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Abstract

In this work, we have implemented an orbital-free density functional theory (OF-
DFT) solver using the finite element method. In OF-DFT, the total ground state
energy is minimized directly with respect to the electron density, rather than via
orbitals like in the standard Kohn-Sham approach. For this to be possible, one
needs an approximation of a universal density functional of the non-interacting
kinetic energy. Presently available approximations allow for computation with very
low computational expense, but which gives inaccurate energies. A stable OF-DFT
code can be used as a testbed for new kinetic energy functionals and provide the
necessary tool for investigating the accuracy of OF-DFT calculations for complex
systems. We have implemented Thomas-Fermi theory with and without nuclear
cusp condition, as well as additional exchange terms of Dirac and Amaldi. The
program uses an extended version of the steepest descent in order to find the
minimizing density in the variational principle. Our results include convergence
tests for the hydrogen atom, weak bonding in the H2 molecule, and accurate
results for the lightest noble gases (He, Ne, Ar). For heavier atoms (Kr, Xe, Rn),
the results are less accurate. In addition, we consider hydrogen in the simple cubic
structure without the cusp condition, which is a first attempt to use the code for
periodic systems. Lastly, we discuss some possible improvements for the iterative
process towards the minimizing density, as well as other possible directions for
future development.
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Chapter 1

Introduction

In the age we live in, a big part of physics is the development of new materials.
There are many material design problems everywhere we look. For example, take
the glass on a modern smartphone. It is made to be very strong, durable and
there is a coating to prevent scratches. To create materials with such properties is
possible since we understand the underlying physics down to the atomic scale. A
branch of physics is set out to find theories and models to describe materials and
their properties and in doing so, open a path to further improved materials.

The objective of this research is to test if finite element method can be used
to solve orbital-free density functional theory and in doing so getting a tool to be
able to further the development of more accurate functionals.

Another application for this program would be as a help in high-throughput
applications to get ballpark figures on materials and compounds since the orbital-
free density functional theory has less accuracy but requires less computer power.

In November 1964, Hohenberg and Kohn published the article Inhomogeneous
Electron Gas which was the start of the density functional theory. This theory
presented a new way to solve the Schrödinger equation. In this paper, the orbital-
free approach is outlined and was promising but in the following year, Kohn and
Sham published an even more promising article that presented the Kohn-Sham
equations. By now, a vast majority of computational materials science rely on the
Kohn-Sham equations.

In the same decade as the Hohenberg and Kohn article was published, in the
field of engineering, the finite element method became popular. The method was
invented before that, but it was rediscovered by engineers in the sixties and put
to use for dam calculations. Today the finite element method is one of the most
researched and used methods for solving differential equations.

In this thesis, we will cover the background theory. This includes the density
functional theory, the steepest descent, optimization schemes and the finite element
method. Then we show how we combine these into a program and discuss the
problems there was along the way. The results from this program will also be
presented along with discussion and comparison with previously known results.
Finally, we discuss the method and possible improvements that can be made.
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Chapter 2

Density Functional Theory

For the theoretical background of this work, this chapter covers orbital-free density
functional theory, functional derivatives and a restricted solution technique that
invokes a density cusp condition. In this thesis, all equations are written using
Hartree units

me = e = ~ = ke = 1, (2.1)

where the me is the electron mass, e is the elementary charge, ~ is the reduced
Planck’s constant and ke is the Coulomb’s constant. The presentation of density
functional theory follows closely the presentation in the work by Hohenberg and
Kohn [1] with addition information from Ref. [2, 3].

2.1 Introduction

In 1926, Erwin Schrödinger published his famous equation

ĤΨ = EΨ. (2.2)

This is the time-independent Schrödinger’s equation where Ĥ is the Hamiltonian
operator that acts on the wave function Ψ to give the energy E. This equation
technically determines all properties of any atomistic system, e.g., a material. A
direct solution to a many-body system is very complicated, if not impossible. This
is because there are too many degrees of freedom.

In 1964, Hohenberg and Kohn [1] proved that it is possible to change this
formulation into one with fewer degrees of freedom by using the density n as the
fundamental variable instead of the many possible wave function Ψ. This provides
the same energy for the ground state and the density contains the same information
as the wave function Ψ. The density is defined as:

n = 〈Ψ| n̂ |Ψ〉 =

∫
dr2 . . .

∫
drN

N∑

i=1

δ(r− ri) |Ψ(r1, r2, . . . , rN )|2 (2.3)

3



4 Density Functional Theory

where N is the number of electrons, ri their position and n̂ is the density operator.
We proceed to show how to rewrite the Schrödinger equation into the density
functional theory.

The Hamiltonian Ĥ for many-body electron problem can be divided into com-
ponents. In the Born-Oppenheimer approximation [4], these components are:

Ĥ = T̂ + Û + V̂. (2.4)

In this equation, T̂ is the kinetic energy operator, Û is the Coulomb interaction
between the electrons, and V̂ is the Coulomb interaction between nuclei and elec-
trons, also known as the external potential. These operators are defined as:

T̂ =
1

2

∫
∇Ψ∗(r)∇Ψ(r)dr (2.5)

Û =
1

2

∫
1

|r− r′|Ψ
∗(r)Ψ∗(r′)Ψ(r)Ψ(r′)drdr′ (2.6)

V̂ =

∫
v(r)Ψ∗(r)Ψ(r)dr (2.7)

Using Eq. (2.4), it is possible to reformulate the expectation value E of the total
energy as a functional of the density n, giving

E[n] =

∫
v(r)n(r)dr +

1

2

∫
n(r)n(r′)
|r− r′| drdr

′ +G[n], (2.8)

where the first term corresponds to the external potential functional, the second
term is the Coulomb interaction between electrons and the last term is a universal
functional. This functional is not known on an explicit form. It includes all the
remaining many-body quantum effects of the system. In the paper by Kohn and
Sham [3], it is further partitioned:

G[n] = Ts[n] + Exc[n] (2.9)

here, Ts[n] is the non-interacting kinetic energy and Exc[n] is exchange and corre-
lation energy.

2.2 Kohn-Sham Equations

In Kohn-Sham density functional theory, the problem is reformulated in terms
of non-interacting particles. The strength of the Kohn-Sham approach is that
the non-interacting kinetic energy Ts[n(r)] is calculated exactly. The Kohn-Sham
equations are given by:

(
− 1

2
∇2 + vKS

)
φi(r) = εiφi(r) (2.10)
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where the φi(r) are the Kohn-Sham orbitals with corresponding eigenvalues εi.
The vKS is called the Kohn-Sham potential and contains the external potential, the
Coulomb interaction between electrons, and the exchange and correlation terms.

vKS(r) = v(r) +

∫
n(r′)
|r− r′|dr

′ + µxc(n(r)) (2.11)

Eq. (2.10) is solved repeatedly until a self-consistent solution is found. The density
of the interacting system can be represented by the Kohn-Sham orbitals so that

n(r) =

N∑

i

|φi(r)|2. (2.12)

2.3 Orbital-Free Density Functional Theory

In contrast to Kohn-Sham density functional theory, in orbital-free density func-
tional theory are both the functionals Ts[n] and Exc[n] are approximated. In
Section 2.5 we will discuss the different ways of approximating these terms. OF-
DFT is an active area of research. For an overall discussion, and recent works see,
e.g, [5, 6, 7, 8]. First, we will discuss how to find the density that gives the lowest
energy E[n]. The minimization is performed under the constraint of keeping the
number of electrons fixed in the system, and which is given by the equation:

∫
n(r)dr = N. (2.13)

Hence the equation we want to solve:

min
n

E[n]

s.t

∫
n(r)dr = N

n(r) ≥ 0 (2.14)

where E[n] contains the functionals that are used to describe the nature of the
electron, the constraint

∫
n(r)dr = N keeps the number of electrons fixed and the

constraint n(r) ≥ 0 makes sure the solution is physical, since negative density do
not exist as physical solution. The constraint

∫
n(r)dr = N can be handled by

introducing a Lagrange multiplier µ.

min
n

E[n]− µ
(∫

n(r)dr−N
)

s.t n(r) ≥ 0 (2.15)

The Lagrange multiplier µ is the chemical potential of the system. The density
n that solves this equation is given by a stationary state, where the functional
derivative is equal to zero.

δE[n(r)]

δn(r)
− µ = 0 (2.16)
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2.4 Functional Derivatives

The definition of a functional derivative is in Ref. [9].

lim
ε→0

F [f + εφ]− F [f ]

ε
=

d

dε
(F [f + εφ])

∣∣∣
ε=0

=

∫
δF

δf(x)
φ(x)dx (2.17)

In this formulation, F [f ] is the functional that is to be differentiated, and φ(x)
is an arbitrary function. In most cases, this can be taken as a delta function
δ(x − x0) to simplify the definition. This definition is similar to the definition of
the derivative of a function and it turns out they share many important properties
such as the chain rule and linearity.

2.4.1 External Potential

The external potential has the form

Ev[n] =

∫
v(r)n(r)dr (2.18)

which can be rewritten as

Ev[n+ δn] =

∫
v(r)(n(r) + δn(r))dr =

∫
v(r)n(r)dr +

∫
v(r)δn(r)dr (2.19)

which gives the derivative
δEv[n(r)]

δn(r)
= v(r). (2.20)

2.4.2 Hartree Potential

The Coulomb interaction between electrons is

J [n] =
1

2

∫
n(r)n(r′)
|r− r′| drdr

′ (2.21)

which has the derivative

δJ [n(r)]

δn(r)
=

∫
n(r′)
|r− r′|dr

′ (2.22)

which defines the Hartree potential vi(r).

vi(r) ≡
∫

n(r′)
|r− r′|dr

′ (2.23)

is equivalent to solving Poisson’s equation

∇2vi(r) = −4πn(r). (2.24)
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2.5 The Universal Functional G

In this section, we will present the functionals that approximate the kinetic energy
Ts[n] and exchange and correlation energy Exc[n] and their functional derivatives.

The simplest approximation of the kinetic energy Ts[n] is the Thomas-Fermi
model. Terms of higher order, like the Weizsäcker term, can then be added in
order to increase the accuracy.

