
Efficient and Reliable Filesystem Snapshot
Distribution

LAURI VÕSANDI

Master of Science Thesis in
Information and Communication Technology

Supervisor: Lars Kroll
Examiner: Dr. Jim Dowling

Stockholm, Sweden, June 2015

TRITA-ICT-EX-2015:99

Abstract

Linux is an portable operating system kernel devised by Linus Tor-
valds and it can be used in conjunction with other userspace utilities
such as GNU to build a free and open-source operating system for a
multitude of target applications. While Linux-based operating systems
have made significant progress on the servers and embedded systems,
there is still much room for improvement for workstations and laptops.

Up to now Linux-based operating system deployment has been er-
ror prone, time-consuming process and usually specific to a particular
distribution of Linux. Linux-based operating systems also have a repu-
tation of being overly complex to set up for a novice computer user and
even though there are now laptops available with pre-installed Ubuntu
[1], installing Linux-based operating system on arbitrary device is trou-
blesome due to lack of native support for certain hardware components.

In this thesis Butterknife, a B-tree file system (Btrfs) and Linux
Containers (LXC) based provisioning suite is presented. Butterknife can
be used to significantly reduce deployment time of customized Linux-
based operating system. Butterknife makes use of LXC to prepare a
template of the root filesystem and Btrfs snapshotting to save state of
the template. Btrfs send/receive mechanism is then used to transfer the
root filesystem to the target machine. Post-deployment scripts are then
used to configure the root filesystem for particular deployment, option-
ally retaining hostname, domain membership, configuration manage-
ment keys etc. Current implementation of Butterknife uses HTTP(S)
and multicast for transport, and various peer-to-peer scenarios are dis-
cussed in the Section 6 – Conclusions and Future Work.

In addition to provisioning, Butterknife makes use of Btrfs incre-
mental snapshots to implement differential upgrades. This approach is
especially attractive for mobile devices, embedded systems and Internet
of Things, where software upgrades have to be delivered in a guaran-
teed manner. Butterknife brings additional value to already existing
ecosystem by bridging gap between stock installation medium and con-
figuration management.

Acknowledgements

I would like to thank my examiner Dr. Jim Dowling and my supervisor Lars Kroll
firstly for providing me with the opportunity to carry out this research and secondly
for guiding me through it, as well.

Furthermore, I wish to thank Kalle Kebbinau for providing a constant stream
of valuable input and feedback on my work and ideas. I’d like to thank Btrfs
community for merging the patches and being helpful overall.

I’d also like to thank international Free and Open-Source Software community
for the immense pool of freely available components that made it possible to learn
and build anything imaginable.

Finally I would like to thank Skype for funding my studies during first year at
Technical University of Berlin and Archimedes Foundation for providing Kristjan
Jaak Scholarship throughout the second year at Royal Institute of Technology.

Most of all I’d like to thank Peeter Laanoja, Stanislav Kuhtinski, Alan Õis, Erko
Valdmets, Silver Püvi and others participants of the Tallinn Education Department
pilot project for their patience and feedback.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Related Work . 2

1.3.1 Puppet and Foreman . 2
1.3.2 Chef, Ansible and Salt . 3
1.3.3 Fully Automated Installation 3
1.3.4 Clonezilla, Symantec Ghost, Acronis True Image 3
1.3.5 FSArchiver . 4
1.3.6 BSD Jails, Solaris Zones, OpenVZ, Linux Containers, systemd-

nspawn . 4
1.3.7 Docker and Rocket . 5
1.3.8 CoreOS and Ubuntu Core . 5
1.3.9 OverlayFS . 5
1.3.10 LVM, mdadm and dmraid . 5
1.3.11 Btrfs and ZFS . 6
1.3.12 apt-btrfs-snapshot and yum-fs-snapshot 6
1.3.13 FreeNAS, Rockstor and OpenMediaVault 7
1.3.14 rsync and rsnapshot . 7
1.3.15 OpenWrt and DD-WRT . 7
1.3.16 Android . 8
1.3.17 OpenStack . 8

2 Background 11
2.1 Initial task . 11
2.2 Problems with package management 11
2.3 Specification . 13

3 Butterknife Design and Architecture 15
3.1 Concepts . 15
3.2 Template helpers . 17
3.3 Command-line utility . 18
3.4 Provisioning image . 19

3.5 BitTorrent integration . 21

4 Implementation issues 25
4.1 Btrfs receive parent subvolume lookup 25
4.2 Btrfs receive confinement . 26
4.3 Bootloader . 27

5 Experimental Evaluation 29
5.1 Performance . 29
5.2 Integrity . 31
5.3 Usability . 32

6 Conclusions and Future Work 35
6.1 Conclusions . 35
6.2 Adding verification support . 35
6.3 Adding online snapshot retrieval . 36
6.4 Adding systemd-nspawn support . 36
6.5 Improving scalability . 36
6.6 Alternative filesystem layouts . 37

Bibliography 39

Acronyms 47

Chapter 1

Introduction

Linux is an operating system kernel developed by Linus Torvalds [2] and initially
released in 1991. Linux in conjunction with userspace utilities such as GNU [3] is
known as GNU/Linux. Linux-based operating systems are widely used in servers.
Linux-based Android exceeded 85% smartphone market share in 2014 [4]. Even
though Ubuntu has managed to gain some market share Windows continues to be
dominant operating system for desktops and laptops next to steadily increasing Mac
OS X [5].

Up to now Linux-based operating system deployment has been error prone,
time-consuming process and usually specific to a particular distribution of Linux.
Linux-based operating systems also have a long history of being overly complex to
set up for a novice computer user. Even though Linux-based operating systems
have made significant progress on the servers 1 and embeddeded systems 2, the
workstations and laptops have been left without attention. In this paper technical
solution to quickly deploy Linux-based operating systems and update software using
Btrfs filesystem snapshots is presented.

1.1 Motivation

The foundation of current work was established while author was setting up the
infrastructure to deploy Ubuntu 12.04 LTS on the PC-s of educational institutions
of Tallinn as part of the ongoing efforts of Tallinn Education Department to switch
from proprietary tools to open solutions in order to avoid vendor lock-in.

Puppet was set up to manage Ubuntu workstations remotely. Local IT-support
took the role of bootstrapping the machines and joining them to remote management
server.

1Google and Amazon have successfully used open-source software and commodity hardware to
build enterprise grade cloud

2Android is the market leader in smartphones and it is composed of open-source components
such as Linux

1

CHAPTER 1. INTRODUCTION

Customer A runs hundreds of embedded ARM computers for digital signage.
Software is currently updated by mailing the customer an SD-card with updated
software. The customer would prefer to update software and media over the air but
the software update atomicity has to be guaranteed in order to avoid non-booting
machines.

Customer B is about to deploy thousands of Ubuntu netbooks to be used as
remote workstations around the globe. It is vital to unroll security updates as
soon as possible, but at the same time it’s necessary to guarantee software update
atomicity as the IT helpdesk is lacking in the remote locations where the machines
are used. The solution has to be installable at customer premises and it must make
use of standard and recognized security methods.

Customer C has around thousand PC-s that need to be converted to Ubuntu, but
the budget is lacking and therefore manual labour has to be minimized. Glitch-free
software update mechanism is crucial part of minimizing manual labour.

1.2 Contributions
The work produced a novel method of deploying and maintaining Linux based
workstations in an guaranteed and secure manner.

• Method for preparing template root filesystems using LXC.

• Method for deploying templates using Btrfs send/receive.

• Method for updating machines using Btrfs incremental updates.

1.3 Related Work

1.3.1 Puppet and Foreman
Puppet is a remote management system which features its own declarative domain-
specific language to describe the state of the configuration [6]. Puppet server also
known as Puppetmaster hosts the configuration while managed machines run pup-
pet agent which polls the puppetmaster at specified interval, usually 30 minutes.
Taken actions are then reported back to the puppetmaster. Puppet agent and pup-
petmaster both are written in Ruby and released the latest versions are released
under liberal Apache 2.0 license. Puppet can be used to manage both Linux and
Windows servers and workstations as well.

Puppet uses TLS based security model: Puppetmaster maintains a certificate
authority which is used to sign certificate requests submitted by clients. Fully
qualified hostname is used to identify nodes and it is also used derive common
name for the X509 certificates. Once a certificate is signed the nodes are expected
to execute whatever Puppetmaster dictates them to do.

Foreman is a complete lifecycle management software for physical and virtual
servers. Foreman incorporates Puppet, a custom web interface and provisioning

2

1.3. RELATED WORK

tools into single unified application. Even without using provisioning features Fore-
man makes one of the most feature-complete web interfaces for Puppet rivalling the
Puppet Dashboard.

1.3.2 Chef, Ansible and Salt
Chef is infrastructure automation tool. Chef is written in Ruby and Erlang. Chef
uses domain-specific language written in Ruby. Chef server stores your recipes as
well as other configuration data. The Chef client is installed on each server, virtual
machine, container or networking device or generally speaking node. The client
periodically polls Chef server latest policy and state of the network. If anything on
the node is out of date, the client brings it up to date [7].

Ansible remote management software uses Secure Shell (SSH) to connect to the
nodes which means there is no agent running on the managed machine, this however
makes it slightly more complicated to use Ansible to manage machines behind NAT.
Ansible is written in Python and it uses state-driven resource written in YAML.

Salt is an open-source configuration management system, capable of maintain-
ing remote nodes in defined states and a distributed remote execution system used
to execute commands on remote nodes, either individually or by arbitrary selection
criteria [8]. Salt is developed by SaltStack which sells services around Salt. Salt uses
ZeroMQ to transfer data between Salt server and Salt minions. Currently alterna-
tive transport RAET (Reliable Asynchronous Event Transport) is in development
and it is designed Salt in mind. RAET attempts to address more complex message
routing schemes which are not possible with ZeroMQ [9].

1.3.3 Fully Automated Installation
Fully Automated Installation (FAI) is a non-interactive system to install, customize
and manage Linux systems and software configurations on computers as well as
virtual machines and chroot environments, from small networks to large-scale in-
frastructures like clusters and cloud environments. It’s a tool for unattended mass
deployment of Linux. The systems are installed, and completely configured to your
exact needs, without any interaction necessary [10].

1.3.4 Clonezilla, Symantec Ghost, Acronis True Image
Clonezilla [11] combines various open-source tools into a single cloning suite. Clonezilla
uses partclone utilities [12] to identify and transfer only used blocks of various filesys-
tems, most notably NTFS, Ext4 and Btrfs. Clonezilla supports resizing filesystems
after the clone in order to make use of the whole disk space available in the target
machine. This makes it possible to use same prepared image for disks of various
size, the template image has to be of course smaller than the target machine disks.
Clonezilla supports most Windows and Linux filesystems.

Symantec Ghost, previously known as Norton Ghost is a corresponding commer-
cial product currently available on the market [13] offered by Symantec Corporation.

3

CHAPTER 1. INTRODUCTION

Acronis True Image [14] by Acronis International GmbH is another similar product
which supports Windows and Mac OS X operating systems.

The fact that machines need to be taken offline is the main drawback of classic
disk cloning methods.

1.3.5 FSArchiver

FSArchiver is a tool very much similar to Clonezilla, but instead of storing disk
image on a block level the contents are stored on object-level (file, directory). All
filesystem attributes are preserved for Linux filesystems, NTFS support is still ex-
perimental. For archiving the filesystem has to be unmounted or mounted read-only.
Read-write mounted filesystems can be snapshotted with the assistance of LVM and
archived afterwards [15].

1.3.6 BSD Jails, Solaris Zones, OpenVZ, Linux Containers,
systemd-nspawn

Jails have been available in FreeBSD since version 4.x. Jails use chroot syscall
to substitute root filesystem of a process making it possible to create a restricted
environment which is isolated from the rest of the operating system [16].

Solaris Zones were introduced few years later adding similar capabilities to So-
laris operating system. Solaris Zones took advantage of ZFS filesystem making it
possible to snapshot and clone zones.

