sweden

Abstract.
In the automotive industry, cost effective methods for predictive maintenance are

increasingly in demand. The traditional approach for developing diagnostic meth-
ods on commercial vehicles is heavily based on knowledge of human experts, and
thus it does not scale well to modern vehicles with many components and subsys-
tems.

In previous work we have presented a generic self-organising approach called
COSMO that can detect, in an unsupervised manner, many different faults. In a
study based on a commercial fleet of 19 buses operating in Kungsbacka, we have
been able to predict, for example, fifty percent of the compressors that break down
on the road, in many cases weeks before the failure.

In this paper we compare those results with a state of the art approach currently
used in the industry, and we investigate how features suggested by experts for de-
tecting compressor failures can be incorporated into the COSMO method. We per-
form several experiments, using both real and synthetic data, to identify issues
that need to be considered to improve the accuracy. The final results show that the
COSMO method outperforms the expert method.
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1. Introduction

Unplanned stops are very problematic for commercial heavy vehicles. Component fail-
ures on the road often lead to extra damage to other subsystems, extra costs due to tow-
ing, failure to meet the transportation schedule and additional waiting time due to un-
planned maintenance. One common scenario to prevent such problem is to develop an
on-board monitoring method. However, modern vehicles are very complex systems and
it is not economically viable to design a specific on-board diagnostic method for every
component. The state of the art approaches for developing on-board diagnostic functions
rely heavily on knowledge of experienced developers, which takes a long time, many
costly experiments and a lot of specification on data analysis. It is not realistic to expect
that kind of effort devoted to all faults that can possibly happen on a commercial vehicle.
A more automated approach will lead to significant cost savings and self-organizing di-



agnostic methods that are capable of monitoring various signals and detecting different
faults are increasingly demanded in the automotive industry.

A generic approach to improve vehicle uptime was proposed by Byttner et al. [1].
It allows for monitoring of on-board sensor streams through the Controller Area Net-
work (CAN) using a special electronic hardware, which is capable of logging various
on-board time series and transmitting compressed representations to a computing centre,
where those representations are compared across the fleet to find deviations. The general
method, called Consensus Self-Organizing Models (COSMO), is based on the idea of
“wisdom of the crowd”. It assumes that the majority of the vehicles are “healthy” and
an individual that deviates from the group should be labelled as potentially “faulty”. The
deviations are matched against the vehicle service record, which contains the operations
performed in the workshop, as well as observations and assessment from the technicians.

In [2] we have proposed a method of evaluating COSMO method on real-world data
based on Receiver Operating Characteristic (ROC) curves. The faults we focus on are
air system problems, in particular air compressor failures. The air compressor is a vital
component: it supplies air in to the gearbox, suspension system, brakes and doors. It is the
type of component that rarely breaks and therefore is not included in regular maintenance
plan. However, the vehicle will not drive if the air compressor is not working. Our results
show that the method can successfully detect half of the failures that occur on the road,
with sufficient lead time to schedule repair workshop visits.

In this paper, we have implemented an expert approach, as described in a series of
patents by Kenneth A. Fogelstrom [3,4,5], to detect compressor failures using real usage
data and compare the performance of this method with COSMO method, a generic self-
organized approach. In fact, all current on-board vehicle diagnostic methods are based, to
a high degree, on expert knowledge (for some examples see [6,7,8]). It is important that
data-driven methods can also take advantage of that existing body of knowledge. There-
fore, we have also investigated different ways to incorporate expert knowledge from Fo-
gelstrom’s patent into the COSMO method, and evaluate the resulting performance.

2. Related Work

The traditional approach for equipment monitoring and diagnostics on modern trans-
portation systems is usually driven by two ideas: construct a pattern recognition classifier
or build a reference model. In both cases, human experts such as workshop mechanics
or engineers conduct major part of the development. Some of the technical reviews and
state-of-the-art approach can be found in e.g., [9,10,11,12].