In this work, we will consider two kinds of approximation to the exchange and
correlation energy Exc[n]: the so-called Amaldi functional, and the Dirac exchange
term.

2.5.1 Thomas-Fermi

The Thomas-Fermi approximation is derived from a uniform electron gas [10, 11,
12]. In this case, one finds for the kinetic energy:

TTF[n] =
3

10
(3π2)2/3

∫ (
n(r)

)5/3
dr (2.25)

with the functional derivative

δTTF[n(r)]

δn(r)
=

1

2
(3π2)2/3

(
n(r)

)2/3
. (2.26)

2.5.2 Weizsäcker

Weizsäcker [13] proposed a simple term that takes into account the kinetic energy
of a single orbital, this is added to the Thomas-Fermi functional to improve the
accuracy

TW[n] =
λ

8

∫ (
∇n(r)

)2

n(r)
dr (2.27)

where the parameter λ was originally set to unity, but other values have been
proposed based on various arguments. For instance, in the article by Stich, Gross,
Malzcher and Dreizler [14], they present an λ = 0.2 to be optimal.

When applying the functional derivative to the Weizsäcker functionals one gets:

TW[n+ δn] =
1

8

∫ ∇(n(r) + δn(r)) · ∇(n(r) + δn(r))

n(r) + δn(r)
dr

= TW[n]− 1

4

∫ ∇2n(r)

n(r)
δn(r)dr +

1

8

∫ ∇n(r) · ∇n(r)

n(r)2
δn(r)dr (2.28)

and thus
δTW[n(r)]

δn(r)
= −1

4

∇2n(r)

n(r)
+

1

8

∇n(r) · ∇n(r)

n(r)2
. (2.29)
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2.5.3 Amaldi

To approximate the exchange energy, Amaldi [15] used the classical Coulomb re-
pulsion

TA[n] = − 1

2N

∫
n(r)n(r′)
|r− r′| drdr

′. (2.30)

This functional is TA[n] = −J [n]/N so its derivative is simply

δTA[n(r)]

δn(r)
= −vi(r)/N. (2.31)

2.5.4 Dirac

Another exchange term was introduced by Dirac [16]:

TD[n] = −3

4

( 3

π

)1/3
∫ (

n(r)
)4/3

dr. (2.32)

This functional is the equivalent to local-density approximation in Kohn-Sham
density functional theory.

The functional derivative of the exchange Dirac functional is

δTD[n(r)]

δn(r)
= −

( 3

π

)1/3(
n(r)

)1/3
. (2.33)

2.6 Cusp Condition

When Thomas-Fermi theory is used for atomic systems, the density at the nucleus
diverge. The reason is that the external potential for atomic system diverges at
the nucleus.

v(r) = −Z/r (2.34)

where Z is the atomic number for the atom. One solution is to use the softened
Coulomb potential,

v(r) = −Z/(r + c), (2.35)

where c is the softening parameter. Another alternative approach is presented in
the paper by Parr and Ghosh [17]. They resolve this issue with the nuclear cusp
condition:

dn(r)

dr

∣∣∣∣
r=0

= −2Zn(0). (2.36)

This condition can be enforced via introduction of the following constraint:
∫
e−2kr∇2n(r)dr <∞, (2.37)

where k is a constant that will be determined later. This constraint is added to
the Thomas-Fermi equations by another Lagrange multiplier −λ,

E[n] =

∫
v(r)n(r)dr +

1

2

∫
n(r)n(r′)
|r− r′| drdr

′ +
3

10
(3π2)2/3

∫ (
n(r)

)5/3
dr
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− µ
(∫

n(r)dr−N
)
− λ
(∫

e−2kr∇2n(r)dr
)
. (2.38)

Rederiving the variational equation now gives,

δE[n(r)]

δn(r)
= v(r) + vi(r) + (5/2)(3π2)2/3

(
n(r)

)2/3 − µ− λ∇2(e−2kr) = 0, (2.39)

where λ∇2(e−2kr) can be rewritten to (4λke−2kr)/r− 4λk2e−2kr. Inserted in the
functional derivative together with the external potential gives,

− (Z−4λke−2kr)/r+vi(r) + (5/2)(3π2)2/3
(
n(r)

)2/3−µ−4λk2e−2kr = 0. (2.40)

If we now use Maclaurin series expansion on −(Z−4λke−2kr)/r we can determine
λ. The Maclaurin series is ex = 1 + x+O(x2) we get:

− (Z − 4λk(1− 2kr +O(r2)))/r. (2.41)

If we choose λ = Z/4k, the results are −(2Zkr +O(r2))/r = −2Zk +O(r) which
has no singularity as r → 0. Here we have the opportunity to enforce the nuclear
cusp condition by choosing k =

√
(5/9)(3/10)(3π2)2/3n(0)2/3.

In Figure 2.1, the converged potential for Helium with the nuclear cusp con-
dition enforced as discussed is compared to the Coulomb and softened Coulomb
potentials (convergence is necessary since the method gives a potential with a
density dependence).

4 2 0 2 4
Box x-coordinate [bohr]
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Figure 2.1. Different potentials for a Helium nuclei. The red curve is the −1/r, the blue
curve is with the cusp condition and the green is the softened Coulomb. The softened
Coulomb has the form 1/(r+ 0.2162) to match up with the cusp condition at the nuclei.
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2.7 Ewald Summation

In bulk material with periodic boundary conditions, there is a contribution to the
total energy from the ion-ion energy between a nucleus and every infinite copy of
this nucleus

Eion−ion =
1

2

∑

i,j

1

N
ZiZj

∑

k,l,k 6=l
ϕ(||rk − rl||2). (2.42)

The standard method for calculating this energy is the Ewald summation. We
summarize this method following the presentation by Toukmaji and Board [18]
and the notation from Ref. [19]. The sum is divided into three parts: one long
range, one short range, and a constant

Eion−ion = Er + Em + E0. (2.43)

The short range interaction Er is calculated in real space,

Er =
1

2

∑

i,j,i 6=j
ZiZj

∑

L

erfc(a||ri − rj + L||2)

||ri − rj + L||2)
, (2.44)

where L is the lattice vectors inside a sphere with radius Lmax and a is a conver-
gence parameter that determines the division between the long and short range.
The long range interaction Em is calculated in the Fourier space

Em =
1

2

∑

i,j,i 6=j

ZiZj
πV

∑

G

e||G||
2
2/(2a)2

||G||22
cos(G · (ri − rj)) (2.45)

where G is the reciprocal lattice vectors inside a sphere with radius Gmax. The
constant E0 is given by:

E0 = − 9√
π

∑

i

Z2
i −

π

2V a2

(∑

i

Zi

)2

(2.46)

where V is the cell volume. The convergence parameter a do not affect the results
only the speed of convergence. In Pymatgen [20], a code for running ewald sums,
it is evaluated by the following form to give a fast convergence:

a =
√
π

(
0.01M

V

) 1
6

(2.47)

where M is the number of atoms.



Chapter 3

Finite Element Method

This chapter is a brief introduction to the finite element method and in particular
as implemented in the open-source library deal.II [21, 22] which we use in this
work. There is, of course, an extensive amount of literature on this subject. The
presentation in this chapter follows closely that of the manual, tutorials and video
lectures that accompany deal.II [23].

3.1 Introduction

The main reason we explore the use of the finite element method to solve the
density functional theory equations is that finite element method is very good at
solving Poisson’s equation by providing good numerical integrating. Which could
be used to solve Eq. (2.24). The general scheme for solving a partial differential
equation with the finite element method is:

1. Generate a mesh.

2. Write the partial differential equation into weak form with a set of test
functions.

3. Write the weak form in terms of a linear set of equations.

4. Solve this system of equations.

Below we will look closer at these steps and how they are done in detail especially
for solving Poisson’s equation.

11
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3.2 Mesh

The first step in the finite element method is to generate a mesh. A mesh is
an approximation of the geometric domain using polygons or polyhedrons. This
can be done in many different ways depending on the dimension and the choice
of polygons or polyhedrons one uses. Deal.II has only implemented quadrilateral
polygons, i.e., four-sided polygons.

The way this is done in deal.II is that one marks a cell for refinement. Then
the marked cell is subdivided into smaller cells. In a problem formulated in n
dimensions a cell marked for refinement will be divided into 2n cells.

If there are two cells next to each other and one is refined and the other is not,
then one will get a hanging node as shown in Figure 3.1.

1

2

3

4

5

6

7

8

9

10

11

Figure 3.1. A mesh with a hanging node in node 4. The right cell (nodes 3,5,9,11) is
refined one step further than the left cell (nodes 1,2,3,5).

These hanging nodes need to be handled in a special way. The value V at node
4 is linear interpolated between the neighbouring nodes.

V4 =
1

2
V3 +

1

2
V5 (3.1)
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3.3 Galerkin Method

The Galerkin method states that it is possible to rewrite the partial differential
equation into a weak formulation using a test function. For instance, consider
Poisson’s equation. The strong formulation is:

−∇2u = f in Ω (3.2)

where Ω is the simulation space where the solution to Poisson’s equation exists.
The first step in rewriting the partial differential equation into weak formulation
is to multiply with a test function ψ and integrate, which gives

−
∫

Ω

ψ∇2u =

∫

Ω

ψf. (3.3)

A partial integration then leads to the equation
∫

Ω

∇ψ · ∇u−
∫

δΩ

ψn · ∇u =

∫

Ω

ψf. (3.4)

If we now choose a test function ψ that has the property
∫
δΩ
ψn · ∇u = 0 we end

up with the following equation:
∫

Ω

∇ψ · ∇u =

∫

Ω

ψf (3.5)

This is called the weak formulation of Poisson’s equation. For a unique solution
to Poisson’s equation to exist, one requires a set of boundary conditions. This is
explained further in Section 3.6.

3.4 Test Function

The choice of the test function ψ depends on the problem at hand. For Poisson’s
equation, the common choice is to use the Lagrange elements, which is also what
we use in this work. This element has the property

∫
δΩ
ψn · ∇u = 0, which can be

seen in the definition provided in the next section.

