High-Performance Dynamic Quantum Clustering on
Graphics Processors

Peter Wittek*

Swedish School of Library and Information Science, University of Boras, Boras, Sweden

Abstract

Clustering methods in machine learning may benefit from borrowing metaphors
from physics. Dynamic quantum clustering associates a Gaussian wave packet
with the multidimensional data points and regards them as eigenfunctions
of the Schrodinger equation. The clustering structure emerges by letting the
system evolve and the visual nature of the algorithm has been shown to be
useful in a range of applications. Furthermore, the method only uses matrix
operations, which readily lend themselves to parallelization. In this paper,
we develop an implementation on graphics hardware and investigate how this
approach can accelerate the computations. We achieve a speedup of up to
two magnitudes over a multicore CPU implementation, which proves that
quantum-like methods and acceleration by graphics processing units have a
great relevance to machine learning.

1. Introduction

Grouping similar objects together is one of the fundamental problems
in statistical learning. Many approaches rely on distance metrics between
the objects in an d-dimensional Euclidean space. The distance metric can
be generalized further, and embedding the data points in an L, space of
square integrable functions seems to have advantages in certain applications.
This is also known as kernel density estimation. An unsupervised clustering
method borrows the metaphor of super-paramagnetic phase from statisti-
cal physics, introducing Pott functions around the data points [7]. Clusters

*Corresponding address: Swedish School of Library and Information Science, University
of Boras, Allegatan 1, Boras, S-501 90, Sweden

Preprint submitted to Journal of Computational Physics July 23, 2012

were identified correctly in particularly problematic data sets. Taking this
method a step further, relying on a quantum framework, Horn and Gottlieb
introduced a Parzen window estimator, technically a Gaussian wave packet
over data points. Viewing these as eigenfunctions of the time-independent
Schrodinger equation, the authors found the optimal clusters by minimizing
the potential [16]. This method is sensitive to the variance of the Gaussian,
which is considered a parameter in the model. The method was later ex-
tended to estimate the parameter from distributions of K-nearest neighbours
statistics [22]. Newtonian clustering uses a similar Parzen window estimator
borrowing a metaphor from classical physics and modelling emergent clus-
tering structure similar to molecular dynamics [8].

Dynamic quantum clustering (DQC) extends quantum clustering to in-
clude time evolution of the Hamiltonian of the Schrodinger equation [33].
This approach approximates potential energy of the Hamiltonian, and evolves
the system iteratively to identify the clusters. The great advantage of this
method is that the steps can be computed with simple linear algebra opera-
tions. The resulting evolving cluster structure is similar to flocking methods,
which was inspired by biological systems [11], and it is also similar to New-
tonian clustering with its pairwise forces [8].

Graphics processing units (GPUs) were originally designed to accelerate
computer graphics through massive on-chip parallelism, but they have at-
tracted massive interest where data-parallelism that is inherent in graphics
applications is important. For instance, researchers have studied how GPUs
can be applied to problem domains such as scientific computing [23, 31,
27] and visual applications [28, 32, 13], and successful applications achieve
speedups of around a magnitude over multicore CPU-based implementa-
tions. With regard to dynamic approaches to clustering, the flocking method
achieved a speedup of over 300x in certain parts of the algorithm [35]. Pair-
wise distance-based models such as molecular dynamics [4] and the Ising
model [24] have also achieved acceleration, although to our knowledge these
methods have not been applied to clustering yet.

Metaphors of classical and quantum physics belong to the wider class of
algorithms known as computational intelligence. We believe there is more
to such metaphors than improved effectiveness, especially when it comes
to quantum probability and its geometric framework. QL methods open
the way to truly scalable learning models, leading to unprecedented scaling.
In this manuscript, we look at how DQC can be accelerated with graphics
hardware, and present the results of extensive benchmarks. Certain steps of

the algorithm may reach a speedup of two magnitudes.

The rest of this paper is organized as follows. To motivate quantum-
inspired methods in machine learning, we discuss a few relevant aspects of
computational intelligence (Section 2). We briefly overview the theoretical
background of DQC in Section 3, and also overview the basic concepts of
general-purpose programming on the GPU that are relevant to the paper
(Section 4). Section 5 details the contribution of the paper, our GPU-based
implementation of DQC. We discuss our experimental results in Section 6,
and finally Section 7 outlines future work and concludes the paper.

2. Machine learning and computational intelligence

Machine learning is a field of artificial intelligence that seeks patterns in
empirical data without forcing models on it. That is, the approach is data-
driven, rather than model driven. A typical example is clustering: given a
distance function between data instances, the task is to group similar items
together using an iterative algorithm. Another example is fitting a multidi-
mensional function on a set of data points to estimate the generating dis-
tribution. These methods are known as Parzen window estimators or kernel
density models.