In this work we focus on air compressor failures on city buses. The closest work
we found related to diagnosing air compressor is a series of US patents [3,4,5], where
Fogelstrom presented an approach in detecting problems related to air pressure system
on a heavy truck by monitoring the pressure signal from one air tank. The method is
based on identifying turning point of air pressure within the tank (e.g. maximum/cut-
out and minimum/cut-in pressures, the pressure charge and discharge rate, duration of
charging period, etc.). Fogelstrom lists two fault indicators for the air pressure signal: if
the pressure never reaches the prescribed maximum, or if the pressure charging time is
too long. Likewise, the off-board inspection conducted in workshop for testing the health
status of a compressor is to measure the time it takes to reach a certain limit of pressure
in the charging test, a description can be found in a troubleshooting guide [13].



3. Method

In this section, we describe the Consensus Self-Organizing (COSMO) method as well as
the expert method, based on Fogelstrom’s patent, for detecting compressor failures. We
propose several ways of utilising expert features to measure the deviation levels of each
vehicle, and evaluate both methods using receiver operating characteristic (ROC) curve
on real-world data set.

3.1. COSMO

The COSMO method is based on the idea of “wisdom of the crowds” approach and
works with a model of the signal. The streaming data is, on daily basis, compressed into
a histogram. Those histograms are then cross-compared within the fleet, using Hellinger
distance, as a metric, resulting in a pairwise (symmetric) distance matrix D.

The z-score for any given vehicle m is computed as follows (for more details see
Fan et al. [14]). First, the row in D with minimum sum is chosen as most central pattern
(denoted by c) and the z-score is:

z(m) =
|{i = 1, ...,N : di,c > dm,c}|

N
. (1)

where | · | denotes cardinality of the set. That is, the z-score for a pattern m is the number
of observations that are further away from the most central pattern c than m is. This
is, essentially, a non-parametric p-value estimation using the empirical distribution. If
m is operating normally, the z-scores should be uniformly distributed between zero and
one. The null hypothesis is that all samples are drawn from the same distribution and
this hypothesis is tested by comparing the arithmetic mean of the z-score over a certain
period (we use 30 days here) with the value expected from a normal distribution [2].
We compute the p-value for z̄ using a one-sided test, since we are only interested in the
samples that lie at the edge of the distribution, i.e. when the z-score is small.

We denote the deviation level for vehicle v at time t as xv(t). Each such value indi-
cates its health status and can be used for binary classification (using a warning threshold
θ ) of the vehicle as either healthy or as faulty.

3.2. Approach based on expert knowledge

As mentioned in section 2, to detect air compressor failure, Fogelstrom [4] considers the
pressure signal within one air tank and proposes several features (e.g. charging rate or
maximum pressure) as indicators of a possible problem. He suggests defining a refer-
ence model that captures the expected behaviour of the system and measures the devi-
ations between observed features and this reference. For example, the air charging rate
is considered as an indicator of how good a compressor’s efficiency is. In the patent, he
describes a controlled experiment for checking the charging rate of a compressor and
how to compare the observed rate with the reference. If the observation is better than the
reference, the sample is considered healthy. If the observed rate is below the reference,
the sample is considered faulty. The patent also notes that the compressor is driven by
the engine, and thus the engine speed should be taken into consideration, but we have
found this to only have a minor effect.



Figure 1. Wet Tank Air Pressure signal, with red points corresponding to charging periods and blue points
corresponding to discharging periods (left). Expert features that can be extracted from a charging cycle (right).

Figure 1 shows the Wet Tank Air Pressure signal of one vehicle during normal op-
eration. As mentioned in Fogelstrom’s patent, the pressure signal consists of a charging
period (marked with red points) and a discharging period (marked with blue points). The
pressure is expected to remain between cut-in and cut-out limits.

We have extracted six features from the Wet Tank Air Pressure (shown in figure 1
right): charging rate, maximum and minimum pressure, charging duration, pressure in-
crease and average engine speed during charging period. All six features can be consid-
ered as descriptors of the behaviour of the compressor during the charging period and
thus should be relevant for detecting the failures. Fogelstrom suggests that different fea-
tures are useful for different faults. In this work, we evaluate all of them, but we only
focus on failures of the compressor itself.

In this work, all features are extracted under vehicle’s normal operation. This ap-
proach is different from how Fogelstrom have conducted his experiment or how work-
shop mechanics work. In particular, Fogelstrom built an reference model under con-
trolled experiment and compared the test sample with this reference model. Mechanics
perform various tests, e.g. charging time, leakage, etc., within workshop to determine
whether the compressor is functioning well enough or needs to be replaced.