3.4.1 Lagrange Element

A Lagrange element is defined to be unity at one node, but zero at all other nodes.

ψ(xi, xj) =

{
1 if i = j

0 if i 6= j
(3.6)

In order to define the functions between two nodes, one uses the Lagrange poly-
nomials. These are defined as:

ψj(x) =

k∏

i=0, i 6=j

x− xi
xj − xi

(3.7)
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where each xi and xj are the positions of the nodes. In Figure 3.2, one can see the
first orders of the Lagrange polynomials on a 1D line from 0 to 1. In this figure
there are two nodes; one at 0 and one at 1, but the elements will have different
degrees of freedom depending on the order of the Lagrange polynomials. Degrees
of freedom is the number of variables that are free to vary.

0.0 0.2 0.4 0.6 0.8 1.0
X

0.0
0.2
0.4
0.6
0.8
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Q1
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Lagrange Elements 1D

0.0 0.2 0.4 0.6 0.8 1.0
X

0.2
0.0
0.2
0.4
0.6
0.8
1.0

Q2
 e

le
m

en
t ψ0 ψ1 ψ2
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Figure 3.2. Lagrange polynomials for order 1,2 and 3 in 1D. Q1 elements has 2 degrees
of freedom at 0 and 1. Q2 has three degrees of freedom at 0, 0.5 and 1. Q3 has four
degrees of freedom at 0, 1/3, 2/3 and 1.

With higher order elements, the line gets divided more and the system get more
degrees of freedom when saving this information. These Lagrange polynomials
have a similar appearance in 2D and 3D.

A good rule of thumb when choosing the order of an element is order 2 or 3
for simulations in 3D.

3.5 Weak Formulation to Linear System

Having defined the partial differential equation in the weak formulation, and hav-
ing chosen suitable test functions, we can look for the solution uh to this equation.
The h indicates that this is the solution on the mesh is not the real solution u. uh
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can be written a linear combination of test functions:

uh(x) =
∑

j

Ujψj(x). (3.8)

Hence, we need to find a U that solves the equation:

AU = F (3.9)

where each Aij is given by

Aij =

∫

Ω

∇ψi · ∇ψj (3.10)

and Fi is presented as

Fi =

∫

Ω

ψif. (3.11)

Now we look at each contribution from each cell K:

Aij =
∑

K

∫

K

∇ψi · ∇ψj (3.12)

Fi =
∑

K

∫

K

ψif (3.13)

In order to solve these integrals, we use a standard tool in numerical integration,
namely the quadrature formula. The integrals are approximated as follows

AKij =

∫

K

∇ψi · ∇ψj ≈
∑

q

∇ψi(xKq ) · ∇ψj(xKq )wKq (3.14)

FKi =

∫

K

ψif ≈
∑

q

ψi(x
K
q )f(xKq )wKq (3.15)

where each xKq and wKq are the position and weight respectively that are used in the
quadrature formula. The are many different quadrature formulas to choose from,
but the most common is the Gauss quadrature formula. When using Lagrange
elements and the Gauss quadrature, there is an important relation to keep in
mind when choosing the order of elements n and the order of quadrature K. It
turns out that K needs to be such that K = n + 1, in order to give the best
approximation.

This will result in a system of equations given on the standard form AU = F ,
where the size of the matrix is the degrees of freedom. Most entries in the matrix
A will be zero, and is hence a sparse matrix. This occurs since the entries for the
i:th row only depends on the i:th node and the nodes that are connected to that
node.
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3.6 Boundary Conditions

To converge to a unique solution, we must specify boundary conditions for the
simulation space Ω. This is required for Poisson’s equation, otherwise the linear
system AU = F will be underdetermined.

The two most common boundary conditions are Dirichlet boundary condition
u = g2 on δΩ and Neumann boundary condition n · ∇u = g2 on δΩ where g1 and
g2 are arbitrary functions.

One can also use periodic boundary conditions but then, the system still is
underdetermined. The solution to this system differs by a constant uh = uh + C.
To determine this constant we must add an additional condition. An arbitrary
point needs to have a Dirichlet boundary condition u = 0 at one node to determine
C. In order to find a periodic solution to Poisson’s equation, the problem have to
be well-posed, i.e., the right-hand side needs to integrate to zero.

3.7 Solver

Having defined the linear system in Eq. (3.9), we need to choose a solver to find
the solution at all nodes. There are two kinds of solvers, direct or iterative.

Direct solvers solves this system of equations by means of Gaussian elimination
or by finding the inverse. These solvers provide the exact solution to the system
but takes a lot of time and are thus computationally cumbersome.

Iterative solvers will find an approximate solution to the equation system by
taking iterative steps to get closer to the correct solution. The conjugate gradient
solver is a common iterative method. This solver has the feature that if you have
an NxN system it is guaranteed to converge in N steps, but usually it finds the
threshold value faster than that. One way to improve the speed of iterative solver
is to use a preconditioner.

3.8 Preconditioner

Consider a system Ax = B being solved with an iterative solver. A preconditioner
P−1 is used to relax the system P−1Ax = P−1B, which will reduce iterations
to find the solution. Clearly, the optimal preconditioner is P−1 = A−1 since no
iterations would be needed, but it takes a lot of computations to calculate the
inverse of a matrix. Thus we need to approximate the inverse and this is done
by dividing the matrix A into three different parts: A = L + D + U . Here L
is an lower triangle matrix, D is an diagonal matrix and U is an upper triangle
matrix. A simple choice is the Jacobi preconditioner P−1 = D−1. This is faster
than calculating the inverse and still reduces the number of iterations needed.

The preconditioner used most frequently in the deal.II tutorials is the Sym-
metric Successive Over-Relaxation (SSOR) which has the following form:
P−1 = (D + ωU)−1 ∗D ∗ (D + ωL)−1 with the value for ω set to 1.2 as default.
This is the preconditioner used in this work.
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3.9 Derivatives

In many applications, the derivative of the solution in every node is needed. We
follow the approach presented in the documentation of another finite element li-
brary, FEniCS [24]. Given the solution

uh(x) =
∑

j

Ujψj(x), (3.16)

the derivative is given by

∇uh(x) =
∑

j

Uj∇ψj(x). (3.17)

This may introduce problems depending on the choice of test function ψ. For
example, the derivative of the Lagrange element of order 1 (Q1) is discontinuous,
i.e., it belongs to another function space than the regular elements. There are two
possible solutions; either one chooses a better test function or one projects the
derivative ∇uh(x) on to the same function space as the solution uh(x).

The projection method is done by setting up a weak formulation of the pro-
jection and solving this problem similar as we did in Section 3.5 for Poisson’s
equation. Since the derivative of a scalar field is a vector field and we are not in-
terested in the individual vector components but the norm of the derivative. The
strong formulation is u = |∇uh|2 which will give a linear system AU = F . This
time, the matrix A and the right-hand side F are different:

Aij =

∫

Ω

ψi · ψj (3.18)

Fi =

∫

Ω

ψi(∇uh(x) · ∇uh(x)) (3.19)

Solving this system gives the derivative in the same function space as the solution
uh(x), and this equation does not require any boundary conditions since the system
is well defined.

A similar setup is done if we need the second order derivatives. This can be
found by solving the inverse to Poisson’s equation u = ∇2uh. Hence, now the
Matrix A and the right-hand side F are switched:

Aij =

∫

Ω

ψi · ψj (3.20)

Fi = −
∫

Ω

∇ψi · ∇uh(x) (3.21)

The minus sign that appear in the right-hand side Fi, is due to the fact that
Poisson’s equation is defined like −∇2u = f . Though, the problem we are solving
is u = ∇2uh. This equation does not require any boundary conditions as well.
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3.10 Steepest Descent

Finally, we will discuss optimization schemes. This is not specific to the finite
element method, but can be used on the nodal value given by the finite ele-
ment method. The simplest algorithm in optimization to solve the problem like
Eq. (2.14) is the steepest descent. The general method of steepest descent for min-
imizing a function f(x) is taken from the book [25] and proceeds in the following
steps:

1. Choose a starting point x(k=0)

2. Calculate the gradient d(x)(k) = ∇f(x(k))

3. Check the abort criteria ‖d(k)‖2 < ε

4. Calculate the step size t(k)

5. Find the new point x(k+1) = x(k) − t(k)d(x)(k)

6. Repeat step 2 with k = k + 1

It is known that the steepest descent will find a global solution if the function
is convex and the set is convex.



Chapter 4

Method and Implementation

This chapter discusses the implementation of an orbital-free density functional
theory solver. The code was written to solve the orbital-free equations for atoms,
molecules and bulk systems in 3D space. We name the program DeFuSE which
is an acronym for Density Functional Solver for finite Element method. In this
chapter will we discuss the basic flow of the program, issues that arose when
combining the orbital-free equations with the finite element method and how the
equations were solved.

4.1 Main Scheme

The following scheme describes how Eq. (2.15) is solved in our program. This is
done by implementing the steepest descent scheme, in Section 3.10, over functional
space (instead of for an ordinary function).

1. Choose a starting density n(r)(k=0)

2. Calculate the functional derivative d(r)(k) = δE[n(r)(k)]
δn(r)

3. Check the abort criteria ‖d(r)(k) − µ(k)‖2 < ε

4. Determine the step size t(k)

5. Find the new density n(r)(k+1) = n(r)(k) − t(k)(d(r)(k) − µ(k))

6. Repeat step 2 with k = k + 1

The steps shown above constitute the steepest descent implementation devised
for finding the density that minimizes the energy. We assume that the initial
density is sufficiently close to the solution for the scheme to converge to the global
minimum.

These steps are visualized in Figure 4.1.

19
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Initial density∫
n(r)dr = N

Functional
derivative

d(r)(k) = δE[n(r)]
δn(r)

‖ δE[n(r)]
δn(r) − µ‖2 < 10−6

Calculate the step
size t(k), fixed

step t(k) = 0.01

New density
n(r)(k+1) =
n(r)(k) −

t(k)(d(r)(k) − µ(k))

Minimized
density found

yes

no

Figure 4.1. The modified steepest descent algorithm for functionals with the tolerance
level ε = 10−6 and a fixed step size t(k) = 0.01.