Computational intelligence is a related field that solves optimization prob-
lems by nature-inspired computational methodologies. These include swarm
intelligence, force-driven methods, evolutionary computing, neural networks,
and others. Quantum-like (QL) methods in machine learning are in a way
nature inspired, hence they are related to computational intelligence.

QL methods found useful applications in areas where the system is dis-
playing contextual behaviour. In such cases a quantum approach naturally
incorporates this behaviour [18, 17]. Apart from contextuality, entangle-
ment is successfully exploited where traditional models of correlation fail [9],
and quantum superposition also accounts for unusual results of combining
attributes of data instances [3].

QL learning methods crop up in unconnected applications. Arriving from
evolutionary computing, there is a quantum version of particle swarm opti-
mization [29]. The particles in a swarm are agents with simple behavioural
patterns, each one is associated with a potential solution. Relying on only
local information, the quantum variant is able to find the global optimum
for the optimization problem in question.

Quantum neural networks exploit the interference [21] and the fuzzi-
ness [25] of quantum systems. The self-organizing map (SOM) is a two-
dimensional grid of neurons that learns patterns in the data in a context-
sensitive fashion [19]. While SOMs are grounded in classical neural networks,
their sensitivity to contexts makes them related to QL methods.

Dynamic quantum clustering (DQC) emerged as a direct physical metaphor
of evolving quantum particles. DQC evolves the Hamiltonian of a hypothet-
ical quantum system to iteratively find the clusters [33]. This method has
been successfully used in information retrieval [15]. This is not surprising,
as a growing body of work shows that language technology has the most to
benefit from QL models.

The works cited above highlight how the machine learning community
may benefit from quantum metaphors, potentially gaining higher accuracy
and effectiveness. We believe there is much more to gain. An attractive
aspect of quantum theory is the inherent structure which unites geometry
and probability theory in one framework. Reasoning and learning in a QL
method are described by linear algebra operations. This in turn translates
to computational advantages: software libraries of linear algebra routines are
always the first to be optimized for emergent hardware. Contemporary high-
performance computing (HPC) clusters are often equipped with graphics
processing units (GPUs), which are known to accelerate many computations,
including linear algebra routines, often by several magnitudes. As pointed
out by [5], the overarching goal of the future of HPC should be to make it
easy to write programs that execute efficiently on highly parallel computing
systems. The metaphors offered by QL methods bring exactly this ease of
programming HPC systems to machine learning.

3. Dynamic quantum clustering

Quantum clustering associates a Gaussian wave function with each data

point z;: Y;(x) = e~ 2% . This is essentially a mapping from the d-
dimensional Euclidean space R? to the infinite dimensional Hilbert space
of square integrable functions Ls. In kernel density estimation, the sum of

—(z;—x)?

these functions, 1(x) = > ,e” 207 is considered as a probability distribu-
tion that could have generated the data points. The local maxima correspond
to cluster centres. Quantum clustering takes 1 as the ground solution for

the Schrodinger equation:
Hy = (T'+ V()Y = Egy),

where H is the Hamiltonian, 7" is the kinetic energy, V' is the potential energy,
and Ej is the ground energy level. DQC evolves the Hamiltonian to identify
the clustering structure by tracking the expectation values of the position
operator X. The time-dependent expectation value of the position operator

(W) |zl p(t)) = / (o,)z, t)da
satisfies the equation

d*(x(t))

L = IV @) (),

according to the Ehrenfest theorem. This means that the expectation val-
ues of the position operator obey their corresponding classical equations of
motion, that is, the centre of each wave packet rolls towards the nearest
minimum of the potential according to Newton’s law of motion.

The great advantage of DQC is that the steps involved in the calculations
include only basic linear algebra operations, such as matrix multiplication
and eigendecomposition. This makes DQC a good candidate for acceleration
and large-scale deployment.

4. Graphics hardware in general-purpose problems

In order to discuss details concerning the implementation of algorithms
on graphics hardware, we summarize some key aspects of the GPU device
architecture in this section. Programming for the GPU is very different
from general purpose programming on the CPU due to the extremely multi-
threaded nature of the device. GPUs rely on the data parallel or single
instruction, multiple data (SIMD) programming model. A computation is
defined in terms of a sequence of instructions executed on multiple elements
of a memory object.