Linux has included chroot for long time as it’s essential feature for switching from
initial root filesystem (initramfs/initrd) to actual root filesystem. Many network
services take advantage of chroot syscall to confine itself to a particular directory
in order to mitigate consequences of vulnerabilities and exploits.

The main issue with chroot is that dependencies of the target application have to
be available in the chroot root filesystem. For instance a Python application which
has modules loaded before chroot operation could operate without any files in the
chroot, but shell script which relies on several executables need to have those utilities
available in chroot as well. With copy-on-write and de-duplicating filesystems such
as Btrfs and ZFS the problem how ever becomes irrelevant as root filesystem of the
chroot can be duplicated with no significant overhead.

Linux Containers (LXC) [17] takes advantage of the chroot syscall and recently
Linux cgroups (control groups subsystem) which permit more operating system
level virtualization. Control groups are used to implement limiting, accounting
and isolation of CPU, memory, disk I/O, network, etc resource usage. LXC allows
various backing stores, most notably ZFS, Btrfs and OverlayFS which make it very
easy to enable container snapshotting and streaming backups.

Controversial systemd now includes systemd-nspawn which can be used to start
up a container using kernel namespaces very much like LXC does. Another utility
machinectl, bundled with systemd can be used to manage the containers [18].

4

1.3. RELATED WORK

1.3.7 Docker and Rocket

Docker started off as a way to automate container deployment and configuration
using containers and control groups present in Linux kernel. As Docker started
to add features that CoreOS developers deemed excessive an alternative project
Rocket was founded [19]. Rocket aims As Amazon also announced EC2 Container
Service, Rockets plan to formalize the container standard makes it possible have
various implementations while maintaining cross-vendor compatibility.

1.3.8 CoreOS and Ubuntu Core

CoreOS [20] is a rearchitected Linux distribution which provides minimalist foun-
dation to run Docker containers. It uses two-partition scheme to provide atomic
updates of the root filesystem. The operating system runs off a read-only filesys-
tem while the other one can be patched runtime. Reboot or kexec can be used to
boot into the updated system. This prevents rendering device unbootable due to
interrupted upgrade.

Ubuntu Core is an Ubuntu flavour tailored towards Internet of Things and as a
container platform. Ubuntu Core introduced root filesystem transactional updates
to Ubuntu using Snappy [21]. Ubuntu Core is designed to run Docker applications.
Snappy is also plays important role in Ubuntu Phone ecosystem. Snappy uses dual-
partition scheme – one of the root filesystems is mounted read-only and writable
directories are mounted from writeable filesystem.

1.3.9 OverlayFS

OverlayFS is a feature introduced in Linux 3.18 which makes it possible to merge
contents of two separate mountpoints on the fly [22]. OpenWrt uses OverlayFS to
implement writable JFFS2 layer on top of read-only SquashFS filesystem.

1.3.10 LVM, mdadm and dmraid

Ext4 has been primary filesystem for Linux based workstations and servers for a
while. It provides filesystem primitives such as files, directories, permissions and
timestamping. In order to add redundancy either software Redundant Array of
Independent Disks (RAID) or Logical Volume Management (LVM) can be used.

Software RAID is implemented in Linux by means of mdadm. Software RAID
can be used to build RAID1, RAID0, RAID10/01, RAID5 or RAID6 arrays without
dedicated RAID controller which could also impose a vendor lock-in.

LVM enables pooling of drives, mirroring and snapshotting by adding an ab-
straction layer on top of physical disks. Any filesystem that can be deployed on
physical disk can also be deployed on top of LVM’s logical volume. The kernel
takes care of mapping logical addresses to corresponding disk’s physical address.
The snapshotting feature of LVM however has been claimed to be buggy. [23]

5

CHAPTER 1. INTRODUCTION

1.3.11 Btrfs and ZFS

Btrfs and Zettabyte Filesystem (ZFS) both are modern copy on write filesystems
which also fill in the role of volume manager [24] [25]. Btrfs has been claimed to
be unstable but the situation has improved significantly over the past year or two.
Facebook has been testing Btrfs in production since the April of 2014. [26] Chris
Mason, a lead developer of Btrfs joined Facebook in the end of 2013 with the goal
of improving Btrfs support for enterprise applications. [27]

Btrfs supports redundancy in RAID0/1/10 configurations and RAID5/6 support
was added with Linux 3.19 [28]. Btrfs supports zlib and lzo compression algorithms,
however enabling compression for Btrfs is known to seriously hamper performance
of database engines.

Btrfs supports subvolumes, which makes it possible to group directories and files
into logical units. As mentioned above, LXC makes use of subvolumes by confining
the root filesystem to a Btrfs subvolume if Btrfs backing store is used. This means
that root filesystem of a container can easily be snapshotted.

In Btrfs context snapshotting is actually a generalization of subvolume cloning,
thus subvolume, clone and snapshot may be used interchangeably in certain con-
texts. Due to copy-on-write architecture subsequent writes to the original subvol-
ume do not affect the subvolume clone and there is no performance degradation for
the original subvolume.

Btrfs permits transmitting filesystem data over the network by a concept of
btrfs send and btrfs receive. Btrfs send mandates the subvolume to be in a read-
only mode, which means that btrfs subvol snapshot has to be issued with extra -r
flag.

Btrfs uses received_uuid and uuid to identify snapshots for transfer. The re-
ceived_uuid corresponds to the uuid on the initial machine and it remains intact
for any subsequent transfers. For differential snapshots few extra steps are taken.
During snapshot send an optimal parent snapshot is identified and that is used as
basis for the differential snapshot. On the receiving end the a read-write snapshot
of the parent snapshot is created and filesystem operations are replayed on the sub-
volume. Finally corresponding received_uuid is set and system call is issued to set
subvolume read-only.

Debian introduced Btrfs with Squeeze and has improved support since then [29].
Ubuntu also has supported Btrfs for a while with customized subvolume naming
scheme: root filesystem is placed in subvolume named @ and home directories in a
subvolume called @home.

1.3.12 apt-btrfs-snapshot and yum-fs-snapshot

In Ubuntu package repositories there is available apt-btrfs-snapshot [30] package,
which creates snapshot of the root filesystem subvolume @ before every apt-get

operation.
yum-plugin-fs-snapshot [31] is the corresponding package for Fedora and Red Hat

6

1.3. RELATED WORK

based distributions.
These approaches make it possible to boot into previous snapshots in case there

are issues with the updated packages.

1.3.13 FreeNAS, Rockstor and OpenMediaVault

FreeNAS is a FreeBSD [32] based distribution which builds a complete NAS solution
on top of ZFS filesystem and web interface. Rockstor is a complementary CentOS
7 based solution that uses Btrfs instead of ZFS filesystem [33]. OpenMediaVault
provides similar functionality using Debian Wheezy instead of CentOS [34]. All
three of them support SMB/CIFS (Windows file shares), NFS (UNIX file shares)
and filesystem aided snapshots.

1.3.14 rsync and rsnapshot

rsync is an open source utility designed for fast incremental file transfer. It is most
commonly invoked with archiving flag (-a) which retains permissions, ownership,
timestamps and symlinks. In that case files are transferred only if modified times-
tamp or file length differs.

rsnapshot is an utility that takes advantage of hardlinking functionality of Ext4
and other similar filesystems. By creating a clone of a directory tree using hardlinks
no extra disk space is consumed. Applying classical rsync on top of the clone only
increments by the disk usage of changed files.

1.3.15 OpenWrt and DD-WRT

Most Linux based open-source router firmwares originate from Linksys WRT54G
wireless router. Initially Cisco did not provide source code for the router as GPL
mandates. Between 2003-2008 Free Software Foundation attempted to cooperate
with Cisco to work out issues, but as Cisco continued to release new devices with
similar issues Free Software Foundation eventually sued Cisco for malpractice. Af-
ter the lawsuit Cisco complied and has been releasing firmware sources for all of
their devices which make use of software released under GPL licenses [35]. Linksys
WRT54G sources were basis for various Linux distributions for routers such as DD-
WRT [36], Tomato [37] OpenWrt [38].

OpenWrt as we know it today is a Linux distribution for embedded devices
which attempts to provide writeable filesystem and package management. OpenWrt
supported hardware list mainly targets routers, but other devices are listed as well
[39]. OpenWrt can be used to extend lifetime of equipment that otherwise would
be largely obsolete due to unmaintained software from hardware manufacturer.

Most high-end consumer grade routers employ 8MB NOR Flash chip which is
directly connected to the SoC without controller [40]. The Flash storage is usually
partitioned at least as 3 slices: bootloader, read-only root filesystem, read-write
overlay.

7

CHAPTER 1. INTRODUCTION

The read-only root filesystem contains SquashFS [41] which is highly-efficient
compressed read-only filesystem that supports variety of compression algorithms.
The read-write overlay partition is formatted as JFFS2 (journalling flash filesystem).

This method makes it possible to: perform factory reset simply by formatting the
JFFS2 partition and upgrading firmware by overwriting SquashFS partition. Due
to lack of redundancy in consumer-grade routers an interrupted firmware upgrade
usually renders device unfit for use [42] [43]. This is also known as bricking in
embedded developer jargon.

1.3.16 Android
Android ROM images are typically distributed as zip files which contain binary blobs
for modem and bootloader in addition to snapshots of the file primary filesystems
of Android: boot, cache, recovery, system and userdata 3. Differential images are
also available, in that case zip file contains directory tree of files intended to be
overwritten or added to the original root filesystem and post-installation scripts
which correct the file permissions 4.

ROM manager such as ClockworkMod [44] or TWRP [45] has to be used to
install or patch third-party ROM-s. An alternative Fastboot method is also present
in most Android devices and it can be used to directly write raw filesystem images
and unlock the device [46]. CyanogenMod is an aftermarket software for phones
that are not supported by the manufacturer any more and it can be installed with
TWRP or ClockworkMod. ClockworkMod and TWRP both can be used to down-
load images in the zip format and then automatically reboot to the recovery mode
to install the ROM or updates. Similar methods are provided by some of the hard-
ware vendors to update the ROM over the air. As Android is open-source vendors
tend to customize various aspects of the software update process, there is no single
canonical way to update Android devices.

1.3.17 OpenStack
OpenStack is a free and open-source cloud computing software platform which is
composed of several components of which most noteworthy for current work are:
Glance image service, Ironic bare metal provisioning, Swift object storage and Cin-
der block storage. Glance provides discovery, registery and retrieval services of vir-
tual machine images [47]. Glance BitTorrent delivery enables BitTorrent support
for transferring the images [48].

Glance supports variety of disk formats [49]:

• VHD disk format, a common disk format used by virtual machine monitors
from VMWare, Xen, Microsoft, VirtualBox, and others

• VMDK disk format supported by many common virtual machine monitors
3https://dl.google.com/dl/android/aosp/shamu-lrx22c-factory-ff173fc6.tgz
4http://gapps.itvends.com/gapps-lp-20141212-signed.zip

8

1.3. RELATED WORK

• VDI disk format supported by VirtualBox virtual machine monitor and the
QEMU emulator

• ISO archive format used by optical disks eg CD-ROM

• QCOW2 disk format supported by the QEMU emulator that can expand
dynamically and supports Copy on Write

• AMI disk format used for Amazon machine images.

As of February 2015 Glance work has started to add Open Virtual Appliance
(OVA) and Open Virtualization Format (OVF) [50] support. The Glance API does
not however address versioning of disk and container images, therefore differential
updates of images are also not implemented.

9

Chapter 2

Background

2.1 Initial task

The initial task was to use Ubuntu as operating system basis for schools due to rich
set of both open-source and proprietary software components available in Ubuntu
ecosystem.

