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Introduction1

Consider an experiment in which data are obtained on two different variables2

across k different conditions. We would like to know if these data are drawn3

from populations whose means on the two variables have different orders. That4

is, we ask if the variables have unequal latent orders. This question arises in the5

theory of state trace analysis (STA) where inferences concerning the number of6

latent variables underlying changes in two or more dependent variables depend7

on the ordinal arrangements of their respective population means (Bamber,8

1979; Prince et al., 2012a). STA contrasts a one-dimensional model, in which9

changes in the dependent variables are mediated by one latent variable, and a10

two-dimensional model, in which changes are mediated by more than one latent11

variable (Loftus et al., 2004; Newell & Dunn, 2008). Under the assumption of the12

one-dimensional model that each dependent variable is a (distinct) monotonic13

function of the single latent variable, this model predicts that the latent orders14

of the two variables are equal. It follows that if the variables have different15

latent orders across a set of experimental conditions then the effects must be16

mediated by more than one latent variable.17

Implementation of STA requires a statistical procedure to test whether two18

sets of population means have the same order across a set of conditions. To19

our knowledge, at least three previous approaches to this problem have been20

proposed in the psychological literature. The first of these, described by Loftus21

et al. (2004), relies on reducing sampling error to near zero thereby using the22

observed sample means as a proxy for the population means. Clearly, this ap-23

proach cannot be applied in situations with non-negligible sampling error and24

it lacks a means of quantifying when the sampling error is small enough to be25

ignored. The second approach, described by Pratte & Rouder (2012), quanti-26

fies the effects of sampling error but is limited to particular theory-dependent27

dependent variables and to a fixed two-by-two factorial design. The third ap-28

proach, described by Prince et al. (2012a), uses Bayesian model selection to29
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test whether two sets of population means have the same or different orders.1

While the approach is in principle quite general, the particular implementation2

described by Prince et al. (2012a) applies only to binomial data and to a rela-3

tively constrained factorial design. We discuss this approach in greater detail4

below and compare it to the test that we develop.5

The test we present here is a null hypothesis statistical test (NHST), based6

on the computation of an empirical p-value of the data given the null hypothe-7

sis. Despite the well known problems with p-values (Wagenmakers, 2007), the8

evidence provided by them remains useful; e.g., it predicts future replicability9

(Open Science Collaboration, 2015).10

The outline of the paper is as follows. First, we describe more fully the logic11

of our statistical test, based on an extension of monotonic regression (Burdakov12

et al., 2012). In so doing, we introduce the concept of partial order constraints13

and foreshadow how they may be used to increase statistical power. Second,14

we describe a null hypothesis significance test of the equality of latent orders15

based on a bootstrap resampling procedure for estimating the empirical sam-16

pling distribution of the test statistic. Third, we examine the statistical power17

of our procedure for a fully randomized design with and without partial order18

constraints. Finally, we extend the procedure to binomial data and compare it19

to the Bayesian model selection approach developed by Prince et al. (2012a).20

The orders of sample and population means21

Consider two different dependent variables, x and y, observed across k22

different experimental conditions. Let x1, . . . , xk, y1, . . . , yk, be the k pop-23

ulation means of each variable and let X1, . . . , Xk, Y1, . . . , Yk, be the corre-24

sponding sample means. We define the (latent) order of x as a permutation,25

O(x) = (i1, i2, . . . , ik), such that, xi1 ≤ xi2 ≤ . . . ≤ xik . We wish to test the26

hypothesis that O(x) = O(y), given the data. A desirable feature of such a27

test is that it should be sensitive to both the number and magnitude of dif-28
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ferences in the two orders. Intuitively, given equal latent orders, numerically1

small violations of equality of the orders of the observed means are more likely2

than numerically large violations. This property is a feature of monotonic (or3

isotonic) regression (Robertson et al., 1988). Our test is based on this method.4

Monotonic Regression5

Monotonic regression addresses the problem of finding the best approxi-6

mation, X̂, to a set of observed values, X, under the constraint that O(X̂) is7

known, either completely or partially. Let K be the set of integers, {1, 2, . . . , k}.8

We represent a partial (or total) order on K by means of a subset of or-9

dered pairs (i, j) ∈ E ⊆ K × K1. An order, O(X̂), is consistent with E if10

X̂i ≤ X̂j , ∀(i, j) ∈ E. Formally, let X be a set of k values, let v be a set of11

corresponding weights, and let E be a partial order. Then monotonic regres-12

sion finds a set of values, X̂, consistent with E, that best approximates X in a13

weighted least-squares sense. That is, X̂ solves the monotonic regression (MR)14

problem,15

min

k∑
i=1

vi(Xi − X̂i)
2

, subject to X̂i ≤ X̂j , for all (i, j) ∈ E (1)

The choice of weights is critical for obtaining a meaningful ’best’ X̂. In16

this respect, we are guided by the property that the solution of Equation (1)17

is the maximum likelihood estimate if the observations in each condition are18

independent and normally distributed with weights given by the precision of19

the data weighted by the number of observations in each condition (Robertson20

et al., 1988). That is,21

vi =
nxi

S2
Xi

wi =
nyi

S2
Yi

(2)

1Unless otherwise stated, a partial order, E, is assumed to be transitively closed.
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where S2
Xi

is the sample variance of variable x in condition i and S2
Yi

is the1

sample variance of variable y in condition i.2

In many situations the observations in each condition are not independent,3

as when conditions are manipulated within participants rather than between.4

In this case the maximum likelihood estimate depends on the entire covariance5

matrix and the sets of weights, vi and wi, are replaced by appropriate matrices.6

For this reason, we generalize Equation (2) in the following way. Suppose there7

are g groups of participants of size ni, i = 1, . . . , g, each measured under m8

different conditions on variable x. The total number of conditions is thus k =9

gm. Let Si be the m×m covariance matrix for group i. Then the corresponding10

weight matrix is given by the following block-diagonal matrix,11

V =


n1S1

−1 · · · 0
...

. . .
...

0 · · · ngSg
−1

 (3)

The weight matrix, W , for variable y is similarly defined2. S−1i approximates12

the inverse of the population covariance matrix, Σ−1i . A better estimate of13

Σ−1i can be obtained by first ‘shrinking’ Si, which reduces the unreliable off-14

diagonal elements but does not necessarily set all of them to zero (Ledoit &15

Wolf, 2004). We use Ledoit-Wolf method to adjust the weight matrices in our16

current approach.17

Let X be a vector of k sample means and let X̂ be a vector of values. Then,18

with the weight matrix V defined by Equation (3), the MR problem is given by,19

min
(
X − X̂

)T
V
(
X − X̂

)
, subject to X̂i ≤ X̂j , for all (i, j) ∈ E (4)

We write the problem corresponding to Equation (4) as MR(X,V,E) and20

2We assume that observations on x and y are themselves independent.

