Ett ramverk för arkitektoniska vyer
EN "4+1" MODELL FÖR DOKUMENTATION AV ETT FÖRETAGSNÄTVERK
MIKAEL JOHANSSON
Abstract

Network documentation is often a low-priority task at many companies. Despite this, there are many benefits that should be considered against the fact that it is a comprehensive job. Good network documentation can provide companies the opportunity to reduce dependence on individuals, take proactive decisions and save money. Network documentation mainly consist of physical and/or logical topology descriptions that describes the logical and/or physical layout of the network. These so-called architectural views focus on technology rather than the services and features that the company's network provides.

To simplify communication between stakeholders with different areas of knowledge, e.g. between an engineers and corporate management, I propose a model that complement traditional visual description of a network. With the help of viewpoint frameworks such as Kruchten’s "4+1" model, I want to visualize relationships between corporate services, business processes, applications and the underlying infrastructure.

A qualitative case study at a company with needs of network documentation has resulted in a prototype, a viewpoint framework, based on concepts of enterprise architecture. Analyzing a use case together with the prototype demonstrated that the prototype can visualize relationships between different layers in an organization. The prototype can be used as a starting point or guidance for those who want to document architecture of an enterprise network. The prototype can serve as means of communication in order to justify the investment that in turn ensures a modern energy-efficient operating environment that creates conditions for sustainable information- and communication technology.

Keywords

Viewpoint frameworks, Network documentation, ArchiMate, Enterprise architecture, Network topology
Abstract

Nyckelord

Ramverk för vyer, Nätverksdokumentation, ArchiMate, Verksamhetsarkitektur, Nätverkstopologi
Innehållsförteckning

Abstract .. i
Keywords .. i
Abstract .. ii
Nyckelord .. ii

1 Introduktion ... 1
1.1 Bakgrund .. 1
1.2 Problembeskrivning .. 2
1.3 Syfte .. 3
1.4 Mål .. 3
1.4.1 Etik .. 3
1.4.2 Hållbar utveckling .. 3
1.5 Avgränsningar .. 4

2 Bakgrund .. 5
2.1 Vad är en arkitektur? ... 5
2.2 Hur kommunicerar vi en arkitektur? .. 5
2.2.1 Symboler och semantik .. 5
2.3 Vyer .. 6
2.3.1 Ramverk för vyer ... 6
2.4 Modellering av arkitektur .. 7
2.4.1 Modelleringsprocess .. 7
2.4.2 Modelleringsaktiviteter .. 8
2.4.3 Tumregler vid modellering .. 8
2.4.4 Modelleringsverktyg ... 9
2.5 Beskrivande språk ... 9
2.5.1 UML ... 10
2.5.2 ArchiMate ... 11
2.6 Nätverkskomponenter - byggstenarna ... 13
2.6.1 Klient ... 13
2.6.2 Server .. 13
2.6.3 Router .. 13
2.6.4 Switch .. 14
2.6.5 Brandvägg .. 14
2.6.6 Kommunikationslänkar ... 14
2.6.7 Basstation (Accesspunkt) ... 14
2.6.8 Protokoll ... 14
2.7 Spjutspetsteknologi .. 15
2.7.1 Virtual Chassi ... 15
2.7.2 Virtualisering ... 15
2.7.3 Application Delivery Controller ... 15
2.7.4 Lagringstnät .. 16
2.8 Nätverkstopologier .. 16
2.8.1 Fysisk topologi ... 16
Innehållsförteckning

2.8.2 Logisk topologi ... 16
2.9 Relaterat arbete ... 16
3 Metod.. 18
 3.1 Metoddesign .. 18
 3.2 Insamlingsmetoder .. 18
 3.2.1 Insamling av kunskap ... 18
 3.2.2 Insamling av information om ett datornätverk .. 19
 3.3 Analysmetoder .. 20
 3.3.1 Metod för kategorisering och strukturerings av objekt .. 20
 3.3.2 Metod för val av ramverk för vyer ... 20
 3.3.3 Metod för val av språk och modelleringsverktyg .. 20
 3.4 Metoder för tillämpning och utvärdering ... 21
 3.4.1 Modelleringss metod ... 21
 3.4.2 Metod för testning och utvärdering ... 21
4 Analys.. 23
 4.1 Arkitektoniska begrepp .. 23
 4.1.1 Konceptkarta .. 23
 4.2 Ramverk för vyer ... 24
 4.2.1 UML eller ArchiMate ... 25
 4.2.2 Val av modelleringsverktyg .. 25
 4.2.3 Prototyp - en egen "4+1" modell ... 26
 4.3 Element i ett företagsnätverk ... 26
5 Dokumentation av ett företagsnätverk .. 29
 5.1 Vyer .. 29
 5.1.1 Realisation av tjänster ... 29
 5.1.2 Användning av applikationer ... 30
 5.1.3 Användning av infrastruktur .. 31
 5.1.4 Logisk vy ... 32
 5.1.5 Användarfall ... 33
 5.2 Exempel på användning ... 33
6 Utvärdering av prototypen ... 35
 6.1 Utvärdering .. 35
 6.2 Begränsningar i utvärderingen ... 35
7 Diskussion .. 37
 7.1 Resultatdiskussion .. 37
 7.2 Metoddiskussion .. 38
 7.3 Slutsatser .. 39
 7.4 Avgränsning .. 39
 7.5 Framtida arbete .. 40
 7.6 Mitt bidrag .. 40
Referenser .. 41
Appendix A - ArchiMate symboler och relationer ... 44
1 Introduktion

Detta kapitel ger en kort bakgrund till projektet, som leder vidare till problemställningen som motiverar detta examensarbete. Vidare presenteras examensarbetets syfte, mål och avgränsningar.

1.1 Bakgrund

- Ta strategiska beslut som rör nätverkets design för att säkerställa drift och funktionalitet (Atea, 2015).
- Minska personberoende (Atea, 2015).
- Att bygga upp en infrastruktur på nytt efter t.ex. en brand (Mobile MIS Consulting, 2005).
- Företag utan egen IT kompetens kan spara pengar genom att dokumentationen kan underlätta för teknisk support, eftersom konsulenten då inte behöver lära sig nätverket, utan kan gå direkt på problemet (Mobile MIS Consulting, 2005).

Nätverksdokumentation består huvudsakligen av ritningar och diagram som beskriver hur nätverket är uppbyggt samt information om hårdvara och mjukvara, men det kan även vara kontaktlistor till ansvariga personer, konfigurationer o.s.v. (Mobile MIS Consulting, 2005). Det är mycket som kan klassas som nätverksdokumentation, men det viktiga är att dokumentationen är tydlig och användbar (Rouse, 2002). Det är också viktigt att tänka på att de artefakter som dokumentationen resulterar i alltid ska vara uppdaterade, och det måste finnas en balans mellan nytan i dokumentationen och hur mycket tid den tar att underhålla.

Det uppenbara behovet av dokumentation av företagsnätverk har introducerat tjänster som marknadsförs som "nätverksanalyser". En nätverksanalys resulterar i ett dokumentationsunderlag, som möjliggör säkerställandet av en stabil och driftsäker design (Atea, 2015).
1.2 Problembeskrivning

I nätverksdokumentation modelleras Local Area Network (LAN) och Wide Area Network (WAN), oftast med en logisk- och/eller en fysisk vy. Dessa artefakter fokuserar på teknik snarare än de tjänster och affärsmöjligheter som nätverket tillhandahåller. Min problembeskrivning presenteras som ett illustrativt scenario nedan.

"Tomas, som är ansvarig för drift av nätverket på Carpediem¹, har fått i uppdrag av företagsledningen att undersöka om man kan förbättra upplevelsen för de kunder som använder företagets e-commerce plattform. Tomas, som är väl insatt i Carpediems nätverk, har identifierat en lösning på problemet som kräver en investeringsbudget på en miljon kronor. Ledningen som ska godkänna budgeten har ingen större kunskap om de applikationer och den nätverksinfrastruktur som tillhandahåller Carpediems tjänster, men de har goda kunskaper om affärskiktet och de tjänster som bygger verksamheten. Tomas vill nu använda sin nätverksdokumentation som underlag för att kommunicera med ledningen och peka ut var investeringarna behöver göras."