So far the machine deployment has been a tedious task involving manual labour:
The Ubuntu 14.04 LTS image had to be downloaded from the Internet and trans-
ferred to a memory stick. The Ubuntu installer was booted from the memory stick
and usual installation was performed which took roughly 20 minutes. The machine
was booted into Ubuntu, Puppet was installed on the machine and Puppet configu-
ration was tweaked to use our server. This took another 10 minutes and was not a
procedure that could be performed by a novice user using (pseudo-)graphical user
interface. Once the certificates was signed on the Puppetmaster the machine down-
loaded necessary packages and applied configuration changes. Usually this would
take several Puppet runs and as a result setting up a classroom of computers took
several days depending on the command-line proficiency of local IT-support, which
in some cases was close to zero.

In earlier phases of the project customized Estobuntu [51] – remastered [52]
Ubuntu 12.04 was used to bootstrap the machines, but as the packages were con-
stantly updated in the Ubuntu repositories, the CD generation process was complex,
time-consuming and error-prone this approach was eventually given up and vanilla
[53] Ubuntu was used instead.

2.2 Problems with package management

Ubuntu uses APT (Advanced Packaging Tool) as basis for it’s package management.
APT was originally developed as part of Debian operating system to be used as
dpkg front-end. While dpkg can be used to install and remove packages, it does not
provide dependency tracking nor fetching packages from remote locations which
are implemented by APT. APT significantly simplifies the installation of software

11

CHAPTER 2. BACKGROUND

Figure 2.1. Ubuntu software center.

components by downloading packages from different sources and checking package
dependencies prior installation.

Ubuntu Software Center shown in Figure 2.1 builds another abstraction on top
of APT, while hiding libraries and other system components it enables even more
simplified installation of applications for Ubuntu based machines. For remotely
managed machines the Ubuntu Software Center and other graphical package man-
agement tools were removed.

There are however certain corner-cases where APT may render the package
management unusable. For instance package list corruption was faced on several
occasions, in that case APT crashes with segmentation fault [54] and currently the
only known solution to the problem involves deleting package lists and running apt

-get update again. Several faulty packaging scripts were stumbled on, for example
it was not possible to remove certain versions of LibreOffice packages and manual
intervention was necessary [55].

Debian community has been working hard to provide differential updates for
the packages, but as of February 2015 the efforts have proven fruitless. Differential
updates are applied for package lists [56], but binary diffs for packages have not
implemented yet. Fedora community has however successfully deployed differential
packages [57], thus reducing the amount of data needed to be transferred during an
package update. For bigger software (eg LibreOffice) the lack of differential updates
poses a serious concern, especially for low-bandwidth links. Puppet, SaltStack,

12

2.3. SPECIFICATION

Chef, Ansible and other traditional configuration management fit best the scenario
where each node has slightly different configuration and it makes sense to keep them
separate. However provisioning very similar nodes with for instance Foreman has
obvious overhead – each node has to fetch updated packages independently from
the same APT repositories, same has to be done for application software.

Release upgrades for example from Ubuntu 12.04 to Ubuntu 14.04 have proven
to be especially troublesome due to the fact that system libraries and files are being
replaced and interrupted release upgrade may leave system in an unusable state.

As it has hopefully become clear by now installation of software for Ubuntu and
Debian is most usually performed using APT in one form or another. Software that
is not available in an APT repository is troublesome to install. For instance Smart-
tech distributes software for their smart whiteboard products as a .zip of Debian
packages. Similarily Canon printer drivers are available as a .zip file. Last version
of Acrobat Reader is also not available from any APT repository for Ubuntu 14.04.
Skype distributes a Debian package for Ubuntu, but again not from a APT repos-
itory. Setting up an APT repository is not a trivial task, even for an experienced
Linux sysadmin.

For classroom deployment cloning has been used in the past: Windows, Ubuntu
or both are installed on a physical template machine. Template machine is thor-
oughly tested. Tools such as Clonezilla [11] or Symantec Ghost are used to transfer
the hard disk image to the other machines. As the whole procedure is a complex
undertaking it is usually performed once a year in summer especially for educa-
tional institutions. In fact cloning was used by some of the participating schools –
for example Alan Õis, the IT-support at Mustamäe Gümnaasium used Clonezilla
to set up his classrooms.

2.3 Specification

Considering the needs of the commercial customers and experience gained in the
first iteration of the migration project following list of requirements were derived
for next iteration.

Firstly the solution has to support all major Linux distributions – Ubuntu,
Fedora, Red Hat, etc. The software upgrades have to be atomic, in other words in-
terrupted updates can not render a workstation unusable. Software upgrades must
retain domain join without having to join machine to a domain. The home directo-
ries must remain intact during software updates. It has to be possible to perform
provisioning stage from Preboot eXecution Environment (PXE), off bootable USB
memory sticks and optionally CD-R discs.

The HTTP(S) server has to be flexible enough to allow two main usecases –
running a central server for all nodes and running a local downstream server, hence
pushing and pulling templates between servers has to possible.

Following requirements were specified for security: As initial provisioning can
be assumed to be done on premises, man-in-the-middle attacks can be ruled out

13

CHAPTER 2. BACKGROUND

in that provisioning stage. It has to be possible to verify subsequent incremental
snapshots by means of asymmetric keys. Consistent methods for root filesystem
template fingerprinting have to be provided

14

Chapter 3

Butterknife Design and Architecture

We have outlined a number of existing methods and tools which address various
aspect of Linux deployment on workstations in chapter 1, and it has hopefully
become clear the functionality and guarantees provided by the presented systems.
However, it is clear that there will never be a single tool that is optimal for every
application.

Yet, many problems are a shared concern between all of these systems. Foremost
among these are bootstrapping, i.e. getting the initial software setup on the machine,
upgrading, that is updating the software components on the machine and configuring
the software components.

To address this issue we present Butterknife, a provisioning suite that provides
solutions for bootstrapping and upgrading Linux-based workstations, while remain-
ing flexible enough to be used to deploy any Linux-based operating system and to be
used in conjunction with already existing configuration management tools such as
Puppet and Salt. Butterknife brings additional value to already existing ecosystem
by bridging gap between stock installation medium and configuration management.

3.1 Concepts

The prototype draws inspiration from embedded computers where certain guaran-
tees have to be provided [58]. Butterknife in its current form makes use of Btrfs
filesystem and LXC. Current architecture of Butterknife provides atomic updates
of root filesystem by making use of Btrfs snapshotting. Common filesystems such
as ext2/3/4 were evaluated, but ruled out due to lack of snapshotting and send/re-
ceive functionality. ZFS was also considered, but ruled out due to licensing issues,
memory usage and stability on 32-bit systems. Dual-partitioning schemes were con-
sidered, but ruled out due to disk usage overhead. CoreOS, Rocket, Ubuntu Core
were also evaluated as viable platforms, but because of the way container virtual-
ization technology is used in these platforms it’s tricky to gain access to keyboard,
mouse and video output from the container in addition to reliance on the OS vendor.
Hence Butterknife simply uses containers to bootstrap the template, but containers

15

CHAPTER 3. BUTTERKNIFE DESIGN AND ARCHITECTURE

lxc-create -B btrfs -t ubuntu

puppet apply ...

apt-get update

apt-get upgrade

apt-get autoremove

butterknife lxc release

Figure 3.1. Template preparation workflow using Butterknife.

are not used on the target machine.
The template preparation workflow for Ubuntu based distribution and Puppet

based configuration management is shown in Figure 3.1: LXC is used to bootstrap a
container, apt-get update is used to update package lists, puppet apply is used to apply
configuration on the container, apt-get upgrade is used to upgrade the packages and
apt-get autoremove is used to remove packages that were installed as dependencies
for packages removed by Puppet. Finally butterknife lxc release is used to stop
the container and create a snapshot of the root filesystem of the container. For
subsequent releases the cycle starts again with apt-get update. The Butterknife
does not confine user to Puppet or Ubuntu, LXC supports a variety of distributions
and scripts for Salt persistence are included in the template overlay directory of
Butterknife Git repository.

The deployment workflow of the prototype is split into bootstrap and live stages
as shown in Figure 3.2. The template prepared in the template preparation workflow
is served by butterknife serve. Provisioning image is booted either via Preboot
eXecution Environment (PXE) or from USB memory stick. Provisioning utility
partitions the target machine storage device, creates Btrfs filesystem and transfers
full snapshot of the template from Butterknife server. Target subvolume is mounted
at /mnt/target and post-installation tasks, for example bootloader installation, are
performed.

Finally the provisioning utility reboots the machine and system boots from the
newly received subvolume. Butterknife DBus service starts up and connects to
the Butterknife server waiting for subsequent snapshots. Once new snapshots are
available, DBus service fetches the differential snapshots and adds them to the Btrfs
pool. Snapshot is optionally verified and post-installation scripts are executed. User

16

3.2. TEMPLATE HELPERS

is notified about requirement to reboot the machine to new snapshot via the DBus
notification service. For subsequent snapshots the cycle repeats.

Bootstrap stage

Prepare template,
install and configure software,

add Puppet certificate,
add GPG keys

Boot provisioning image on
target machine over PXE
of from USB memory stick

Deploy template on the machines,
change hostname,
join to domain,

reconfigure bootloader to launch OS.

Connect to Butterknife server
and wait for

differential snapshots

Reboot to new subvolume

Reconfigure bootloader to
boot new snapshot

Download and apply
differential snapshot

over HTTPS

Live stage

Figure 3.2. Butterknife deployment workflow.

Butterknife consists of four major components: Template helpers, command-line
utility, Buildroot based provisioning image and services for applying incremental
snapshots online.

3.2 Template helpers

LXC containers are used to bootstrap the template for provisioning. Creating con-
tainer with Btrfs backing store on top of a Btrfs filesystem places the container
in an isolated subvolume which makes it easy to snapshot the container. Within
the container puppet apply and similar methods can be used to take advantage of
already existing configuration management know-how. Otherwise traditional man-
ual labour can be employed to set up the template: installing packages, tweaking
configuration files etc. Post-deploy scripts are placed under /etc/butterknife/post-

deploy.d – Butterknife helpers to provide persistent hostname, domain join, Puppet
certificates and much more.

During the release phase the LXC container is stopped, pre-release scripts placed
under /etc/butterknife/pre-deploy.d are executed to clean up package cache, Font-
config caches, locale cache and other temporary files. Then a read-only Btrfs snap-
shot is generated from the container root filesystem. At this point new snapshot
becomes available via running instance of butterknife serve

17

CHAPTER 3. BUTTERKNIFE DESIGN AND ARCHITECTURE

3.3 Command-line utility

The command-line utility is mainly targeted for advanced usecases: pushing-pulling
snapshots via Secure Shell (SSH), pulling snapshots via HTTP(S) or multicast,
serving snapshots via HTTP or multicast. The utility also provides interfacing with
LXC to prepare the templates and support for systemd-nspawn is planned in future.

The Python programming is done in object-oriented manner, thus adding ad-
ditional transport methods is trivial. Falcon HTTP API framework [59] from
Rackspace was used to build the HTTP API portion of the Butterknife to serve
snapshots over HTTP. The HTTP API serves information about templates avail-
able in the server’s /var/butterknife/pool. The API exposes several methods for
iterating over templates and subvolumes present in the server’s Btrfs pool.

The name of a template follows naming scheme of DBus objects incorporat-
ing fully qualified domain name in reverse and the identifier of the object. The
version refers to the snapshot of the template. The arch refers to target architec-
ture which is normalized to x86 for 32-bit and x86_64 for 64-bit Intel x86 ma-
chines. For example the Btrfs subvolume stream URL for snap42 of the 32-bit
EduWorkstation that originates from butterknife.koodur.com would be /api/template/

com.koodur.butterknife.EduWorkstation/arch/x86/version/snap42/stream.
Note that the stream URL also accepts parent argument, so incremental snap-

shot can be received simply by appending ?parent=snap41. The unicast snapshot
transfer topology is shown in Figure 3.3. Note that unicast suffers obvious scalabil-
ity issue, the uplink of the server is eventually congested and throughput per node
decreases with every additional node.

HTTP

x86 workstation x86 workstationx86 workstationx86 laptop

butterknife serve

Figure 3.3. Deployment over HTTP.