5



the minimum value as ω(X,V,E), or, in shorthand form, as ωX . Finding the1

solution to the MR problem is not trivial, but fast algorithms have been de-2

veloped. If E is a total order then the MR problem can be solved using the3

pool-adjacent-violators algorithm (PAVA), a version of which was used in the4

original development of non-metric multidimensional scaling (Kruskal, 1964).5

Otherwise, the problem as posed in Equation (4) can be solved using quadratic6

programming algorithms (de Leeuw et al., 2009). The functions lsqlin (equiv-7

alently, quadprog) and lsei implement this algorithm in MATLAB R© and R (R8

Core Team, 2013) respectively. In addition, a rapid approximate solution may9

also be obtained using the generalized pool-adjacent-violators (GPAV) algorithm10

developed by Burdakov et al. (2006).11

Coupled monotonic regression12

Monotonic regression can be extended to incorporate the additional con-13

straint that the fitted values on two variables are themselves monotonically14

ordered. That is, O(X̂) = O(Ŷ ). This defines the following coupled monotonic15

regression (CMR) problem: Given two sets of values X and Y , corresponding16

weight matrices, V and W , and a partial order3, E, we wish to find X̂ and Ŷ that17

are solutions to MR (X,V,E) and MR (Y,W,E), respectively, while satisfying18

the additional coupled monotonicity constraint,19

X̂i < X̂j ⇒ Ŷi ≤ Ŷj

Ŷi < Ŷj ⇒ X̂i ≤ X̂j

(5)

This constraint can also be expressed succinctly as follows. If Equation (5) holds20

then there is no (i, j) such that,21

(X̂i − X̂j)(Ŷi − Ŷj) < 0. (6)

If there is an (i, j) such that Equation (6) is true then the corresponding pair of22

points is called infeasible and the sets, X̂ and Ŷ , are called infeasible solutions.23

3Note that in the CMR problem, but not in the MR problem, E can be empty.
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To formalize the CMR problem, we note that for a given partial order, E,1

there is a set of all total orders, L(E) ⊃ E, called the linear extensions of E.2

The CMR problem can then be stated as the problem of finding sets, X̂, Ŷ , and3

Ê, that solve,4

min

[(
X − X̂

)T
V
(
X − X̂

)
+
(
Y − Ŷ

)T
W
(
Y − Ŷ

)]
subject to, X̂i ≤ X̂j , Ŷi ≤ Ŷj for all (i, j) ∈ Ê, Ê ∈ L(E)

(7)

We write the problem corresponding to Equation (7) as CMR(X,Y, V,W,E),5

shorthand CMR(E), and the minimum value as ω(X,Y, V,W,E), shorthand6

ωXY .7

One way of solving the CMR problem defined by Equation (7) is by direct8

search. While this is guaranteed to find a global minimum, it can be exception-9

ally slow, as it requires evaluation of a potentially very large number of total10

orders. For example, for k = 10 and E = ∅, there are k! = 3, 628, 800 orders to11

search. To circumvent this problem, Burdakov et al. (2012) recently devised the12

CMR algorithm that finds a solution in approximately exponential rather than13

factorial time. We briefly describe that algorithm here and provide pseudo-code14

in the Appendix.15

The CMR algorithm is a branch-and-bound algorithm that can be viewed16

as an intelligent search through the set of linear extensions of a specified partial17

order, E. Given E, which may be empty, it progressively adds additional order18

constraints until an optimal solution is reached.19

On each iteration, a new extension, E′ ⊃ E, is considered. For this E′,20

if the corresponding MR solutions, X ′ and Y ′, are feasible, i.e. they satisfy21

monotonicity constraint (5), then the fit of these values provides an upper bound22

on ωXY (improved, if possible, on each iteration). If the sets X ′ and Y ′ are23

infeasible, however, the corresponding fit provides a lower bound on ωXY for24

any extension E′′ ⊃ E′. The algorithm then chooses an infeasible (i, j) /∈ E′,25
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and branches by generating two new extensions, E′ ∪ {(i, j)} and E′ ∪ {(j, i)}.1

These extensions inherit the lower bound associated with E′ and are added to2

the set of those to be further considered (tested). This set forms a queue because3

its elements, all extensions of E, are sorted in increasing value of their inherited4

lower bounds and the solution, Ê, is guaranteed to be an extension of at least5

one member of the queue. In addition, on each iteration, the algorithm generates6

a feasible solution based on extending E′ in several ways and choosing the one7

with the best fit. This fit is used for possible improvement of the currently8

available upper bound on ωXY .9

If the obtained fit for any E′ is greater than the current upper bound then10

E′, as well as all its extensions, can be eliminated from the search. This leads11

to the improvement in performance over direct search. The algorithm continues12

branching and eliminating until the queue is empty or if the inherited upper13

bound of the first member in the queue is greater than the current best upper14

bound. The final upper bound is the fit of the optimal least-squares solution,15

ωXY .16

In a worst case scenario involving uncorrelated variables and E = ∅, simu-17

lations confirm that the CMR algorithm converges to the optimal solution as18

a function of exp(k) rather than k!. Even in this case, the relative speed up is19

substantial. For example, for k = 10, the CMR algorithm evaluates on aver-20

age about 25 sub-problems in contrast to a direct search of over three million21

sub-problems. In addition, to the extent that the variables are correlated over22

conditions and order constraints are specified in E, the algorithm will converge23

at an even faster rate.24

Insert Figure 1 here25
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Example application of the CMR algorithm1

Figure 1 shows a state-trace plot based on results found by Nosofsky et al.2

(2005) in their Experiment 1. The axes correspond to performance on two differ-3

ent categorization tasks (called “RB” and “II”, respectively). The experimental4

conditions consisted of a sequence of eight blocks of training trials followed by5

two blocks of re-training trials that differed between the two groups: a button-6

switch group who exchanged the position of the response buttons between train-7

ing and re-training, and a control group who did not. The plot shown in Figure8

1 was first generated by Dunn et al. (2012) who used it to discuss whether these9

data constituted evidence for the existence of more than one latent variable.10

The first step in answering this question is to solve the CMR problem and de-11

termine the fit of the best-fitting monotonically-related set of points. Dunn et12

al. were unable to solve this problem previously for two reasons. First, they13

only had direct search method available to them which was unable to find a14

solution in a practical period of time4. Second, the relevant data is a mixture of15

conditions, one of which was varied within-participants (trial block), the other16

between-participants (response switch vs. no switch). This requires use of the17

corresponding weight matrices defined by Equation (3).18

Figure 1 also shows the optimal CMR solution, connected by dashed lines19

to aid visibility. The actual fit value, ωXY , corresponding to the solution of20