4.2 Flow Chart

The basic structure of the program can be viewed in Figure 4.2. In this flow chart,
one can see the different stages that the program goes through and each step will
be discussed in separate sections.

The program use a conjugate gradient solver with an SSOR preconditioner as
discussed in Sections 3.7 and 3.8.

All the input parameters for DeFuSE can be found in Appendix A.
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Load Parameters 
and Material

Create Grid

Create Potential

Atom/Molecule 
Potential 

Periodic Potential

Initial Density

Initialization

Main 
Loop

Solve Hartree

Calculate Density 
Derivatives

Create Functional 
Derivative
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New Density
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Solve Hartree

Calcute Energy

Output

Yes
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Figure 4.2. The flow chart of DeFuSE. The red parts is where the finite element method
is used.
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4.3 Material and Mesh

The first step in DeFuSE is to read the material species file and input parameters.
The material is loaded using a vasp poscar file [26]. In this poscar file, the size
of the simulation box (or unit cell for periodic systems) is specified and where
atoms should be placed. The simulation box is the geometric domain we use for
the simulation, and corresponds to Ω as discussed in Section 3.3. For atoms and
molecules, we would like to simulate an infinite space but this is not possible in a
computer hence a simulation box is required. For periodic systems, the simulation
box is the size of the unit cell. When the information in the poscar file has been
uploaded, the simulation box is created and the refinement begins.

In the program, there are three levels of refinement choices: Pre-, atom- and
post-refinement. The pre-refinement is used to make sure that there is a node at
each atom position. This has to be done prior to the actual first step in the calcula-
tion since the program does not do this automatically. The pre-refinement refines
all cells in the mesh. After that, the atom-refinement is made. This refines addi-
tional cells around the nucleus inside a given radius. Finally, the post-refinement
can be used to refine all cells again. The different refinement levels have the
following notation: 3:(5,1):0 where 3 is the pre-refinement level, 5 is the atom-
refinement level with radius 1 bohr and 0 for the post-refinement level. Since the
post-refinement is usually omitted the notation 3:(5,1) is also used.

After the mesh has been constructed the atoms are placed at their positions.

4.4 External Potential

After loading the material we need to determine the external potential since this
is the driving force for finding the density for the specific system.

For atoms and molecules it is easy to define the external potential, since we
know the analytic description v(r) = −Z/r for every atom. Hence, in the program
the positions of the nodes are entered into this equation and a potential is made
for each atom in the material. It is also possible to use a soften coulomb, i.e., an
external potential on the form v(r) = −Z/(r + c).

The external potential for periodic systems is less straightforward. One needs
to make an external potential that is periodic and takes into account all the infi-
nite copies of itself. In DeFuSE, this is done by solving Poisson’s equation, with
delta functions centred at each atomic site times the nuclear charge, with periodic
boundary conditions. This results is the equation

−∇2v(r) =
∑

i

4πZiδ(r− ri) (4.1)

where Zi is the nuclear charge and ri the position of the atom in the material.
For a non-periodic system, the solution would simply reproduce the usual atomic
potential.

v(r) =

∫
Ziδ(r

′ − ri)

|r− r′| dr′ =
Zi

|r− ri|
(4.2)
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4.5 Initial Density

There are two choices that have been implemented for the initial density: A con-
stant distribution across the simulation box and a Gaussian distribution. Both of
these obey the condition

∫
n(r)dr = N , where N is the total number of electrons.

The constant distribution is simply n(r) = N/V where V is the volume of the
simulation cell.

The case of the Gaussian distribution is a little more complicated. This adds
Gaussian distribution at all the nucleus in the simulation box. These are weighted
so that a heavier nucleus gets a higher density that a lighter ones:

n(r) = κ
∑

i

Zie
−r2 . (4.3)

Where κ is a normalization constant and Zi is the nuclear charge.

4.6 Hartree Potential

The most time consuming part of the code is to solve for the Hartree potential.
This has to be done in each iteration after a new density has been calculated. In
Eq. (2.24) the Hartree potential vi(r) is defined in terms of Poisson’s equation.

−∇2vi(r) = 4πn(r) (2.24)

where the boundary conditions are chosen appropriately depending on whether
the system is finite or periodic.

4.6.1 Finite Systems

The finite element method needs boundary conditions to converge, but the defi-
nition of the hartree potential do not provide any. A solution to this problem is
presented in the work by Rostgaard [27], which is called the Gaussian neutraliza-
tion. The principle of this method is that you add a negative Gaussian distribution
g(r), for each of the atoms in the material, so the average density is zero. This
means we can solve Poisson’s equation with Dirichlet boundary condition equal to
zero. Since the solution to Poisson’s equation with a Gaussian distribution vg(r)
is given analytically, we can subtract it afterwards.

g(r) = −Ze−r2/2, −∇2vg(r) = 4πg(r), vg(r) = −Zerf(r/
√

2)/r (4.4)

Hence, the scheme for solving the Hartree potential for an atom or molecule is
now determined.

−∇2vi(r) = 4π(n(r) + g(r)) in Ω (4.5)

vi(r) = 0 on δΩ (4.6)

vi(r) = vi(r) + vg(r) (4.7)
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4.6.2 Periodic Systems

In order to use periodic boundary conditions as discussed in Section 3.6, the right-
hand side needs to integrate to zero. Hence, a uniform background −N/V is added
to Poisson’s equation for periodic systems.

−∇2vi(r) = 4π(n(r)−N/V ) in Ω (4.8)

After the solution vi(r) has been obtained, it is displaced so it integrates to zero.

4.7 Functional Derivatives

When the density and a corresponding Hartree potential is determined, the pro-
gram moves on to compose the functional derivatives. In the case of Thomas-Fermi
theory we get the following equation:

δE[n(r)]

δn(r)
= v(r) + vi(r) +

1

2
(3π2)2/3

(
n(r)

)2/3
(4.9)

where v(r) is the potential, vi(r) is the Hartree potential and the last term is the
kinetic energy. If one is using a cusp condition, this contribution shows up in the
potential like we discussed in Section 2.6.

When the functional derivative is formed, the chemical potential µ is found by
integrating over the simulation space Ω:

µ =
1

V

∫

Ω

δE[n(r)]

δn(r)
dr (4.10)

where V is the volume of the simulation space Ω. Now µ can be subtracted from
the functional derivative and the stopping criterion is checked:

∣∣∣∣
∣∣∣∣
δE[n(r)]

δn(r)
− µ

∣∣∣∣
∣∣∣∣
2

< ε. (4.11)

If the requirement is not met, the steepest descent continues and a new density is
found. How the new density is found is described in the next section. However,
a side remark about what happens when the energy functional is extending with
Amaldi, Dirac or Weizsäcker terms, as described in Section 2.5.

The exchange functional derivatives of Amaldi Eq. (2.30) and Dirac Eq. (2.32)
are only depended on the density and can be added the same way as the Thomas-
Fermi term. The Weizsäcker term is more complicated. First, one needs to calcute
the first |∇n(r)|2 and second derivate ∇2n(r) to form the Weizsäcker functional
derivate as in Eq. (2.29). This is done by solving two separate finite element
problems as discussed in Section 3.9.
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4.8 New Density

To construct the next density we use the equation

n(r)(k+1) = n(r)(k) − t(k)
(δE[n(r)]

δn(r)
− µ

)
(4.12)

as discussed in Section 3.10. In the steepest descent, one of the steps is to calculate
the step size t(k). An even simpler way is to have a fixed step size. This approach
is chosen for the DeFuSE code, this only affects the speed of convergence. A bigger
step size means faster convergence but if it is too big, problems could occur when
trying to keep the density positive. A number of step sizes were tested and a good
value that holds this balance is t = 0.01.

However, as the density is updated, it is possible that the density becomes
negative in some spacial regions. To avoid this problem, the step size is always
taken as the smaller value of (i) the intended step size or (ii) half the step size that
would turn any point of the density negative. If this criterion limit the step size
to be below 10−12 the program terminates. A schematic diagram of this routine
is shown in in Figure 4.3.

ni+1

n*i+1

ni

n>0

n<0n=0

Figure 4.3. A schematic illustration of calculating a new density. Here the black
hexagon represents the allowed densities and the green ellipses represent contour lines
for the functionals. If a step size moves from a allowed density, the black square ni, to
a non allowed density, the red cross ni+1, a density which is outside the hexagon. Then
the step correction changes the step size so that the density becomes allowed, to the blue
circle n∗i+1.

The steepest descent loop continues to run until the tolerance level is met. For
all simulation in this thesis, the tolerance is set to 10−6.
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4.9 Calculate Energy

When the steepest descent is finished and the minimized density is found. The
final step in DeFuSE is to calculate the energy. For the case of Thomas-Fermi, the
energy is given by:

E[n] =

∫
v(r)n(r)dr +

1

2

∫
vi(r)n(r)dr +

3

10
(3π2)2/3

∫ (
n(r)

)5/3
dr. (4.13)

The two last terms are simple to calculate by appropriate routines in the Deal.ii
library but the first term has singularities that are difficult to integrate. Hence, we
have instead devised an alternative method using the Hartree potential. Starting
from the definition, Eq. (2.23).

vi(r) =

∫
n(r′)
|r− r′|dr

′ (2.23)

If we set r = ri to the position of the atom and multiply with the atomic number
Zi we get the desired integral

Zivi(ri) =

∫
n(r′)

Zi
|ri − r′|dr

′ =

∫
n(r′)v(r′)dr′. (4.14)

The external potential integral is replaced by a sum of Hartree potentials.

E[n] =
∑

i

Zivi(ri) +
1

2

∫
vi(r)n(r)dr +

3

10
(3π2)2/3

∫ (
n(r)

)5/3
dr (4.15)

This equation is the energy for the Thomas-Fermi model. If one uses more func-
tional terms these energies are calculated as shown in Section 2.5.

