This is the accepted version of a paper published in *Cellulose (London)*. This paper has been peer-reviewed but does not include the final publisher proof-corrections or journal pagination.

Citation for the original published paper (version of record):

3D-oriented fiber networks made by foam forming.
Cellulose (London)
http://dx.doi.org/10.1007/s10570-015-0811-z

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-26269
3D-Oriented Fiber Networks Made of Foam Forming

Majid Alimadadi\(^1\)* and Tetsu Uesaka\(^1\)

\(^1\)Department of Chemical Engineering and FSCN, Mid Sweden University, Sundsvall, Sweden

* Corresponding author

majid.alimadadi@miun.se, tetsu.uesaka@miun.se

ABSTRACT

In industrial applications, such as paper and nonwoven, cellulose fibers are used in the form of a network where the fibers are oriented, more or less, in the sheet-plane direction. However, in many biological systems, fibers are oriented, instead, in a three-dimensional (3D) space, creating a wide variety of functionalities. In this paper we have created a 3D-oriented fiber network in a laboratory scale, and have tried to identify some unique features of its structure and mechanical properties. The 3D fiber network (3DFN) sheets were prepared by using foam forming and by modifying consolidation and drying procedures. Fiber orientation and tensile/compression behavior have been determined. Resulted sheets were extremely bulky (above 190 cm\(^3\)/g) and had extremely low stiffness (or high softness), as compared with reference handsheets. Despite of this high bulk, the sheets retained amazingly good structural integrity. We have found that a 3D-oriented fiber network requires much less fiber-fiber contacts to create a connected (“percolated”) network than a two dimensional (2D) oriented network. The compression behavior in the thickness direction was also unique: it is characterized by extreme compressibility, because of its extreme bulk, and a long initial rise of compression load and high strain recovery after compression, because of its fiber-reorientation during compression.

Keywords: 3D fiber network; Foam forming; Percolation; Compression;

1. INTRODUCTION

Fiber network is a ubiquitous structure that is seen both in industrial materials (paper and nonwoven), and also in biological materials (plant cells and animal tissues). Nature intricately manipulates the network structures by varying density, aggregation, and fiber orientation, to create a variety of functionalities. Fiber orientation, for example, can produce completely different structures made from identical fibers, i.e. two-dimensional (2D) and three-dimensional (3D) fiber networks (Fig. 1). Conventionally normal paper sheet is formed as a highly oriented 2D network (layered structure, Fig. 1a). Therefore, the in-plane mechanical and transport properties are very different from those in out-of-plane direction (ZD). In this regard 3D-oriented fiber networks (3DFN), such as shown in Fig. 1c and d, may offer unique properties not seen in conventional paper products.
Foam is a dispersed system of gas and liquid (Exerowa and Kruglyakov 1998) which is extensively used as a suspending medium for producing low density structures from polymers, metals, fibrous materials, ceramic and metal powders. Recently, foam forming was studied extensively to develop the understanding of foam-fiber interactions (Al-Qararah et al. 2012; Al-Qararah et al. 2013; Lappalainen and Lehmonen 2012; Lappalainen et al. 2014; Mira et al. 2014) and also to find the potential applications of this technology in papermaking (Kinnunen et al. 2013; Lehmonen et al. 2013; Poranen et al. 2013), as well as, other specialty products, e.g. filters and insulators (Cervin et al. 2013; Jahangiri et al. 2014). Foam was introduced to the paper industry already in the mid-1960s. Initially foam forming was utilized to improve formation and softness of paper sheets made from long and fine fibers at higher consistencies. Efforts also have been made to produce 3D-orientated fiber network structures, but such attempts have largely failed because of the inherent tendency of fibers lying down on the plane (Gatward and Radvan 1973; Radvan and Gatward 1972). Radvan and Gatward (Radvan and Gatward 1972) and Smith and coworkers (Smith et al. 1974), however, indicated that the foam forming method increases the bulk of the sheets. Poranen and coworkers (Poranen et al. 2013) produced foam-formed bulky structures with the density of 13 kg/m³. Madani and coworkers (Madani et al. 2014) found that unrestrained drying of foamed fiber suspension resulted in the sheet density as low as 10 kg/m³.