GPU compute devices from different vendors and even from the same
vendor have different characteristics (such as the number of compute units,
memory bandwidth, clock rate, etc.), but they follow a similar design pattern
(Figure 1). GPU compute devices comprise groups of compute units (also

5

called streaming multiprocessors). Every compute unit contains numerous
stream cores (also called streaming processors), which are responsible for ex-
ecuting kernels, that is, a small program operating on an independent data
stream. Different GPU compute devices have different numbers of stream
cores. For example, the ATI Radeon HD 5870 GPU has 20 compute units,
each with 16 stream cores, resulting in a total of 320 cores, whereas the
NVidia Tesla C2050 has 14 compute units, each with 32 stream cores, result-
ing in a total of 448 cores.

GPU
Compute Device

o

Compute Compute 6o
Unit Unit
Stream””” 000
Cores

Figure 1: Generalized GPU Compute Device Structure [1]

All stream cores within a compute unit execute the same instruction se-
quence in lock-step, whereas different compute units can execute different
instructions. Unlike CPU cores instructions are issued in order and there
is no branch prediction and no speculative execution. Some architectures
introduce cache memories, for instance, NVidia’s Fermi architecture features
a 64 Kbyte of shared L1 cache for each compute unit. Cache is still rare,
however, and stream cores and compute units retain an essentially much sim-
pler structure than the cores and the control mechanism of a contemporary
CPU. Apart from the automatically managed cache, graphics hardware has
a multi-layer memory hierarchy which has to be handled efficiently by the
programmer. Each compute unit of the GPU device contains several local
32-bit registers per processor. This memory is shared by all stream cores in

a multiprocessor. To accelerate random access to the global memory of the
device, constant and texture caches are available. The slower global memory
is shared among all compute units and is also accessible by the CPU. The
bandwidth between the global memory and the compute units is still much
higher than between the CPU and the main memory. To ensure that this
bandwidth is saturated when the compute units access the global memory,
consecutive memory locations should be fetched to the respective compute
units. This is known as coalesced memory access.

When execution starts on a GPU device, many copies of the kernel —
known as threads — are enumerated and distributed to the available compute
units. These independent threads are organized into blocks which can contain
anywhere from 32 to 512 threads each, but all blocks must be of the same
size. Optimal performance requires a large number (typically hundreds) of
blocks executing in parallel. When blocks are mapped to the hardware, they
are organized into warps. A warp is a number of threads (e.g., 32) that can
be executed simultaneously on the compute unit. At any given moment, the
control unit examines which warps are ready to execute and chooses one. The
current instruction of this warp is then executed on the compute unit which
then moves on to another warp. In this fashion, the execution of threads on
the device is not entirely simultaneous, but interleaved.

Warps enable the device to hide memory access latencies. The global
memory on the device has a much higher bandwidth than that of between
the RAM and CPU, but it has still a fairly high delay from the time a
memory address is requested to the time it becomes available. During the
latency of a device memory access, hundreds of arithmetic operations can be
performed on a compute unit. Thus, warps which have read their data can
be performing computations while other warps running on the same compute
unit are waiting for their data to be fetched from the device memory.

Improvements in the programmability of GPUs have made graphics hard-
ware an even more compelling platform for computationally demanding tasks.
Compute Unified Device Architecture (CUDA, [2]) is a C-like language al-
lowing the implementation of innovative data-parallel algorithms in general
computing terms to solve many non-graphics applications such as database
searching and sorting, medical imaging, protein folding, and fluid dynam-
ics simulation. The disadvantage of CUDA is that it is primarily supported
on NVidia devices, although cross-compilers exist for other architectures.
A similar, vendor-specific language was Close To the Metal introduced by
Advanced Micro Devices Inc. for ATI graphics cards, but it was later aban-

7

doned. Open Computing Language (OpenCL), which uses both task-based
and data-based parallelism, is another framework designed for GPU pro-
gramming supported by several hardware and software vendors, e.g. Apple,
NVidia, Intel and AMD. Many CUDA based algorithms can now be ported
to OpenCL, but OpenCL is still less popular than CUDA.

Programming in CUDA and OpenCL require extensive knowledge of the
underlying hardware, especially if tuning for high performance is a top prior-
ity. Higher level libraries may help hiding some of the complexities. Scientific
applications often benefit from accelerated linear algebra routines. These typ-
ically implement functions of the Basic Linear Algebra Subprograms (BLAS)
or Linear Algebra PACKage (LAPACK). These can be provided by the ven-
dor (such as CUBLAS) or third-party developers (such as in the case of
Matrix Algebra on GPU and Multicore Architectures (MAGMA), which is
based on CUDA [30], and ViennaCL, which is based on OpenCL [26]). We
blend such libraries with our custom kernels to implement DQC.