The reference model is chosen based on expert’s knowledge. However, in this work
we evaluate the result using ROC curve and the performance is analysed in a way that
is independent from choosing a specific reference model. In particular, for the results
presented later, the deviation xv(t) for vehicle v is computed for each vehicle based on
the daily average charging rate.

3.3. Evaluation with Reference Data

The objective of the predictive maintenance is to capture deviations that appear before
failures, if any. We assume that the time of the repair, as stated in the vehicle service
records, corresponds to the time of component failure. Ideally, deviations should be de-
tected early enough so that actions can be executed to deal with them. For simplicity,
we assume here that this period of interest is constant, and refer to it as the prediction
horizon (PH). For a repair action α performed on vehicle v at time τ , we define the set
of faulty (or positive) samples as:

Fv(α) = {xv(t) : τ−PH≤ t ≤ τ}. (2)

In previous work [2] we have described several types of faults related to air systems
and grouped them into five different categories. The expected healthy observations are
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Figure 2. Labelling of deviations in relation to repair actions.

“shared” between all faults, since they correspond to times when a vehicle is believed to
be operating without any problem. Faulty observations, on the other hand, depend on the
particular repair action that was performed. An example of labelling a series of samples
is shown in figure 2.

Based on xv(t) and Fv(α) we can calculate elements in the confusion matrix (true
positives, false positives, true negatives and false negatives) for any given threshold θ .
By varying θ we can map out the receiver operating characteristic (ROC) curve, which is
the relationship between the true positive rate (TPR) and the the false positive rate (FPR).
When evaluating the results we use area under the ROC curve (AUC) as the primary
quality measure.

4. Experiment Results

Data set Experimental results presented in this paper are based on the data set collected
over three years, from June 2011 to September 2014, on a commercial fleet of 19 Volvo
buses operated in Sweden. Approximately 100 signals are logged by an on-board em-
bedded device from controller area network (CAN), sampled at 1 Hz. Date and type of
repair actions were collected from manually curated vehicle service records.

Deviation level labelling Figure 3 shows the labelled deviation level for bus A using
COSMO method (top) and expert method (bottom). Vertical lines correspond to repairs
performed: red is compressor replacement that required towing, while blue indicate other
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Figure 3. Deviation level of bus A using COSMO method (top) and expert method (bottom). Vertical lines
correspond to repairs performed: red is compressor replacement that required towing, while blue indicate other
faults related to the air system. Gray lines are correspondent to threshold θ .



faults related to the air system. True positive, false negative, false positive and true nega-
tive samples are illustrated using different colors. We use a prediction horizon of 60 days
since it is enough to schedule and perform repair. The two month period after a com-
pressor was replaced is excluded since a new compressor often performs very differently
from regular ones.

It is important to observe that COSMO produces a measure that aggregates the es-
timation over 30 day periods, and thus the deviation level builds up incrementally and
falls off smoothly. On the other hand, the deviation level of expert method is computed
by comparing observed features with the reference model on a daily basis, without any
such aggregation.

ROC curve analysis As can be seen in Figure 4, the best performance is achieved by
the COSMO method when vehicle comparisons are based on daily histograms calcu-
lated only from Wet Tank Air Pressure values that belong to charging periods (AUC is
0.75± 0.16). COSMO method using all Wet Tank Air Pressure values worked slightly
worse, with AUC of 0.72±0.16. Next was the expert method based on average values of
the charging rate (AUC equal to 0.66± 0.04). Finally, the COSMO method using daily
histograms of charging rates performed the worst, with AUC of 0.53±0.16.

It is remarkable that a generic unsupervised method like COSMO performs better
than an expert knowledge driven approach. The expert method requires a lot of manual
work in analyzing the signal, defining features and building a reference model for each
specific problem. In contrast, the COSMO method has a simple setup, cross comparing
the models computed from raw signals, and thus can be applied on other signals without
putting effort into modifying the algorithm. When COSMO method successfully detects
a component which will break on road, extra costs due to unplanned stop are saved. Prytz
at el. [15] have proposed that a planned compressor replacement is ten times cheaper
than an unplanned maintenance caused by compressor road side breakdown. Under this
circumstance, COSMO method is cost effective.