Carpediem har verksamhet i Sverige, norden och världen. På det svenska huvudkontoret finns det ett behov av nätverksdokumentation inom ett väl avgränsat område. Med anledning av behovet föreligger det alltså möjlighet att göra en kvalitativ undersökning genom en fallstudie. Huvudfrågorna för denna undersökning är:

- Hur kan man dokumentera arkitekturen hos ett företagsnätverk?
- Kan man genom att dokumentera arkitekturen hos ett nätverk, förenkla kommunikation mellan olika intressenter?

¹ Carpediem är ett pseudonym för att bevara uppdragsgivarens integritet
1.3 Syfte

Ett syfte med denna undersökning är att ta reda på om man i dokumentationen av ett företagsnätverk kan tillämpa ett ramverk för arkitektoniska vyer, för att synliggöra samband mellan olika skikt i organisationen, och därmed förenkla kommunikation mellan olika intressenter, som t.ex. ingenjörer och företagsledning.

Ett annat syfte är att skapa dokumentationsunderlag, som kan hjälpa Carpediem att ta strategiska beslut som rör design och funktion av dennes företagsnätverk.

1.4 Mål

1. Förstå och illustrera begreppet arkitektur och dess centrala koncept.
2. Skapa en prototyp.
3. Tillämpa prototypen på ett företagsnätverk.
4. Utvärdera prototypen.

1.4.1 Etik

Nätverksdokumentation är från ett företag sett ytterst känslig information, eftersom det kan synliggöra svagheter för den som vill planera och utföra en attack. Eftersom detta arbete är en offentlig handling, vidtas nödvändiga åtgärder för att bevara uppdragsgivarens integritet. T.ex. används pseudonymet Carpediem, genomgående i examensarbetet.

1.4.2 Hållbar utveckling

Tillämpning av prototypen vid dokumentation av ett företagsnätverk kan skapa förutsättningar att kunna ta strategiska beslut som gynnar hållbart företagande, som t.ex. att minska energiförbrukningen i nätverket. En minskad energiförbrukning kan bidra till att minska utsläppet av växthusgaser och indirekt bidra till att uppnå Sveriges miljömål - begränsad klimatpåverkan (Naturvårdsverket, 2014). Om prototypen kan användas för att lättare motivera tekniska investeringar, kan företag också minska sina kostnader genom en modern och driftsäker miljö.
1.5 **Avgränsningar**

Att dokumentera ett nätverk kan förutom diagram som visualiserar nätverket även innebära textuell dokumentation, som omfattar inventering av hårdvara, konfigurationer och applikationer. I detta examensarbete kommer hänsyn endast att tas till visuell dokumentation i form av olika diagram.

Detta examensarbete gäller endast nätverksarkitektur i avseendet att tolka och dokumentera en befintlig arkitektur. Aspekter som hör till designfasen är därför inte relevanta.

2 Bakgrund

2.1 Vad är en arkitektur?

Vad är egentligen en arkitektur? Vi förknippar vanligen arkitektur med byggnadskonst, men arkitektur har många tillämpningsområden, och det gäller även, IT och teknik. Oavsett vilken tillämpning vi väljer så är syftet med arkitekturen att utgöra ett ramverk som definierar struktur och funktion hos det vi vill skapa. (McCabe, 2007)

Ett bredare begrepp som blir alltmer vanligt idag är verksamhetsarkitektur (eng. enterprise architecture (EA)), som fångar det mest väsentliga i verksamhet, IT och dess utveckling (Lankhorst, 2012). Till skillnad från byggnadsarkitektur, som har funnits i över tusen år, finns det inom verksamhetsarkitektur inte en lika etablerad referensram. Enligt Lankhorst (2012) skapar det en mer heterogen arkitektonisk beskrivning, där varje tillämpningsområde har sina egna språk, modeller och verktyg.

2.2 Hur kommunicerar vi en arkitektur?

2.2.1 Symboler och semantik

En grafisk representation av en modell (symbolisk modell) innehåller symboler som refererar till ting i verkligheten och hjälper oss att uttrycka en arkitektur. Dessa symboler definieras genom olika språk som UML och ArchiMate. Den symboliska modellen tolkas med en semantisk modell som abstraherar arkitekturen. Tillsammans
utgör den symboliska- och den semantiska modellen en arkitekttonisk beskrivning. En
enda symbolisk modell, som t.ex. ett UML klassdiagram, kan uttryckas med flera olika
semantiska modeller. En och samma modell kan alltså få olika innebörd, vilket
illustreras i Figur 2-1. (Lankhorst, 2012).

Figur 2-1: Olika semantiska modeller ger den symboliska modellen olika innebörd.

2.3 Vyer

Det är sällan den som betraktar en arkitektur är intresserad av att betrakta hela
arkitekturen i detalj. En vy fokuserar istället på en viss del av arkitekturen, utifrån
intressentens behov, och utelämnar redundant information. Genom detta möjliggörs
effektiv kommunikation mellan arkitekten och intressenten. (Lankhorst, 2012)

"En vy representerar en arkitektur från ett perspektiv som är definierat av en
samling problemställningar" (Lankhorst, 2012, s. 51)

Larman (2005) beskriver en vy som ett kommunikationsverktyg, som uttrycker sig i
form av text och UML diagram.

2.3.1 Ramverk för vyer

Att välja vyer kan vara svårt, därför finns det ramverk för att underlätta arkitektens
arbete. Syftet med dessa ramverk är att täcka relevanta aspekter av ett system.
(Lankhorst, 2012)

Kruchten (1995) introducerade ”4+1" modellen som är ett ramverk för vyer, skapat för
att kunna hantera flera olika intressenter, t.ex. slutanvändare, systemägare,
projektledare o.s.v., och med möjligheten att separera funktionella- och icke
funktionella krav. ”+1" vyn är speciell på så vis att den knyter samman de övriga vyerna
genom arkitekttoniskt signifikanta användarfäll (Larman, 2005). En sammanställning
av Kruchtens ursprungliga ”4+1" modell illustreras i Tabell 2-1.
Föver	Fokuserar på
(1) Logisk | Tjänsterna som systemet erbjuder
(2) Process | Synkroniseringsaspekter i designen.
(3) Implementation | Hur mjukvaran och dess utveckling är organiserad.
(4) Deployment | Hur mjukvaran mappas mot hårdvara och hur den distribueras.
(+1) Användarfall | Funktionella krav som möjliggör nyckelevement i designen.

Tabell 2-1: Kruchens "4+1" modell för vyer, inspirerad av Tabell 7.1 i (Lankhorst, 2012)

Ett system kan ha obegränsat många vyer, och idag har Kruchens "4+1" modell utökats till en "N+1" modell för att kunna beskriva de många problemområdena i ett system (Larman, 2005). Vi kan ha "4+1" modellen som utgångspunkt för att skapa vår egen modell för arkitektoniska vyer.

2.4 Modellering av arkitektur

En modell är en entydig, abstrakt uppfattning av en viss domän (t.ex. ett datornätverk). Syftet med modellen är att svara på frågan "vad vill vi att modellen ska visa?". (Lankhorst, 2012)

2.4.1 Modelleringsprocess

- Upprätta syfte och mål och avgränsa modellen utefter syftet, det vill säga vad som ska beskrivas i modellen.
- Välja vyer och vad som ska ingå i de olika vyerna.
- Samla in information, skapa struktur och visualisera modellen med ett modelleringsverktyg.
• Använd en prototyp av modellen för validering.
• Underhåll modellen så att den alltid är aktuell.

2.4.2 Modelleringsaktiviteter

Vidare definierar Lankhorst (2012) exempel på vanliga aktiviteter i modelleringsprocessen.

• Introducera ett kandidatelement i modellen. Kandidatelementet behöver i det här stadiet inte ha någon relation till något annat element och kandidatelementet kan också ändras eller tas bort.
• Förfinna ett element genom att addera detaljrikedom.
 o Klassificera (kandidat) elementet
 o Beskriva elementet med hjälp av attribut (egenskaper).
• Skapa abstraktioner genom att introducera en ny modell (zooma in i en ny vy). Ett datacenter kan t.ex. vara ett kandidatelement, men i en abstraktion av elementet kanske man vill förtydliga vilka element datacentret består av.