Equation (7), was 3.514. This value depends upon the sample means, X and Y ,21

the weight matrices, V and W , computed according to Equation (3), and the22

pre-defined partial order, E (empty in this case).23

The partial order, E, may be used to specify prior knowledge concerning24

an expected order of the population means over a sub-set of conditions. In the25

present case, each group participated in 10 blocks of learning trials with the26

4On a standard desktop, finding the CMR solution for the current problem by direct search
would take approximately 10 hours. In contrast, the CMR algorithm produced the solution
in approximately 0.1 seconds.
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first eight corresponding to successive blocks of training on the same task. It1

is reasonable to assume that the population means should not decrease over2

these blocks. It may be similarly argued that the population means should not3

decrease across the two post-switch blocks, 9 and 10, in each group. Based on4

these considerations, it is possible to impose a partial order constraint on the5

solution to the CMR problem. Note that within this partial order, although the6

first eight blocks and the last two blocks are ordered for each group and task,7

there is no constraint on the order of blocks 8 and 9. Indeed, the possibility8

of different orders between these conditions on the RB and II variables in the9

button-switch group was the main theoretical question posed by Nosofsky et al.10

If no partial order is specified, the fit value is 3.514 (as noted above). If the11

partial order constraint is specified then the fit value cannot decrease, and may12

increase. In the present case, the model fit increases slightly to 3.774 suggesting13

that the observed means, X and Y , conform closely to the assumed partial14

order. One reason for imposing a partial order constraint on the solution is that15

it may lead to a more powerful test of the hypothesis of equal orders. In this16

case, the test statistic is the difference in fit between a model that assumes only17

the partial order constraint and a model that assumes both the partial order18

constraint and coupled monotonicity. We discuss this in the next section.19

Hypothesis test20

While the CMR algorithm allows us to find a value for ωXY , a substantial21

problem remains in determining whether this value is large enough to reject the22

null hypothesis that the population means have the same order. To do this, we23

first define two models of interest. The one-dimensional model (conditional on24

E) is defined as follows:25

M1 : O(x) = O(y) & O(x), O(y) ∈ L(E)

This states that the order of the population means on x is the same as the order26

on y and that this order is a linear extension of the specified partial order, E.27
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This model is nested within a two-dimensional model (conditional on E) defined1

as follows:2

M2 : O(x), O(y) ∈ L(E)

This states only that the orders on x and y are both (potentially different)3

linear extensions of the specified partial order, E. Fitting M2 does not require4

the CMR algorithm as it consists of two standard MR problems, one in X and5

one in Y . Further, if E = ∅, the fit of M2 is necessarily equal to zero.6

At present there is no statistical test of the loss in fit from M2 to M1. In7

the simpler case of (ordinary) monotonic regression, some work has been done8

on developing a test of the hypothesis, O(x) ∈ L(E), against an unconstrained9

alternative based on the sampling distribution of ωX . It is known that under10

this hypothesis, the test statistic follows a χ̄2 (chi-bar squared) distribution11

(Robertson et al., 1988). This is a mixture of χ2 distributions of different12

degrees of freedom with mixture weights, called level probabilities, which depend13

in complex ways on the number of conditions, the number of participants, and14

the partial order, E. As a result, χ̄2 distributions have been calculated for only15

a few relatively simple cases. While it may be possible to extend this approach16

to coupled monotonic regression, we have not attempted this, as it seems likely17

that calculation of the theoretical distribution would encounter even greater18

difficulties.19

Our test of the fit of M1 against the fit of M2 is constructed by empirically20

estimating the sampling distribution of the difference in respective fits under21

the assumption that M1 is the true model. The method is adapted from the22

bootstrap re-sampling procedure described by Wagenmakers et al. (2004). As23

these authors point out, their procedure cannot be directly applied when the24

models to be compared are nested. Since M1 is nested in M2, M2 always fits25

better than M1. For this reason, the fit of M1 can only be compared against26

the fit of M2. The steps in this procedure are as follows:27
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Let X and Y and be two data sets, let X and Y be vectors of the corresponding1

sample means, and let V and W be the corresponding weight matrices. Let E2

be a specified partial order.3

1. Using the CMR algorithm, find the observed fit of M1, ωXY =4

ω(X,Y, V,W,E). Using any suitable MR algorithm, find ωX = ω(X,V,E)5

and ωY = ω(Y,w,E), and calculate the observed fit of M2, ωX+Y =6

ωX + ωY . If E = ∅ then ωX = ωY = 0. Calculate the observed difference7

in fits, δ = ωXY − ωX+Y .8

2. Generate two non-parametric bootstrap samples, X′ and Y′, from the9

corresponding data sets. This step is undertaken in order to incorpo-10

rate sampling error in parameter estimation. Calculate the corresponding11

sample means, X ′ and Y ′, and weight matrices, V ′ and W ′.12

3. Solve the CMR problem for the bootstrap samples and, using X ′, Y ′, V ′13

and W ′, find the best-fitting values, X̂ ′ and Ŷ ′.14

4. Transform the original data so that the means are now equal X̂ ′ and Ŷ ′.15

That is, form new samples, XT = X − X + X̂ ′ and YT = Y − Y + Ŷ ′,16

and, from these, draw a second set of non-parametric bootstrap samples,17

X′T and Y′T . Calculate the corresponding sample means, X ′T and Y ′T ,18

and weight matrices, V ′T and W ′T , respectively.19

5. Using the CMR algorithm, find the observed fit of M1,20

ω′XY = ω(X ′T , Y
′
T , V

′
T ,W

′
T , E). Using any suitable MR algorithm,21

find ω′X = ω(X ′T , V
′
T , E) and ω′Y = ω(Y ′T ,W

′
T , E), and calculate the22

observed fit of M2, ω′X+Y = ω′X + ω′Y . Calculate and store the sample23

difference in fits (for current iteration i), δ′i = ω′XY − ω′X+Y .24

6. Repeat Steps 2-5 N times where N is a sufficiently large number (e.g.,25

10,000).26

7. Calculate, p, the proportion of values of δ′i that are greater than or equal27

to δ. If p < α then reject the null hypothesis.28

The above procedure can also be adapted to test the fit of M2 for E 6= ∅.29

In this case, the procedure is modified by replacing M1 by M2 and replacing30
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M2 by the unconstrained model, the fit of which is necessarily zero. The steps1