An interesting question may be how the 3D-fiber-orientation is related to the bulk of the sheet. It is expected that they are related in some way, but they may not necessarily have a unique (one-to-one) relationship. Fig. 1 illustrates such examples of bulk-orientation relationship. Normal paper sheet has a highly packed structure with in-plane fiber orientation (Fig. 1a). In the case of Fig. 1b, the sheet is “bulked” up in the thickness direction and loses fiber-fiber contacts but still maintaining in-
plane fiber orientation. However, by creating 3D fiber orientation, in some way, one can have bulky (Fig. 1c) or dense but entangled networks (Fig. 1d).

![Fig. 1 Different network structures that are made by varying the fiber orientation and/or network connectivity: (a) 2D structure with in-plane fiber orientation (b) 2D bulky structure with fiber orientation very close to planar direction (c) high-bulk 3D fiber network with low network connectivity and (d) dense 3D fiber network]

The objectives of this paper are to investigate a method for producing a 3D fiber network by utilizing foam forming and to examine its unique structures and mechanical properties.

2. EXPERIMENTAL

2.1. Preparation of 3D fiber network

Foam forming method was utilized to create 3DFN structures. As a pulp sample, a refined TMP-reject was obtained from a Swedish paper mill. Table 1 summarizes the properties of the pulp sample (Arithmetic averages were used for the later calculations of network characteristics). Sodium Dodecyl Sulfate (SDS) with 98.5% purity from Sigma Aldrich was used as foaming agent. All foam batches were prepared with approximately 65% air content where the percentage of air content was determined from the ratio of the suspension volume and final foam volume. The SDS concentration was set to be 0.4 g per liter of water.

<table>
<thead>
<tr>
<th>Property</th>
<th>Unit</th>
<th>Quantity</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arithmetic average fiber length</td>
<td>mm</td>
<td>0.98</td>
<td>FiberLab Measurement</td>
</tr>
<tr>
<td>Arithmetic average fiber width</td>
<td>μm</td>
<td>29</td>
<td>FiberLab Measurement</td>
</tr>
<tr>
<td>Fiber Coarseness</td>
<td>mg/m</td>
<td>0.19</td>
<td>FiberLab Measurement</td>
</tr>
<tr>
<td>Fines content</td>
<td>%</td>
<td>15</td>
<td>FiberLab Measurement</td>
</tr>
<tr>
<td>Freeness</td>
<td>ml</td>
<td>~150</td>
<td>Reported from the mill</td>
</tr>
</tbody>
</table>

The foam was generated from the fiber suspension of 0.5% fiber consistency with SDS by means of a home-made mixer. To create 3D-oriented fiber network in
the foam, vigorous turbulent flow is needed. However, by increasing the air content of the foam to about 65%, the viscosity of the foamed fiber suspension increases significantly (Punton 1975) and thus the turbulence of the mixing flow decreases. To avoid this, a new mixing container was designed to provide sufficient turbulence even in the highly viscous foam. The basic design was motivated by the earlier work (Al-Qararah et al. 2013). However, the baffles were replaced with a large number of needles positioned in circumferential direction all around the container wall (Fig. 2). As compared with conventional baffles of the same container size, the new baffle system provides a larger surface area (up to three times) which contributes to the creation of more turbulent flow with increased friction force. The new baffle system has the flexibility to use different configurations of baffles in an identical mixing container\(^1\).