4.9.1 Additional Energy Terms

There are some energy contributions that are not included in the functional de-
scription. These are the interaction between nuclei in molecules and bulk simula-
tion. For atoms, the contribution is the Coulomb interaction

Eion−ion =
1

2

∑

i,j,i 6=j

ZiZj
|rj − ri|

(4.16)

where i and j are the numbers of atoms for the material. This term is zero for a
single atom.

When we do bulk simulations, i.e., periodic conditions, we use the Ewald sum-
mation as discussed in Section 2.7. This is implemented using the materials science
library Pytmatgen [20].



Chapter 5

Results and Discussion

In this chapter, the results from the DeFuSE program is presented. First, a couple
of convergence tests are performed to determine appropriate parameters for further
computations. These tests primarily use a hydrogen atom setup since this is the
simplest system possible and the results can be compared with the exact solution.

The exact energy for a single hydrogen atom is E = −13.6 eV = −0.4998 hartree
for the ground state with the corresponding density n(r) = e−2r/π bohr−3.

After these tests, we will see if we can replicate results from the papers [17, 28]
and test the new bulk simulation method. The last test is to see how well the
gradient correction terms, like the Weizsäcker, works.

Additional data for certain tests are found in Appendix B.

5.1 Convergence

In this section, we will decide what convergence parameters are appropriate for
the hydrogen atom. These tests will decide what finite element (Q1,Q2,Q3), mesh,
starting density and size of the simulation box to use for the Thomas-Fermi func-
tional with the cusp condition. The final test is for the Thomas-Fermi functional
with a softened Coulomb potential.

5.1.1 Element Selection

First, we need to decide the order of element to use. The options are tri-linear Q1,
tri-quadratic Q2 or tri-cubic Q3 Lagrange elements. This test is executed with a
uniform mesh with a simulation box size of 5x5x5 bohr using the Thomas-Fermi
functional Eq. (2.25) with cusp condition Section 2.6. The initial density is set to
a constant distribution. Then a series of refinement steps will be carried out to
see how the total energy and density behaves. The different refinement levels can
be viewed in Figure 5.1.
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Figure 5.1. The different levels of refinement that were tested for the Thomas-Fermi
functional with cusp condition. The hydrogen atom is located at the center of the simu-
lation box.

In Figure 5.2, the total energies and total time of the program for the different
elements are shown and in Figure 5.3, the density for Q2 elements is shown.
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Figure 5.2. The total energy of the hydrogen atom as a function of the number of
degrees of freedom, for the different kinds of Lagrange elements (Q1,Q2,Q3), using the
Thomas-Fermi functional with the cusp condition. It is shown that the total energy
converges to a value of about −0.34 hartree. The inset shows how the error depends on
the time for the different kinds of Lagrange elements (Q1,Q2,Q3). The data that was
used for this plot can be found in Appendix B.
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Figure 5.3. Calculated densities of the hydrogen atom using the Thomas-Fermi func-
tional with the cusp condition, for different levels of refinement. In this case, the Q2
Lagrange element have been considered. The black curve shows the exact density of
hydrogen.

The density at the nuclei in Figure 5.3 seems to converge to roughly one half
of the exact density of the hydrogen atom.

Discussion

As can be seen from Figure 5.2, the energy converges to about −0.34 hartree for
each of the different choices of elements. In this figure, one can also see that the
Q1 elements have some oscillations in the error. It is generally recommended to
use Q2 or Q3 elements when doing simulations in 3D although Q1 seems to give
a fast rough estimate in this case. The Q1 elements converges first, but the other
elements provide better results for the final error. The Q2 elements achieves a
good trade-off between speed and accuracy and seems to converge without any
oscillations.

In the following tests, Q1 elements are used for most applications to determine
if the results are reasonable and Q2 elements are used for results that require
greater accuracy.

5.1.2 Mesh and Initial Density

In order to converge the results faster, a better mesh should be used in addition
to having a more suitable initial density. If one study how the density changes
in Figure 5.3 one can see that the most change occurs inside a sphere of radius
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one bohr around the atomic nucleus. Hence, to concentrate the mesh around the
nuclei seems to be a good idea.

In order to illustrate that this does not affect the results but only the speed of
convergence, a test was carried out with the simulation box size set to 5x5x5 bohr
and using Q2 elements for the two different meshes. In Figure 5.4, one can see the
two meshes that were used. The uniform mesh 5 is comprised of elements that
have the volume 0.156253 bohr. The concentrated mesh 3:(5,1) also have elements
of volume 0.156253 bohr at the nucleus but bigger element, with volume 0.6253

bohr, at the boundary.

Figure 5.4. The two meshes used in the test. The uniform mesh 5 has 274625 degrees
of freedom and the concentrated mesh 3:(5,1) has 32829.

Table 5.1 shows the influence of the mesh and starting density on the energy
and total run time.

Mesh Initial density Final error µ Energy [hartree] Time [sec]
5 constant 9.63073 · 10−7 0.118646 -0.3362 3064
5 Gaussian 9.56019 · 10−7 0.118661 -0.336221 1752
3:(5,1) constant 9.63118 · 10−7 0.118644 -0.336205 244
3:(5,1) Gaussian 9.56912 · 10−7 0.118646 -0.3362 145

Table 5.1. The total energy values and total time for the program for the different
meshes and starting densities using the Thomas-Fermi functional with the cusp condition.

Discussion

Table 5.1 shows that both the chemical potential and the energy has the same
significant figures to a precision of 10−4. That the result varies beyond this point
could be due to the final error of the program, even running a simulation with
the same mesh but different initial density gives a different final error which could
affect the value slightly. There may also be some numerical error in the software.
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A trend is clear that with a better constructed mesh and starting value, the
program converges faster without affecting the values beyond a reasonable point,
an error less than 10−4. It is a coincidence that the mesh 5 with constant density
and the mesh 3:(5,1) with Gaussian density has the same value for µ.

5.1.3 Simulation Box Size

In this section, we discuss the impact on the energy as the simulation box size
is changed. The tests so far have been carried out with a 5x5x5 bohr simulation
box. This test have been carried out with the improved mesh 3:(5,1) and as we
doubled the size of the simulation box, we also added an extra level of refinement.
The end result is that the actual size of the elements remain the same and the
only thing that changes is the simulation box. The starting density was set to the
constant distribution and the element was set to Q2. The results can be viewed
in Figure 5.5 and in Table 5.2.
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Figure 5.5. Calculated densities of the hydrogen atom, for simulation box sizes 5x5x5,
10x10x10 and 20x20x20. The biggest change between the different simulation box sizes
is the value at the nuclei.

Simulation box size Refinement µ Energy [hartree] % change
5x5x5 3:(6,1) 0.118646 -0.3362 -
10x10x10 4:(7,1) 0.0188453 -0.359031 6.9 %
20x20x201 5:(8,1) 0.00239274 -0.359208 0.05%

Table 5.2. The result from changing the simulation box size for the Thomas-Fermi
functional with the cusp condition.
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Discussion

One can clearly see that the simulation box size affects the total energy. As the
simulation box size increases, the value of the total energy levels out even though
the density looks more or less the same for all simulation box sizes. A 10x10x10
bohr is sufficient for Thomas-Fermi theory with the cusp condition.

It can also be seen that the value of the chemical potential µ is decreasing as
the size of the simulation box is increasing. For hydrogen (and any other neutral
atom), the chemical potential is µ = 0. Hence, µ can be viewed as an indicator of
a sufficiently sized simulation box.

A final observation that is worth noticing is that during iteration for con-
vergence, the limitation on step size to avoid negative densities was applied and
reduced the step size for the run with the 20x20x20 bohr simulation box. This
limitation was probably necessary due to the fact that the value for the density
near the boundary is very close to zero.

5.1.4 Progression

With the convergence parameters for hydrogen now determined, we study how the
energy is changing during the run of the program. The following calculations use
a 10x10x10 bohr simulation box with refinement 3:(7,1) with Q2 element and a
constant density as initial density. The energy levels are shown in Figure 5.6.
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Figure 5.6. Values of the Hartree energy, the kinetic energy, the potential energy, and
the total energy as function of the iteration. This run uses the Thomas-Fermi functional
with the cusp condition. In the inset, one can see the functional derivative error Eq. (4.11)
in each iteration.

1The step safety routine changed the step size from 0.01 to 0.005 during the program run
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Discussion

A note to make is that the error is slightly increasing in the beginning. This is
probably due to the initial density is constant in the beginning and this is a very
poor representation of the correct density.

5.1.5 Soft Coulomb

We have so far presented calculations using the cusp condition. This section
explores the results of using a softened Coulomb potential Eq. (2.35). The main
question is whether hydrogen with a softened Coulomb potential gives a result
closer to the exact energy of Thomas-Fermi E = −0.7687Z7/3. This test was
carried out using a 5x5x5 bohr simulation box with Q1 elements. The results are
shown in Figure 5.7, it is seen that the energy is getting closer to the exact value as
the softening parameter increases. Calculations with a further reduced Coulomb
softening parameter, c = 0.001, did not converge. The density for the softened
Coulomb can be seen in Figure 5.8.
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Figure 5.7. The energy for the 1.0, 0.1 and 0.01 softened Coulomb vs. the exact value
of the Thomas-Fermi energy. Convergence test data is presented in Appendix B.

Discussion

Using a softened Coulomb potential shows that the calculations converge towards
the exact Thomas-Fermi result when the softening of the Coulomb is decreased.
We cannot use the exact atomic potential as discussed in Section 2.6. The problem
is the exact Thomas-Fermi density diverges at the nuclei, the tendency can be
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Figure 5.8. Calculated densities with various softened Coulomb terms, with values of c
equal to 1.0, 0.1, and 0.01.

seen in Figure 5.8. Hence, a very tight mesh is required to capture the correct
behaviour as the softening parameter gets smaller. To make calculations converge
with a parameter value of 0.001 may be possible in a smaller simulation box. The
present test is executed for hydrogen which is the easiest to converge. For heavier
elements the calculations are likely to be difficult to converge.

5.2 Benchmark Calculations

In this section, we compare the results from our code with the results from the
work by Kim, Youn and Kang [28] for the H2 molecule. To do this comparison, we
first investigate how the exchange terms Amaldi and Dirac influence the solution.