of this procedure are as follows:2

Let X and Y and be two data sets, let X and Y be vectors of the corresponding3

sample means, and let V and W be the corresponding weight matrices. Let E4

be a specified partial order.5

1. Using any suitable MR algorithm, find ωX = ω(X,V,E) and ωY =6

ω(Y,W,E), and calculate the observed fit of M2, ωX+Y = ωX + ωY .7

Calculate the observed difference in fits5, δ = ωX+Y − 0.8

2. Generate two non-parametric bootstrap samples, X′ and Y′, from the9

corresponding data sets. Calculate the corresponding sample means, X ′10

and Y ′, and weight matrices, V ′ and W ′.11

3. Solve the MR problems for each of the bootstrap samples and, using12

X ′, Y ′, V ′ and W ′, find the best-fitting values, X̂ ′ and Ŷ ′.13

4. Form new samples, XT = X − X + X̂ ′ and YT = Y − Y + Ŷ ′, and,14

from these, draw a second set of non-parametric bootstrap samples, X′T15

and Y′T . Calculate the corresponding sample means, X ′T and Y ′T , and16

associated weight matrices, V ′T and W ′T , respectively.17

5. Using any MR algorithm, find ω′X = ω(X ′T , V
′
T , E) and18

ω′Y = ω(Y ′T ,W
′
T , E), and calculate the fit of M2, ω′X+Y = ω′X + ω′Y .19

Calculate and store the sample difference in fits, δ′i = ω′X+Y − 0.20

6. Repeat Steps 2-5 N times where N is a sufficiently large number (e.g.,21

10,000).22

7. Calculate, p, the proportion of values of δ′i that are greater than or equal23

to δ. If p < α then reject the null hypothesis.24

Each of the hypothesis tests outlined above rely on two principal elements,25

the CMR algorithm and bootstrap re-sampling. Because both of these are quite26

5We include the notional subtraction of zero, the fit of the unconstrained model, to highlight
the parallels between the two procedures.
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general, the procedure can be applied to a wide variety of research designs.1

The experimental conditions can be fully randomized across participants, ap-2

plied entirely within-participants, or any combination of between- and within-3

participant treatments. The procedure may also be adapted for discrete data4

although, in this case, the model-consistent data, XT and YT , are derived from5

a parametric bootstrap of the observed data (in step 3 above). However, this is6

not a substantial concern as this relevant distribution is entirety specified by the7

data so parametric and non-parametric re-sampling are equivalent. We discuss8

the application of the method to binomial data in a later section.9

Insert Figure 2 here10

Example application11

To illustrate the application of the hypothesis testing procedure, we return12

to the state-trace plot shown in Figure 1. Figure 2 shows two empirical dis-13

tributions of δ′, each based on 10,000 iterations, and two observed values of δ.14

The dashed line and unfilled triangle are based on the assumption of no partial15

order, E = ∅. In this case, the two-dimensional model fits perfectly (as it is un-16

constrained) and δ is equal to the observed fit of the one-dimensional model and17

has the value of 3.514 (as noted earlier). The corresponding empirical p-value is18

0.77 from which it is concluded (for α = .05) that the hypothesis O(x) = O(y)19

cannot be rejected.20

If the partial order, E, described earlier in relation to the data shown in21

Figure 1, is implemented then the testing procedure differs. The first step is to22

test the fit ofM2 which has an observed fit of 0.929. The corresponding empirical23

p-value is 0.72 from which it is concluded that the hypothesis O(x), O(y) ∈ L(E)24

cannot be rejected. Following this, the next step is to test the difference in fit25

between M1 and M2. The solid line in Figure 2 shows the estimated empirical26

distribution of δ′ and the filled triangle shows the observed value of δ. As27

14



stated earlier, the observed fit of the one-dimensional model (M1) is fractionally1

increased to 3.774. However, the value of δ is now 3.774−0.929 = 2.845, and the2

corresponding empirical p-value is 0.57. We again conclude that the hypothesis,3

O(x) = O(y), given O(x), O(y) ∈ L(E), cannot be rejected.4

Although in this case, both analyses (with and without assuming a prior5

partial order) lead to the same conclusion, inspection of Figure 2 illustrates the6

increase in statistical power that may result from the addition of an appropriate7

partial order constraint. Although δ has decreased from the no-partial-order to8

the partial-order case, this difference is relatively small compared to the differ-9

ence in the shapes of the corresponding empirical distributions. Specifically, the10

distribution of δ′, when the partial order is specified (filled curve), is contracted11

leftwards compared to the sampling distribution of δ′, when no partial order is12

specified (dashed curve). As a result, relatively less mass falls to the right of13

the observed value of δ leading to a lower p-value and an associated increase in14

statistical analysis. The reason for this is that, if the population means satisfy15

the partial order constraint, E, then the fit of M2 will be close to zero. However,16

many of the bootstrap samples of M1 may violate the partial order in which17

case the fit of M2 will be substantially greater than zero, thereby contracting18

the distribution of δ′.19

Analyzing power20

It is desirable that our proposed test have sufficient power to reject the null21

hypothesis of equal latent orders when it is false. We address this issue in the22

present section where our goals are; (1) to define a measure of effect size in23

post-hoc power analyses, (2) to show how power can be estimated for any given24

effect size, (3) to discuss the problem of estimating effect size for proactive power25

analyses, and finally (4) to demonstrate the effect on power of imposing partial26

order constraints.27
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We consider in detail a measure of effect size for a fully-randomized between-1

participant experiment with n participants in each of k conditions. In this case2

the true effect size is the fit, ωxy, of the solution to the following CMR problem:3

ωxy = min
[
(x− x̂)

T
Υ (x− x̂) + (y − ŷ)

T
Ψ (y − ŷ)

]
subject to, (x̂i − x̂j) (ŷi − ŷj) ≥ 0, for all (i, j)

(8)

where, Υ = diag
(
σ2
x1
, . . . , σ2

xk

)−1
,Ψ = diag

(
σ2
y1
, . . . , σ2

yk

)−1
.4

For convenience we set σ2
xi

= σ2
yi

= σ2 for all i. Both the number of5

violations of monotonicity and the size (relative to the population precision) of6

each violation determine the value of ωxy, so in order to explore the power of7

the CMR test we varied both of these over a wide range. We adopted the case8

where k = 8, and set x = {1, . . . , 8}. We manipulated the number of violations9

of monotonicity from 1 to 28 by choosing y as a permutation of {1, . . . , 8} to10

produce the desired number of violations. For each number of violations, we then11

varied σ2 in order to generate effect sizes ranging from 0.1 to 10. This process12

resulted in a set of 398 combinations of means, variances, and associated effect13

sizes which were used to estimate power for various sample sizes.14

Insert Figure 3 here15

For each of these 398 sets of population parameters we drew a sample data16

set consisting of k independent, normally distributed, samples, each of size n,17

for n = {10, 20, 30, 40, 50} for each variable, x and y. For each data set, we18

followed the 7-step procedure presented earlier to determine whether M1 could19

be rejected for two levels controlling the Type I error rate, α = .05 and α = .01.20