5. Accelerating dynamic quantum clustering

DQC makes an ideal candidate for acceleration on multicore CPUs and
on GPUs because the sequential parts of the algorithm are minimal. In fact,
sequential operations appear only in disk I/O and hardware initialization.
Algorithm 1 outlines the computational steps involved in the calculations.
Each step involves a large number of steps that can be executed in parallel.
When benchmarking the GPU implementation (see Section 6), we wanted
to be fair and therefore the CPU version is also a multicore implementation.
In this section, we give the details of our GPU variant of the algorithm, but
where necessary, we also mention crucial issues with regard to the multicore
CPU implementation.

The calculations start with constructing three sets of matrices. These
matrices commonly use the Euclidean distance or an exponential thereof.
These pairwise distances can be efficiently computed on a GPU [10]. The
steps are decomposed into matrix level operations (see Algorithm 2 [20, 32]).
Here Step 4 is a BLAS matrix multiplication, whereas the other steps can be
calculated by custom kernels.

The first matrix to compute is essentially the Gram matrix of a radial
basis function kernel:

—(w;—w4)*

Nij = (@ilthj) = e™ a2

8

Algorithm 1 The outline of the calculations in dynamic quantum clustering

Initialize Gram matrix N

Calculate Hamiltonian

Calculate position operator

Compute eigendecomposition of N

Compute square root of N

Basis transformation of Hamiltonian

Basis transformation of position operator

repeat
Compute matrix exponential of transformed Hamiltonian at time ¢,
Compute expectation of value of position operator at time ¢,

until

The elements are the inner products of the functions associated with the
data points. In the DQC formulation, the functions are Gaussians, hence we
deal with a non-orthogonal set of functions. The Gaussians do not have a
compact support and thus the Gram matrix will be invariably dense. Im-
plementing the above calculation on the GPU is straightforward, coalesced
memory access can be ensured, the GPU kernel is a simple pairwise distance.

The second matrix to obtain is the Hamiltonian, which consists of a ki-
netic and a potential energy part:

Hij = (@il H[v;) = (il (T + V(2))|45).

The kinetic part is as easily calculated with a GPU kernel as the Gram
matrix, with very similar constraints:

P)2 7(zifz~)2
1 (z; —xj) Rl
2m 202

v2
(Uil Tlbj) = (] — %lw» =

Algorithm 2 Calculate the Euclidean distance matrix of data points with
matrix operations (o is the Hadamard product)

o= (XoX)[1,1...1]F

20 Py =[vv...v]

3 P = PlT

4: Ps = XXT

5 D= (P + P, —2P;)

The potential energy is a more complex formula. To calculate (¢;|V (z)|1);),
we need V (z) first. We obtain it by solving Hiy = 0. We get

d 1 9 —(z—=;)?
V(z) = =5+ e D —w)e
2 94 Se et

The potential can be approximated with the first term of the Taylor series:

22
(wi—z5) Z’i—FQ?j

(WilV (@)ly) = €=V (=2).

To efficiently calculate the resulting formula, we introduced two intermediary
—(zi—wj)” —(zi—ej)?
arrays to store the values e =7 and (z; — x;)% 2 . These can be

accessed in a coalesced fashion in the subsequent kernel calculation of V.
The last type of matrices to be calculated is the expectation values of the
position operator:

. . (z‘fz')2
T; + T o i

Xij = (Wilz|Y;) = 5 4o

This is again straightforward to implement on the GPU.

The rest of the process only involves eigendecompositions and matrix
multiplications, so many data points can be evolved simultaneously and in
parallel on a multicore CPU or a GPU. Since we have a non-orthogonal set
of basis functions, we need to transform the basis to an orthogonal one. To
do so, we find the eigenvectors of the symmetric matrix N which correspond
to states having eigenvalues larger than some cut-off value. This maps to the
standard LAPACK operation syevr.

The next step is computing N 3 = VD_%V_l, where V' is the matrix of
eigenvectors and D is the diagonal matrix of eigenvalues. NN is a symmetric
real-valued matrix, therefore the eigenvalues are real and V' is orthogonal,
V=1 = VT, This calculation is better taken in two steps. Instead of perform-
ing two matrix multiplications (C' = VD2 first, where C is a temporary
matrix, then N “3 = CVT), the first operation reduces to a much simpler
kernel where the eigenvalues give a weight to the vectors of V.

Since H and X were calculated in a non-orthonormal basis, they have
to be transformed to the new orthonormal basis, H" = N “3HN~3 and
X! = N"3XN~2. These two calculations are two matrix multiplications
each, where the first multiplication is between symmetric matrices.