Multicast is used to resolve the scalability issue of the initial provisioning stage.
Snapshot transfer topology with off-site server is shown in Figure 3.4. In this case
the snapshot is transferred over HTTP from the server by one of the participating
nodes. That node proxies the stream to local LAN segment using multicast. All
the other nodes are receiving over multicast

Alternatively snapshots can be pulled either over HTTP or SSH from the server
to a local machine and served from there over multicast as shown in Figure 3.5.

18

3.4. PROVISIONING IMAGE

x86 workstation

butterknife serve http

x86 workstationx86 workstation

HTTP

Multicast

x86 laptop

Figure 3.4. Deployment over HTTP and multicast.

butterknife
serve

multicast
x86 workstationx86 workstation

Multicast

x86 laptop

Figure 3.5. Deployment in local network segment over multicast.

3.4 Provisioning image
The provisioning image was designed to bootstrap a machine. Debian, Ubuntu,
Gentoo and Buildroot were evaluated as provisioning platforms. With Debian and
Ubuntu the resulting PXE bootable image would have exceeded 100MB, as the
image is uncompressed to RAM, booting on machines with less than 1GB of RAM
is troublesome. As of February of 2015 the CoreOS image suffers similar issue -
vmlinuz 1 and initrd 2 files required to boot over PXE are correspondingly 24MB
and 117MB. With Gentoo significant tweaking was required, because Gentoo is
mainly targeted for power users. Buildroot an embedded Linux system build system
was eventually used to generate an (<15MB) all-in-one PXE-bootable image as well
as ISO image which can be dumped on a USB memory stick [60].

Using Python to build pseudo-graphic menu-driven user interface was evaluated
and deemed not necessary for the goal as Python runtime and dependant libraries
add about 10MB to the resulting image. Additionally parted Python bindings were
unavailable in Buildroot package selection. Instead dialog in conjunction with curl,
jq and others were used to build the user-interface and shell was used to program
the user-interface logic. Resizing of NTFS filesystems is provided by ntrfsresize

1http://stable.release.core-os.net/amd64-usr/current/coreos_production_pxe.
vmlinuz

2http://stable.release.core-os.net/amd64-usr/current/coreos_production_pxe_
image.cpio.gz

19

http://stable.release.core-os.net/amd64-usr/current/coreos_production_pxe.vmlinuz
http://stable.release.core-os.net/amd64-usr/current/coreos_production_pxe.vmlinuz
http://stable.release.core-os.net/amd64-usr/current/coreos_production_pxe_image.cpio.gz
http://stable.release.core-os.net/amd64-usr/current/coreos_production_pxe_image.cpio.gz

CHAPTER 3. BUTTERKNIFE DESIGN AND ARCHITECTURE

utility which is part of ntfs-3g package, this eases deployment of dual-boot machines.
Complete multicast is supported via consistent snapshot naming scheme and udpcast

-receive and udpcast-sender utilities which are part of udpcast package.
The security model for the initial deployment phase could be improved as only

method of verification of the source is the certificate authority chain verified by
curl during the Btrfs snapshot retrieval. For multicast transfers there is no security
enforced by software, it is assumed that multicast is used only in protected LAN
segments.

The used partitioning scheme is described in Figure 3.6 is inspired by Ubuntu
and Lennart Poettering’s article. [61] The unallocated space of block device is used
create single Btrfs filesystem which is mounted at /var/butterknife/pool making
it possible to easily iterate over templates and root filesystem instances present
in the machine. Whenever a Btrfs (differential) snapshot stream is received the
incoming subvolume is placed under /var/butterknife/pool. Before transfer remnants
of previously interrupted transfers are cleaned up by simply iterating over directories
beginning with @template: and attempting to create a file inside the directory. If
the file creation succeeds, the subvolume is deleted. Note that prior successful exit
btrfs receive sets the subvolume read-only, thus file creation should fail.

Once the template subvolume is successfully received a read-write clone is made
with @root: prefix, this signifies an instance of a root filesystem. The instance
subvolume is mounted at /mnt/target and several mountpoints such as /dev/, /proc/,
/sys/ are bound to /mnt/target.

Finally chroot is issued to enter the instance to run butterknife-postdeploy which
executes post-deploy scripts which are part of the template. Most usually the Btrfs
pool is mounted at /var/butterknife/pool of the instance and @persistent subvolume is
created in the pool. The persistent subvolume is then mounted at /var/butterknife

/persistent. The persistent subvolume is used to retain hostname, domain join
information (Kerberos keytab, Samba secrets), Puppet keys and certificates etc.
Final aspect of the post-deploy scripts is the bootloader installation. As the root
filesystem is essentially swapped out, grub-install is required to update references
to the newly created OS instance.

@template:com.koodur.butterknife.EduWorkstation:x86:snap42

@root:com.koodur.butterknife.EduWorkstation:x86:snap42

@home

@persistent

/home

/var/butterknife/persistent

/

/var/butterknife/pool

Storage device

Windows 7 recovery

Btrfs filesystem

Windows 7 root

Block device Partitions Subvolumes Mountpoints

Figure 3.6. Pooled partitioning.

20

3.5. BITTORRENT INTEGRATION

3.5 BitTorrent integration
Multicast is designed for usecases where simultaneous control over multiple machines
is possible. The differential snapshots are primarily downloaded via HTTP(S) be-
cause coordinating multicast transfers with roaming laptops is a complex scenario.
Optionally push/pull can be performed over SSH making Butterknife already now
very flexible tool.

BitTorrent is a peer-to-peer (P2P) file sharing protocol designed by Bram Cohen
[62]. BitTorrent is designed to facilitate file transfers among multiple peers across
unreliable networks. It has potential to offload content transfer to nodes partici-
pating in the network as shown in Figure 3.7. In this section two viable approaches
are discussed.

x86 workstation

Butterknife
server

x86 workstation

x86 workstation

web seed

x86 laptop

web seed

Figure 3.7. Possible load distribution scenario using BitTorrent.

As getting consistent output from btrfs send is tricky it makes sense to store
the snapshot bitstreams as files and use BitTorrent to redistribute them. This
way received_uuid can be kept in sync with the origin. Similarly each incremental
snapshot can be stored on the disk and distributed as torrents. As full snapshots are
large and consume a lot of disk space it makes sense for example keep every 100th full
snapshot and apply incremental snapshots one by one to get to a desired snapshot.
The main advantage of such approach is the overhead: in addition to Btrfs filesystem
which already contains all the necessary snapshots, full and incremental snapshot
bitstreams are stored as separate files. Additionally the step-by-step incremental
snapshot approach defeats the whole purpose of using filesystem such as Btrfs.

Second approach dives into the BitTorrent specifics. A .torrent file contains
metadata about the content in question and a tracker URL – that is the service
which is used to discover other peers in the pool of participating nodes also known
as swarm. BitTorrent splits files into pieces and SHA-1 hash is calculated per piece.
BitTorrent protocol does not specify minimal piece length [63], but for example

21

CHAPTER 3. BUTTERKNIFE DESIGN AND ARCHITECTURE

libtorrent imposes restriction of having piece length a multiple of 16KB [64]. It is
recommended to keep BitTorrent file size below 100kB, which means the piece size
is correlated to content size. [65].

For multi-file torrents the files in the directory tree are handled as a continuous
stream of data of the concatenated files as shown in Figure 3.8, thus changing size
of a file that happens to be placed in the beginning of a torrent file results in
completely different checksums for the whole torrent. Such approach is reasonable
for rarely changing data, but for current usecase causes significant overhead.

/bin/gzip
94048 bytes

Piece #3
63696 bytes

/bin/sed
73352 bytes

/bin/whiptail
27368 bytes

Piece #1
65536 bytes

Piece #2
65536 bytes

64k 128k 192k

Figure 3.8. Multi-file torrent handles directory tree as a continuous stream of data.

BitComet has implemented Align File to Piece Boundary function [66], which
adds a padding file if necessary to align files to piece boundary as shown in Fig-
ure 3.9. This way pieces which contain identical files retain same piece checksums,
however small files add significant overhead due to padding files. Compression of
pieces sent on the wire has been proposed [67]. This could resolve the overhead
issue introduced due to padding files. The problem of piece alignment could also be
addressed simply by introducing new file mode.

64k 128k 192k

/bin/gzip
94048 bytes

Piece #3
65536 bytes

/bin/sed
73352 bytes

Piece #1
65536 bytes

Piece #2
65536 bytes

Piece #4
65536 bytes

Piece #5
27368 bytes

Padding file
37024 bytes

Padding file
57720 bytes

/bin/whiptail
27368 bytes

256k 320k

Figure 3.9. Align File to Piece Boundary.

Btrfs uses CRC-32C for checksumming and support for additional checksum
algorithms, namely SHA-1 is planned [68]. Current on-disk format supports up to
256-bit hash checksum per metadata block and arbitrary count of hashes for per-
block checksums. [69]. As of November 2013 Btrfs defaults to 16kB or page size
whichever is larger. On most Linux workstation page size is set to 4kB, thus 16kB
block size takes precedence [70].

As online deduplication is in works for Btrfs it makes sense to combine the two,
implementing additional system call for Btrfs in order to perform block lookup by
checksum is trivial task. This could make it possible to implement high-performance
BitTorrent implementation which takes advantage of Btrfs metadata.

Aligned checksumming would permit sharing platform-independent (images;
fontconfig cache; dconf database; LaTeX packages; Bash, Python, Ruby, Perl, Lua,
Java source and bytecode) file chunks between machines of different architecture

22

3.5. BITTORRENT INTEGRATION

(amd64, i386, armel, armhf) from arbitrary snapshots.
Generating .torrent corresponding to a root filesystem has other issues as well.

Piece size of 16kB results in a torrent file exceeding 10MB for Ubuntu root filesystem
and that did not even include padding files required to align piece boundary to file
beginning. Most BitTorrent client implementations fail to handle .torrent files of
such size resulting in out of memory errors or freezes. Also BitTorrent currently
does not handle symlinks, POSIX filesystem permissions and access control lists
[71].

This leads us to believe that these properties be transferred using additional
manifest file generated by eg fssum, making use of .torrent file redundant. In fact
Google Summer of Code 2015 project [72] was submitted by Carnegie Mellon Uni-
versity graduate student Harshad Shirwadkar to implement content based storage
in Btrfs [73].

Bram Cohen, the BitTorrent creator filed patent for live streaming version of Bit-
Torrent [74] which promises latency of few seconds opposed to previously available
approaches which exceeded latency of several magnitudes higher. The technology
will be available free of charge for users as well as content distributors. Patent
will be used to enforce the quality of the available software so for example client
applications of bad quality would not degrade the performance of the technology.
BitTorrent Live could be used to synchronize several clients to apply differential
snapshot from same parents to same target snapshots and use BitTorrent Live sim-
ply as transport protocol.

23

Chapter 4

Implementation issues

4.1 Btrfs receive parent subvolume lookup

As of kernel 3.17 there is no consistent way of transferring differential snapshots in a
distributed Git-like fashion due to way btrfs receive locates the parent subvolume.
Whenever btrfs send is issued, the uuid of origin subvolume is bundled with the
bitstream, that becomes the received_uuid on the receiving endpoint and new uuid
is assigned for the created subvolume. For incremental snapshots btrfs send also
bundles the uuid of the parent subvolume, now btrfs receive attempts to locate the
parent subvolume by received_uuid of local subvolumes.

This effectively restricts the workflow to one direction as shown in Figure 4.1. In
other words if a full snapshot is transferred from machine A to B and B to C, then
it is impossible to apply incremental snapshots from A to C, because btrfs receive

is unable to locate the snapshot to be used as parent. This prevents running a
downstream Butterknife server and even more importantly it makes tricky restoring
snapshot in scenarios where Btrfs is used for backing up.

Upstream
server

Downstream
server

1. Arbitrary snapshot snap1 is transferred from
upstream server to downstream server

2. The same snapshot snap1 is transferred from
downstream server to the workstation

3. It’s not possible to apply differential snapshot
from upstream server, because no matching

parent subvolume can be found.