Because each data set was drawn from a population in which the monotonic21

component of M1 is false, the observed proportion of correct rejections is an22

estimate of the power, (1− β), of the test. The results of these simulations are23

shown in Figure 3. Each power curve corresponds to the best fitting logistic24

function of the effect size, ωxy, for each value of n.25
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The curves shown in Figure 3 can be used to estimate the number of partic-1

ipants that an experimenter may need in order to achieve a given level of power2

for the fully randomized design considered above. To do so, it is necessary to3

estimate ωxy. For the present equal-n design, an obvious estimates of that ωxy is4

given by ωXY /n. For designs with unequal n between groups, the corresponding5

estimate is ωXY /n̄, where n̄ is the mean n over groups6 These curves allow a6

researcher to make a rough claim about the scale of the observed effect size. In7

the case of Cohen’s (1988) d, the scale relates to power as follows: a small effect8

has a power of .1 withn = 20, medium has a power of .2, and large about .4.9

For the CMR test, this corresponds to δ of 0.1, 0.2, 0.4 as power is nearly linear10

at that level with n = 20. A very large effect (power .8) would be δ = 0.50.11

Power under partial order constraints12

In this section, we re-examine the potential increase in power due to the13

addition of a partial order constraint. Because there are a very large number14

of possible partial order constraints, we focus on one that naturally arises in a15

factorial design. Consider an experiment with two between-participant factors,16

A and B, such that A has two levels and B has 4 levels (i.e., k = 8). A prior17

belief may exist concerning the orders of the dependent variables on each factor.18

We suppose that for each level of B, level 1 of A will produce smaller values on19

both dependent variables (e.g., less accurate responding, lower response times)20

than will level 2. We further suppose that for each level of A, the levels of B will21

conform to a particular total order. By way of an example, an experiment may22

examine the effect on recognition memory of a change in the format of visually23

presented words and study duration. In this case, factor A is presentation format24

(two levels: same format at study and test, different formats) and B is study25

duration (4 levels: say, 0.25 sec, 0.5 sec, 1 sec, 2 sec). Based on prior knowledge,26

it is plausible to assume that memory for words presented in the same format27

6Although an obvious approach, it is likely that reliance on ωXY may underestimate ωxy .
Further research on this question is required.
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will be no worse than memory for words presented in different formats, while,1

for each format, memory will not decrease with increasing study duration. In2

order to illustrate the effect of this prior partial order on statistical power, we3

simulated the case of n = 10 for each group, using the procedure described4

previously.5

Insert Figure 4 here6

Figure 4 reveals the gain in power that results from imposing the proposed7

partial order. The addition of this constraint leads to a nearly five-fold increase8

in the rate of increase of the power curve compared to the no-partial order9

case. The relevant measure of effect size when there is a partial order is the10

difference between M1 and M2, δxy. In order to achieve power equal to 0.811

at α =.05, we found that the observed effect size in the partial order case was12

δxy = 0.13, a value substantially less than the observed effect size in the no-13

partial order case, δxy = 0.78. The corresponding population variances were14

0.18 and 0.03, respectively. In order to give some sense of how this may appear15

in the data, we drew a random data set from populations with each of these16

variances and summarized these in the state-trace plots shown in Figure 5.17

The larger variance in the partial-order case is striking. In our experience,18

measurements with variability of this magnitude are not difficult to find in19

psychological experiments.20

Insert Figure 5 here21

As noted earlier, the imposition of a partial order reduces the variance of22

the distribution of δ, the difference in fit between M1 and M2, as long as the23

population means conform to the partial order. On the other hand, if the24

population means do not conform to the partial order then both M1 and M2 are25

false. Because power is necessarily limited, Type II errors are always possible.26
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The test of the partial order model, M2, is at best a check that the experiment1

has been correctly designed. Furthermore, a partial order should not be adopted2

merely to facilitate rejection of M1. In order to be logically coherent, any partial3

order should be defined prior to conducting the experiment and be based on a4

compelling and universally accepted motivation.5

The power analysis presented above is useful for post-hoc analyses, where6

the effect size can be estimated from data. However, its use in prospective7

power estimation is limited because the estimate of the effect size depends on8

the particular design. For example, in the previous simulations, we assumed9

a uniform spacing of x and y which may be unlikely to occur in practice. In10

the context of state-trace analysis, the optimal design is one which maximizes11

δxy given a particular two-dimensional manifold of possible latent means in the12

state space. This, in turn, will depend upon the configuration of latent means13

selected from the manifold through selection of the experimental factors and the14

number and nature of their levels. Similarly, repeated measures will affect power15

in ways that are dependent on the particulars of the variance-covariance matrix.16

A prospective power analysis will thus require the experimenter to essentially17

replicate a sub-set of our procedure for the design under consideration.18

Control of Type I error19

Our method is based on bootstrap resampling. An advantage of this ap-20

proach is that no assumption is required concerning the nature of the distribu-21

tion of observations7. However, bootstrap samples may underestimate variance22

for small n (Chernick, 2007) which can lead to a corresponding inflation of the23

Type I error rate. For this reason we conducted a series of simulations in which24

we replaced the bootstrap samples with samples from the known distribution25

7Although, of course, if the data are not normally distributed the obtained values of ω and
δ will not be maximum likelihood estimates.
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from which the data were drawn (in this case, a normal distribution). In each1

simulation, the population means were monotonically related; they were, for2

each variable, simply the integers 1 to 8, and no partial order was assumed.3

We manipulated the variance of each distribution and the sample size, both of4

which were assumed to be constant over conditions and variables. On each sim-5

ulation, for a given variance and sample size, a sample data set was drawn and6

the CMR procedure applied to generate an empirical distribution of fits (based7

on 10,000 samples). The procedure was applied both in its bootstrap form (as8

described earlier) and in a form in which the bootstrap step was replaced by9

re-sampling from the normal distributions used to generate the data. We then10

used the latter, parametric, empirical distribution to identify cut-offs for dif-11

ferent percentiles including the 95th and 99th percentiles corresponding to α =12

0.05 and α = 0.01, respectively. We then calculated the proportion of cases that13

exceeded these cut-offs in the empirical distribution derived from the bootstrap14

method. So long as resampling did not produce degenerate cases (which did not15

occur with n > 8 in our simulations) the percent of the cases that exceeded the16

cut-off deviated very little from the expected proportions.17

Extension of the CMR procedure to binomial data18

In this section, we describe how the CMR procedure can be extended to bi-19

nomial data structures. We also take the opportunity to compare this procedure20

to the Bayesian model selection approach developed by Prince et al. (2012a),21

highlighting their similarities and differences.22

Some notations are introduced first. Let nx be a (column) k-vector of the23

number of Bernoulli trials for variable x on each of k conditions. Let ax be the24