2.4.3 Tumregler vid modellering

• Att göra modellen så informativ som behövs.
• Att inte modellera det man inte tror stämmer eller har faktiska bevis för.
• Modellera ting som utgår från målet med modelleringen.
• Undvik otydlighet, tvetydighet, onödiga koncept och relationer.
• Modellera iterativt för att förbättra modellen med hjälp av feedback från intressenter.
• Modellera dynamiskt, eftersom verkliga livet tenderar till att förändras. Om förändringar kan förutsägas, är det viktigt att beskriva hur det kan påverka modellen.
• Var sparsam med vyer och använd bara vyer som är relevant för att kommunicera med en specifik intressent.
• Skapa igenkänning genom att använda, för intressenterna väl etablerade koncept.
2.4.4 Modelleringsverktyg

Det finns ett flertal verktyg på marknaden som kan användas för att göra olika former av ritningar och diagram. I detta avsnitt introduceras några av dessa kort.

2.4.4.1 Microsoft Visio

Visio är ett kraftfullt program för att snabbt och enkelt skapa diagram, och har många tillämpningsområden. Programmet stödjer många olika standarder, som t.ex. UML och har en stor mängd färdiga mallar och stenciler. Många tillverkare av nätverksutrustning, bland annat Cisco och Juniper, tillhandahåller färdiga bibliotek med symboler (stenciler) som representerar deras produkter, vilket kan vara användbart för den som vill skapa en detaljerad ritning av nätverket. (Microsoft, 2015)

2.4.4.2 Edraw

2.4.4.3 Archi

Archi är ett verktyg med öppen källkod som enbart använder språket ArchiMate, som är en öppen standard för verksamhetsarkitektur. Programmet erbjuder de funktioner som krävs för ArchiMate 2.1 modellering. Utvecklarna av Archi tillhandahåller även plug-ins, som erbjuder utökad funktionalitet. (Beauvoir, 2015)

2.4.4.4 LucidChart

2.5 Beskrivande språk

En modell representeras med hjälp av ett beskrivande språk. I detta avsnitt ges en kort introduktion till UML och ArchiMate.
2.5.1 **UML**

2.5.1.1 Objekt och länkar

Grundiden med UML är väldigt enkel. Om man betraktar en specifik domän så kan man identifiera reella eller abstrakta ting som i UML kallas *objekt*. Objekt knyts samman med en *länk*, som representerar någon form av koppling eller relation. (Lankhorst, 2012)

![Figur 2-2: Objekt och länkar i UML](image)

2.5.1.2 Användarfall

2.5.1.3 **Fördelar och nackdelar med UML.**

2.5.2 ArchiMate

ArchiMate är det idag mest använda språket för att beskriva verksamhetsarkitektur. Det är standardiserat och framtaget av The Open Group, i linje med ramverket The Open Group Architectural Framework (TOGAF), som är ett av många ramverk för verksamhetsarkitektur.

I en organisation kan det finnas många olika områden som t.ex. mjukvara, process och infrastruktur, vars arkitektur ofta representeras med olika notationer eftersom de beskriver olika problem. Detta leder till svårigheter med att se hur de olika arkitekturerna är relaterade till varandra. ArchiMate togs fram för att skapa en homogen notation, som kan tillämpas av alla områden i organisationen för att bättre skapa en förbindelse mellan dem samt förenkla kommunikationen mellan arkitekter och intressenter inom olika områden. ArchiMate fokuserar på att knyta samman de
olika domänerna inom en verksamhetsarkitektur. Detta möjliggör att man kan skapa modeller som är lättare att förstå även för de som inte är experter inom ett specifikt område. (Lankhorst, 2012)

2.5.2.1 ArchiMates tre lager

<table>
<thead>
<tr>
<th>Verksamhetslager</th>
<th>Tillhandahåller produkter och tjänster till externa kunder. Inom organisationen realiseras detta med hjälp av verksamhetsprocesser som utförs av verksamhetsaktörer.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applikationslager</td>
<td>Stödjer verksamhetsaktivitet med tjänster som realiseras med hjälp av mjukvarukomponenter.</td>
</tr>
<tr>
<td>Tekniklager</td>
<td>Tillhandahåller den infrastruktur som behövs för att driva applikationerna. Detta realiseras med hårdvara som datorer, nätverkskomponenter och system.</td>
</tr>
</tbody>
</table>

Tabell 2-2: ArchiMates tre huvudsakliga lager

2.5.2.2 Meta-modell

Varje lager i ArchiMate har symboler som indelas i kategorierna passiv struktur, aktiv struktur och beteende. Strukturella symboler tillsdelas beteendesymboler (t.ex. processer och tjänster) för att visualisera vem eller vad som utför beteendet. Skillnaden mellan aktiva och passiva strukturella element är att aktiva strukturella element (t.ex. aktörer och applikationer) utför aktiviteten, medan passiva strukturella element (t.ex. affärsobjekt) utgör ett objekt som aktiviteten utförs på. Ett exempel illustreras i Figur 2-4. **Student** är en aktör (aktiv struktur) som använder affärsprocessen **Examensarbete** (beteende). **Rapport** är ett affärsobjekt (passiv struktur) som processen **Examensarbete** ger åtkomst till.

![Figur 2-4: Exempel som illustrerar aktiv struktur, beteende och passiv struktur.](image-url)
2.5.2.3 Fördelar och nackdelar med ArchiMate
ArchiMate är ett språk som främst är anpassat för modellering av verksamhetsarkitektur, eftersom det har ett väldigt brett tillämpningsområde. Till skillnad från UML, där man lägger störst vikt vid notation och tillhandahåller många typer av diagram fokuserar man i ArchiMate på semantik. (Lankhorst, 2012)

2.6 Nätverkskomponenter - byggstenarna

2.6.1 Klient
I klient-server arkitekturen är en klient vanligtvis en dator, mobiltelefon eller surfplatta, som kör applikationer som t.ex. e-post och webbläsare, som interagerar med servrar. Klienter och servrar befinner sig logiskt sett ofta i utkanten av nätverket, vilket gör att man vanligtvis kallar dem slutanvändare (eng. end-systems). (Kurose & Ross, 2013)

2.6.2 Server

2.6.3 Router
En router levererar två viktiga funktioner i nätverkslagret - forwarding och routing. Forwarding är en lokal händelse och innebär att ett datapaket som kommer in till en router undersöks genom att ett värde i datapaketets huvud (eng. header) slås upp i en forwarding tabell, där värdet mappas mot en specifik utport. Routing innebär att routern, med hjälp av en eller flera routingalgoritmer, bestämmer vilken väg i nätverket datapaketet ska ta för att nå sin slutdestination. (Kurose & Ross, 2013)
2.6.4 Switch
En Switch opererar i länklagret och tillhandahåller funktionerna *forwarding* och *filtrering*. Forwarding och filtrering görs med hjälp av en switchtabell, som mappar Media Access Control (MAC) adresser mot interface. En switch är självlärande på så sätt att switchtabellen byggs dynamiskt och automatiskt. En post i tabellen består av en adress, ett interface och den aktuella tiden. Med hjälp av en mekanism som kallas för *aging*, som i praktiken är en timer så kommer tabellposten att tas bort automatiskt om inga ytterligare ramar (eng. *layer 2 frame*) med samma avsändaradress inkommer. (Kurose & Ross, 2013)

2.6.5 Brandvägg
En brandvägg består av hård- och/eller mjukvara, och isolerar vanligtvis organisationens interna nätverk från Internet, men kan även vara placerad mellan olika subnätverk eller lokalt på slutanvändarens dator. En brandvägg kan ha flera olika funktioner, som kan delas in i fyra kategorier - tjänstekontroll, riktningskontroll, användarkontroll och beteendekontroll. (Kurose & Ross, 2013)

2.6.6 Kommunikationslänkar
Kommunikationslänkar är den mekanism som fysiskt knyter samman alla noder i nätverket. De vanligaste kommunikationslänkarna i ett företags lokala nätverk idag är Ethernet och Wi-Fi, som beroende på standard kan erbjuda ett flertal olika hastigheter. (Kurose & Ross, 2013)