![Diagram](image)

Fig. 2 (a) A typical baffle system (b) Modified baffle system in which the baffles are converted into a large number of needles positioned all around the container wall

To create foam, a motor with adjustable rotational speed was adopted. The mixing was carried out at rotational speeds between 500 rpm and 2000 rpm. A home-made foam applicator was utilized for sheet-making (Fig.3). By means of a piston, the foam was transferred to a wire travelling at a low speed (~ 0.1 m/s). The water drainage and foam collapse have to be controlled in order to minimize the in-plane fiber orientation. This may be done by controlled slow drying of the foam. In

\(^1\) Detailed information on the mixer design is available from one of the authors (M. Alimadadi) on request.
the foam, water drainage takes place under gravity through plateau borders, i.e. the
borders of bubbles’ interfaces. This is also where fibers are contained. In plateau
borders mobility of fibers is limited and fibers would maintain their orientations
until the bubbles collapse at the last stage of drying. However, in a normal fiber
suspension in water, water drainage happens by continuous reduction of the
thickness of the water suspension (thickening). This means that fibers are displaced
continuously in the way to conform to this geometry change of the fiber suspension,
i.e. undergo affine deformation. The consequence is, obviously, that fibers are
oriented strongly in the in-plane direction. In this work the oven drying was started
one hour after sheet forming. The drying was done without restraints in a moderate
temperature of 70°C for, at least, three hours. Fig. 3 schematically shows the foam
forming procedure.

For comparison, some reference handsheets were made using Rapid-Köthen
sheet-making machine, in which the handsheets were formed by applying vacuum
with a suction rate of approximately 0.1 l/s. The vacuum at drying was
approximately 6 kPa. Part of the handsheets was prepared from a water-suspended pulp (RKWF) and the rest of the handsheets were made from a foam-suspended pulp (RKFF). The fiber consistency for the sheets made by Rapid-Köthen was 0.3%. The target grammage for all 3DFN and handsheet samples was 60 g/m².

2.2. Fiber orientation measurement

The 3DFN was then subjected to fiber orientation measurements. Among different image analysis techniques for the evaluation of 2D and 3D fibers orientations of fiber-based composites, (Clarke et al. 1995; Eberhardt and Clarke 2001; Sander and Barocas 2009; Tsarouchas and Markaki 2011), we used a simple semi-automated method based on the literature (Clarke et al. 1995). This method is suited to the fiber orientation measurements of the very low density fibrous structures, where fiber-fiber overlapping is scarce and individual fibers are easily identified.

The spatial fiber orientation is determined by a pair of angles \((\theta, \varphi)\), which is defined in (Clarke et al. 1995). Consider a fiber intersecting two parallel planes where a fiber cross section is created with each plane (Fig. 4). The pair angles of fiber are calculated based on in-plane displacement of the fiber cross section,
\[
\sqrt{\delta x^2 + \delta y^2},
\]
and the distance between two intersecting planes, \(\delta z\), by
\[
\theta = \arctan \left(\frac{\sqrt{\delta x^2 + \delta y^2}}{\delta z} \right),
\]
and \(\varphi = \arctan \left(\frac{\delta x}{\delta y} \right)\).
A resin-mounted sample of 3DFN was carefully machined into a cube and polished at one desired face which subsequently etched chemically\(^2\). The etchant dissolves the resin and exposes fibers on the surface of the sample (Fig. 5a). The depth of etching, was measured by using an optical stereo microscope. The depth of etching on the surface of sample corresponds to the distance between parallel planes (\(\delta z\)) in Fig. 4. Image analysis of the SEM micrographs was used to evaluate the in-plane displacement (\(\sqrt{\delta x^2 + \delta y^2}\)) of the fibers’ cross-sections. The apparent length of over 650 exposed fibers were measured on a single sample. All the data were processed with a MATLAB code developed for this purpose. In this method there is always a bias associated with the probability of a fiber cut by the cross section plane, which is dependent on the fiber angle. We corrected this effect by applying the correction factor obtained in (Zhu et al. 1997). In our treatment we neglected the edge effect at the angles near 90 degrees. This fiber orientation measurement is based on the assumption that the SEM images are not distorted (i.e. no distortion in the periphery of the images), which is a reasonable assumption for the operating magnification of this work. Another assumption is that the etching

\(^2\) The utilized etchant in this work was a mixture of methanol, potassium hydroxide and propylene oxide which, in essence, removes the resin and leaves the fibers intact.
process erodes the sample surface uniformly to a certain (measurable) depth. Fig. 5 shows a typical SEM cross section of 3DFN together with the corresponding processed image.