10

To calculate the time evolution of H, we need the exponential of the
matrix to construct [1p;(t)) = e #" |¢);) , such that [¢;(t = 0)) = v;). While
there are many ways of computing the exponential, we opt for finding the
eigenvectors and eigenvalues of H*, and proceed in a similar fashion as in
the matrix square root. Then the exponential can be calculated in a time-
efficient manner of a range of intervals, eventually constructing the desired
trajectories

(ilt)) = (il X |y,

6. Discussion of results

We used a non-distributed environment with a single workstation with 24
Gbyte of main memory, one quad-core 2.4GHz Intel Xeon E5620 CPU with
HyperThreading enabled, an Nvidia Tesla C2050 computing processor with
448 cores and 3 Gbyte memory, running in a 64-bit Linux environment with
CUDA 4.1 and GCC 4.3.4. For optimised multicore BLAS and LAPACK, we
used ATLAS 3.8.4 [34], compiled with support for eight cores (that is, includ-
ing the HyperThreaded cores). For the GPU-based BLAS, we tested both
the vendor-provided CUBLAS and MAGMA 1.1.0 [30]. We found MAGMA
marginally faster, and therefore we relied on MAGMA calls. LAPACK oper-
ations were also borrowed from MAGMA. The initial matrix constructions on
the CPU were parallelized by exploiting loop-level parallelism by OpenMP
directives [12]. When timing the execution time, we repeated the experi-
ments ten times and averaged the results. Single-precision calculations used
four-byte float variables, whereas double-precision relied on eight-byte dou-
bles.

Since the effectiveness of DQC was already demonstrated in [33], we were
only interested in the computational efficiency in the benchmarks. The data
set therefore was randomly generated at different scales to enable accurate
profiling, and it was inherently two-dimensional.

Since the data is dense, the memory requirements of the involved matri-
ces are growing as a square function of the number of data points (Figure
2). Some of the linear algebra operations used do not allow in-place exe-
cution. For instance, a matrix product requires three matrices to be in the
memory: the two matrices to be multiplied, and the result matrix. None
of the matrices to be multiplied can be used as the matrix to store the re-
sult. This puts a severe limit on the GPU, as the device memory cannot
easily accommodate three large matrices at the same time. Other operations

11

3000

T T
Single precision —+—
uble precision

Device memory availabie to the usef (Tesla G2050)

2500

2000

1500

Memory requirement (Mbytes)

1000

500

0
64 128 256 512 1024 2048 4096 8192
Number of data points (matrix dimension)

Figure 2: Memory requirements of square matrices

such as eigendecomposition are less hungry for memory, and almost the en-
tire device memory can be allocated for the matrix to be decomposed. In
the experiments below we were only interested in comparing pure GPU and
pure CPU variants of the algorithm, but it might be worthwhile exploring
a mixed approach in which the memory-intensive parts are always executed
on the GPU. For instance, while matrix multiplication is much faster on the
GPU, even the CPU version is reasonably fast, allowing larger matrices to be
processed. The same large matrices can be decomposed on the GPU, which
would give a great boost even with two-way memory transfers involved.

The results below show the execution time and speedup values for the
major operations in the algorithm. We only included the results for one of
the initial matrices, since the others follow a similar computational pattern.
Also since the matrix exponential follows the same pattern as the square root
of the matrix, we omit including the results.

Calculating the Gram matrix is a speedy process, barely taking seconds
on the CPU even for large matrices (Figure 3). Nevertheless, the speedup
using the GPU is spectacular, being two magnitudes faster. This shows the
potential of a pure GPU implementation.

We encountered difficulties in calculating the eigendecomposition of the
symmetric matrix N. The CPU variant computes the eigenvectors and eigen-
values with the standard syevr LAPACK call to ATLAS and we found the
results fairly accurate. Unfortunately, MAGMA does not yet have the func-
tion syevr, only syevd, which uses a different numerical method. We found
the outcome extremely inaccurate even for small matrices and even when

12

Epu ——
GPU wio memory transfer
GPU with memory iransfer

/ 200
B
/ 150
3 H
/ 100
2

Without Memory Transfer ——

— With Memory Transfer

64 128 256 512 1024 2048 4096 8192 64 128 256 512 1024 2048 4096 8192
Matrix size Matrix size

Time (s)
Speedup

(a) Execution time of calculating the (b) Speedup of calculating the Gram
Gram matrix, single precision matrix, single precision

6

CPU ——
GPU wlo memory transfer
GPU with memory transfer -+

| I :
| /
| /1"