Workstation

Figure 4.1. received_uuid inconsistency.

Arne Jansen, previously a Btrfs developer maintains far-progs repository [75],

25

CHAPTER 4. IMPLEMENTATION ISSUES

which contains tools for manipulating Btrfs snapshot streams, this format is also
known as FAR (Filesystem ARchive). The btrfs-receive from far-progs features
two extra flags: -p which disables automatic parent searching and allows user to
specify which subvolume to use as a parent and -d which allows specifying a custom
subvolume name. Disabling parent search makes it possible to detach Btrfs’ UUID
mechanism and customize the differential snapshot logic. In this case care must
be taken of snapshot consistency, applying differential snapshot on incorrect parent
subvolume may cause data corruption or end up with a crash of btrfs receive. The
changes were isolated by the author and submitted to btrfs-progs upstream 1.

Note that current btrfs receive approach does not provide any verification of the
resulting snapshot and the unique identifiers are simply used to look up the par-
ent subvolume. Thus disabling automatic parent search and using the Butterknife
provided logic is not necessarily inferior method.

In fact far-progs repository contains fssum utility which can be used to checksum
a directory tree. It checks both – file contents and attributes, including permissions
and modification times. This information could be for example signed by GPG in
the developer machine and published via butterknife serve to downstream machines
for verification purposes.

4.2 Btrfs receive confinement

As said, Btrfs is an evolving filesystem and there are corner-cases where Btrfs fails
security-wise. For example issuing btrfs subvol list within a chroot exposes subvol-
umes outside the new root filesystem.

For Butterknife usecase other security aspects have to be considered. As of
btrfs-progs version 3.19 the btrfs send emits simply a stream of encoded opcodes
which are intended to be replayed by btrfs receive: create subvolume, snapshot
parent subvolume, create file, mkdir, mknod, mkfifo, symlink, link, unlink, rename,
rmdir, open file, close file, write to file, set/remove extended attributes, truncate
file, chmod, chown 2.

In case of full snapshot system call is issued to create empty subvolume with
specified name and in case of differential snapshot an system call is issued to lo-
cate parent subvolume by UUID and clone it. After the initial opcode traditional
filesystem operations are carried out on the newly created/cloned subvolume.

As can be seen in the unlink opcode implementation on line 456 of cmds-receive.c
3, the path_cat function is used to concatenate path of the subvolume and target
filename. Investigating further reveals that no sanitization is performed on the

1 [PATCH] btrfs-progs: receive explicit parent support http://www.mail-archive.com/
linux-btrfs@vger.kernel.org/msg43329.html

2http://git.kernel.org/cgit/linux/kernel/git/kdave/btrfs-progs.git/tree/
cmds-receive.c?h=v3.19.x#n792

3http://git.kernel.org/cgit/linux/kernel/git/kdave/btrfs-progs.git/tree/
cmds-receive.c?h=v3.19.x#n456

26

http://www.mail-archive.com/linux-btrfs@vger.kernel.org/msg43329.html
http://www.mail-archive.com/linux-btrfs@vger.kernel.org/msg43329.html
http://git.kernel.org/cgit/linux/kernel/git/kdave/btrfs-progs.git/tree/cmds-receive.c?h=v3.19.x#n792
http://git.kernel.org/cgit/linux/kernel/git/kdave/btrfs-progs.git/tree/cmds-receive.c?h=v3.19.x#n792
http://git.kernel.org/cgit/linux/kernel/git/kdave/btrfs-progs.git/tree/cmds-receive.c?h=v3.19.x#n456
http://git.kernel.org/cgit/linux/kernel/git/kdave/btrfs-progs.git/tree/cmds-receive.c?h=v3.19.x#n456

4.3. BOOTLOADER

path 4, leaving receiving end vulnerable to path traversal attacks. Carefully crafted
Btrfs stream could for example delete files of the running operating system rendering
the whole system in unusable state, or even worse substitute for example Puppet
configuration and certificate authority file in the Butterknife persistent subvolume
making it possible for a third party to gain access over the machine.

Several btrfs-progs patches were submitted to improve the security of btrfs

receive. Patch to enforce chroot before parsing the Btrfs stream was accepted up-
stream 5. This patch however confines the btrfs receive process only to the parent
directory of the newly created subvolume, making it possible to attack other sub-
volumes contained in the same directory. The confinement could be improved even
more, for example by parsing the first opcode, performing either subvolume creation
or parent subvolume cloning, then issuing chroot to the subvolume directory and
finally replaying the remaining opcodes. This would, of course make it troublesome
to receive multiple snapshots in the same stream, as it is possible via -e flag of
btrfs send.

4.3 Bootloader

GRand Unified Bootloader (GRUB) is the main bootloader used by Linux-based
operating systems on x86 and PowerPC based machines. Earlier versions of GRUB
supported multi-stage booting process, which meant that GRUB stage1 binary was
embedded in the Master Boot Record (MBR) which loaded stage1.5 embedded
32256 byte area between the MBR and first partition. The stage1.5 contained
filesystem drivers which could address the filesystem contents and boot stage2 from
the /boot/grub of the Linux filesystem. [76]

GRUB2 added support for booting from Btrfs root filesystem in various config-
urations hence in order to boot from Btrfs a GRUB2 installation is required and
older versions of GRUB are not supported. GRUB2 also now supports booting from
a particular subvolume, making it possible to place several root filesystems in same
Btrfs pool. [77]

GRUB2 dropped support for multi-stage booting process, instead it is recom-
mends that the first partition starts at megabyte boundary, leaving more than
500kB room between MBR and first partition which is well enough to accommo-
date feature-rich bootloader such as GRUB with Btrfs support. Windows XP par-
titioning however does not leave enough room to accommodate GRUB2 with Btrfs
support, resulting in obscure errors. As a workaround ms-sys [78] utility can be
used to restore Windows XP master boot record and install GRUB in the volume
instead. Subsequently fdisk can be used to set that volume active.

4http://git.kernel.org/cgit/linux/kernel/git/kdave/btrfs-progs.git/tree/
send-utils.c?h=v3.19.x#n711

5 [PATCH] btrfs-progs: enforce chroot for btrfs receive https://www.mail-archive.com/
linux-btrfs@vger.kernel.org/msg43019.html

27

http://git.kernel.org/cgit/linux/kernel/git/kdave/btrfs-progs.git/tree/send-utils.c?h=v3.19.x#n711
http://git.kernel.org/cgit/linux/kernel/git/kdave/btrfs-progs.git/tree/send-utils.c?h=v3.19.x#n711
https://www.mail-archive.com/linux-btrfs@vger.kernel.org/msg43019.html
https://www.mail-archive.com/linux-btrfs@vger.kernel.org/msg43019.html

CHAPTER 4. IMPLEMENTATION ISSUES

GUID Partition Table (GPT) was introduced to overcome limitations of Master
Boot Record, such as maximum addressable space of 2TB [79]. Unified Extensible
Firmware Interface (UEFI) was originally introduced by Intel and it mandates the
use of GPT [80]. Most modern PC-s and Macs have substituted legacy PC BIOS
with UEFI. In order to boot GRUB2 on UEFI the GRUB binary has to be either
placed in the FAT32-formatted EFI partition with partition type ef00 and proper
EFI firmware entry has to be created using efibootmgr [81]. If the machine does
not support true UEFI or there is another reason to use legacy boot methods on
2TB+ disks there is an option to make use of BIOS boot partition with partition
type ef02 which can be used to embed GRUB2 in case of a GPT partition table.

Current implementation of Butterknife relies on legacy MBR partitioning scheme,
but the groundwork has been laid to support GPT and hybrid partitioning schemes.

28

Chapter 5

Experimental Evaluation

In order to show that our basic approach in Butterknife is practical and and ex-
tendible for large-scale applications such as unrolling updates for workstations, net-
books, smartphones, automotive applications or other embedded devices an exper-
imental evaluation was carried out on the prototype.

5.1 Performance

To evaluate performance of Butterknife an arbitrary production snapshot was cho-
sen. The @template:com.koodur.butterknife.EduWorkstation:x86:snap83 snapshot was
based on 32-bit Ubuntu 14.04 and it included MATE 1.8.2 desktop environment,
Mozilla Firefox 37 web browser, LibreOffice 4.4.2 office suite, VLC 2.1.6 multimedia
player, Skype 4.3.0 voice over IP solution, Inkscape 0.48.4 scalable vector graphics
editor, Gimp 2.8.10 photo editor and many tweaks to make the system usable in
Estonian schools.

The throughput of the server-client channel depends on several factors: raw
snapshot bitstream size, network bandwidth; compression algorithm; parallelization
of compression; encryption; storage medium.

The disk usage of the subvolume was approximately 6.20GiB due to fragmen-
tation and holes in sparse files. Issuing btrfs send on the subvolume results in
approximately 5.75GiB bitstream. Compressing the bitstream yields different re-
sults depending on the compression algorithm as shown in Figure 5.1 ranging from
3.21GB using lz4 to 1.87GB using xz.

Note that streaming compression is necessary for scenarios where differential
snapshots are not stored as static files or where the full snapshots are directly served
from btrfs send which is also the default case for Butterknife. Direct streaming with
btrfs send makes it possible to take full advantage of the copy-on-write filesystem
and snapshots while keeping disk usage on the server side minimal.

Various compression tools were benchmarked with the raw Btrfs stream stored in
RAM. The time shown in Figure 5.2 was measured on Intel(R) Core(TM) i7-4770R
quad-core processor clocked at 3.20GHz with 2x 8GB DDR3 memory modules run-

29

CHAPTER 5. EXPERIMENTAL EVALUATION

0 1 2 3 4 5 6

raw

lz4 -1

lz4 -9

gzip

bzip2

xz

5.75

3.21

2.77

2.51

2.32

1.87

Gigabytes

Figure 5.1. Compressed Btrfs bitstream disk usage.

0 200 400 600 800 1,0001,2001,4001,6001,8002,0002,200

pigz

gzip

pxz

bzip2

xz

46

206

494

555

2,150

Seconds

Figure 5.2. Btrfs stream compression time on Intel i7-4770R.

ning Ubuntu 14.04 LTS and 3.16.0 kernel. The source and destination directories
were mounted as tmpfs on the same machine to exclude the storage and network
effects on the test. In addition to single-threaded gzip the parallel version of gzip

algorithm, pigz is included in the results as well as pxz, the parallel version of xz

. Similar tests were performed on QNAP TS-451 NAS-box equipped with Intel
Celeron J1800 dual-core processor and 4GB DDR3 memory module.

As root filesystem contains numerous small files significant slowdown was im-
minent if spinning disk was used on the either side. An average throughput of
37MB/s was observed while running btrfs send from or btrfs receive to Western
Digital WD40EFRX without using encryption or compression over plain HTTP.
Using arbitrary SSD-s on both ends averaged around 100MB/s due to gigabit eth-

30

5.2. INTEGRITY

0 20 40 60 80

btrfs send on SSDMCEAW240A4

btrfs send on SDSSDHP256G

btrfs send on WD40EFRX

btrfs send on WD10JFCX

btrfs receive on WD10JFCX

btrfs receive on Samsung M9T

82.7

80.6

58

47

39.5

27

Megabytes per second

Figure 5.3. Average throughput for various storage devices.

ernet used for benchmarking. SSD-s however face other issues, the block remapping
mechanism used by SSD-s for wear levelling gradually degrades the write perfor-
mance of SSD if fstrim [82] is not regularly used to release unused blocks.

The benchmark results for Intel 240G mSATA SSD (SSDMCEAW240A4), San-
disk 256G SATA SSD (SDSSDHP256G), Western Digital Red 4TB SATA 3.5" HDD
(WD40EFRX), Western Digital Red 1TB SATA 2.5" HDD (WD10JFCX) and Sam-
sung M9T 2TB SATA 2.5" HDD are shown in Figure 5.3. The btrfs receive is gen-
erally slightly slower compared to btrfs send for the same device, presumably due
to read-ahead caching mechanism of the block device.