![SEM micrograph of the etched sample surface](image1)

![Corresponding processed image](image2)

Fig. 5 (a) SEM micrograph of the etched sample surface (b) Corresponding processed image for measuring the apparent fiber length

2.3. Mechanical properties

Mechanical properties of handsheets and the 3DFN was measured by using MTS 4/ML testing device. In-plane tensile properties were measured for all samples. Moreover, the compression response of the 3DFN in the thickness direction was determined. Handsheets were prepared and tested according to the standard ISO 1924-3. The 3DFN was tested according to the standard ISO 12625-1, but due to
the soft and very thick structure of the 3DFN, we constructed new grips for tensile measurements.

2.4. Microscopic study of structure deformation

The deformation of the 3DFN under compression was studied by means of microscopic observation. To monitor the deformation behavior of individual fibers under compression, thin cross-sectional slices of two-millimeter-thick were cut from the structure (Fig. 6). To prevent any damages due to the cutting tool, laser cut was used. The cutting speed and applied energy was controlled to avoid the burning of the structure. (However, we found some tiny individual fibers were burnt due to overheating.) A transparent holder was equipped with a pressing bar in order to microscopically study the deformation of the fibers in the network thickness direction. This method of observation also gave a qualitative sense of fiber orientation.

Fig. 6 The 3DFN and the imaginary two-millimeter-thick slice

3. RESULTS AND DISCUSSIONS

3.1. Structures of 3DFN

Fig. 7 shows the cross section of the 3DFN. The most obvious feature of this image is the randomness of fiber orientation, i.e. there is no typical layered structure of fibers, such as seen in paper sheets (however, there is a skin layer in the bottom where fibers are oriented in the in-plane direction. This layer seems to have created
during the transfer stage of the foam suspension onto the forming wire. We will elaborate this point in the subsequent paper.). The presence of some large pores in the structure may represent the incidence of giant foam bubbles in the foam suspension.

![Image]

Fig. 7 Cross section of 3DFN in which the randomness of fiber orientation is clearly seen

Table 2 shows the bulk values for the sheets made from different methods, i.e. foam forming and Rapid-Köthen sheet-making. We can clearly see that 3DFN has distinctively high bulk, close to 100 times higher than the reference handsheets. This high bulk may be attributed to foam forming and also pressing/drying methods. However, considering the fact that the reference sheets, either foam-formed or water-formed, have much lower bulk, it is the pressing and drying processes that created the large difference in bulk. Smith and coworkers (Smith et al. 1974) also indicated that the free-drying of the foam-formed handsheets can make the bulk more than two times higher than those obtained from wet-pressed and press-dried foam-formed handsheets.

Table 2 Bulk values for RKWF, RKFF and 3DFN sheets; CoV: Coefficient of Variation

<table>
<thead>
<tr>
<th>Sample</th>
<th>Bulk (cm³/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RKWF</td>
</tr>
<tr>
<td>Average</td>
<td>2.13</td>
</tr>
<tr>
<td>CoV%</td>
<td>2.50</td>
</tr>
</tbody>
</table>
Madani and coworkers (Madani et al. 2014) made foam-formed sheets, and reported about a half of the bulk value of the 3DFN. They found a layered-structure with fibers oriented in the in-plane direction. This in-plane orientation was probably caused by vacuum forming of fiber-foam suspension.