2.6.7 Basstation (Accesspunkt)
Basstationen har en betydande roll för trådlös infrastruktur. En basstations primära uppgift är att skicka och ta emot datapaket från trådlöst anslutna värdar. En basstation i ett 802.11 (Wi-Fi) nätverk kallas vanligtvis för accesspunkt, medan en basstation även kan syfta på en mobilmast för mobila nätverk. (Kurose & Ross, 2013)

2.6.8 Protokoll
Ett protokoll definierar format och ordning på ett meddelande (t.ex. datapaket), som utbyts mellan två eller fler kommunicerande enheter. Ett protokoll definierar även de åtgärder som sker vid sändning och/eller mottagande av ett meddelande. De två vanligaste och viktigaste protokollen är Transmission Control Protocol (TCP) och Internet Protocol (IP), men det finns tusentals andra protokoll och alla är
standardiserade och utvecklas av Internet Engineering Task Force (IETF) i standarddokument som kallas för Request for Comments (RFC). (Kurose & Ross, 2013)

2.7 Spjutspetsteknologi

Stora organisationer behöver ofta lösningar som bland annat möjliggör bättre prestanda och enklare underhåll. Några av dessa lösningar, som också används på Carpediem, presenteras i detta avsnitt.

2.7.1 Virtual Chassi

Ett Virtual Chassi (VC) är en arkitektur som möjliggör att flera switchar kan sammankopplas till en logisk enhet för att förenkla konfiguration och underhåll. Denna arkitektur möjliggör låg fördröjning och hög prestanda i små till medelstora datacenter. Alla medlemmar (fysiska switchar som utgör en logisk enhet) har en specifik roll, som avgör deras funktion. (Juniper Networks, 2014)

2.7.2 Virtualisering

Servrar som bygger på x86 arkitekturen, vilket innebär att de bara kan köra ett operativsystem och en applikation i taget, medför en stor kostnad för många företag när investeringar behöver göras för att kunna möta de kapacitetskrav som ställs. Virtualiseringsplattformar som VMWare löser detta problem genom att flera operativsystem och applikationer kan köras, isolerade från varandra i virtuella maskiner (VM), på en enda fysisk server (värdmaskin). Varje virtuell maskin använder bara så mycket av värdmaskinens resurser som krävs, vilket gör att varje fysisk server kan öka sin utnyttjandegrad ända upp till 80%. Förutom virtualisering av servrar finns det flera andra tillämpningsområden. Ett aktuellt område idag är virtualiserade nätverkstjänster vilket också kallas mjukvarudefinierade nätverk (eng. Software-defined Networking (SDN)). (VMWare, 2015)

2.7.3 Application Delivery Controller

En Application Delivery Controller (ADC) är benämningen på nästa generations lastbalanserare. En ADC tillhandahåller virtuella tjänster, som i sin tur tillhandahålls av ett kluster med virtuella servrar. Genom detta fungerar en ADC som ett medium mellan klient och server, för att isolera front-end och back-end miljöer. Alla servrar i ett kluster som tillhandahåller en typ av tjänst (t.ex. HTTP) kan ses som servicepunkter associerade med en enda virtuell tjänst. En ADC erjuder förutom lastbalansering ofta
avancerade funktioner för att påverka tillgänglighet, säkerhet och prestanda hos de
tjänster som tillhandahålls. (Salchow, 2012)

2.7.4 Lagringstnät
Ett lagringsnät (eng. Storage Area Network (SAN)) är en specialiserad
nätverksinfrastruktur som har ett enda syfte, att centralisera lagring samt distribuera
data mellan olika lagringsenheter och servrar. Förbindelser i ett SAN sker via
fiberkanaler, vilket garanterar hög hastighet. (Tate & Beck, 2012)

2.8 Nätverkstopologier
En nätverkstopologi (nätverkslayout) är en grafisk representation av fysiska kopplingar
och förhållanden mellan noder i ett datornätverk (Nazir, 2006). Nätverkstopologier
illustreras på samma sätt som matematiska grafer, med hörn (noder) och bågar
(kopplingar) som kan presenteras i olika abstraktionsnivåer (Spring, 2004).

2.8.1 Fysisk topologi
En fysisk topologi (nätverksritningar) avbildar fysiska enheter och hur kablar är
kopplade mellan direktanslutna enheter, och fungerar som en ritning av nätverket.
Vanligtvis görs ritningen väl detaljerad och man anger t.ex. typ av kablar, interface,
hastigheter aggregering, etc. Eftersom ritningen är så väl detaljerad kan den för större
nätverk behöva göras i olika abstraktionsnivåer, för att kunna fånga alla relevanta
aspekter och detaljer. (McCabe, 2007)

2.8.2 Logisk topologi
En logisk topologi (nätverksdiagram) är abstrakt och visar hur dataflöden sker mellan
enheter i nätverket, oavsett dess fysiska struktur. En representation av en logisk
topologi kan alltså anses som ett diagram snarare än en ritning av nätverket, eftersom
den inte är lika detaljerad. Nätverksdiagrammet visar hur olika enheter interagerar och
samverkar, för att skapa förutsättningar för tjänster i nätverket. Ett nätverksdiagram
kan vara användbar som komplement till en ritning av nätverket (fysisk topologi),
eftersom diagrammet ger en mer översiktlig vy av nätverkets design. (McCabe, 2007)

2.9 Relaterat arbete
Mikael Svensson och Tobias Widerstrand beskriver i sitt examensarbete
"Systemdokumentation" (2008) hur man kan skapa generella lösningar för
systemdokumentation, genom att använda sig av systeminventeringsprogram och
standardiserade mallar. De kom bland annat fram till att detaljerade fysiska ritningar av nätverk är svåra att underhålla och avläsa, och kom med en alternativ lösning att märka upp utrustningen bättre istället för att inkludera den i dokumentationen. Arbetet resulterade i en lösning, som med hjälp av dokumenteringsmallar och centraliserad lagring med SharePoint, ska förenkla dokumentationsarbetet av servrar, nätobjekt och nätverksinfrastruktur.

Hannes Holm, Markus Buschle et. al föreslår en metod som bygger på att man scannar nätvärket för automatisk datainsamling, eftersom inga av dagens ramverk för verksamhetsarkitektur tillhandahåller någon metod för detta. Det visade sig att automatiserad scanning av nätverk bara kan upptäcka en delmängd av de koncept som utgör de vanliga meta-modellerna inom verksamhetsarkitektur. Undersökningen visade också att den automatiska datainsamlingen ger alltför detaljerad information, som i en modell av en verksamhetsarkitektur kanske inte är relevant. (Holm, Buschle, Lagerström, & Ekstedt, 2012)

Markus Buschle, Hannes Holm et. al testar ett verktyg för att automatiskt samla in data och skapa modellen av en verksamhetsarkitektur. Med hjälp verktyget (NeXpose) lyckades man i en testmiljö effektivt samla in information om en nod och dess operativsystem, mjukvara och tjänster. Verktyget kan användas som ett komplement till andra datainsamlingsmetoder, och kan effektivisera arbetet med att modellera en verksamhetsarkitektur. (Buschle, Holm, Sommestad, Ekstedt, & Shahzad, 2011)
3 Metod

Detta kapitel tillhandahåller en överblick av de forskningsmetoder som har tillämpats i detta examensarbete. I avsnitt 3.1 ges en översikt av de olika metoderna och sedan förklaras dessa utförligare.

3.1 Metodöversikt

Metodöversikten illustreras i Figur 3-1.

![Figur 3-1: Metodöversikt](image)

3.2 Insamlingsmetoder

I detta avsnitt presenteras olika typer av insamlingsmetoder.

3.2.1 Insamling av kunskap

Detta examensarbete inleddes med att inhämta djupare kunskap inom relevanta ämnen. Mina källor för att inhämta denna kunskap utgörs huvudsakligen av facklitteratur. Information har också hämtats från redaktionella- och vetenskapliga artiklar. Artiklar och litteratur har huvudsakligen hittats med hjälp av Kungliga
3.2.2 Insamling av information om ett datornätverk

Information om Carpediem och företagets nätverk samlades huvudsakligen in genom kvalitativa intervjuer med uppdragsgivaren som har arbetat på företaget i mer än 10 år. Den första grundläggande intervjun inleddes med en rundvisning på Carpediems svenska huvudkontor, och fölldes sedan av en översiktlig introduktion till nätverket för att få en övergripande bild. Ytterligare intervjuer genomfördes vid behov, samtidigt som prototypen utvecklades, vilket möjliggör att modellen kontinuerligt kan valideras. Huvudsakligen var man ute efter svar på tre grundläggande frågor!