(column) k-vector of the number of successes in each condition and let bx be25

the corresponding vector of the number of failures, where nx = ax + bx. Let26

X be the vector of the observed mean proportion of successes for variable x27

across k conditions, i.e. X = ax/nx, where the division is understood to be28
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element-wise. The same kind of notation can be introduced for variable y. We1

seek to solve the CMR problem given by Equation (7).2

With V = diag(nx) and W = diag(ny), the least-squares solution to the

problem given by Equation (7) is also the maximum likelihood solution. This

follows from Theorem 12 of Robertson et al. (1988, p. 32) which states that

the solution, X̂, to the least-squares monotonic regression on X with weights,

nx, is also the maximum likelihood solution. Because the solution to Equation

(7) is the sum of two monotonic regression problems for some Ê, it follows that

it is also the maximum likelihood solution. The only difference in applying it

to binomial data is that evaluation of sub-problems in the CMR algorithm is

based on the actual likelihood function rather than evaluation of Equation (7).

Equivalently, it can be based on the following negative log-likelihood function:

f(X̂, Ŷ ) = −(aTx ln(X̂) + bTx ln(1− X̂) + aTy ln(Ŷ ) + bTy ln(1− Ŷ ))

Because the value of this function is non-zero when the fit is perfect, it is conve-

nient to subtract the corresponding value of the perfect fit, f(X,Y ). This leads

to an equivalent formulation in terms of the G2-statistic:

G2 = 2[f(X̂, Ŷ )− f(X,Y )]

Application to binomial data3

Prince et al. (2012b) analyzed a set of binomial data using the Bayesian4

model selection procedure described by Prince et al. (2012a). These data were5

obtained from a two-alternative forced-choice recognition memory experiment6

that investigated the face-inversion effect, based on a similar study by Loftus7

et al. (2004). The stimuli were pictures of faces or houses which defined the8

dependent variables of interest (i.e., memory accuracy for faces and memory ac-9

curacy for houses). Performance was tested under the orthogonal combination10

of two factors; stimulus orientation (upright vs. inverted), and study duration11
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(short, medium, and long). All experimental factors (stimulus type, orienta-1

tion, and duration) were manipulated within-participants. The data for each2

participant (as well as data aggregated over participants) consists of counts of3

successes (i.e., selecting the correct test item) and counts of failures (i.e., se-4

lecting the incorrect test item) for each stimulus type under each of the six5

experimental conditions8.6

The three different study durations imply a partial order on performance.7

Namely, the proportion of successes should not decrease from short to medium8

and from medium to long durations for both upright and inverted presentation9

formats for both face recognition and house recognition. For consistency with10

Prince et al. we did not place a partial order on the upright and inverted11

conditions, although this could readily be included.12

Insert Figure 6 here13

Figure 6 shows the state-trace plot based on the mean proportion of successes14

averaged over all participants. The dashed line shows the best fitting monotonic15

curve. It is clear that for each dependent variable, the effect of study duration16

is consistent with the assumed partial order. These data may be analyzed in17

three different ways using CMR. First, the mean scores of proportion correct18

(corresponding to the points plotted in Figure 6) can be analyzed using the19

original CMR procedure described earlier, assuming a normal distribution of20

means across participants. In this case, the empirical p-value based on 10,00021

iterations is 0.044, which implies rejection of the monotonic model, M1, at22

α = 0.05. Second, the counts of successes and failures can be aggregated over23

participants and these data analyzed using the binomial CMR procedure. In this24

case, the empirical p-value of δ based on 10,000 iterations is 0.017, also implying25

rejection of M1. However, as Prince et al. have pointed out, aggregation over26

8The authors are grateful to Melissa Prince and colleagues for making these data available.
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participants has the potential to distort the underlying pattern of the data.1

For this reason, they analyzed each participant separately, which leads to the2

third way in which the data can be analyzed using binomial CMR. In this case,3

consistent with the analysis of the aggregated data, none of the p-values for4

M2 were significant (minimum p = 0.079). On the other hand, none of the5

p-values for M1 against M2 reached significance (minimum p = .062). This6

is to be expected given the low power associated with the smaller number of7

observations for each participant. Given this, it is desirable to combine this8

evidence in a manner that does not lead to distortions due to averaging (Davis-9

Stober et al., In Press). This can be done by conducting a test of the sum of the10

individual fits. Such a test is equivalent to using the binomial CMR procedure11

to fit M1 and M2 to a concatenated set of kn conditions with a partial order12

constraint and a monotonicity constraint applied to each set of k conditions for13

each of the n participants. In practice, the relevant statistics can be obtained14

from the individual analyses already conducted - the sum of the model fits across15

participant is compared against the distribution of the sum of random samples16

drawn from the individual empirical distributions obtained from the bootstrap17

procedure. Consistent with the aggregated data which exactly conform to the18

partial order constraint, the combined p-value for the test of M2 is not significant19

(p = 0.817). However, the combined p-value for the test of M1 against M2 fell20

short of significance (p = 0.084)9.21

Insert Figure 7 here22

Comparison to Bayesian model selection approach23

In order to compare the results of the binomial CMR procedure with the24

Bayesian model selection developed by Prince, et al. (2012), is necessary to25

9Based on 100,000 combined samples each corresponding to the sum of 18 individual ran-
dom samples from the individual empirical distributions.
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explain their approach in some detail and to identify the points of similarity1

and difference with the CMR approach. Figure 7 summarizes the main features2

of the two approaches. The left hand side of Figure 7 shows a binary tree3

generated by the sequential addition of order constraints. The top-most model4

is the unconstrained model (called the encompassing model by Prince et al.),5

which, by definition, fits the observed data perfectly. The second level contrasts6

two models defined by the addition of the partial order constraint, O(x), O(y) ∈7

L(E), where L(E) is the set of linear extensions of the specified partial order, E.8

The model for which this constraint is true is called the trace model by Prince9

et al., and the model for which it is false is called the non-trace model. The10

Bayesian procedure directly compares these models and selects the one with11

the greater posterior model probability. In contrast, the CMR procedure tests12

if the addition of the partial order constraint leads to a statistically significant13

decrease in goodness of fit. Following the Bayesian procedure, if the trace model14

is selected10 then two additional models are contrasted at the third level, defined15

by the addition of the monotonicity constraint, O(x) = O(y). The model for16

which this constraint is true is called the monotonic model by Prince et al.,17

and the model for which it is false is called the multidimensional model. Again,18

the Bayesian procedure directly compares these two models while the CMR19

procedure tests the loss of fit caused by the additional monotonicity constraint.20