Fig. 8 shows the distribution of fiber angles, θ: the angle $\theta = 0$ corresponds to the ZD orientation, and $\theta = 90$ corresponds to the in-plane orientation of the fibers. For the purpose of comparison, the fiber orientation of a commercial nonwoven sample (the core layer of a hygiene pad) was also measured. In the nonwoven sample there is a clear tendency of the fibers oriented in the in-plane direction. It is known that, regardless of air-laid and wet-laid processes, the normal fiber deposition processes creates strong in-plane orientation, and nonwovens and paper are good such examples. However, in the 3DFN, the peak angles are distributed in a broad range of orientation between 0 and 90 degrees, confirming the very high out-of-plane fiber orientation of 3DFN.
Fig. 8 Normalized histogram showing the frequency of fiber angles in (a) 3DFN and (b) commercial hygiene pad

3.2. Tensile stiffness and strength

Fig. 9a shows the tensile stiffness index (TSI) values for the 3DFN and the two handsheet samples. The 3DFN shows extremely low stiffness (or high softness) as compared with the reference handsheets. TSI has been known to be linearly related to the density for normal paper sheets (e.g. see (Fellers 2009)). The density value at zero TSI, which is obtained by extrapolation of the linear relation, is called “percolation threshold density”, below which the network is presumed to lose stiffness. In Fig. 9a the TSI-density relation for TMP furnishes is also plotted based on the literature (Fellers 2009). The percolation density is, for example, ~150 kg/m³ for the literature data, and ~240 kg/m³ for the pulp used in this work. It is interesting that 3DFN has a much lower density (5 kg/m³) than the percolation densities of paper sheets, but it still retains significant finite stiffness.

Percolation of fiber networks has been the subject of intense investigation in statistical physics. In this case, percolation refers to geometrical percolation, i.e. the point at which the network is geometrically connected by the fibers. The critical number of contacts per fiber at percolation in 2D randomly-oriented networks was obtained by Pike and Seager by Monte Carlo method, and they gave 3.635 with the condition of $l_f \gg D_f$, where l_f and D_f are the fiber length and fiber diameter, respectively (Pike and Seager 1974). In the case of the corresponding randomly-
oriented 3D fiber networks, it was 1.49 (Balberg et al. 1984). It is interesting to note
that the 3D fiber network requires much less fiber contacts per fiber to form a
connected (percolated) structure. This also explains why the 3DFN still retains
finite stiffness even at a very low density.

Komori and Makishima (Komori and Makishima 1977) calculated the average
number of contacts per fiber in a general fiber network which is given by:

\[\bar{n} = \frac{2D_N l_f^2}{V} \]
(Eq. 1)

where \(l_f \) and \(D_f \) are the fiber length and fiber diameter, respectively, \(l \) is the
parameter that is dependent on the degree of fiber orientation which is \(2/\pi \) for a
random 2D network and \(\pi/4 \) for a random 3D network, and \(N \) is the total number
of fibers in the volume \(V \). Based on Eq. 1 and fiber characteristics measured in this
work (Table 1), we obtained the estimates of \(\bar{n}_{2D} = 0.95 \) and \(\bar{n}_{3D} = 1.17 \) at a
network density of 5 kg/m\(^3\), i.e. the density of 3DFN. First it is interesting to observe
that the 3D fiber orientation creates more contacts per fiber than the 2D orientation
case at the same apparent density. This also gives, again, an advantage to the 3D
fiber network in terms of the integrity of the network in a low density range. It
should be noted, however, that these estimates are clearly lower than the estimates
from the Monte Carlo simulations. This may be understandable because the analysis
by Komori and Makishita didn’t explicitly include the finite length effect of fiber,
and our experimental evaluation of the fiber diameter may yield a lower estimate
than the reality since some fibers formed bundles in the suspensions.