The empiric observations carried out with the snap83 of the root filesystem as
shown in Figure 5.4 pointed out the bottlenecks that previously went unnoticed. The
most important conclusion that can be drawn from the results is that enabling com-
pression may actually hamper the deployment speed. Single-threaded gzip might
make sense for 100MBps infrastructure, but going beyond gigabit threshold the law
of diminishing returns can be observed. Additionally the hard disks with spinning
platters impose limitations caused by prolonged seek times. Even with solid-state
disks effects of normal filesystem fragmentation can be observed. The compression
aspect is notable because Estonian Educational Network has scheduled infrastruc-
ture upgrades for 2016 and their plan is to supply gigabit link to every educational
institution of Estonia.

5.2 Integrity

Btrfs is relatively new filesystem and even though on-disk format of Btrfs is not
expected to change any more the kernel drivers and userspace utilities are still being
actively developed. Due to this there are certain corner-cases where Btrfs may

31

CHAPTER 5. EXPERIMENTAL EVALUATION

0 20 40 60 80 100 120

pigz on i7-4770R

Gigabit Ethernet

btrfs send on SSDMCEAW240A4

btrfs receive on WD10JFCX

pigz on Celeron-J1800

btrfs receive on Samsung M9T

gzip on Celeron-J1800

Fast Ethernet

125

100

82.7

39.5

29.9

27

16.8

10

Megabytes per second

Figure 5.4. Identified bottlenecks.

fail horribly, for example 3.14 and earlier kernel had often issues with filesystem
corruption and data loss [83], especially when filesystem was running out of free
space. The author has not faced any serious issues with 3.16 kernel, but for example
btrfs-progs 3.16 have bugs which prevent it’s use in case of nested subvolumes.
Ubuntu also has upgraded from 3.14 to 3.16 in Ubuntu 14.04, their last Long Term
Support release. Linux 3.18 has also proven to be reliable when in comes to Btrfs,
but for example Linux 3.19 faces a deadlock during an attempt to mount dirty Btrfs
filesystem [84].

5.3 Usability
Butterknife omits the overhead and complexity associated with traditional ISO
remastering systems such as remastersys [52] making it possible for virtually anyone
to roll a customized distribution for particular purpose. Butterknife also makes it
easier to bundle proprietary components into the template, thus setting up APT
repository to distribute packages for the targets is not necessary. Even though
online updating is not implemented yet, upgrading systems via provisioning tool is
already convenient. The persistent subvolumes make it trivial to switch from 32-bit
(x86) root filesystem to 64-bit (x86-64) and vice versa.

Butterknife project users, fellow devops in this case were positively surprised by
the streamlined deployment process of Butterknife. Butterknife service users, local
IT-support in this case were generally satisfied with the delivery. Reinstallation
of classroom or conversion to dual-boot, was not any more necessarily a task that
had to be strictly scheduled for school holidays. Butterknife-based upgrade from

32

5.3. USABILITY

Ubuntu 12.04 to Ubuntu 14.04 was performed within first half of a day at Tallinn
Mahtra Primary School. Butterknife was also successfully used at Tallinna Human-
itaargümnaasium and Tallinna 32. Keskkool to convert Windows 7 machines to
dual-boot.

33

Chapter 6

Conclusions and Future Work

6.1 Conclusions
The Butterknife addresses current issues of Linux-based operating system deploy-
ment: time-consumption, complexity, reliability and customizability. The Butterknife
implementation as of May 2015 is ready for preparing Linux-based operating system
templates and deployment of the templates. Butterknife was used on 2nd of May to
deploy machines as part of Vabavaratalgud [85] effort to convert unsupported Win-
dows XP machines to modern open-source operating system. Local Butterknife
instance was used to serve templates in local LAN segment drastically reducing the
deployment time of the template.

The Butterknife implementation satisfies, exceeds to be precise, the require-
ments of educational institutions. It significantly decreases local IT-support work,
by reducing workstation bootstrap down to 15 minutes even for a regular sized
classroom. With the addition of push/pull capabilities Butterknife is also becoming
attractive tool for devops who need to move around Linux containers.

Source code of the solution was published at GitHub. 1 The instructions for
setting up similar infrastructure are provided at GitHub and are constantly being
improved.

6.2 Adding verification support
Currently there is no method for verifying the integrity of received snapshot –
the transport channel security (TLS, SSH) is the only method against man-in-the-
middle attacks. There are plans to make use of fssum to generate manifest of
the snapshot directory tree and sign the file with GPG on the developer machine.
Estonian ID-card or any other hardware crypto token can be used to add extra layer
of security.

An extra command verify for butterknife utility will be added to generate man-
ifest on the receiving end and to compare it’s contents agains the signed manifest.

1GitHub: Butterknife provisioning suite https://github.com/laurivosandi/butterknife/

35

https://github.com/laurivosandi/butterknife/

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

The manifest comparison time can be reduced by parsing verbose output of btrfs

receive to determine modified files in case of differential snapshots. Additionally
Butterknife has to be modified to incorporate signature querying method over the
transport layer.

6.3 Adding online snapshot retrieval
Currently the machine has to be temporarily booted to provisioning image in order
to deploy incremental snapshots. The Btrfs allows retrieving snapshots while the
filesystem is mounted and the templates can be pushed/pulled already now, however
online deployment of the templates is not yet implemented.

Additionally facilities to notify user about availability of new templates, confirm-
ing an upgrade and scheduling a reboot to new deployment have to be implemented.
There are plans to make use of DBus and Python to build a service for querying
remote Butterknife server about availability of upgrades, downloading the updates
and deploying the updates – in fact this could be implemented as part of Butterknife
command-line utility.

Another DBus service written in Python can be used to implement tray icon
service making use of graphical user interface libraries such as GTK or Qt. The tray
applet can then be used to present computer user information about the updates
and telling the computer user to reboot into the new version of root filesystem.

Note that for certain usecases, where there is organization-wide enforced policy
to unroll security updates as soon as possible, the tray applet is simply used to
notify user about enforced reboot and the user might not be given any opportunity
to schedule an update.

6.4 Adding systemd-nspawn support
Currently LXC is the only supported template preparation method. Debian 8 co-
denamed jessie was released in the April of 2015 with a new default init system
systemd [86]. Ubuntu 15.04 released few days earlier also ships with systemd by
default [87]. As systemd-nspawn and machinectl are bundled with systemd, it makes
sense to take advantage of the ecosystem and provide even better integration with
Butterknife – For example implementing butterknife enter command for launching
and entering an systemd-nspawn container on-demand becomes trivial.

6.5 Improving scalability
Currently HTTP(S), SSH and multicast are available for transport and even though
BitTorrent was discussed in the Section 3 – Butterknife Design and Architecture,
no implementation attempts were made. To further improve Butterknife scalability
integration of BitTorrent, BitTorrent Live or similar technology would be necessary.
Identifying production-ready approach requires more experimentation though.

36

6.6. ALTERNATIVE FILESYSTEM LAYOUTS

6.6 Alternative filesystem layouts
Lennart Poettering, a controversial Free Software developer has outlined a method
of building Linux based systems using Btrfs snapshots [61]. The new layout splits
high level components of software (operating system, desktop environment, frame-
works, office suit) into separate subvolumes which can be upgraded independently.
This requires significant effort from operating system distributors and software
suite vendors, but promises significant save of effort on testing software on Linux
based systems. Most notably a snapshot naming scheme is proposed in the article,
which would permit mixing operating system files with different sets of libraries,
frameworks and applications. Poettering’s naming scheme was used to derive the
Butterknife naming scheme.

37

Bibliography

[1] “Ubuntu pre-installed.” [Online]. Available: https://help.ubuntu.com/
community/UbuntuPre-installed

[2] L. Torvalds, “Linux: a portable operating system,” Master’s thesis, University
of Helsinki, January 1997. [Online]. Available: http://mirror.linux.org.au/
pub/linux/kernel/people/torvalds/thesis/torvalds97.pdf

[3] R. M. Stallman and J. Gay, “Free software, free society: Selected essays
of richard m. stallman,” 2002. [Online]. Available: https://www.gnu.org/
philosophy/fsfs/rms-essays.pdf

[4] J. Ong, “Android reached record 85% smartphone market share in q2 2014,”
Jul. 2014. [Online]. Available: http://thenextweb.com/google/2014/07/31/
android-reached-record-85-smartphone-market-share-q2-2014-report/

[5] R. Myslewski, “Windows hits the skids, mac os x on the rise,”
Mar. 2014. [Online]. Available: http://www.theregister.co.uk/2014/03/15/
windows_desktop_and_laptop_market_share_dips_below_90_per_cent/

[6] “Puppet labs: It automation software for system administrators.” [Online].
Available: http://puppetlabs.com/

[7] A. Tsalolikhin, “The state of open source system automation,” Linux Magazine,
Aug. 2010. [Online]. Available: http://www.linux-mag.com/id/7841/

[8] “Introduction to salt.” [Online]. Available: http://docs.saltstack.com/en/
latest/topics/

[9] “The raet transport.” [Online]. Available: http://docs.saltstack.com/en/latest/
topics/transports/raet/index.html

[10] “Fai - fully automatic installation.” [Online]. Available: http://fai-project.org/

[11] “Clonezilla.” [Online]. Available: http://clonezilla.org/

[12] “Partclone.” [Online]. Available: http://partclone.org/

[13] “Symantec ghost solution suite.” [Online]. Available: http://www.symantec.
com/ghost-solution-suite/

39

https://help.ubuntu.com/community/UbuntuPre-installed
https://help.ubuntu.com/community/UbuntuPre-installed
http://mirror.linux.org.au/pub/linux/kernel/people/torvalds/thesis/torvalds97.pdf
http://mirror.linux.org.au/pub/linux/kernel/people/torvalds/thesis/torvalds97.pdf
https://www.gnu.org/philosophy/fsfs/rms-essays.pdf
https://www.gnu.org/philosophy/fsfs/rms-essays.pdf
http://thenextweb.com/google/2014/07/31/android-reached-record-85-smartphone-market-share-q2-2014-report/
http://thenextweb.com/google/2014/07/31/android-reached-record-85-smartphone-market-share-q2-2014-report/
http://www.theregister.co.uk/2014/03/15/windows_desktop_and_laptop_market_share_dips_below_90_per_cent/
http://www.theregister.co.uk/2014/03/15/windows_desktop_and_laptop_market_share_dips_below_90_per_cent/
http://puppetlabs.com/
http://www.linux-mag.com/id/7841/
http://docs.saltstack.com/en/latest/topics/
http://docs.saltstack.com/en/latest/topics/
http://docs.saltstack.com/en/latest/topics/transports/raet/index.html
http://docs.saltstack.com/en/latest/topics/transports/raet/index.html
http://fai-project.org/
http://clonezilla.org/
http://partclone.org/
http://www.symantec.com/ghost-solution-suite/
http://www.symantec.com/ghost-solution-suite/

BIBLIOGRAPHY

[14] “Acronis true image.” [Online]. Available: http://www.acronis.com/en-eu/
personal/pc-backup/

[15] “Fsarchiver: Filesystem archiver for linux.” [Online]. Available: http:
//www.fsarchiver.org/

[16] M. Riondato, “Freebsd handbook: Chapter 15. jails.” [Online]. Available:
https://www.freebsd.org/doc/en/books/handbook/jails.html

[17] “Linux containers.” [Online]. Available: https://linuxcontainers.org/

[18] J. Edge, “Creating containers with systemd-nspawn,” LWN.net, Nov. 2013.
[Online]. Available: https://lwn.net/Articles/572957/

[19] N. McAllister, “Coreos’s docker-rival rocket: We drill into new container
contender.” [Online]. Available: http://www.theregister.co.uk/2014/12/03/
coreos_rocket_deep_dive/