Finally, Prince et al. proposed a binary contrast at a fourth level, between21

two complementary models called the overlap and non-overlap models. In the22

experimental design used by Prince et al., non-overlap means that the effect23

of stimulus orientation (upright vs. inverted) is sufficiently large that there is24

no overlap between the sets of data points corresponding to the three stimulus25

durations. If this occurs, the resulting state-trace is trivially monotonic and26

Prince et al. advised that the experiment should be re-designed. Let L′(E) and27

10Prince et al. describe both a sequential and simultaneous model evaluation procedure.
We describe the sequential approach for expository purposes.
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L′′(E) be a partition of L(E) such that L′(E) is the set of linear extensions of1

E consistent with overlap and L′′(E) is the set of extensions inconsistent with2

overlap. The final constraint is therefore that, O(x), O(y) ∈ L′(E).3

An apparent advantage of the Bayesian procedure is that it allows the weight4

of evidence for pairs of disjoint models at each level of constraint to be directly5

compared. In contrast, a null hypothesis statistical test, which forms the heart of6

our procedure, tests whether the addition of a constraint leads to a statistically7

significant loss of fit. Offsetting this advantage is the necessity of assuming a8

prior distribution over the set of all possible orders of conditions. Depending on9

the context, different priors are possible and each choice will lead to a different10

outcome in model selection. Prince et al. assumed that this prior is uniform.11

Analogous to the combined p-value, Prince et al. calculated a group poste-12

rior model probability based on combined Bayes factors, essentially the product13

of individual Bayes factors, and found the probability of the trace model com-14

pared to the non-trace model was greater than 0.95. This is analogous to our15

test of M2 (against the unconstrained model) which had a combined p-value of16

0.85. Consistent with this, the rank order of individual participants’ posterior17

probabilities of the non-trace model is similar (but not identical) to the rank18

order of the individual fits of M2, Kendall’s tau = 0.73, p < 0.0001. Prince19

et al. also found that the group posterior model probability of the monotonic20

model compared to the multidimensional model was less than 0.05. In contrast,21

our analogous test of M1 against M2 had a combined p-value of 0.070 which22

fell short of significance (α = 0.05). However, the rank order of participants’23

posterior probabilities for the multidimensional model is similar (but not iden-24

tical) to the rank order of the difference in fit between M1 and M2, Kendall’s25

tau = 0.42, p = 0.007. Thus, while the two methods are based on different26

theoretical orientations and procedures, and technically test different models,27

their commonalities are such that they may well lead to similar conclusions.28

Unlike Prince et al., we do not incorporate a test of overlap into our pro-29
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cedure. We have not pursued this option for three reasons. First, it is not1

essential to the principal question of testing the model of equal orders. Second,2

the concept appears to be most relevant to the kind of factorial design investi-3

gated by Prince et al. It is not clear how it might be relevant to other designs,4

such as that used by Nosofsky et al. (2005). Finally, it is not clear that the5

concept of non-overlap is sufficiently inclusive. Given a set of populations that6

have different orders (i.e., where M1 is false), there are many configurations of7

sample means that will be trivially monotonically ordered11. Non-overlap is but8

one example. In our view, the failure to reject M1 requires further analyses of9

the data to determine whether this is due to the configuration of sample means.10

Such follow-up analysis is analogous to inspection of the scatterplot to aid in-11

terpretation of a correlation coefficient. If the data are trivially monotonic, the12

pattern of points will suggest possible changes to the levels of the experimental13

factors to increase the chance of rejecting M1 (assuming it is false). Prince et al.14

made similar recommendations and suggested that, in attempting to maximize15

power, it may be useful to adopt non-standard factorial designs.16

We endorse consideration of non-standard factorial designs. In such designs,17

the levels of one factor may differ across levels of the other factor. For example,18

in the face-inversion study conducted by Prince et al., stimulus durations for the19

more difficult inverted condition may be longer than corresponding durations20

for the easier upright condition. Such choices maximize the chance that some21

pairs of points in the state-trace plot will violate monotonicity. It must be22

remembered that even if the underling state-trace is two dimensional (with23

unequal latent orders), this will only be revealed in the observed data if the24

configuration of points contains violations of monotonicity. This, in turn, will25

depend in complex ways on the levels of the factors that have been manipulated.26

Depending on these levels, violations may or may not be observed.27

11For the design used by Prince et al., other examples include the lack of an effect of either
or both experimental factors, or a ‘staircase’ arrangement of points in the state space which
suggest two-dimensionality but fail to produce any violations of monotonicity.
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Conclusion1

We have presented a comprehensive procedure for testing for the equality2

of latent orders. The procedure consists of two main parts: (1) The CMR3

algorithm that finds the best single order on two dependent variables over k4

conditions and returns a measure of the lack-of-fit of that order to the data; (2)5

a significance test for this lack-of-fit, based on bootstrap resampling. Consis-6

tent with experience of the bootstrap (Chernick, 2007), we showed that this test7

controls Type I error rate for sample sizes greater than eight. We also showed8

that the power of the test was a function of effect size and sample size for a9

fully randomized, equal n, design and that it obtained reasonably high levels of10

power (> 0.80) for data that could plausibly occur in typical psychology exper-11

iments. We also demonstrated the role of partial orders, or pre-experimental12

order constraints on conditions, in substantially increasing power in the case13

where the partial order is true.14

Although we presented the CMR procedure principally in relation to con-15

tinuous data, we showed how it can be readily extended to discrete data and16

discussed the binomial case in some detail. A feature of the procedure for con-17

tinuous data is that it permits a non-parametric bootstrap. Thus, it is not nec-18

essary to make any distributional assumptions. Nor is it necessary to assume19

equal variances or equal n, at least in a fully randomized design, as unequal20

precisions are explicitly built into the monotonic regression weights.21

No discussion of hypothesis testing should ignore the crucial differences be-22

tween Bayesian and frequentist approaches. Our bootstrap method provides a23

frequentist estimate of the variability of the CMR fit estimate. It should be pos-24

sible to construct an alternative Bayesian approach to examining latent orders25

using CMR, and Bayesian hypothesis tests for state-trace applications of latent26

order testing without CMR already exist (Davis-Stober et al., In Press; Prince27

et al., 2012b). One critical feature that divides the Bayesian and frequentist28
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approaches is the treatment of model complexity. The equal-order model is less1

complex than the alternative, where each variable follows its own (partial) order.2