Finally, we perform calculations of noble gases using the Thomas-Fermi func-
tional with cusp condition and compare with results of Parr and Ghosh [17].

5.2.1 Exchange Term

First, we investigate the result of using the Amaldi exchange functional. A sim-
ulation with the Amaldi functional Eq. (2.30) in a 5x5x5 bohr simulation box
with the 3:(5,1) mesh did not converge, so the simulation box size was reduced to
2x2x2 bohr. Then the simulation box size was gradually increased as can be seen
in Figure 5.9. These tests were carried out with Q1 elements.
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Figure 5.9. The density gets closer to the exact solution as the simulation box size
increases for the Thomas-Fermi-Amaldi functional with the cusp condition.

The energy values and chemical potential for the different simulation boxes can
be viewed in Table 5.3.

Simulation boxsize µ Energy [hartree]
2x2x2 0.0813442 -0.14876
2.5x2.5x2.5 -0.158784 -0.401915
3x3x3 -0.263315 -0.536374
3.5x3.5x3.5 -0.310098 -0.613706

Table 5.3. The effects of simulation box size using the Thomas-Fermi-Amaldi functional
with the cusp condition.

The results approach the exact density as the simulation box size increases. The
4x4x4 bohr simulation box did not converge. A similar test was carried out with
the Dirac functional Eq. (2.32) instead. These results are shown in Figure 5.10.
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Figure 5.10. The density gets closer to the exact solution as the simulation box size
increases for the Thomas-Fermi-Dirac functional with cusp condition.

These results are similar to the Amaldi results, but now the calculations con-
verge with a larger simulation box, the limit is 5x5x5 bohr. In Table 5.4, the
chemical potential and the total energy is shown.

Simulation box size µ Energy [hartree]
2x2x2 0.290743 -0.172238
3x3x3 0.0247714 -0.474284
3.5x3.5x3.5 -0.0156867 -0.531774
4x4x4 -0.0371524 -0.564679

Table 5.4. The effects of simulation box size using the Thomas-Fermi-Dirac functional
with the cusp condition.

To verify that these energies are correct, a convergence test was preformed for
the Dirac functional. This convergence test was carried out for the 3.5x3.5x3.5
bohr simulation box with Q2 element in order to increase the accuracy. The results
of this test are shown in Table 5.5.

Refinement µ Energy [hartree]
3:(4,1) -0.0156898 -0.531786
3:(5,1) -0.0156873 -0.532106
3:(6,1) -0.0156892 -0.532161

Table 5.5. Converged total energies for different levels of refinement for the Thomas-
Fermi-Dirac functional with the cusp condition.
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Discussion

As one increase the size of the simulation box for the Amaldi functional the density
gets closer to the exact value and the energy decreases. For this functional, the
density is consistently larger than the exact density and the chemical potential µ
decrease with the size of the simulation box.

When using the Dirac exchange functional instead, the density also approaches
the exact solution, but for the largest simulation box (4x4x4), the converged den-
sity ends up below the exact density in some spacial regions. Furthermore, the
chemical potential µ is positive for small simulation boxes and becomes negative
for larger simulation boxes. In Table 5.4, one see that µ = 0 is somewhere between
the values for the simulation box size 3x3x3 and 3.5x3.5x3.5 and the exact energy
value is also between these simulation boxes. Our results suggest that µ still can
be viewed as an indicator to see if the size of the simulation box is correct.

We also presented a convergence test for the Dirac exchange functional. Both
the density and the total energy are much closer to the exact solution when using
the Thomas-Fermi-Dirac with the cusp condition than just the Thomas-Fermi with
the cusp condition.
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5.2.2 H2 Molecule

In the following test, we aim to reproduce the bonding energy for H2 molecule
as calculated by Kim, Youn, and Kang Ref. [28]. They used the Thomas-Fermi-
Amaldi functional with the cusp condition in their article. First, we used a 6x3x3
bohr simulation box with a uniform mesh refinement 6 and with different positions
of the two atoms. In the second test, we changed the length of the simulation box
in such a way that there always is a 3 bohr margin from the atoms to the edge
of the simulation box. This mesh has the refinement of 6:(7,1). To make the
element less rectangular, an extra refinement in only the x-dimension was carried
out first. This means that the first test has cubic cells but the second test has
more rectangular cells as the simulation box increases. The meshes used in the
calculations are shown in Appendix B.

The energy value is shown in Figure 5.11 and the densities for our two tests
are shown Figure 5.12 and Figure 5.13.
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Figure 5.11. Bonding energy in an H2 molecule. The results from the Ref. [28], our
results using a fixed and changing simulation box for the Thomas-Fermi-Amaldi func-
tional with the cusp condition and the traditional Thomas-Fermi energy taken from the
Ref. [29].

The energies in Figure 5.11 have a slight absolute offset relative to values of
Ref. [28], but the shape is roughly the same. Similar to the findings of Ref. [28]
we do get bonding in H2, giving a strong bond with the fixed simulation box and
a very weak for the changing simulation box setup.

In Figure 5.12, we show the density for the fixed 6x3x3 bohr simulation box
and in Figure 5.13, we show the density for the simulation box with x-dimension
that change as function of hydrogen-hydrogen distance.



5.2 Benchmark Calculations 39

3 2 1 0 1 2 3
Box x-coordinate [bohr]

0.0

0.2

0.4

0.6

0.8

1.0

1.2
De

ns
ity

 [b
oh

r−
3
]

H2  Molecule

0.28125

0.75

1.3125

2.53125

3.75

4.21875

4.96875

Figure 5.12. The densities for different bond length in the 6x3x3 simulation box.
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Figure 5.13. The densities for different bond length in the simulation box with varying
x size.
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Discussion

There are several possible explanations for the absolute offset found relative to the
total energies in Ref. [28]. They do not specify what size of the simulation box
or the element that are used, so it is difficult to compare the exact same setup to
investigate the differences further.

The reason for the strong binding in the 6x3x3 bohr simulation box could be
due to that the simulation box is too small and influence the solution. This is
corroborated by the density plot in Figure 5.12, where it is seen that the density
at the nucleus increases as the nucleus move closer to the edge of the simulation
box. This was the motivation for carrying out the second test. In this setup, a
much weaker bonding is observed. Our conclusion is that we are uncertain if this
bonding is a physical result. It is possible that the bonding is caused by numerical
errors, a too coarse mesh or loss of accuracy due to non-cubic elements. We have
also seen that the total energy for The Amaldi functional is very dependent on the
simulation box size as seen in Table 5.3, so varying the box size may influence the
total energy as well.

One may also speculate how a better exchange functional, i.e., Dirac exchange,
would affect the results.

5.2.3 Cusp Condition

Parr and Ghosh [17] tested the Thomas-Fermi functional with the cusp condition
for the noble gases. In this section, we compare the results of our implementation
with theirs. First, a convergence test was made for He, this test can be found in
Appendix B. The result from this test shows that using a 10x10x10 bohr simula-
tion box and the refinement 3:(7,1) with Q2 element gives very good values in a
reasonable amount of time. This setup was then used for all the noble gases. The
results are shown in Table 5.6 and the densities are shown in Figure 5.14.

Element (N) µ −E/Z7/3 Ref. [17] n(0)/Z3 Ref. [17]
He (2) 0.024 0.4395 0.4397 0.2262 0.2274
Ne (10) 0.040 0.5746 0.5763 0.3671 0.3672
Ar (18) 0.046 0.6165 0.6110 0.4023 0.4020
Kr (36) 0.054 0.6642 0.6439 0.4293 0.4325
Xe (54) 0.059 0.5924 0.6599 0.4363 0.4460
Rn (86) 0.064 -0.049 0.6756 0.4358 0.4581

Table 5.6. The total energies for the noble gases using Thomas-Fermi with cusp condi-
tion. The N in the element column is for the number of electrons.

The densities for the different atoms can be view in Figure 5.14.
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Figure 5.14. The densities for the noble gases using Thomas-Fermi with the cusp
condition.

Discussion

The results for the lighter elements fit the data well but as the elements get heavier
the data do not agree that well. The values for the energy differ more than the
values for the density at the nuclei. This would indicate that the density at nuclei
is reasonable correct and that the difference in energy values is most likely due to
a too coarse mesh. The mesh does not capture the shape of the decreasing density
correctly. The reason for this is probably that the density greatly increases in the
region around the nucleus when the elements are getting heavier. This is shown
in Figure 5.14. The density at the nuclei for the Rn atom is about 150000 times
higher that of the He atom. The Rn atom has a density at the nucleus of 277214
bohr−3 compared with He which has 1.81007 bohr−3. The mesh that worked fine
for He cannot give an equally good value for Rn since the difference in density
between the nodes are too great. This could be solved with a tighter mesh to
capture the behaviour around the nuclei better, but this is very costly for heavy
elements.

Another related issue is that the chemical potential increases for heavier ele-
ments. Since the density increases and while the simulation box remains the same
size, the chemical potential µ increases. To counter this problem one would need
to use bigger simulation boxes for heavier elements.

A test with mesh 3:(8,1) and a convergence test for Ne are shown in Appendix
B. The test with mesh 3:(8,1) produces results closer to the reference data.
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5.3 Bulk Systems

In this section, we will test how well the program works for periodic systems. We
will first investigate how well the potential is produced and then we will investigate
the convergence of the atomization energy of a cubic hydrogen crystal.

5.3.1 Periodic Potential

In order to produce good results for periodic systems, an accurate periodic poten-
tial is needed. To test the efficiency of the periodic potential Eq. (4.8), we made
a convergence test with a 5x5x5 bohr simulation box with Q1 element. This test
uses hydrogen in a simple cubic structure. The reason we use hydrogen is that
we want to be able to compare the test results with previous data. We empha-
size that this is a completely artificial structure, since hydrogen does not have the
structure in nature, used only as a straightforward convergence test. The resulting
potentials are shown in Figure 5.15.
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Figure 5.15. Periodic potentials for hydrogen in a simple cubic structure, for different
levels of refinement.