[20] “Coreos.” [Online]. Available: https://coreos.com/

[21] “Snappy ubuntu.” [Online]. Available: http://developer.ubuntu.com/en/
snappy/

[22] N. Brown, “Overlay filesystem,” Oct. 2014. [Online]. Avail-
able: https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/
Documentation/filesystems/overlayfs.txt

[23] J. Corbet, “Fedora and lvm,” Oct. 2012. [Online]. Available: http:
//lwn.net/Articles/522073/

[24] O. Rodeh, J. Bacik, and C. Mason, “Btrfs: The linux b-tree filesystem,” 2012.
[Online]. Available: http://www.cse.iitb.ac.in/~johncf/papers/btrfs.pdf

[25] C. Mason, “The btrfs filesystem,” Sep. 2007. [Online]. Available: https:
//oss.oracle.com/projects/btrfs/dist/documentation/btrfs-ukuug.pdf

[26] “Btrfs wiki: Production users.” [Online]. Available: https://btrfs.wiki.kernel.
org/index.php?title=Production_Users&oldid=29151

[27] C. Mason, “linux-btrfs mailinglist: Leaving fusion-io,” Nov. 2013. [Online].
Available: http://article.gmane.org/gmane.comp.file-systems.btrfs/30420

[28] ——, “Btrfs for 3.19-rc,” Dec. 2014. [Online]. Available: http://lkml.iu.edu/
hypermail/linux/kernel/1412.1/03583.html

[29] “Debian wiki: Btrfs,” Sep. 2013. [Online]. Available: https://wiki.debian.org/
Btrfs

[30] “apt-btrfs-snapshot.” [Online]. Available: https://launchpad.net/
apt-btrfs-snapshot

40

http://www.acronis.com/en-eu/personal/pc-backup/
http://www.acronis.com/en-eu/personal/pc-backup/
http://www.fsarchiver.org/
http://www.fsarchiver.org/
https://www.freebsd.org/doc/en/books/handbook/jails.html
https://linuxcontainers.org/
https://lwn.net/Articles/572957/
http://www.theregister.co.uk/2014/12/03/coreos_rocket_deep_dive/
http://www.theregister.co.uk/2014/12/03/coreos_rocket_deep_dive/
https://coreos.com/
http://developer.ubuntu.com/en/snappy/
http://developer.ubuntu.com/en/snappy/
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/filesystems/overlayfs.txt
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/filesystems/overlayfs.txt
http://lwn.net/Articles/522073/
http://lwn.net/Articles/522073/
http://www.cse.iitb.ac.in/~johncf/papers/btrfs.pdf
https://oss.oracle.com/projects/btrfs/dist/documentation/btrfs-ukuug.pdf
https://oss.oracle.com/projects/btrfs/dist/documentation/btrfs-ukuug.pdf
https://btrfs.wiki.kernel.org/index.php?title=Production_Users&oldid=29151
https://btrfs.wiki.kernel.org/index.php?title=Production_Users&oldid=29151
http://article.gmane.org/gmane.comp.file-systems.btrfs/30420
http://lkml.iu.edu/hypermail/linux/kernel/1412.1/03583.html
http://lkml.iu.edu/hypermail/linux/kernel/1412.1/03583.html
https://wiki.debian.org/Btrfs
https://wiki.debian.org/Btrfs
https://launchpad.net/apt-btrfs-snapshot
https://launchpad.net/apt-btrfs-snapshot

[31] “yum-fs-snapshot.” [Online]. Available: http://man7.org/linux/man-pages/
man1/yum-fs-snapshot.1.html

[32] M. Chiappetta, “Turn old pc hardware into a home server with freenas,”
Jun. 2014. [Online]. Available: http://www.pcworld.com/article/2243748/
turn-old-pc-hardware-into-a-killer-home-server-with-freenas.html

[33] J. Corbet, “Rockstor - a btrfs-based nas distribution,” Jan. 2015. [Online].
Available: http://lwn.net/Articles/629908/

[34] ——, “Openmediavault: a distribution for nas boxes,” Jan. 2015. [Online].
Available: http://lwn.net/Articles/628284/

[35] “Free software foundation: More background about the cisco case.” [Online].
Available: http://www.fsf.org/licensing/2008-12-cisco-complaint

[36] “www.dd-wrt.com - unleash your router.” [Online]. Available: http:
//www.dd-wrt.com/

[37] “polarcloud.com - tomato firmware.” [Online]. Available: http://www.
polarcloud.com/tomato

[38] “Openwrt - wireless freedom.” [Online]. Available: https://openwrt.org/

[39] “Openwrt: Table of hardware.” [Online]. Available: http://wiki.openwrt.org/
toh/

[40] “Openwrt wiki: The openwrt flash layout.” [Online]. Available: http:
//wiki.openwrt.org/doc/techref/flash.layout

[41] “squashfs - a compressed filesystem for linux.” [Online]. Available: http:
//sourceforge.net/projects/squashfs/

[42] G. Ben-Yossef, “Building murphy-compatible embedded linux systems,” Nov.
2014. [Online]. Available: https://blog.feabhas.com/wp-content/uploads/
2014/11/Writing-a-Linux-Update-Mechanism.pdf

[43] A. Vandecapelle, “Safe upgrade of embedded systems,” 2012. [On-
line]. Available: https://archive.fosdem.org/2012/schedule/event/699/130_
Presentation_Safe-Upgrade.pdf

[44] H. Raja, “What is clockworkmod recovery and how to use it on an-
droid,” Mar. 2011. [Online]. Available: http://www.addictivetips.com/mobile/
what-is-clockworkmod-recovery-and-how-to-use-it-on-android-complete-guide/

[45] “Teamwin - twrp.” [Online]. Available: http://teamw.in/project/twrp2

[46] “Cyanogenmod wiki: Fastboot intro.” [Online]. Available: http://wiki.
cyanogenmod.org/w/Doc:_fastboot_intro

41

http://man7.org/linux/man-pages/man1/yum-fs-snapshot.1.html
http://man7.org/linux/man-pages/man1/yum-fs-snapshot.1.html
http://www.pcworld.com/article/2243748/turn-old-pc-hardware-into-a-killer-home-server-with-freenas.html
http://www.pcworld.com/article/2243748/turn-old-pc-hardware-into-a-killer-home-server-with-freenas.html
http://lwn.net/Articles/629908/
http://lwn.net/Articles/628284/
http://www.fsf.org/licensing/2008-12-cisco-complaint
http://www.dd-wrt.com/
http://www.dd-wrt.com/
http://www.polarcloud.com/tomato
http://www.polarcloud.com/tomato
https://openwrt.org/
http://wiki.openwrt.org/toh/
http://wiki.openwrt.org/toh/
http://wiki.openwrt.org/doc/techref/flash.layout
http://wiki.openwrt.org/doc/techref/flash.layout
http://sourceforge.net/projects/squashfs/
http://sourceforge.net/projects/squashfs/
https://blog.feabhas.com/wp-content/uploads/2014/11/Writing-a-Linux-Update-Mechanism.pdf
https://blog.feabhas.com/wp-content/uploads/2014/11/Writing-a-Linux-Update-Mechanism.pdf
https://archive.fosdem.org/2012/schedule/event/699/130_Presentation_Safe-Upgrade.pdf
https://archive.fosdem.org/2012/schedule/event/699/130_Presentation_Safe-Upgrade.pdf
http://www.addictivetips.com/mobile/what-is-clockworkmod-recovery-and-how-to-use-it-on-android-complete-guide/
http://www.addictivetips.com/mobile/what-is-clockworkmod-recovery-and-how-to-use-it-on-android-complete-guide/
http://teamw.in/project/twrp2
http://wiki.cyanogenmod.org/w/Doc:_fastboot_intro
http://wiki.cyanogenmod.org/w/Doc:_fastboot_intro

BIBLIOGRAPHY

[47] O. Foundation, “Welcome to glance’s documentation,” February 2015.
[Online]. Available: http://docs.openstack.org/developer/glance/

[48] A. Messerli, “Launchpad blueprints: Glance bittorrent delivery,” Aug.
2011. [Online]. Available: https://blueprints.launchpad.net/glance/+spec/
glance-bittorrent-delivery

[49] O. Foundation, “Disk and container formats,” February 2015. [Online].
Available: http://docs.openstack.org/developer/glance/formats.html

[50] D. Karlson, “Ova’s and ovf’s: What are they, and what’s the difference?”
Nov. 2010. [Online]. Available: https://damiankarlson.com/2010/11/01/
ovas-and-ovfs-what-are-they-and-whats-the-difference/

[51] “Estobuntu - mugav ja ilus eestikeelne linux.” [Online]. Available: http:
//www.estobuntu.org/

[52] “Livecd customization.” [Online]. Available: https://help.ubuntu.com/
community/LiveCDCustomization

[53] “What is vanilla?” [Online]. Available: http://whatis.techtarget.com/
definition/vanilla

[54] “Ask ubuntu: updates - 14.04 lts apt-get segfault,” Oct. 2014. [Online].
Available: http://askubuntu.com/questions/532200/14-04-lts-apt-get-segfault

[55] “Upgrading to libreoffice 4.3,” Oct. 2014. [Online].
Available: https://www.linuxquestions.org/questions/showthread.php?s=
e0e2f7689f847a56e8cee94a0cafd6bd&p=5216367#post5216367

[56] S. Kemp, “Avoiding slow package updates with package diffs,” Sep.
2006. [Online]. Available: https://www.debian-administration.org/article/
439/Avoiding_slow_package_updates_with_package_diffs

[57] “Fedora project wiki: Features/presto,” May 2009. [Online]. Available:
http://fedoraproject.org/wiki/Features/Presto

[58] T. Nakanishi, H.-H. Shih, K. Hisazumi, and A. Fukuda, “A software update
scheme by airwaves for automotive equipment,” 2013.

[59] “Falcon framework.” [Online]. Available: http://falconframework.org/

[60] T. Parkin, “Tools and distributions for embedded linux development,” Apr.
2010. [Online]. Available: http://lwn.net/Articles/384713/

[61] L. Poettering, “Revisiting how we put together linux sys-
tems,” Sep. 2014. [Online]. Available: http://0pointer.net/blog/
revisiting-how-we-put-together-linux-systems.html

42

http://docs.openstack.org/developer/glance/
https://blueprints.launchpad.net/glance/+spec/glance-bittorrent-delivery
https://blueprints.launchpad.net/glance/+spec/glance-bittorrent-delivery
http://docs.openstack.org/developer/glance/formats.html
https://damiankarlson.com/2010/11/01/ovas-and-ovfs-what-are-they-and-whats-the-difference/
https://damiankarlson.com/2010/11/01/ovas-and-ovfs-what-are-they-and-whats-the-difference/
http://www.estobuntu.org/
http://www.estobuntu.org/
https://help.ubuntu.com/community/LiveCDCustomization
https://help.ubuntu.com/community/LiveCDCustomization
http://whatis.techtarget.com/definition/vanilla
http://whatis.techtarget.com/definition/vanilla
http://askubuntu.com/questions/532200/14-04-lts-apt-get-segfault
https://www.linuxquestions.org/questions/showthread.php?s=e0e2f7689f847a56e8cee94a0cafd6bd&p=5216367#post5216367
https://www.linuxquestions.org/questions/showthread.php?s=e0e2f7689f847a56e8cee94a0cafd6bd&p=5216367#post5216367
https://www.debian-administration.org/article/439/Avoiding_slow_package_updates_with_package_diffs
https://www.debian-administration.org/article/439/Avoiding_slow_package_updates_with_package_diffs
http://fedoraproject.org/wiki/Features/Presto
http://falconframework.org/
http://lwn.net/Articles/384713/
http://0pointer.net/blog/revisiting-how-we-put-together-linux-systems.html
http://0pointer.net/blog/revisiting-how-we-put-together-linux-systems.html

[62] B. Cohen, “Incentives build robustness in bittorrent,” May 2003. [Online].
Available: bittorrent.org/bittorrentecon.pdf