Our frequentist approach does not penalize the separate-order model, because3

its complexity is unknown. Because the common-order model is nested within4

the separate-order model, the latter will always fit better than the former. We5

recommend rejection of the common-order model when the probability of the6

fit being as bad as is observed is small. The Bayesian approach does penalize7

for complexity, by specifying priors for both models. The separate-order model8

will have a more diffuse prior than the common-order model, making it possible9

to compare the models to each other and accept either one. This bi-directional10

decision is enabled only by making specific assumptions about what the appro-11

priate prior should be for both models. Such priors equate to theories about12

the data generating processes. On the one hand, such theories are critical to13

advancing our understanding of the process that give rise to observed data. On14

the other hand, disagreement about what theories are reasonable will necessarily15

extend to the results of Bayesian hypothesis testing. We have argued that there16

is a role for a procedure that makes minimal assumptions about the distribution17

of latent orders, and we believe that our NHST approach is informative within18

that context.19

We motivated the development of the CMR procedure by reference to its20

relevance to state-trace analysis where the presence of different latent orders21

implies that the dependent variables are functions of more than one latent vari-22

able. For this reason, we discussed the application of the CMR procedure to23

two dependent variables, as commonly used in STA. However, the procedure24

can also be readily generalized to test the equality of latent orders over any25

number of dependent variables.26

A further, intriguing, challenge is to consider the more complex case in which27

the latent orders of N dependent variables conform to a linear space of d < N28

dimensions (Dunn & James, 2003). For N = 2 dependent variables, equal latent29
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orders implies that d = 1. For N > 2 and d > 1, different constraints will apply1

to generate sets of permitted N -tuples of orders. While this problem poses a2

number of significant difficulties, its solution would lead to a general test of3

latent orders beyond simple equality.4
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Appendix1

CMR algorithm2

The following pseudo-code describes the CMR algorithm (Burdakov et al., 2012).3

Here, X and Y vectors of means, V and W are corresponding weight matrices,4

E is a specified partial order partial order and F (X̂, Ŷ ) is the objective function5

value in (3) computed for the vectors X̂ and Ŷ . L is a list of pairs of the form6

(e, f) where e is a partial order and f is the value of the corresponding inherited7

lower bound.8

Input: X, Y , V , W , E. Output: X̂, Ŷ , F (X̂, Ŷ ).9

L = {(E,−∞)}, FU =∞, FL = −∞10

while (|L| > 0) & (FL < LU ) do11

(E′, FL)← L(1)12

if FL < FU then13

find X ′ that solves MR(X, v,E′) and Y ′ that solves MR(Y,w,E′)14

compute F (X ′, Y ′)15

if F (X ′, Y ′) < FU then16

if (X ′, Y ′) is feasible then17

FU ← F (X ′, Y ′), (X̂, Ŷ )← (X ′, Y ′)18

else19

generate feasible solution (X ′′, Y ′′) and compute F (X ′′, Y ′′)20

if F (X ′′, Y ′′) < FU then21

FU ← F (X ′′, Y ′′), (X̂, Ŷ )← (X ′′, Y ′′)22

end23

find (i, j) such that (X ′i −X ′j)(Y ′i − Y ′j ) < 024

E′ij ← E′ ∪ {(i, j)} , E′ji ← E′ ∪ {(j, i)}25

append (E′ij , F (X ′, Y ′)) and (E′ji, F (X ′, Y ′)) to L26

reorder L = {. . . , (e, f), . . .} in increasing values of f27

end28

end29
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end1

end2
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Figure Captions7

1. Data from Nosofsky, Stanton, and Zaki (2005, Experiment 1). State-trace8

plot of mean proportion correct on RB and II category structures for each1

block of trials in the learning or pre-switch phase (Blocks 1-8 only) and in2

the post-switch or transfer phase (final two blocks for each group). In the3

control condition, the same response assignment was maintained across the4

two phases. In the button switch condition, the response assignment was5

switched between learning and transfer phases. Error bars indicate stan-6

dard errors. Filled symbols correspond to performance in the pre-switch7

phase. Unfilled symbols correspond to performance in the post-switch8

phase. Dashed line and crosses indicate the best-fitting monotonic model.9

Adapted from Figure 1b in The effect of feedback delay and feedback type10

on perceptual category learning: The limits of multiple systems, by J. C.11

Dunn, B. R. Newell, & M. L. Kalish, 2012, Journal of Experimental Psy-12

chology: Learning, Memory, & Cognition, 38(4), pp. 840-859. Copyright13

2012 by the American Psychological Association.14

2. Empirical distributions of statistic, δ, based on analysis of data from15

Nosofsky, Stanton, and Zaki (2005, Experiment 1). In the partial order16

condition, a non-decreasing order is assumed over blocks 1 to 8 and over17

blocks 9 to 10 in both the control and button-shift groups. Also shown are18

the observed fit statistics for the data with and without the above partial19

order, filled and unfilled triangles, respectively.20

3. Power plots for the CMR effect size statistic, ωxy, with no partial order21

constraints and k = 8 conditions. (a) Power, (1 − β), as a function of22

effect size, ωxy, and sample size, ni, for α = 0.05. (b) Power, (1 − β), as23

a function of effect size, ωxy, and sample size, ni, for α = 0.01. Note the24

different scales on the ordinates.25

4. Power plots for the CMR effect size statistic, ωxy, with a partial order con-26

straint on k = 8 conditions (see text for constraint) compared to without27
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a partial order constraints. (a) Power, (1− β), as a function of effect size,28

ωxy, and sample size, ni, for α = 0.05. (b) Power, (1 − β), as a function29

of effect size, ωxy, and sample size, ni, for α = 0.01.1

5. State-trace plots of 4 x 2 factorial design corresponding to power of 0.80.2

(a) Sample means and standard errors under no partial order. (b) Sample3

means and standard errors under partial order defined on both factors.4

6. State-trace plot of mean proportion correct (averaged over participants)5

from Prince, Hawkins, Love and Heathcote (2012). The dashed line in-6

dicates the best-fitting monotonic curve based on the CMR procedure.7

Error bars indicate within-participant standard errors calculated accord-8

ing to the Loftus-Masson procedure (Loftus & Masson, 1994).9

7. Model structure tested by the CMR and Bayesian procedures. The left10

hand side shows the model tree proposed by Prince, Brown and Heathcote11

(2012) and tested by their Bayesian model selection procedure. The two12

models at each level are the complements of each other and the Bayesian13

procedure selects which of each pair is more strongly supported by the14

data. The right hand side shows the constraints that added at each level15

of the tree. The CMR procedure tests if the addition of each constraint16

leads to a significant decrease in model fit. See text for a definition of each17

term.18
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