In Fig. 9b, the ratio of tensile strength index of in-plane direction and thickness
direction (MD/ZD ratio) of the 3DFN is plotted together with the results for the
other handsheets. The MD/ZD ratio of tensile strength is a measure of mechanical
anisotropy, and in the case of a 3D isotropic sheet, the ratio takes unity. The very
low ratio (approximately 5) of the 3DFN, as compared with those for handsheets,
i.e. about 60 for RKFF and RKWF, is a clear indication of more fiber orientation in the out-of-plane direction.

![Graph](image)

Fig. 9 Comparison of mechanical properties between 3DFN and normal handsheets (a) Tensile stiffness index. The Ref. TMP curve represents TMP furnish from the literature (Fellers 2009) and (b) MD/ZD tensile strength index ratio

3.3. ZD-compression response

The deformation characteristics of the 3DFN were observed under optical microscope by using the conditions described earlier. As seen in Fig. 10, a considerable volume (in 2D images it is an area) of the structure is occupied by giant pores. Successive images of the compression sequences showed that the deformation starts mainly by bending of the fibers that surround the giant pores. The bending of the fibers with low θ, i.e. the fibers oriented close to the thickness direction, is evident. The fibers which are oriented horizontally or very close to the horizontal orientation experienced almost no bending but were only displaced to new positions. Within the resolution of optical microscope, no obvious slippage and fracture were detected in fiber-fiber bonds.
The behavior of the 3DFN under cyclic compression loads is shown in Fig. 11. A pre-load of 0.1 N was applied to the samples. The samples were compressed to 80% of their thickness and then unloaded (to 0.1 N) and this cycle was repeated 5 times. 20 samples were tested for two successive days, except one that was tested for three successive days (with a 24-hour rest time between each two tests). In Fig. 11a we plotted the compression curve of as received sample (i.e. never compressed before), exhibiting the typical three deformation types, i.e. nonlinear elastic recovery, time-dependent recovery (indicated by arrows), and irreversible deformation. When comparing the cyclic-loading behavior of the same sample on different days (Fig. 11b), we found that after the first day, the second- and third-day responses became similar, i.e. the structures are stabilized after the first compression loading cycles.
Fig. 11 Cyclic compression response of a typical sample of 3DFN: (a) Compression test arrows represent schematically the extent of deformation recovery few minutes after removing the load (right arrow – red in color version) and after 24 hours (left arrow – green in color version) (b) Compression test on the same sample in three successive days.

Compression behavior of fiber networks, particularly textile fiber assemblies, have been investigated for many years both theoretically and experimentally. As reviewed by van Wyk (van Wyk 1946), M. and J. Eggert pioneered an analytical formulation of compression behavior, followed by van Wyk, Carnaby and Pan (Carnaby and Pan 1989), Komori and Itoh (Komori and Itoh 1991) and Komori and coworkers (Komori et al. 1992) who developed a series of models that take into account fiber bending, fiber-fiber contacts by compression and fiber re-orientation during compression. Perhaps the most general form of the relationship between pressure and compression deformation is the one which was originally given by Eggert but later re-examined by Komori and coworkers and Matsuo (Komori et al. 1992):
\[P - P_i = C[(V_f/V)^g - 1] \]
(Eq. 2)

where \(V \) is the volume of fiber mass under applied pressure \(P \); \(V_i \) is an initial volume under a small initial pressure \(P_i \); \(C \) and \(g \) are the semi-empirical material parameters, but Komori and coworkers obtained an explicit expression for \(C \). The parameter \(C \) depends on fiber diameter, fiber elastic modulus, network density (total fiber length per unit volume), and initial fiber orientation before compression. The parameter \(g \) represents a structural deformation of the network, such as due to fiber contacts and fiber re-orientation (Komori et al. 1992). Table 3 shows the estimates of \(C \) and \(g \) obtained for two of the 3DFN samples, together with Matsuo’s data on the piled card webs made of polymeric fibers. First, the parameter \(C \) of the 3DFN shows distinctively high values as compared with those of other samples. Among the fiber properties affecting \(C \), Komori suggested the initial fiber orientation that makes the most significant difference in the compression behavior (Komori et al. 1992). In fact this is very likely the case for the 3DFN. The parameter \(g \) was also different between the 3DFN and other samples, suggesting the difference in the deformation mechanisms. It is likely that, as the 3DFN is a bonded fiber network, fiber re-orientation and new fiber contacts during compression take place more slowly than the counterpart. Lower \(g \) values for the 3DFN means slower (relative) pressure rises at a given deformation.