1. Vilka objekt finns i nätverket (routrar, switchar, servrar) och organisationen (aktörer, processer)? Detta lägger grunden för de kandidatelement som skall införas i modellen.
3. Vilka relationer har objekten till andra objekt i modellen?

Som komplement har information om Carpediem även samlats in genom att som extern aktör använda den e-commerce plattform som utgör hjärtat i verksamheten.

3.2.2.1 Bedömning av reliabilitet och validitet från insamlade data

Genom att tillämpa metodtriangulering vid datainsamlingen har jag minskat eventuella validitetsproblem, som en kvalitativ studie kan medföra. Datainsamlingen har huvudsakligen skett genom kvalitativa intervjuer med min handledare och bör anses hålla god validitet och reliabilitet, då intervjupersonen har arbetat på företaget i mer än 10 år och har varit ytterst ansvarig för att ta fram den infrastruktur som man har på Carpediem idag. Prototypen har utvecklats iterativt och validerats kontinuerligt för att eliminera eventuella missförstånd.
3.3 **Analysmetoder**

Metoderna som presenteras i detta avsnitt används för att analysera och bearbeta insamlade data.

3.3.1 **Metod för kategorisering och strukturering av objekt**

Insamlingen av information från Carpediems organisation och datornätverk resulterar i en mängd objekt som måste struktureras och kategoriseras. De identifierade objekten kategoriseras i tre separata tabeller som separerar verksamhetslager, applikationslager och tekniklager. Objekten sorterar i kategorierna: aktiv struktur, passiv struktur och beteende samt mappas mot ett meta-objekt som finns representerad i meta-modellen. Innebörden av dessa kategorier förklarades i avsnitt 2.5.2.2.

3.3.2 **Metod för val av ramverk för vyer**

Som första utgångspunkt ska Kruchtens "4+1" modell som introducerades i avsnitt 2.3.1 tillämpas. Om denna modell inte uppfyller syftet med prototypen skall istället ett annat lämpligt standard ramverk som t.ex. TOGAF tillämpas.

3.3.3 **Metod för val av språk och modelleringsverktyg**

För att tillämpa prototypen vid dokumentation av Carpediems företagsnätverk behöver man göra ett val av språk (UML eller ArchiMate) samt vilket modelleringsverktyg som skall tillämpas. Valet av språk är beroende av de vyer som ingår i ramverket. Vidare är valet av modelleringsverktyg beroende av valet av språk. Valet sker alltså huvudsakligen genom att svara på frågorna:

1. Finns det stöd i språkets meta-modell för det som ska visualiseras i de aktuella vyerna?
2. Vilka modelleringsverktyg av det urval som introducerades i avsnitt 2.4.4 har stöd för språket?

Om det finns flera verktyg som har stöd för det valda språket görs valet genom att använda det verktyg som jag föredrar mest.
3.4 **Metoder för tillämpning och utvärdering**

Metoderna som presenteras i detta avsnitt används för att tillämpa och utvärdera resultatet av analysen.

3.4.1 **Modelleringsmetod**

Med hjälp av ett modelleringsverktyg skapas och bearbetas modellen av Carpediems företagsnätverk enligt de principer och tumregler som beskrevs i avsnitt 2.4. Modelleringen sker i en iterativ inkrementell process tillsammans med uppdragsgivaren. I varje iteration valideras modellen med uppdragsgivaren för att säkerställa att den återspeglar "verkligheten". Modelleringsmetoden illustreras med ett flödesdiagram i Figur 3-1.

![Flödesdiagram](image)

Figur 3-2: Modelleringsmetod

3.4.2 **Metod för testning och utvärdering**

En utomstående bedömning av prototypens vyer görs av Carpediem utifrån två kriterier:

1. Konceptuell integritet (Hur lätt är vyn att förstå?)
2. Användbarhet (Hur användbar är vyn för en specifik yrkesroll i organisationen)

Optimalt skall värderingen göras utifrån olika individers perspektiv, för att kunna jämföra intressenters attityder till de olika vyerna.
4 Analys

4.1 Arkitektoniska begrepp

För att kunna förstå begreppet arkitektur är det viktigt att förstå de centrala begrepp som utgör grunden för arkitektur och hur de förhåller sig till varandra. Genom min bakgrundsstudie av ämnet har jag identifierat ett antal begrepp som jag har analyserat för att bilda en helhetsuppfattning.

4.1.1 Konceptkarta

Arkitektur uttrycks med symboliska modeller och abstraheras med semantiska modeller. Tillsammans utgör dem en arkitektonisk beskrivning som visualiseras med vyer. En vy fokuserar på intressentens angelägenheter i att betrakta företagets arkitektur och utelämnar redundant information. Intressentens angelägenheter i företaget påverkar intressentens uppfattning av domänen eftersom det är en subjektivt upplevd delmängd av intressentens omvärd. I Figur 4-1 illustreras de mest centrala begreppen för arkitektur och deras relationer. I Tabell 4-1 förklaras begreppen ytterligare.

![Konceptkarta för arkitektur](image-url)
Arkitekt: En yrkestitel. Arkitekten är den som planerar och gestaltar (modellerar) arkitektur.

Intressent: En individ eller organisation som har intresse i ett företag.

Företag: Organisation(er) med gemensamma mål.

Arkitektur: Utgör ett ramverk som definierar struktur och funktion hos något man vill skapa.

Modell: En abstraktion av en otvetydlig uppfattning en domän.

Domän: En subjektivt upplevd delmängd av universum.

Symbolisk modell: Symboler som refererar till verkliga ting och uttrycker egenskaper hos arkitektturen.

Semantisk modell: En tolkning av den symboliska modellen som ger mening åt symbolerna.

Arkitektonisk beskrivning: Används för att kommunicera arkitektur. Den arkitektoniska beskrivningen representeras med artefakter (diagram och ritningar) och visualiseras med vyer.

Vy: En representation av arkitektur från ett perspektiv som är definierat utifrån intressentens angelägenheter.

<table>
<thead>
<tr>
<th>Begrepp</th>
<th>Förklaring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arkitekt</td>
<td>En yrkestitel. Arkitekten är den som planerar och gestaltar (modellerar) arkitektur.</td>
</tr>
<tr>
<td>Intressent</td>
<td>En individ eller organisation som har intresse i ett företag.</td>
</tr>
<tr>
<td>Företag</td>
<td>Organisation(er) med gemensamma mål.</td>
</tr>
<tr>
<td>Arkitektur</td>
<td>Utgör ett ramverk som definierar struktur och funktion hos något man vill skapa.</td>
</tr>
<tr>
<td>Modell</td>
<td>En abstraktion av en otvetydlig uppfattning en domän.</td>
</tr>
<tr>
<td>Domän</td>
<td>En subjektivt upplevd delmängd av universum.</td>
</tr>
<tr>
<td>Symbolisk modell</td>
<td>Symboler som refererar till verkliga ting och uttrycker egenskaper hos arkitektturen.</td>
</tr>
<tr>
<td>Semantisk modell</td>
<td>En tolkning av den symboliska modellen som ger mening åt symbolerna.</td>
</tr>
<tr>
<td>Arkitektonisk beskrivning</td>
<td>Används för att kommunicera arkitektur. Den arkitektoniska beskrivningen representeras med artefakter (diagram och ritningar) och visualiseras med vyer.</td>
</tr>
<tr>
<td>Vy</td>
<td>En representation av arkitektur från ett perspektiv som är definierat utifrån intressentens angelägenheter.</td>
</tr>
</tbody>
</table>

Tabell 4-1: Arkitektoniska begrepp och förklaringar

4.2 Ramverk för vyer

4.2.1 UML eller ArchiMate

Valet av språk är beroende av de vyer som ingår i ramverket. De koncept som skall representeras i vyn måste finnas med i språkets meta-modell. I Tabell 4-2 presenteras resultatet av min analys.