We initially expected that the COSMO method would achieve better performance
after incorporating expert features, rather than only using histograms computed from
raw pressure readings, and that the magenta plot on Figure 4 would be the best. Instead,
it turns out that using the charging rate, the descriptor that is supposed to capture the
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Figure 4. Comparison of ROC curves for predicting compressor failures: the COSMO method using three
different features, as well as the expert method using charging rate.



primary interesting feature of the charging period works approximately as bad as ran-
dom guessing. However, what has proven useful was limiting the raw sensor readings
to only the pressure values within the charging periods, with the pressure readings from
discharging period removed.

In addition, we analysed the effect of incorporating different expert features into
COSMO method. As shown in figure 5, expert method by using charging rate achieves
the best performance with 0.66± 0.04, using pressure increased is slightly worse, with
an AUC of 0.63± 0.04, while using maximum pressure achieves 0.59± 0.04, AUC of
using minimum is 0.48± 0.04, using engine speed is 0.46± 0.04 and using charging
duration is 0.56± 0.04. AUC of COSMO method using maximum pressure is slightly
worse than expert method using charging rate, within AUC of 0.63± 0.16, while AUC
of using engine speed is 0.61±0.16, followed by using charging duration, 0.59±0.16,
using minimum pressure is 0.56± 0.16, using charging rate is 0.53± 0.16 and using
pressure increased is 0.52±0.16.

Synthetic Experiment One of the major distinctions between the two method is that
they are using different models to represent the data: the COSMO method uses his-
tograms and expert method uses averages. In the following experiment we use synthetic
data to investigate the effect of using histogram and average value for distinguishing
between two signals with different distributions.

Conceptually, we introduce two different distributions representing to three groups
of vehicles: the reference group, the healthy group, and the faulty group. For each vehicle
we generate data and calculate appropriate model. We then compare the models from
healthy and faulty groups against the reference, classify them into two categories and
evaluate the result using AUC. Any vehicle i is represented by a parameter pair drawn as:
µ i

k ∼ N(Mk
err,1) and σ i

k ∼ N(V k
err,0.2), where Mk

err and V k
err is the meta difference (in the

mean and variance) between healthy and faulty groups, at level k. Parameter pair (µ0,σ0)
corresponds to healthy or reference vehicles, while (µk,σk) parameter pairs (with non-
zero k) correspond to faulty vehicles. For any vehicle i, we draw 500 samples as obser-
vations: Samplei ∼ N

(
µ i,σ i

)
. Each of the healthy, reference and, for a given k, faulty

groups consists of 100 vehicles. From the generated data, histograms and average values
are computed as models, and distances between those models are calculated, comparing
healthy and faulty vehicles against the reference groups.
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Figure 5. ROC curve comparison by using different method, using the COSMO method (left), using expert
approach (right).
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Figure 6. AUC of comparing two set of samples using different method, only Merr is varied (left), both Merr
and Verr are varied (right).

Figure 6 presents the effect of different models on classifier performance, as the two
distributions (healthy and faulty vehicles) become less similar. This is expressed in terms
of overlapping area between the two distributions (parameter pairs). Figure 6 (left) shows
the area under curve in terms of overlapping area when only the meta difference Mk

err
is varied. It can be seen that using Hellinger distance between histograms achieves the
same performance as using difference between means, except for the cases when very
low number of bins (illustrated using yellow curve) or insufficient number of samples
(shown in black) are used. Figure 6 (right) shows the AUC by varying both the Merr
and Verr. Measure based on ∆µ outperforms Hellinger distances only if the two distribu-
tions have an overlapping area of less than 30%. For more diverse distributions, ∆µ and
Hellinger distances achieve similar results. Thus, the choice of which of the two dissim-
ilarity measures should be used depends on difference between the healthy and faulty
distributions.