The periodic potentials do no converge to the appropriate −1/r potential shape
at the nuclei, but rather to a finite value. If one would compare the potential with
softened Coulomb potentials, the values at the nuclei would correspond to the
following softening parameter that can be seen in Table 5.7.
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Refinement Soften Parameter
4 0.0588
5 0.0288
6 0.0143
3:(6,1) 0.0143
3:(7,1) 0.0071
3:(8,1) 0.0035

Table 5.7. The softened Coulomb parameters corresponding to the periodic potential
solution for different levels of refinement.

Potentials obtained by solving Eq. (4.8) become periodic. To illustrate this
point, we show the result when a smaller simulation box 2x2x2 with a refinement
of 6 was used. The result is shown in Figure 5.16.
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Figure 5.16. The red curve is the periodic solution from DeFuSE and the black curve
is the atomic potential for a hydrogen atom. Note that the red curve have been offset to
integrate to zero. The red curve is horizontal at the boundary compared with the atomic
potential that is inclined.

Discussion

Since the periodic potential does no capture the correct −1/r potential the bulk
simulation cannot run with cusp condition. The singularity from the cusp condi-
tion does not get cancelled by the potential singularity. Hence, if one would like
to run a simulation for a bulk material, one would have to run it without the cusp
condition.

Table 5.7 shows that the softening parameter is cut in half with an increased
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mesh. This suggests that a tight enough mesh may have an equivalent softening
parameter small enough to use the cusp condition.

Even though the periodic system do not converge to the correct absolute value,
one could still look at the atomisation energy. These results can be found in the
next section.

5.3.2 Atomisation Energy

In this section, we study the atomisation energy for simple cubic hydrogen by
comparing two different sized simulation boxes, one with 1x1x1 bohr and one with
4x4x4 bohr. The atomisation energy is given by: Eatomisation = E1x1x1 − E4x4x4.
This test is similar to the simulation box size test in Section 5.1.3, that in we use
the same sized mesh and only changing the simulation box size. The 4x4x4 bohr
simulation box is refined two times more that 1x1x1 bohr. The results are shown
in Figure 5.17.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Mesh

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

En
er

gy
 [h

ar
tr

ee
]

Hydrogen Simple cubic

1 bohr box
4 bohr box
Atomisation energy

Figure 5.17. The energy from calculations using a 1x1x1 bohr simulation box, a 4x4x4
bohr simulation box and the atomisation energy for the Thomas-Fermi functional with
periodic boundary conditions.

The atomisation energy in Figure 5.17 seems to converge to a value around 1.1
hartree.

Discussion

The absolute energies for the 1x1x1 bohr simulation box and for the 4x4x4 bohr
simulation box have not converged as seen in Figure 5.17. This is similar to the
results in Section 5.1.5 where the absolute value for the softened Coulomb have
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not converged as well. This is mentioned since the periodic potential could be
compared to the softened Coulomb as shown in Table 5.7. Both simulation box
sizes have an offset relative to the exact value but when we take the difference,
this offset should cancel out between the two simulation boxes. The atomisation
energy that can be seen in Figure 5.17 gives therefore give an indication that the
behaviour is correct, but further testing is needed.

There is also an error from the mesh but since we use the same sized element,
we should also have the same sized error. These errors should also cancel out in
the atomisation energy.

5.4 Extension

In this chapter, we will discuss functionals with a dependence on the electron den-
sity gradient. However, within the present diploma work there was not sufficient
time to complete this study.

5.4.1 Gradient Correction

This test was carried out to find out if the code produces correct derivatives. First,
a test was preformed by taking the derivatives of a Gaussian function in a 5x5x5
bohr simulation box with a uniform 5 mesh and Q2 element. The result is shown
alongside the exact solution in Figure 5.18.
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Figure 5.18. The first and second derivative of the Gaussian function f(r) = e−r2 in a
5x5x5 bohr simulation box.

After this, we added the Weizsäcker term Eq. (2.29) to the Thomas-Fermi-
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Dirac setup. Since this required a smaller simulation box, this test was carried out
with 3x3x3 bohr simulation box and a 3:(6,1) refinement, since this worked well
for the Dirac case. This run did not converge and the error kept getting larger as
the simulation went on. The result of the first step is shown in Figure 5.19
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Figure 5.19. The density and density derivatives for the first step in the Thomas-Fermi-
Dirac-Weizsäcker with cusp condition run.

Discussion

It appears that that the first and the second derivative work fine for smooth
functions as seen in Figure 5.18. For functions that have a point that is non-
differentiable, the derivatives appear to diverge. The density has these kinds of
points at every nucleus. Hence, we need to find a way to handle such points before
functionals that depend on the density gradient can be implemented.

Another observation in Figure 5.19 is that the gradient seems to handle these
non differentiable points but this is most likely due to the fact that the difference
between values in this plot is too small to see any difference in the gradient.



Chapter 6

Outlook

In this chapter we discuss remaining issues with the present implementation and
ideas for solving them.

6.1 Density

As seen in Section 5.2.3 the representation of the density could be crucial. We
discussed using the logarithm of the density χ(r) = e−n(r) as the representation
instead. This would solve the problem with negative densities and one would not
have to worry about the step size. At the time, we considered it too be much work
for a slight improvement, as one would need to redefine how the hartree potential
is solved but it could be worth taking another look at. Perhaps there exists an
even better representation of the density.

A better initial density would also aid the program to find the solution faster.

6.2 Mesh

There are several improvements that could be interesting. First, let’s look at the
placement of the atoms.

In the way the atoms are placed in the method now, they have to be placed at
a node. An improvement of this approach would be to have a routine that places
nodes automatically instead of having the need of calculating this beforehand.
Another approach would be to make a code where the position of the atom does
not matter.

Another interesting idea would be to use adaptive mesh instead of a fixed grid
as the program has now. This idea has been tested for the Schrödinger’s equation
by Young and Armiento [30] and looks promising.

A final remark would be to change the element from quadrilaterals to triangles
or hexagons. This could improve the generation of the mesh which in deal.II
has some drawbacks. In other finite element codes there are many optimization
schemes for the placement of polygon especially for triangles. This could solve the
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problem for placing atoms on nodes, since one would specify where certain nodes
would be placed. Another advantage would be to specify the size of the element
so there is a smooth transition from very finite element at the nucleus to coarser
element at the boundary.

6.3 Convergence

The overall convergence of the main scheme depends on the step to find a new
density, as discussed in Section 4.8. The step size is now fixed in the code, in the
original steepest descent, the step size is calculated using a separate minimization
problem:

n(r)(k+1) = n(r)(k) − t(k)
(δE[n(r)]

δn(r)
− µ

)
(2.24)

We are looking for the t(k) that mint(k)≥0 n(r)(k+1) which occurs when the deriva-

tive of δn(r)(k+1)

δt(k) = 0. Calculations using this technique did not appear to converge
well, but further testing is needed. We also implemented the conjugate gradient
method, but this method gave problems with preserving the number of particles
across iterations. Both of these approaches were taken from the book [25].

Another approach we did not have time to implement is the Newton method
also described in the book [25]. An implementation of this method for a finite
element code could be found at the FEniCS website [24]. The idea is to convert
the non-linear problem into a series of linear problems.

One more bottleneck for the speed of the program is solving Poisson’s equation
to get the Hartree potential. In the code right now, the Hartree problem is solved
with a tolerance of 10−6 every time. At the beginning of the program, this could
be higher since the error from the starting density is greater and as the density
converge the tolerance could be lowered.

6.4 Derivatives

As we mentioned in Section 3.9, it could be easier to obtain the derivatives of a
function when they are represented with some types of elements. It is possible
that a different choice of elements than the Lagrange elements could give better
approximations of the density derivatives. The two properties that the elements
should have are the following: provide good results for solving Poisson’s equation
and easy to find the first and the second derivatives.

Another issue is that the derivatives have non-differentiable points at the nu-
cleus. A solution to this could be to add constraints in these points. In Section
2.6, we talked about the nuclear cusp condition. It is possible that this constraint,
with some modifications, could solve the non-differentiable problem.
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6.5 Periodic

The potential does not give the right correct behaviour at the nuclei for periodic
systems. It is hard to say how this could be improved. One possibility is to try if
a direct solver gives better accuracy or maybe the problem need to be divided into
an analytical solution around the nuclei and Poisson’s equation at the boundary.

The Ewald sum is not included in DeFuSE but uses the Pymatgen code [20].
This could be added or perhaps, another way to calculate the energy could be
devised. In theory, one should be able to calculate the Ewald sum using E =
−∇(v(r)).

6.6 Miscellaneous

In this section, we will mention a few other possible improvements.
There are other ways the nuclear cusp condition has been implemented and

perhaps, there is a better way. For instance, in the article by Parr and Ghosh [17]
they mention another way to enforce this condition by using

∫
n(r)∇2n(r)dr <∞.

They got similar results with this constraint as
∫
e−2kr∇2n(r)dr < ∞. As they

discuss in their paper this means that the condition in not unique.
The software only works for systems with the same number of electrons as

protons. This is probably not difficult to change so it is possible to test positive
and negative ions. One would need to add an addition Gaussian in the Hartree
potential to compensate for this charge.

At the moment DeFuSE can only do atoms, molecules and bulk materials. It
would also be interesting to do surfaces. This would require an external potential
that is periodic in one direction and finite in another. This would also need a
different compensation term in the calculation of the Hartree potential to get the
right solution.

In all simulations in the work, the simulation box has been a cube. It is
possible that one could get better results to run the simulation in a spherical
volume instead.

Another idea is to run the code in parallel to increase the performance of deal.ii
solvers.
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Chapter 7

Conclusions

We set out to make a tool that could be used for testing new functionals using finite
elements. As a proof of concept, the program works and provides results that one
would expect. We have shown that it is possible to add more complicated func-
tionals to the Thomas-Fermi model and get convergence. To try more advanced
functionals, the routines to calculate the electron density gradient and laplacian
need to be completed. Once that is done, the program should be very useful for
testing new functionals with gradient corrections for atoms and molecules.

Simulation of materials with periodic boundary conditions is still in the devel-
opment phase. It is possible to perform such calculations, however, the calculation
of the external potential needs to be improved in order to get results that are ac-
curate.