<table>
<thead>
<tr>
<th>Network</th>
<th>Sample</th>
<th>(C) (Pa)</th>
<th>(g)</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random 3D fiber network</td>
<td>3DFN-1</td>
<td>1813</td>
<td>1.12</td>
<td>0.9964</td>
</tr>
<tr>
<td></td>
<td>3DFN-2</td>
<td>606</td>
<td>1.23</td>
<td>0.9945</td>
</tr>
<tr>
<td>Piled card web</td>
<td>Polypropylene</td>
<td>67</td>
<td>1.87</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Polyester</td>
<td>99</td>
<td>1.68</td>
<td>NA</td>
</tr>
</tbody>
</table>

Table 4 shows a general comparison of compression properties for various fibrous materials including 3DFN. The data of other materials were obtained from
various literature sources. In Table 4, the porosity is defined as $\Phi = 100(1 - \rho_b/\rho_f)$, where ρ_b is the bulk density of the network and ρ_f is the density of the constituent fibers, for which the values were obtained from the literature. (For 3DFN, $\rho_b = 5 \text{ kg/m}^3$ and we assumed $\rho_f = 1000 \text{ kg/m}^3$.) The compressibility is the percentage of deformation at the pressure given in the table. The recovery is the percentage of recovered deformation, and the pressure is the maximum pressure applied.

<table>
<thead>
<tr>
<th>Material</th>
<th>Thickness (mm)</th>
<th>Grammage (g/m²)</th>
<th>Porosity (%)</th>
<th>Compressibility (%)</th>
<th>Recovery (%)</th>
<th>Pressure (kPa)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cotton (Knitted)</td>
<td>1.163</td>
<td>387</td>
<td>79</td>
<td>30</td>
<td>13</td>
<td>256</td>
<td>(Stankovic 2008)</td>
</tr>
<tr>
<td>Acrylic (Knitted)</td>
<td>1.181</td>
<td>376</td>
<td>73</td>
<td>33</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viscose (Knitted)</td>
<td>1.048</td>
<td>367</td>
<td>77</td>
<td>23</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemp (Knitted)</td>
<td>0.916</td>
<td>360</td>
<td>73</td>
<td>20</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paper</td>
<td>0.165</td>
<td>110</td>
<td>33</td>
<td>40</td>
<td>17</td>
<td>15000</td>
<td>(Rättö 2005)</td>
</tr>
<tr>
<td>Paper</td>
<td>1.42</td>
<td>1050</td>
<td>26</td>
<td>28</td>
<td>11</td>
<td>9000</td>
<td>(Ting et al. 2000)</td>
</tr>
<tr>
<td>Paper</td>
<td>0.184</td>
<td>60</td>
<td>67</td>
<td>60a</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paper</td>
<td>0.081</td>
<td>60</td>
<td>26</td>
<td>30b</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3DFN</td>
<td>11.7</td>
<td>60</td>
<td>99.5</td>
<td>80</td>
<td>25</td>
<td>8</td>
<td>-</td>
</tr>
</tbody>
</table>

$^a, ^b$ The maximum compressibility is obtained from a slightly different loading history (Ting et al. 2000) as compared with other samples.

We can easily see the distinct features of 3DFN: the extremely high porosity, 99.5 %, and extremely high compressibility 80% at only an 8 kPa pressure. In addition the recoverable deformation is also highest, i.e. a soft and springy network.