[63] “Bittorrent: Bep 0003,” 1900. [Online]. Available: http://www.bittorrent.org/
beps/bep_0003.html#info-dictionary

[64] A. Norberg, “libtorrent reference: Create torrents.” [Online]. Available:
http://www.libtorrent.org/reference-Create_Torrents.html#id5

[65] “Vuze wiki: Torrent piece size,” Mar. 2010. [Online]. Available: https://wiki.
vuze.com/mediawiki/index.php?title=Torrent_Piece_Size&oldid=8064

[66] “Bitcomet wiki: Align file to piece boundary,” May 2010. [Online]. Available:
http://wiki.bitcomet.com/align_file_to_piece_boundary

[67] “Bittorrent wishlist,” Apr. 2014. [Online]. Available: https://wiki.theory.org/
index.php?title=BitTorrentWishList&oldid=2644

[68] “More checksumming algorithms.” [Online]. Available: https://btrfs.wiki.
kernel.org/index.php/Project_ideas#More_checksumming_algorithms

[69] “What checksum function does btrfs use?” [Online].
Available: https://btrfs.wiki.kernel.org/index.php/FAQ#What_checksum_
function_does_Btrfs_use.3F

[70] “mkfs: change default metadata blocksize to 16kb.” [Online].
Available: https://git.kernel.org/cgit/linux/kernel/git/mason/btrfs-progs.git/
commit/?id=c652e4efb8e2dd76ef1627d8cd649c6af5905902

[71] A. Grünbacher, “Posix access control lists on linux,” Apr. 2003. [Online].
Available: http://users.suse.com/~agruen/acl/linux-acls/online/

[72] H. Shirwadkar, “Btrfs content storage mode,” Mar.
2015. [Online]. Available: http://harshadjs.github.io/2015/03/27/
Fedora-BTRFS-Content-Storage-Mode/

[73] “Content based storage.” [Online]. Available: https://btrfs.wiki.kernel.org/
index.php/Project_ideas#Content_based_storage

[74] E. V. der Sar, “Bittorrent ’s bram cohen patents revolutionary live
streaming protocol,” Mar. 2013. [Online]. Available: http://torrentfreak.com/
bittorrent-s-bram-cohen-patents-revolutionary-live-streaming-protocol-130326/

[75] A. Jansen, “Index of /pub//scm/linux/kernel/git/arne/far-progs.git,” Sep.
2013. [Online]. Available: https://www.kernel.org/pub//scm/linux/kernel/
git/arne/far-progs.git

[76] H. Nordström, “Bug 748071 - grub2 fails to install in the btrfs bootloader
area,” Oct. 2011. [Online]. Available: https://bugzilla.redhat.com/show_bug.
cgi?id=748071

43

bittorrent.org/bittorrentecon.pdf
http://www.bittorrent.org/beps/bep_0003.html#info-dictionary
http://www.bittorrent.org/beps/bep_0003.html#info-dictionary
http://www.libtorrent.org/reference-Create_Torrents.html#id5
https://wiki.vuze.com/mediawiki/index.php?title=Torrent_Piece_Size&oldid=8064
https://wiki.vuze.com/mediawiki/index.php?title=Torrent_Piece_Size&oldid=8064
http://wiki.bitcomet.com/align_file_to_piece_boundary
https://wiki.theory.org/index.php?title=BitTorrentWishList&oldid=2644
https://wiki.theory.org/index.php?title=BitTorrentWishList&oldid=2644
https://btrfs.wiki.kernel.org/index.php/Project_ideas#More_checksumming_algorithms
https://btrfs.wiki.kernel.org/index.php/Project_ideas#More_checksumming_algorithms
https://btrfs.wiki.kernel.org/index.php/FAQ#What_checksum_function_does_Btrfs_use.3F
https://btrfs.wiki.kernel.org/index.php/FAQ#What_checksum_function_does_Btrfs_use.3F
https://git.kernel.org/cgit/linux/kernel/git/mason/btrfs-progs.git/commit/?id=c652e4efb8e2dd76ef1627d8cd649c6af5905902
https://git.kernel.org/cgit/linux/kernel/git/mason/btrfs-progs.git/commit/?id=c652e4efb8e2dd76ef1627d8cd649c6af5905902
http://users.suse.com/~agruen/acl/linux-acls/online/
http://harshadjs.github.io/2015/03/27/Fedora-BTRFS-Content-Storage-Mode/
http://harshadjs.github.io/2015/03/27/Fedora-BTRFS-Content-Storage-Mode/
https://btrfs.wiki.kernel.org/index.php/Project_ideas#Content_based_storage
https://btrfs.wiki.kernel.org/index.php/Project_ideas#Content_based_storage
http://torrentfreak.com/bittorrent-s-bram-cohen-patents-revolutionary-live-streaming-protocol-130326/
http://torrentfreak.com/bittorrent-s-bram-cohen-patents-revolutionary-live-streaming-protocol-130326/
https://www.kernel.org/pub//scm/linux/kernel/git/arne/far-progs.git
https://www.kernel.org/pub//scm/linux/kernel/git/arne/far-progs.git
https://bugzilla.redhat.com/show_bug.cgi?id=748071
https://bugzilla.redhat.com/show_bug.cgi?id=748071

BIBLIOGRAPHY

[77] “Btrfs wiki: Does grub support btrfs.” [Online]. Avail-
able: https://btrfs.wiki.kernel.org/index.php?title=FAQ&oldid=29348#
Does_grub_support_btrfs.3F

[78] “ms-sys.” [Online]. Available: http://ms-sys.sourceforge.net/

[79] B. Desmond, “The difference between booting mbr and gpt with grub,”
Oct. 2012. [Online]. Available: http://www.anchor.com.au/blog/2012/10/
the-difference-between-booting-mbr-and-gpt-with-grub/

[80] “The unified efi specification defines an interface between an
operating system and platform firmware.” [Online]. Available:
http://www.intel.com/content/www/us/en/architecture-and-technology/
unified-extensible-firmware-interface/efi-specifications-general-technology.
html

[81] “Efi boot manager.” [Online]. Available: http://linux.dell.com/files/
efibootmgr/efibootmgr-0.5.4/efibootmgr.txt

[82] “fstrim - discard unused blocks on a mounted filesystem.” [Online]. Available:
http://man7.org/linux/man-pages/man8/fstrim.8.html

[83] R. Coker, “3.14.2 debian kernel btrfs corruption after balance,” May 2014.
[Online]. Available: http://www.spinics.net/lists/linux-btrfs/msg34221.html

[84] “Current stable kernels (< 3.19.4) may fail to mount btrfs and deadlock
on boot,” Apr. 2015. [Online]. Available: http://www.reddit.com/r/linux/
comments/31s042/current_stable_kernels_3194_may_fail_to_mount/

[85] “Vabavaratalgud 2015.” [Online]. Available: http://www.teemeara.ee/uudised/
meediakajastused/digi-vabavaratalgud-2015

[86] P. Wise, “Debian 8 ’jessie’ released,” Apr. 2015. [Online]. Available:
http://lwn.net/Articles/641875/

[87] A. Conrad, “Ubuntu 15.04 (vivid vervet) released,” Apr. 2015. [Online].
Available: https://lists.ubuntu.com/archives/ubuntu-announce/2015-April/
000195.html

44

https://btrfs.wiki.kernel.org/index.php?title=FAQ&oldid=29348#Does_grub_support_btrfs.3F
https://btrfs.wiki.kernel.org/index.php?title=FAQ&oldid=29348#Does_grub_support_btrfs.3F
http://ms-sys.sourceforge.net/
http://www.anchor.com.au/blog/2012/10/the-difference-between-booting-mbr-and-gpt-with-grub/
http://www.anchor.com.au/blog/2012/10/the-difference-between-booting-mbr-and-gpt-with-grub/
http://www.intel.com/content/www/us/en/architecture-and-technology/unified-extensible-firmware-interface/efi-specifications-general-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/unified-extensible-firmware-interface/efi-specifications-general-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/unified-extensible-firmware-interface/efi-specifications-general-technology.html
http://linux.dell.com/files/efibootmgr/efibootmgr-0.5.4/efibootmgr.txt
http://linux.dell.com/files/efibootmgr/efibootmgr-0.5.4/efibootmgr.txt
http://man7.org/linux/man-pages/man8/fstrim.8.html
http://www.spinics.net/lists/linux-btrfs/msg34221.html
http://www.reddit.com/r/linux/comments/31s042/current_stable_kernels_3194_may_fail_to_mount/
http://www.reddit.com/r/linux/comments/31s042/current_stable_kernels_3194_may_fail_to_mount/
http://www.teemeara.ee/uudised/meediakajastused/digi-vabavaratalgud-2015
http://www.teemeara.ee/uudised/meediakajastused/digi-vabavaratalgud-2015
http://lwn.net/Articles/641875/
https://lists.ubuntu.com/archives/ubuntu-announce/2015-April/000195.html
https://lists.ubuntu.com/archives/ubuntu-announce/2015-April/000195.html

45

Acronyms

API application programming interface.
9, 18

Btrfs B-tree file system. 1–4, 6, 7, 15–
18, 20–23, 25–27, 29, 31, 32, 36, 37

CIFS Common Internet Filesystem. 7

CRC-32C Castagnoli variation of CRC-
32. 22

Ext4 Fourth Extended Filesystem. 3, 5,
7

FAI Fully Automated Installation. 3

GPT GUID Partition Table. 28

GRUB GRand Unified Bootloader. 27

HDD hard disk drive. 31

HTTP Hypertext Transport Protocol.
18, 19, 30

LVM Logical Volume Management. 5

LXC Linux Containers. 2, 4, 6, 15–18,
36

MBR Master Boot Record. 27, 28

NFS Network File System. 7

NTFS New Technology File System. 3

OVA Open Virtual Appliance. 9

OVF Open Virtualization Format. 9

P2P peer-to-peer. 21

PXE Preboot eXecution Environment.
13, 16

RAID Redundant Array of Independent
Disks. 5

SHA-1 Secure Hash Algorithm. 22

SMB Server Message Block. 7

SoC System on a Chip. 7

SSD solid state disk. 30, 31

SSH Secure Shell. 3, 18, 21, 35

TLS Transport Layer Security. 35

UEFI Unified Extensible Firmware In-
terface. 28

ZFS Zettabyte Filesystem. 4, 6, 7, 15

47

	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Related Work
	1.3.1 Puppet and Foreman
	1.3.2 Chef, Ansible and Salt
	1.3.3 Fully Automated Installation
	1.3.4 Clonezilla, Symantec Ghost, Acronis True Image
	1.3.5 FSArchiver
	1.3.6 BSD Jails, Solaris Zones, OpenVZ, Linux Containers, systemd-nspawn
	1.3.7 Docker and Rocket
	1.3.8 CoreOS and Ubuntu Core
	1.3.9 OverlayFS
	1.3.10 LVM, mdadm and dmraid
	1.3.11 Btrfs and ZFS
	1.3.12 apt-btrfs-snapshot and yum-fs-snapshot
	1.3.13 FreeNAS, Rockstor and OpenMediaVault
	1.3.14 rsync and rsnapshot
	1.3.15 OpenWrt and DD-WRT
	1.3.16 Android
	1.3.17 OpenStack

	2 Background
	2.1 Initial task
	2.2 Problems with package management
	2.3 Specification

	3 Butterknife Design and Architecture
	3.1 Concepts
	3.2 Template helpers
	3.3 Command-line utility
	3.4 Provisioning image
	3.5 BitTorrent integration

	4 Implementation issues
	4.1 Btrfs receive parent subvolume lookup
	4.2 Btrfs receive confinement
	4.3 Bootloader

	5 Experimental Evaluation
	5.1 Performance
	5.2 Integrity
	5.3 Usability

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Adding verification support
	6.3 Adding online snapshot retrieval
	6.4 Adding systemd-nspawn support
	6.5 Improving scalability
	6.6 Alternative filesystem layouts

	Bibliography
	Acronyms