5

Time (s)
Speedup

Without Memory Transfer —+—
With Memory Transfer

64 128 256 512 1024 2048 4096 8192 64 128 256 512 1024 2048 4096 8192
Matrix size Matrix size

(c) Execution time of calculating the (d) Speedup of calculating the Gram
Gram matrix, double precision matrix, double precision

Figure 3: Execution time and speedup of calculating the Gram matrix

using double precision. We measured the time for the GPU version, but we
used the results of the CPU version for the remaining steps. We believe this
is a temporary problem with the library, and we hope that future versions
will include an accurate syevr function. An additional issue was that two
variants were provided by MAGMA for syevd: a GPU-resident version in
which the input and output matrices reside in the device memory, and an-
other one in which the input and output matrices are in the main memory,
but calculations are performed on the GPU. The latter version hides memory
transfers. We found the GPU-resident version unstable and used the second
variant. Since we had no direct access for timing the memory transfers, the
execution time and speedup results contain the time taken from calling until
its return (Figure 4). This means that the numbers include a two-way mem-
ory transfer. With that in mind, we found an impressive 12.74x speedup for
double precision, and 18.47x speedup for single precision for a matrix of 8192
dimensions. The single precision variant could scale to 16,384 dimensions,

13

PU ——

PU

/

Time (s)

/

/

Speedup

64 128

256

512
Matix size

1024

2048

4096

8192

128 256 512 1024, 2048 4096 8192

Matrix size

(a) Execution time of eigendecompo- (b) Speedup of eigendecomposition,
sition, single precision single precision

Epy ——

PU

Time (s)

—
Speedup

0 0
64 128 256 512 1024 2048 4096, 8192 64 128 256 512 1024 2048 4096 8192
Matix size Matrix size

(¢) Execution time of eigendecompo- (d) Speedup of eigendecomposition,
sition, double precision double precision

Figure 4: Execution time and speedup of eigendecomposition

with a speedup of 22.98x (not included in the figure).

The execution time and speedup of square rooting the Gram matrix took
much less time in total, and the speedup is even more convincing (Figure 5).
The double precision variant achieves a speedup close 80x for larger matrices.

The basis transformation step had another surprise. The first matrix mul-
tiplication is between symmetric matrices, but we found the corresponding
BLAS call (symm) slower than the general matrix multiplication call (gemm).
This was true for both the CPU and the GPU variant. We do not fully
understand the underlying reasons, but we proceeded with two general ma-
trix multiplications per basis transformation. Figure 6 shows the timing and

speedup results. The speedup of the single precision variant is especially
notable.

14

GPU wio memory transfer
GPU with memory tranfer -

Time (s)

—
Speedup

Without Memory Transfer —+—
With Memory Transfer

64 128 256 512 1024 2048 4096 8192 64 128 256 512 1024, 2048 4096 8192
Matix size Matrix size

(a) Execution time of matrix square (b) Speedup of matrix square root,
root, single precision single precision

Cpu
GPU wlo memory transfer
GPU with memory transfer -+ 50

-
/ w

/
/ i

Time (s)
Speedup

Without Memory Transfer —+—
With Memory Transfer

64 128 256 512 1024 2048 4096 8192 64 128 256 512 1024 2048 4096 8192
Matix size Matrix size

(¢) Execution time of matrix square (d) Speedup of matrix square root,
root, double precision double precision

Figure 5: Execution time and speedup of matrix square root

7. Conclusions

Computational physics as a field of inquiry has an untapped potential and
relevance to machine learning and computational intelligence. This paper
is an initial foray into this interdisciplinary domain, hoping to attract the
attention of practitioners.

Graphics hardware reached up to our expectations and we achieved a
speedup of up to two magnitudes in our implementation using a single GPU.
We believe that this is significant, especially since we compared the execution
time to a highly optimized multicore CPU implementation. Such acceleration
greatly improves the usability of DQC in real-life application scenarios.