<table>
<thead>
<tr>
<th>Vy</th>
<th>UML</th>
<th>ArchiMate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Realisation av tjänster</td>
<td>Nej</td>
<td>Ja</td>
</tr>
<tr>
<td>Användning av applikationer</td>
<td>Nej</td>
<td>Ja</td>
</tr>
<tr>
<td>Användning av infrastruktur</td>
<td>Nej</td>
<td>Ja</td>
</tr>
<tr>
<td>Logisk topologi</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Användarfall</td>
<td>Ja</td>
<td>Nej</td>
</tr>
</tbody>
</table>

Tabell 4-2: Val av språk

ArchiMate är ett beskrivande språk, som är bäst lämpat när man arbetar med verksamhetsarkitektur där det finns flera olika domäner som ska knytas samman. Ett företagsnätverk utgör den infrastruktur som behövs för att stödja organisationens applikationer som i sin tur stödjer organisationens externa och interna tjänster. I min prototyp vill tydliggöra samband mellan verksamhet, applikationer och teknik, därför är ArchiMate bäst lämpat för de tre första vyerna.

Den logiska topologin skulle också kunna representeras med ett UML klassdiagram men eftersom många av objekten kommer att vara representerade i vyn "Användning av infrastruktur" finns det ingen mening med att skapa dubbla modeller med två icke kompatibla språk. Användarfall är specifikt för UML och har ingen lämplig motsvarighet i ArchiMate. Därför används UML för vyn användarfall.

4.2.2 Val av modelleringsverktyg

Valet av modelleringsverktyg är beroende av om verktyget har stöd för det valda språket. I tabell Tabell 4-3 sammanställs resultatet av min analys.

<table>
<thead>
<tr>
<th>Verktyg</th>
<th>Stöd för UML?</th>
<th>Stöd för ArchiMate?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archi</td>
<td>Nej</td>
<td>Ja</td>
</tr>
<tr>
<td>Microsoft Visio</td>
<td>Ja</td>
<td>Nej</td>
</tr>
<tr>
<td>Edraw</td>
<td>Ja</td>
<td>Nej</td>
</tr>
<tr>
<td>LucidChart</td>
<td>Ja</td>
<td>Nej</td>
</tr>
</tbody>
</table>

Tabell 4-3: Analys av modelleringsverktygens kompatibilitet med ArchiMate och UML

4.2.3 Prototyp - en egen "4+1" modell

I de vyer som har valts ut till min egen "4+1" modell ligger fokus på att synliggöra kopplingen mellan olika skikt i organisationen. En logisk topologi av nätverket kompletterar de tre första vyerna och slutligen fångas funktionella krav med hjälp av användarfall. Vyerna som ingår i mitt ramverk samt vilket språk och verktyg som används för att tillämpa vyerna presenteras i Tabell 4-1.

<table>
<thead>
<tr>
<th>Vy</th>
<th>Beskrivning</th>
<th>Verktyg</th>
<th>Språk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Realisation av tjänster</td>
<td>Visar hur verksamhetens tjänster realiseras med hjälp av underliggande affärsprocesser. Genom denna vy visar man kopplingen mellan produkt och affärsprocess. Samt vilka applikationer som stöder dessa affärsprocesser.</td>
<td>Archi</td>
<td>ArchiMate</td>
</tr>
<tr>
<td>Användning av applikationer</td>
<td>Visar hur verksamhetens applikationer stöder affärsprocesser och hur olika applikationer interagerar.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Användning av infrastruktur</td>
<td>Visar hur verksamhetens applikationer stöds av underliggande infrastruktur.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logisk topologi</td>
<td>Återger en abstrakt bild av hur nätverket är utformat.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Användarfall</td>
<td>Fångar funktionella krav (hur en aktör kan interagera med organisationen och dess underliggande mekanismer).</td>
<td>LucidChart</td>
<td>UML</td>
</tr>
</tbody>
</table>

Tabell 4-4: Mitt ramverk för vyer - en "4+1" modell

4.3 Element i ett företagsnätverk

En fallstudie genomfördes hos företaget Carpediem och element som ska representeras i modellen identifierades. För att kunna tillämpa min "4+1" modell behöver vi koppla identifierade element i nätverket till lämpliga objekt i ArchiMates meta-modell och

<table>
<thead>
<tr>
<th>Meta-objekt</th>
<th>Element</th>
<th>Kategori</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aktör</td>
<td>Kund</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carpediem</td>
<td></td>
</tr>
<tr>
<td>Roll</td>
<td>Butikskund</td>
<td>Aktiv struktur</td>
</tr>
<tr>
<td></td>
<td>Internetkund</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Upplevelseförsäljare</td>
<td></td>
</tr>
<tr>
<td>Gränssnitt</td>
<td>Internet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Butik</td>
<td></td>
</tr>
<tr>
<td>Värde</td>
<td>Trygghet, Pålitlighet, Minnen</td>
<td>Passiv struktur</td>
</tr>
<tr>
<td>Affärsobjekt</td>
<td>Bokningsbekräftelse</td>
<td></td>
</tr>
<tr>
<td>Representation</td>
<td>E-post</td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>Boka en upplevelse via Internet</td>
<td>Beteende</td>
</tr>
<tr>
<td></td>
<td>Boka en upplevelse i butik</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sök upplevelse</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Få information om produkter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reservera upplevelse</td>
<td></td>
</tr>
<tr>
<td>Händelse</td>
<td>Bokningsförfrågan</td>
<td></td>
</tr>
</tbody>
</table>

Tabell 4-5: Kategorisering av element i verksamhetslagret

<table>
<thead>
<tr>
<th>Meta-objekt</th>
<th>Element</th>
<th>Kategori</th>
</tr>
</thead>
<tbody>
<tr>
<td>Komponent</td>
<td>E-commerce system</td>
<td>Aktiv struktur</td>
</tr>
<tr>
<td></td>
<td>Bokningssystem</td>
<td></td>
</tr>
<tr>
<td>Tjänst</td>
<td>Grafisk användargränssnitt (GUI)</td>
<td>Beteende</td>
</tr>
<tr>
<td></td>
<td>Sök</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Produktinfo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lagersaldo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prisinfo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reservation</td>
<td></td>
</tr>
</tbody>
</table>

Tabell 4-6: Kategorisering av element i applikationslagret
<table>
<thead>
<tr>
<th>Meta-objekt</th>
<th>Element</th>
<th>Kategori</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nod</td>
<td>Bokningsdatabas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brandvägg (2 st)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Application Delivery Controller (ADC)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-commerce databas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Storage Area Network (SAN)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VMWare</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Internet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Internt nätverk</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Access Switch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distribution Switch (VC)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core Switch (VC)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Virtuella maskiner (VM)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Datacenter 1 (DC1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Datacenter 2 (DC2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x86 Host (Värdmaskin)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paloalto PA-5050</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F5 Viprion 2400</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco 2900</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco 2960-S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Juniper EX4200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Juniper EX4550</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Juniper QFX3500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dell Compellent Storage Center</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Microsoft SQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oracle</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vSphere ESXi Hypervisor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nätverk</td>
<td>High Availability (HA)</td>
</tr>
<tr>
<td></td>
<td>Funktion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brandvägg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lastbalanserare</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Primärt datacenter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Backup datacenter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tjänst</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Datahantering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Filtrering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Applikationsskydd</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cache</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TCP Aggregering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Applikationsåtkomst</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Virtuella servrar</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fysisk lagring</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Konnektivitet mellan noder</td>
<td></td>
</tr>
</tbody>
</table>

Tabell 4-7: Kategorisering av element i tekniklagret
5 Dokumentation av ett företagsnätverk

I detta kapitel tillämpas prototypen - min "4+1" modell, på Carpediems företagsnätverk.

5.1 Vyer

I detta avsnitt presenteras vyerna med diagram. För att tyda diagrammen används Appendix A - ArchiMate symboler och relationer.