To be able to use this software to estimate formation energies as a pre-screening
step for thermodynamic stability in high-throughput calculations is still a long way
to go. Many of the issues that need to be resolved before the program can be used
in this way are discussed in Section 6.

As a final remark, one of the great benefits of solving orbital-free density func-
tional theory with the finite element method is that it does not require any extra
input than the essential information about the system. If we have a kinetic energy
functional that could describe the nature of the electron well, this type of pro-
gram would become a very useful general tool for atoms, molecules and materials
involving all elements in the periodic table.

51



52 Conclusions



Appendices

53





Appendix A

Input parameters

Here are the input parameters with their default values for DeFuSE. This file
loaded in the program using the class ParameterHandler in deal.II [21, 22].

# Load material.vasp from input folder

set Load material = true

# The path where the material should be loaded from

subsection Load material

set Path to material = input/material.vasp

end

# The path where the output files will be saved

set Output path = output/

# Choose between to have a cusp condition or a soft coulomb

to handle singulaties

set Potential factor = cusp condition

subsection Potential factor

set Soft coulomb = 0.01

end

# Activates the Dirac functional

set Dirac = false

# Activates the Amaldi functional

set Amaldi = false

# Activates the Weizsacker functional

set Weizsacker = false
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subsection Weizsacker

set Weizsacker parameter = 0.2

end

# Activate on periodic boundary conditions

set Periodic boundary conditions = false

subsection Periodic boundary conditions

set Periodic boundary condition X = true

set Periodic boundary condition Y = true

set Periodic boundary condition Z = true

end

# Activate options for refinement of the mesh

set Set mesh parameters = true

subsection Set mesh parameters

set Pre refinement = 3

set Atomic refinement level = 4

set Atomic refinement size = 1

set Post refinement = 0

end

# Adds a gaussian compensation to the hartree potenial

set Gaussian density compensation = true

# The starting density

set Initial guess = constant

# The maximum number of iteration

set Iteration = 10000

# The chosen error tolerance

set Tolerance = 1e-6

# Save output files from a run

set Output = true

subsection Output

set Density = true

set Hartree = true

set Log density = false

set Electrostatic = true

set Save progress = false
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subsection Save progress

set Frequency = 10

set Progress path = output/progess/

set Density = true

set Hartree = true

set Functional derivative = true

end

end

# Save output in text files

set Output text = true

subsection Output text

set Density = true

set Potential = false

set Hartree = false

set Energy = false

end
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Appendix B

Additional Data

In this Appendix, data that did not fit in the results and discussion chapter is
shown.

B.1 Element Selection

Here follows the values for Q1 in Table B.1, Q2 in Table B.2 and Q3 in Table B.3
elements that was used to make Figure 5.2.

Refinement Degrees of freedom µ Energy [hartree] Runtime [sec]
1 27 0.0411674 -0.0449898 1
2 125 0.116505 -0.308512 1
3 729 0.118897 -0.339592 1
4 4913 0.118743 -0.3359 12
5 35937 0.118675 -0.335669 126
6 274625 0.118664 -0.33604 871
6:(7,1) 352095 0.118651 -0.336202 1285
6:(7,1) 921069 0.118648 -0.336258 4291

Table B.1. The tests for Q1 element.
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Refinement Degrees of freedom µ Energy [hartree] runtime [sec]
1 125 0.131417 -0.399937 1
2 729 0.119248 -0.342022 2
3 4913 0.118656 -0.334944 19
4 35937 0.118654 -0.335899 245
5 274625 0.11866 -0.336226 3064
3:(5,1) 32829 0.118644 -0.336205 244
3:(6,1) 132713 0.118644 -0.33626 1547

Table B.2. The tests for Q2 element.

Refinement Degrees of freedom µ Energy [hartree] Runtime [sec]
1 343 0.120543 -0.33024 4
2 2197 0.11889 -0.335025 25
3 15625 0.118664 -0.335685 254
4 117649 0.11866 -0.336168 2730
3:(4,1) 28309 0.118657 -0.336147 620
3:(5,1) 105211 0.118659 -0.336262 2520
3:(6,1) 433429 0.118659 -0.336279 14843

Table B.3. The tests for Q3 element.

The idea was to increase the uniform mesh until the solution converged, but
the computer I used could only handled about 1 million degrees of freedom so the
improved mesh had to be used for the last entries.

B.2 Cusp Condition

The convergence test for He is presented in Table B.4.

Refinement Box size µ −E/Z7/3 n(0)/Z3 runtime [sec]
3:(5,1) 10x10x10 0.024135 0.4378 0.2272 185
3:(6,1) 10x10x10 0.0241297 0.4390 0.2264 724
3:(7,1) 10x10x10 0.024131 0.4395 0.2262 3888
4:(7,1) 12x12x12 0.0140706 0.4394 0.2262 3104
4:(8,1) 12x12x12 0.0140705 0.4394 0.2262 19,840

Table B.4. The convergence test for He for Thomas-Fermi with cusp condition.

It is clear that a tight mesh is required to get a good convergence. The choice
of 3:(7,1) seems like a good compromise between size, mesh and time.
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In Table B.5, one can see the results for a 10x10x10 simulation box with
refinement of 3:(8,1).

Element (N) µ −E/Z7/3 Ref. [17] n(0)/Z3 Ref. [17]
Ne (10) 0.039 0.5756 0.5763 0.3666 0.3672
Ar (18) 0.046 0.6095 0.6110 0.4017 0.4020
Kr (36) 0.054 0.6486 0.6439 0.4325 0.4325
Xe (54) 0.059 0.6753 0.6599 0.4455 0.4460
Rn (86) 0.065 0.6765 0.6756 0.4552 0.4581

Table B.5. The results for the noble gases using Thomas-Fermi with cusp condition.
The N in element is the number of electrons.

In Table B.6, a convergence test for Ne is presented.

Refinement Box size µ −E/Z7/3 n(0)/Z3 runtime [days]
3:(8,1) 14x14x14 0.013 0.5749 0.3668 1
4:(9,1) 12x12x12 0.022 0.5760 0.3666 17

Table B.6. The convergence test for Ne for Thomas-Fermi with cusp condition.

B.3 H2 Molecule

Here are the meshes that were used for the fixed simulation box and the changing
simulation box. In Figure B.1, one can see the fixed 6x3x3 simulation box and in
Figure B.2 is the changing simulation box.

Figure B.1. This is the fixed 6x3x3 simulation box that was used in the H2 test.
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Figure B.2. These are the simulation box and the meshes that was used for the simu-
lation box with changing x-dimension for the H2 test.
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B.4 Soft Coulomb

The convergence test for soft Coulomb potential can be viewed in Table B.7.

Refinement Softening µ Energy [hartree]
3:(5,1) 1.0 0.266104 -0.00995078
3:(6,1) 1.0 0.266148 -0.0099448
3:(7,1) 1.0 0.266172 -0.0099627
3:(7,1) 0.1 0.136899 -0.297737
3:(8,1) 0.1 0.136937 -0.297415
3:(7,1) 0.01 0.111463 -0.744589
3:(8,1) 0.01 0.111716 -0.56772
3:(9,1) 0.01 0.111745 -0.549058

Table B.7. The convergence test for hydrogen for Thomas-Fermi with soft Coulomb.
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[13] CF Weizsäcker. Z. physik 96, 431 (1935); ha bethe and rf bacher. Rev. Mod.
Phys, 8:82, 1936.

[14] W Stich, EKU Gross, P Malzacher, and RM Dreizler. Accurate solution of
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[25] Jan Lundgren, Mikael Rönnqvist, and Peter Värbrand. Optimeringslära, vol-
ume 3:3. Studentlitteratur, 2003.

[26] Cms.mpi.univie.ac.at. 5.7 poscar file, 2015.

[27] Carsten Rostgaard, Jens Jørgen Mortensen, and Karsten Wedel Jacobsen.
Exact exchange in density functional calculations. Master’s thesis, Technical
University of Denmark, 2006.

[28] Min Sung Kim, Sung-Kie Youn, and Jeung Ku Kang. Grid-based thomas-
fermi-amaldi equation with the molecular cusp condition. The Journal of
chemical physics, 124(12):124107, 2006.



Bibliography 67

[29] JR Townsend and GS Handler. Thomas—fermi homonuclear diatomic
molecule. i. method of solution and atomic interaction potential. The Journal
of Chemical Physics, 36(12):3325–3329, 1962.

[30] Tony D Young and Rickard Armiento. Strategies for h-adaptive refinement for
a finite element treatment of harmonic oscillator schrödinger eigenproblem.
Communications in Theoretical Physics, 53(6):1017, 2010.


	Introduction
	Density Functional Theory
	Introduction
	Kohn-Sham Equations
	Orbital-Free Density Functional Theory
	Functional Derivatives
	External Potential
	Hartree Potential

	The Universal Functional G
	Thomas-Fermi
	Weizsäcker
	Amaldi
	Dirac

	Cusp Condition
	Ewald Summation

	Finite Element Method
	Introduction
	Mesh
	Galerkin Method
	Test Function
	Lagrange Element

	Weak Formulation to Linear System
	Boundary Conditions
	Solver
	Preconditioner
	Derivatives
	Steepest Descent

	Method and Implementation
	Main Scheme
	Flow Chart
	Material and Mesh
	External Potential
	Initial Density
	Hartree Potential
	Finite Systems
	Periodic Systems

	Functional Derivatives
	New Density
	Calculate Energy
	Additional Energy Terms


	Results and Discussion
	Convergence
	Element Selection
	Mesh and Initial Density
	Simulation Box Size
	Progression
	Soft Coulomb

	Benchmark Calculations
	Exchange Term
	H2 Molecule
	Cusp Condition

	Bulk Systems
	Periodic Potential
	Atomisation Energy

	Extension
	Gradient Correction


	Outlook
	Density
	Mesh
	Convergence
	Derivatives
	Periodic
	Miscellaneous

	Conclusions
	Appendices
	Input parameters
	Additional Data
	Element Selection
	Cusp Condition
	H2 Molecule
	Soft Coulomb

	Bibliography