The bottleneck remains the limited memory of a GPU device. Since
some operations require holding three large matrices in the device memory
until a computation is finished, large data sets will need a slightly different
approach. One option is to blend CPU and GPU code. For instance, the

15

1600

1400

GPU wie
GPU wil

&Py ——
memory transfer
memory transfer

1200

1000

800

Time (s)

600

400

200

Speedup

Withou
Wit

M
h M

lemory Transfer

lemory Transfer

64 128 256 512 1024,

Matrix size

2048

4096 8192

128 256 512

Matrix size

1024

2048

4096 8192

(a) Execution time of operator basis (b) Speedup of operator basis trans-
transformation, single precision

GPU wio
GPU with

ith memory transfer -+

CPU ——
for

memory transfer

/

Time (s)

/

/

formation, single precision

Speedup

Withou

With Memor

Memo

ry Tra
ry Transf

sfor —+—

for

64 128 256 512 1024

Matix size

2048

4096 8192

64 128 256 512 1

Matrix size

024

2048

4096 8192

(¢) Execution time of operator basis (d) Speedup of operator basis trans-

transformation, double precision formation, double precision

Figure 6: Execution time and speedup of operator basis transformation

eigendecomposition requires less memory and it is very taxing on the CPU; it
can be efficiently performed on the GPU even with the overhead of two-way
memory transfers. Basis transformation is also much faster on the GPU,
but the execution time is still acceptable on the CPU. Given the memory
requirements, this operation is better suited to the CPU.

Another option for further scaling is adapting the pure GPU algorithm
to work in a distributed multi-GPU environment. In this case, the linear
algebra operations have to be broken down further, possibly using a divide-
and-conquer strategy. Such strategy is already used implicitly in our imple-
mentation, for instance, the numerical eigendecomposition relies on one such
method. Some early results show that eigendecomposition does not scale lin-
early beyond a small number of nodes. An alternative method, the so-called
Trotter-Suzuki algorithm [14], avoids the decomposition in calculating the
evolution of a quantum system. Highly optimized CPU and GPU kernels for
a single node have already been developed [6]. Our future work would like

16

to extend the implementation to a distributed environment. Library sup-
port for such efforts is limited, extensive work with GPU-specific features is
necessary for an efficient algorithm.

1]

2]

AMD accelerated parallel processing — OpenCL programming guide, De-
cember 2011.

NVida Compute Unified Device Architecture Programming Guide 4.1,
November 2011.

D. Aerts and M. Czachor. Quantum aspects of semantic analysis and
symbolic artificial intelligence. Journal of Physics A: Mathematical and
General, 37:1.123-1.132, 2004.

J.A. Anderson, C.D. Lorenz, and A. Travesset. General purpose molecu-
lar dynamics simulations fully implemented on graphics processing units.
Journal of Computational Physics, 227(10):5342-5359, 2008.

K. Asanovic, R. Bodik, B.C. Catanzaro, J.J. Gebis, P. Husbands,
K. Keutzer, D.A. Patterson, W.L. Plishker, J. Shalf, and S.W. Williams.
The landscape of parallel computing research: A view from Berkeley.
Technical report, University of California at Berkeley, 2006.

C.S. Bederian and A.D. Dente. Boosting quantum evolutions using
Trotter-Suzuki algorithms on GPUs. In Proceedings of HPCLatAm-11,
4th High-Performance Computing Symposium, Coérdoba, Argentina, De-
cember 2011.

M. Blatt, S. Wiseman, and E. Domany. Superparamagnetic clustering
of data. Physical Review Letters, 76(18):3251-3254, 1996.

K. Blekas and IE Lagaris. Newtonian clustering: An approach based
on molecular dynamics and global optimization. Pattern Recognition,
40(6):1734-1744, 2007.

P.D. Bruza and R.J. Cole. Quantum logic of semantic space: An
exploratory investigation of context effects in practical reasoning. In
S. Artemov, H. Barringer, A. S. d’Avila Garcez, L.C. Lamb, and
J. Woods, editors, We Will Show Them: FEssays in Honour of Dov
Gabbay. College Publications, 2005.

17

[10]

[11]

[12]

[13]

[16]

[17]

[18]

D. Chang, N.A. Jones, D. Li, M. Ouyang, and R.K. Ragade. Compute
pairwise Euclidean distances of data points with GPUs. In Proceed-
ings of CBB-08, International Symposium on Computational Biology
and Bioinformatics, pages 278283, Orlando, FL, USA, November 2008.
ACTA Press.

X. Cui, J. Gao, and T.E. Potok. A flocking based algorithm for doc-
ument clustering analysis. Journal of Systems Architecture, 52(8):505—
515, 2006.

L. Dagum and R. Menon. OpenMP: an industry standard API for
shared-memory programming. Computational Science & Engineering,
5(1):46-55, 1998.

B. Darécezy, R. Pethes, and A.A. Benczir. SZTAKI @ ImageCLEF 2011.
In Proceedings of CLEF-11, Conference on Multilingual and Multimodal
Information Access Fvaluation, Amsterdam, The Netherlands, Septem-
ber 2011.

H. De Raedt. Computer simulation of quantum phenomena in nano-
scale devices. Annual Reviews of Computational Physics, 4:107-146,
1996.