5.1.1 Realisation av tjänster

Vyn "Realisation av tjänster" illustreras i Figur 5-1 och visar hur Carpediem realiserar tjänsten *Upplevelseförsäljning* som utgör produkten *Upplevelse*. Produkten levererar ett värde (*Trygghet, Pålitlighet, Minnen*) till en aktör (*Butikskund, Internetkund*) som använder de affärsprocesser som realiserar verksamhetens tjänster.

![Figur 5-1: Realisation av tjänster](image-url)
5.1.2 Användning av applikationer

Vyn "Användning av applikationer" illustreras i Figur 5-2, och visar hur affärshändelsen *Bokningsförfrågan* aktiverar affärsprocessen *Boka en upplevelse via Internet*, som använder tjänster som realiseras av applikationerna *E-commerce system* och *Bokningsystem*.

![Diagram showing the application usage](image-url)
5.1.3 Användning av infrastruktur

Vyn "Användning av infrastruktur" som illustreras i Figur 5-3 visualiserar tjänster som används av applikationer och tillhandahålls av infrastrukturen.
5.1.4 Logisk vy

Den logiska vyn som illustreras i Figur 5-4 visualiserar dataflöden som sker mellan noder i nätverket (på det svenska huvudkontoret), oavsett dess fysiska struktur. Datacenter 1 (DC1) används primärt av externa anslutningar (kunder som använder e-commerce systemet). DC2 är en identisk miljö som används för backup och utveckling. I DC2 är också det interna nätverket på Carpediem anslutet.

![Figur 5-4: Logisk vy](image-url)
5.1.5 Användarfall

Vyn användarfall som illustreras i Figur 5-5 visar hur olika aktörer (både fysiska och system) interagerar med Carpediemens system.

![Diagram](image)

Figur 5-5: Användarfall

5.2 Exempel på användning

I detta avsnitt ges ett praktiskt exempel på hur prototypen kan tillämpas genom ett användarfall ("Internetkund bokar en upplevelse") i berättande form. Med diagrammen i avsnitt 5.1 kan läsaren följa processen, som går att härleda genom alla skikt i prototypen. Objekt som representeras i modellen betonas med kursiv text.

- **Internetkund** är en aktör som får värdet Trygget, Pärlklighet, Minnen genom att använda Carpediemens produkt **Upplevelse**.
- Aktören **Carpediem**, som är en **Upplevelseförsäljare** realiserar tjänsten **Upplevelseförsäljning**, som med hjälp av gränsnittet **Internet** realiserar affärsprocessen **Boka en upplevelse via Internet**.
- Processen **Boka en upplevelse via Internet** aktiveras genom händelsen **Bokningsförfrågan** (som utförs av Internetkund) och realiseras med tjänsten Graphical User Interface (GUI), som tillhandahålls av applikationen **E-commerce system**.
- Att boka en upplevelse via Internet inleds med att söka en upplevelse (**Sök upplevelse**) som använder tjänsten **Söktjänst** som realiseras av e-commerce systemet.
• I nästa steg får man information om produkten/produkterna (som svarar mot sökförfrågan) med hjälp av tjänsten Produktvisning, som tillhandahålls av applikationen E-commerce system.
• Produktvisningstjänsten använder tjänsten Lagersaldo och tjänsten Prisinformation som realiseras av ett Bokningssystem.
• I nästa steg har man accepterat ett objekt och reserverar en upplevelse (Reservera upplevelse) eller söker en ny upplevelse (Sök upplevelse).
• Processen Reservera upplevelse använder tjänsten Reservation som tillhandahålls av bokningsystemet, och ger åtkomst till ett affärsobjekt (Bokningsbekräftelse) som representeras av en E-post.
• E-commerce systemet använder tjänsterna Applikationsskydd, TCP aggregering och Applikationsåtkomst, som realiseras av noden ADC. E-commerce systemet använder också tjänsten Virtuella Servrar, som realiseras av noden VMWare.
• Tjänsten Konnektivitet mellan noder realiseras av noderna Router, Access Switch, Distribution Switch (VC) och Core Switch (VC), och används av noderna SAN, ADC, E-commerce databas, Bokningsdatabas och VMWare, och indirekt av applikationerna E-commerce system och Bokningsystem.
• Noden SAN realiserar tjänsten Fysisk Lagring som används av noderna VMWare, E-commerce databas och Bokningsdatabas.
6 Utvärdering av prototypen

I detta kapitel presenteras en utvärdering av prototypens vyer.

6.1 Utvärdering

För att bedöma prototypens användbarhet i Carpediens verksamhet, testades prototypen med utgångspunkt från ett användarfall "Internetkund bokar upplevelse". Beskrivningen i avsnitt 5.2 visade att ett användarfall kan härledas med hjälp av prototypen och att modellen med utgångspunkt från det specifika användarfallet, täcker relevanta aspekter av verksamheten.

I nästa steg värderades prototypens olika vyer för sig, samt som helhet, utifrån bedömningskriterierna konceptuell integritet (hur lätt är vyn att förstå?) och användbarhet (hur relevant är vyn?). Resultaten av bedömningen presenteras i Tabell 6-1. Utvärderingen har gjorts av uppdragsgivaren på Carpediem AB.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Realisation av tjänster</td>
<td>4</td>
<td>3</td>
<td>"Lätt att förstå flödet."</td>
</tr>
<tr>
<td>Användning av applikationer</td>
<td>4</td>
<td>4</td>
<td>"Lätt att förstå flödet."</td>
</tr>
<tr>
<td>Användning av infrastruktur</td>
<td>4</td>
<td>4</td>
<td>"Bra visualisering av hur mycket infrastruktur som behövs för vissa system."</td>
</tr>
<tr>
<td>Logisk</td>
<td>4</td>
<td>4</td>
<td>"Lätt att förstå hur datacentren är uppbrygda. Kan också användas som introduktion till nya medarbetare."</td>
</tr>
<tr>
<td>Användarfall</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Helhetsbedömning</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Tabell 6-1: Utvärdering av prototyp

6.2 Begränsningar i utvärderingen

Bedömningen av prototypens vyer kan inte anses hålla hög validitet, eftersom den bygger på bedömning av få individer, och ska endast ses som en fingervisning som är representativ för Carpediens förhållning till resultatet. För en optimal bedömning hade det behövts data från fler indivier, helst med olika roller inom organisationen.
Att göra en generell utvärdering av prototypen med en större målgrupp, som skulle omfatta flera liknande företag, innebär ett omfattande arbete som jag har bedömt inte ligger inom ramen för detta examensarbete. På grund av tidsbrist har alltså ingen kvantitativ undersökning gjorts för att bedöma prototypens möjlighet att tillämpas i andra organisationer än Carpediem.
7 Diskussion

Detta kapitel summerar detta examensarbete genom att diskutera resultat och metod samt presentera de slutsatser som projektet har resulterat i. Avgränsningar som har påverkat min insats presenteras och avslutningsvis ges förslag på framtida arbete.

7.1 Resultatdiskussion

Mitt ursprungliga mål med examensarbetet var att skapa, diskutera och utvärdera en prototyp för arkitektur hos ett företagsnätverk, genom att tillämpa ramverk för arkitekttoniska vyer. Som utgångspunkt ville jag tillämpa Kruchtens väl beprövade ”4+1” modell, som presenterades kort i avsnitt 2.3.1. Insamlingen av kunskap inom området visade dock att vyerna som ingår i Kruchtens ”4+1” modell är bäst lämpade för arkitektur inom området mjukvaruutveckling.

Syftet med prototypen var att kunna använda dokumentation av ett företagsnätverk som ett underlag, för att förenkla kommunikationen mellan olika aktörer i organisationen. För att kunna modellera ett bredare tillämpningsområde och fanga de funktioner och tjänster som ett företagsnätverk tillhandahåller för att stödja applikationer och affärsprocesser, tillämpades istället ett eget ramverk för vyer som har inspirerats av Kruchtens ursprungliga ”4+1” modell.

Min modell bygger främst på tre vyer som visar samband mellan verksamhetslagret, applikationslagret och tekniklagret. Dessa tre vyer kompletteras med en logisk vy (logisk topologi), som visar hur element i nätverket är organiserade och slutligen, en sista vy som fångar funktionella krav, det vill säga hur olika aktörer kan interagera med ett företags tjänster. Genom detta kan man utifrån ett användarfall härleda en process, eftersom den går att följa från verksamhetslagret ner till applikationslagret och slutligen tekniklagret, vilket demonstrerades i avsnitt 5.2.