Analysis of histogram models Figure 7a and 7b shows the distributions of charging
rates from positive (faulty) samples, in red histogram, and negative (healthy) samples,
in green histogram. The two histograms in figure 7a are computed based on individual
charging rates from two classes, while the ones in figure 7b use average values of charg-
ing rates over one day period. The overlapping area between the two distributions di-
rectly influences the performance of classifier trying to distinguish between the two sets
of samples. If most of the samples from the two classes are merged together, it is not
possible to distinguish between them without introducing additional features. In figure
7a, the overlap of the two histograms is 0.92 and in 7b it is 0.58. This means that using
daily average of charging rates should lead to better classification accuracy than using all
charging rates individually.

However, it is clear that difference in a single statistical moment like average value
is not sufficient for classification. As a way to introduce more dimensions for comparing
different samples, we decide to use histograms, as approximations of the density func-
tions. We compute Hellinger distances between histograms of two negative samples, de-
noted as dist(neg,neg), as well as distances between histograms of positive samples and
negative samples, denoted as dist(pos,neg). The two distributions of distances are shown
in figure 7c and 7d. The overlap of two histograms when using Hellinger distance, shown
in figure 7c, is 0.9 and the overlap using ∆µ , in figure 7d, is 0.84. The AUC of ROC curve
by Hellinger distance in this case is 0.55±0.004 while AUC of using ∆µ is 0.62±0.008.
This result shows that differences in average charging rate is more discriminative than
Hellinger distances. This is consistent with the ROC curve shown in figure 4.



As a final experiment, we investigate the effect of using either pressure values or
their aggregated descriptors (i.e. charging rates) for distinguishing between two sets of
samples. As before, we introduce two different distributions to represent two groups
of vehicles: the healthy group and the faulty group. For each vehicle we generate data
samples, calculate corresponding charging rates, and compute the model (a histogram
of either the pressure values or the charging rates). We calculate Hellinger distances be-
tween the models and compute the overlap between the distributions, shown on Figure
7: faulty against reference samples in red histogram and healthy against reference sam-
ples in green histogram. In particular, figure 7e and 7g show the overlap of using models
based on charging rates, while figure 7 f and 7h show the overlap based on data samples.

For generating all healthy samples we use variance σ . On the other hand, for creating
faulty samples in figure 7e and 7 f we use σ +∆σvar is employed in, while for figure
7g and 7h we use σ + 2∆σvar. The overlap in figure 7e is 0.33, in figure 7 f it is 0.56,
in figure 7g it is 0.32 and, finally, in figure 7h it is 0.06. It can be observed that the
overlap of using sample descriptor is smaller than using samples i in cases where a small
difference in variance is introduced in faulty samples (figure 7e and 7 f ). However, if a
larger variance difference is introduced, the overlap by using samples is smaller than by
using sample descriptors. The classification performance of using samples and sample
descriptor depend on how large the differences is in the variance of healthy samples and
faulty samples. Therefore, one possible reason for the weak performance the COSMO
method using charging rates is that there are large difference in variance between healthy
and faulty samples.

5. Conclusions

In this papers we have shown that an generic unsupervised deviation detection method
(COSMO), based purely on monitoring available signal and comparing it against other
vehicles in the fleet, can detect compressor failures more accurately than an expert

Figure 7. Distribution of charging rates belonging to the two class, individual charging rates (a), daily average
of charging rates (b). Distributions of the two distance measures between different sample sets randomly draw
from two classes, Hellinger distances (c), difference in µ (d). Overlaps of the two distances distributions using
different feature inputs: (e) and (g) are computed from histograms of descriptors, (f) and (h) are computed from
histograms of pressure values. The pressure values generated in (g) and (h) have a larger variance compare to
(e) and (f).



knowledge driven approach. This is an important results from practical point of view,
since in the automotive industry cost effective methods for predictive maintenance are
increasingly in demand.

The main contribution of this paper is the comparison between different variations
of COSMO methods and an approach based on expert knowledge. In addition, we have
implemented the expert method on our data set and analyzed the effect of incorporating
the existing expert knowledge into the self-organizing approach. We evaluate several fea-
tures that experts suggest are useful for detecting compressor failures, as described in a
recent patent. The performance of the COSMO method is evaluated when using both the
raw data as well as those features. We perform several experiments, using both real and
synthetic data, to explain some of the non-intuitive observations. The final results show
that the COSMO method augmented with expert features outperforms other solutions.
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