4. CONCLUSION

Foam forming was used to create the networks of 3D fiber orientation (3DFN). The resulted sheets have extreme high bulk of more than 190 cm3/g, or extreme low density of 5 kg/m3. This super high bulk or super low density of the 3DFN is a result
of ZD fiber orientation (out-of-plane orientation) in the fiber network. The key to produce the 3D fiber orientation is, first, to create the 3D fiber orientation in the foam suspension, and, secondly, to maintain the orientation during forming, pressing, and drying stages.

The unique properties of 3DFN are that it is extremely porous and soft, but still retains good structural integrity. The latter is due to the 3D-oriented fiber network structure, in which percolation takes place at a much lower density than in the 2D fiber networks. The nonlinear compression stress-strain relationships are also unique as compared with other fibrous systems, such as nonwoven and paper.

Therefore, 3DFN may be regarded as a potential material platform for polymer-impregnated composites, acquisition layers of absorbent products, and thermal insulators, for example. The most obvious challenge is an industrially applicable manufacturing process, which is the subject of our subsequent studies.

ACKNOWLEDGEMENT

This study was partly financed by the European Regional Development Fund EU-Mál 2, and the authors acknowledge the financial support. The authors also acknowledge various supports and helps provided by Mr. Staffan K Nystöm, Mr. Håkan Norberg and Mr. Jan Lövgren from Mittuniversitetet, and Mr. Rickard Boman from SCA R&D Centre, Sundsvall. Prof. Bo Westerlind of Mittuniversitetet and Mr. Kent Malmgren of SCA R&D are also acknowledged for stimulating discussions and suggestions during the course of this study.

REFERENCES

distribution of glass fibres in polymer composites Composites science and technology
55:75-91

I: automated, high-angular-resolution measurement by confocal microscopy Composites
science and technology 61:1389-1400

STUDIES IN INTERFACE SCIENCE, vol 5. Elsevier, Amsterdam

KG, Berlin,

Gatward APJ, Radvan B (1973) Method and Apparatus for Forming a Non-woven Fibrous Web
From a Foamed Fiber Furnish. United States Patent,

Jahangiri P et al. (2014) On filtration and heat insulation properties of foam formed cellulose based
materials Nordic Pulp and Paper Research Journal 29:584-591

Kinnunen K, Lehmonen J, Beletski N, Jetsu P, Hjelt T Benefits of Foaming Forming Technology and
its Applicability in High MFC Addition Structures. In: 15th Fundamental Research
Symposium Cambridge, UK, September 2013 2013: ADVANCES IN PULP AND PAPER
RESEARCH. The Pulp & Paper Fundamental Research Society, pp 837-850

Komori T, Makishima K (1977) Numbers of Fiber-to-Fiber Contacts in General Fiber Assemblies

revisited. Part II. Effect of surfactant on the properties of foam-formed paper products
p689-699

lightweight paper foams: processing and properties Cellulose 21:2023-2031
doi:10.1007/s10570-014-0197-3

Mira I et al. (2014) Foam forming revisited Part I. Foaming behaviour of fibre-surfactant systems
p679-689

10:1421-1434

Papemaking Resource Efficiency with Foaming Forming. Paper presented at the TAPPI
PaperCon 2013, Atlanta, GA,

International Paper Physics Conference, New York Sep. 21-25

Journal 55:748-751

Sander EA, Barocas VH (2009) Comparison of 2D fiber network orientation measurement methods
Journal of Biomedical Materials Research Part A 88:322-331

Foaming Process Tappi Journal 57:107-111

Stankovic SB (2008) Compression hysteresis of fibrous systems Polymer Engineering & Science
48:676-682 doi:10.1002/pen.20994

morphology, wet pressing and refining APPITA Journal 53:378 - 384

Tsarouchas D, Markaki A (2011) Extraction of fibre network architecture by X-ray tomography and
prediction of elastic properties using an affine analytical model Acta Materialia 59:6989-7002