Mitt ramverk för vyer kan användas som utgångspunkt för den som vill dokumentera ett företagsnätverk. Resultatet saknar svar på hur väl modellen går att tillämpa i andra organisationer eftersom den bara har tillämpats på Carpediems nätverk. Frågan som återstår är alltså om denna modell är skalbar och kan användas oberoende av verksamhet, förutsatt att verksamheten har ett nätverk som levererar någon form av tjänst till interna och/eller externa aktörer.
Utvärderingsresultatet visade att min uppdragsgivare på Carpediem, som är ansvarig för drift av IT infrastruktur, anser att modellen håller en hög konceptuell integritet. Detta innebär att modellen är lätt att förstå oavsett hur komplex den är. Utvärderingen visade också att han, utifrån sin yrkesroll, anser att man kan ha användbarhet av de olika vyerna, både för sig och som ett ramverk. Vyerna "Realisation av tjänster" och "Användarfall" ansågs ha lägre användbarhet än de övriga vyerna. Detta kan bero på personens yrkesroll som är mer teknik- än affärsorienterad.

7.2 Metoddiskussion

Datainsamlingen av Carpediem's företagsnätverk skedde med kvalitativa intervjuer och genom att som extern aktör använda företagets e-commerce applikation.

Utifrån den studie som gjordes av Holm, Buschle, Lagerström & Ekstedt, 2012, har jag dragit slutsatserna att en automatiserad insamlingsmetod kräver tillgång till nätverket som i dagsläget inte är möjligt att få. Detta beror på att Carpediem, under tiden för undersökningen är under ombyggnad och inne i en period med hög arbetsbelastning. Studien visade också att den automatiska insamlingsmetoden gav alltför detaljerad information, som i mitt fall inte kommer att vara relevant, eftersom jag inte syftar på att dokumentera en arkitektur i detalj.

Förutom att genomföra intervjuer kan man genom observation samla in data om nätverket genom att t.ex. följa kablar och undersöka konfigurationer i routrar och switchar (Rouse, 2002). På grund av den aktuella ombyggnaden samt svårigheten att få tillgång till denna information har jag valt bort denna metod.
7.3 **Slutsatser**

Under examensarbetets gång har kommit fram till flera värdefulla slutsatser.

- Traditionell dokumentation av företagsnätverk har många fördelar som bör vägas mot kostnaden att skapa och upprätthålla dokumentationen.
- Genom att förenkla kommunikation mellan t.ex. ledning och ingeniörer kan man lättare motivera kostsamma investeringar för att säkerställa en modern driftsäker och energisnål nätverksinfrastruktur.
- Verktyg som möjliggör automatiserade insamlingsmetoder är snabba och effektiva, men måste ofta kompletteras med andra metoder för att få hela bilden av verksamheten. Därför är kvalitativa intervjuer en bra metod.
- Mitt ramverk för vyer kan kompletteras med ytterligare vyer, för att vid behov ge mer detaljerad information till det tekniska skiktet av modellen.
- En fysisk vy är en lämplig kandidat för att ge mer detaljer till det tekniska skiktet.
- Utvärderingen av prototypen visade också att den kan användas för att introducera nya medarbetare i organisationen och att den visar hur mycket infrastruktur som behövs för vissa system.

7.4 **Avgränsning**

Det visade sig att tillgången till nätverket jag skulle undersöka av flera orsaker var kraftigt begränsad, vilket påverkade mitt resultat i den bemärkelse att min uppfattning av de olika elementen i företagsnätverket kanske inte är lika detaljerad som den kunde ha varit. Jag kunde inte heller testa att använda en automatiserad datainsamlingsmetod, som t.ex. den som föreslogs av Buschle, Holm, Sommestad,Ekstedt & Shahzad, 2011.

Att lära sig att modellera med ArchiMate i Archi var tidskrävande och med bättre initial kunskap om språkets struktur hade man kunnat använda tiden till att modellera fler intressanta aspekter i organisationen. Prototypen avbildar i dagsläget endast det väsentliga utifrån ett enda användarfall.
7.5 Framtida arbete

Tjänsterna som infrastrukturen i Carpediems nätverk tillhandahåller bygger på virtualisering, en teknik som ökar lavinartat (ComputerSweden, 2009). Hur kommer denna teknik, framför allt SDN, att påverka modellen? I framtiden kanske det kommer att behövas en separat vy för att modellera virtualiserade tjänster i nätverket.

7.6 Mitt bidrag

Genom att tillämpa prototypen - mitt ramverk för tvyer, på ett företagsnätverk har jag demonstrerat att prototypen, i sin nuvarande form, kan synliggöra övergångar mellan olika skikt i en verksamhet. Detta betyder att t.ex. nätverksingenjörer skulle kunna använda nätverksdokumentation för att förenkla kommunikation med intressenter som inte har samma tekniska kompetens. Genom att kunna motivera var i nätverket investeringar behöver göras (t.ex. att investera i virtualisering av servrar) kan man bygga en modern och energieffektiv nätverksinfrastruktur som skapar förutsättningar för hållbar informations- och kommunikationsteknik (ICT).
Referenser

Appendix A - ArchiMate symboler och relationer

I denna bilaga presenteras de symboler och relationer som används i prototypen. En utförligare beskrivning och en komplett information om Archimates meta-modell ges av (The Open Group, 2012).

Verksamhetslager (eng. Business Layer)

Value
Symboliserar ett värde som en produkt eller tjänst erbjuder.

Product
Symboliserar en produkt (samling av tjänster som erbjuds till externa eller interna aktörer).

Object
Ett passivt element som representerar en instans av information som skapas av beteende element som t.ex. processer.

Service
En tjänst som erbjuds till en extern eller intern kund till organisationen.

Process
En affärsprocess definierar och grupperar aktiviteter som görs i en viss ordning.

Function
En funktion definierar ett beteende hos ett strukturellt element.

Actor
En aktör kan utföra något i organisationen. Detta kan vara både fysisk (person) eller abstrakt (avdelning på Carpediem).

Role
En aktör kan tilldelas en roll för att betona ett visst ansvar eller definiera aktörens beteende.

Event
En intern eller extern händelse som påverkar ett beteende.

Representation
En representation används för att representera ett objekt.
En komponent är en modulär, utvecklingsbar och utbytbar del av ett system som erbjuder funktionalitet genom en eller flera gränssnitt.

En åtkomstpunkt där en applikations tjänst görs tillgänglig för användare eller andra komponenter.

Definerar ett beteende som kan utföras av en komponent.

En tjänst som exponerar en funktion som utförs av en komponent.

Applikationslager (eng. Application Layer)
Tekniklager (eng. Technology Layer)

Node
Ett aktivt element som t.ex. en server, en dator eller en router.

Communication
Utgör en logisk kommunikation mellan noder.

Network

Function
Beskriver en nords interna beteende. Dess externa beteende görs synligt genom en tjänst som realiseras av funktionen.

Service
En tjänst är en extern synlig funktionalitet hos en nod.

Interface
En åtkomstpunkt där en nods tjänst(er) görs tillgänglig(a) för applikationer eller andra noder.

System Software
Representerar en mjukvarumiljö t.ex. ett Database Management System (DBMS)

Device
Representerar en hårdvaruresurs som exekverar data.
Relationer

Triggering
Exempel: En händelse aktiverar en process.

Used by
Exempel: En komponent används av en nod

Realisation
Exempel: En komponent realiseras av en nod.

Assignment
Exempel: En komponent är tilldelad en funktion.

Aggregation
Exempel: En aktör aggregatorar en aktör.
(Gruppering)

Composition
Exempel: En applikation utgörs av en eller flera delkomponenter.
(Komposition)

Access
Exempel: En affärsprocess ger åtkomst till ett affärsobjekt. Åtkomsten kan ges attributen Read, Write eller Read/Write.

Association
Exempel: En nod är associerad med en funktion.
Detta modellerar ett förhållande som inte täcks av någon annan relation i ArchiMate.