E. Di Buccio and G. Di Nunzio. Distilling relevant documents by means
of dynamic quantum clustering. In Proceedings of ICTIR-11, 3rd In-
ternational Conference on the Theory of Information Retrieval, pages
360-363, Bertinoro, Italy, September 2011.

D. Horn and A. Gottlieb. Algorithm for data clustering in pattern recog-
nition problems based on quantum mechanics. Physical Review Letters,
88(1):18702, 2001.

AY. Khrennikov. Ubiquitous quantum structure: from psychology to
finance. Springer Verlag, 2010.

K. Kitto. Why quantum theory? In Proceedings of QI-08, 2nd Interna-
tional Symposium on Quantum Interaction, pages 11-18, Oxford, UK,
March 2008.

18

[19]

[20]

[21]

[22]

[23]

[24]

T. Kohonen, S. Kaski, K. Lagus, J. Salojarvi, J. Honkela, V. Paatero,
and A. Saarela. Self organization of a massive text document collection.
IEEE Transactions on Neural Networks, 11(3):574-585, 2000.

Q. Li, V. Kecman, and R. Salman. A chunking method for Euclidean
distance matrix calculation on large dataset using multi-GPU. In Pro-
ceedings of ICMLA-10, 9th International Conference on Machine Learn-
ing and Applications, pages 208-213, Washington, DC, USA, December
2010.

A. Narayanan and T. Menneer. Quantum artificial neural network archi-
tectures and components. Information Sciences, 128(3):231-255, 2000.

N. Nasios and A.G. Bors. Kernel-based classification using quantum
mechanics. Pattern Recognition, 40(3):875-889, 2007.

J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kriiger, A.E.
Lefohn, and T.J. Purcell. A survey of general-purpose computation on
graphics hardware. Computer Graphics Forum, 26(1):80—-113, 2007.

T. Preis, P. Virnau, W. Paul, and J.J. Schneider. GPU accelerated
Monte Carlo simulation of the 2D and 3D Ising model. Journal of Com-
putational Physics, 228(12):4468-4477, 2009.

G. Purushothaman and N.B. Karayiannis. Quantum neural networks
(QNNS): inherently fuzzy feedforward neural networks. IEEE Transac-
tions on Neural Networks, 8(3):679-693, 1997.

K. Rupp, F. Rudolf, and J. Weinbub. ViennaCL - a high level lin-
ear algebra library for GPUs and multi-core CPUs. In Proceedings of
GPUScA-10, 2nd International Workshop on GPUs and Scientific Ap-
plications, pages 51-56, Galveston Island, TX, USA, October 2010.

J.E. Stone, D.J. Hardy, 1.S. Ufimtsev, and K. Schulten. GPU-accelerated
molecular modeling coming of age. Journal of Molecular Graphics and
Modelling, 29(2):116-125, 2010.

G. Strong and M. Gong. Browsing a large collection of community
photos based on similarity on GPU. Advances in Visual Computing,
pages 390-399, 2008.

19

[29]

[30]

J. Sun, B. Feng, and W. Xu. Particle swarm optimization with parti-
cles having quantum behavior. In Proceedings of CEC-0/4, Congress on
Evolutionary Computation, volume 1, pages 325-331, June 2004.

S. Tomov, R. Nath, H. Ltaief, and J. Dongarra. Dense linear algebra
solvers for multicore with GPU accelerators. In Proceedings of IPDPSW-
10, 24th IEEE International Symposium on Parallel € Distributed Pro-
cessing, Workshops and Phd Forum, pages 1-8, Atlanta, GA, USA, April
2010.

[.S. Ufimtsev and T.J. Martinez. Graphical processing units for quantum
chemistry. Computing in Science & Engineering, 10(6):26-34, 2008.

K.E.A. van de Sande, T. Gevers, and C.G.M. Snoek. Empowering vi-
sual categorization with the GPU. [IEEE Transactions on Multimedia,
13(1):60-70, 2011.

M. Weinstein and D. Horn. Dynamic quantum clustering: A method
for visual exploration of structures in data. Physical Review F,
80(6):066117, 2009.

R. Clint Whaley and Antoine Petitet. Minimizing development and
maintenance costs in supporting persistently optimized BLAS. Software:
Practice and Experience, 35(2):101-121, February 2005.

Y. Zhang, F. Mueller, X. Cui, and T. Potok. Large-scale multi-
dimensional document clustering on GPU clusters. In Proceedings of
IDPDS-10, 2/th International Parallel and Distributed Computing Sym-
posium, Atlanta, GA, USA, April 2010.

20

