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Abstract

Several organizations have large databases which are growing at a
rapid rate day by day, which need to be regularly maintained. Content
based searches are similar searched based on certain features that are
obtained from various multi media data. For various applications like
multimedia content retrieval, data mining, pattern recognition, etc.,
performing the nearest neighbor search is a challenging task in mul-
tidimensional data. The important factors in nearest neighbor search
(kNN) are searching speed and accuracy.

Implementation of kNN on GPU is an ongoing research from last
few years, focusing on improving the performance of kNN. By consid-
ering these aspects, our research has been started and found a gap in
this research area. This master thesis shows e�ective and e�cient par-
allelism on multi-core of CPU and GPU to compare the performance
with single core CPU.

This paper shows an experimental implementation of kNN on sin-
gle core CPU, Mutli-core CPU and GPU using C, Pthreads and CUDA
respectively. We considered di�erent levels of inputs (size, dimensions)
to evaluate the performance. The experiment shows the GPU outper-
forms for kNN when compared to CPU single core with a factor of
approximately 5.8 to 16 and CPU multi-core with a factor of approx-
imately 1.2 to 3 for di�erent levels of inputs.

Keywords: GPU, Multicore CPU, Parallel computing, Performance,
Single core CPU.
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Chapter 1

Introduction

This chapter describes about the overview of the research work, aim and objec-
tives and contributions towards research and organization of the paper.

1.1 Overview

Now-a-days manufacturers of multi-core processors are integrating CPU with
GPU and implementing on the same chip set. But the performance of the multi-
core processors of data streams may be di�erent for CPU and integrated GPU.
Due to their relative performance multi-core processors has become an attractive
platform for high performance computing. NVIDIA released the Compute Uni-
�ed Device Architecture (CUDA) [5] platform for GPU's, which is an extension
of C programming language for writing kernels directly aiming the GPU.

CUDA programming involves allocating memory in the device to store input
data, then copy data from CPU memory into allocated memory in GPU, execute
the kernel in GPU by selecting necessary grid dimension, and then copying results
back to CPU and �nally free the allocated memory on GPU. To achieve better
performance using CUDA requires very careful consideration of GPU architecture.
CUDA works on the principle of Single Instruction Multiple Data (SIMD).

Developments in GPU give a way to parallel computing. Parallel computing
is a process to speed up the process by dividing a particular task into sub-tasks.
In parallel computing a large amount of data is divided into small chunks of data
which are processed by each thread independently, whereas each thread executes
the same instruction with its own set of data. After, all the data is executed the
output from all the threads forms the �nal output data.

Classi�cation is one of the important task of data mining in which an algorithm
is used to �nd the class of unknown objects. kNN is used as a data mining
algorithm for feature extraction and pattern recognition. kNN algorithm is a
widely used algorithm for classi�cation as it is simple to implement and has a
feature of low error rate. kNN algorithm is proved to be practical and feasible
for huge datasets.

This algorithm is also known as lazy learning and simplest one of all other
machine learning algorithms. The main challenging tasks in kNN are to increase
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Chapter 1. Introduction 2

the speed of search and to improve the accuracy of search. In multidimensional
space �nding nearest neighbors to a given vector is the problem.
Nearest Neighbor Search:

There are two di�erent varieties of nearest neighbor search:[7].

1. The search for k close vectors to given vector (k -Nearest Neighbor).

2. The search for vectors within a range of distance ¿ (¿- Nearest Neighbor).

Large number of applications like Finite Di�erence Time Domain (FDTD),
Computational Fluid Dynamics (CFD), Magnetic Resonance Imaging (MRI),
Neural Network, Support Vector Machine (SVM), Intrusion Detection, etc., have
been implemented to perform parallel computing on CPU and GPU, where GPU
is used as computation accelerator. Parallel computing plays a vital role to
speedup the process of kNN.

As the technology has become a key element to support various infrastructure
service in di�erent organizations. Hence there is a increase in network complexity
and growing emphasis on the internet, made network security a major problem
to various organizations. So the aim is to prevent, network security approaches
prevention, network intrusion detection. In recent years data mining plays a
major role in network intrusion detection. In [23], author proposed kNN classi�er
as an intrusion detection model. This thesis can be implemented for intrusion
detection in terms of prediction accuracy.

1.2 Aim and Objectives

The aim of thesis is to evaluate and compare the performance of CPU and GPU
on data mining algorithm kNN.

• To develop a C-Program for generation of random datasets for experiment.

• To develop a sequential C-Program on CPU for kNN and to record the exe-
cution time.

• To develop a parallel C-program on CPU for kNN and to record the execution
time.

• To develop CUDA program on GPU for kNN and to record the execution
time.

• To compare the performance of CPU and GPU.
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1.3 Research Questions

RQ1. What is the execution time of nearest neighbor search for large datasets on
CPU with sequential C program?

RQ2. What is the execution time of nearest neighbor search for large datasets on
CPU with parallel C program?

RQ3. What is the execution time of nearest neighbor search for large datasets on
GPU using CUDA?

RQ4. Compare the performance of CPU and GPU on execution time of nearest
neighbor search for large datasets?

1.4 Main Contributions

• This thesis work adds an advantage to ongoing research on parallel imple-
mentation on CPU using Pthreads and on GPU using CUDA.

• The experimental results show the performance of CPU and GPU by con-
sidering di�erent levels of input and all possible ways of programming to
�nd nearest neighbor by varying the number of nearest neighbors.

• The results obtained in this thesis can be used by any researcher for reference
in their work.

• The results of this thesis work gives the better approach for implementing
kNN algorithm.

1.5 Document Organization

The thesis report is organized as follows, which makes the reader to understand
in easier way.

Chapter 2 gives an overview of the work done by various researchers on this re-
search area. Brief explanation of kNN algorithm and introduction about Pthreads
and CUDA programming followed by implementation of kNN using CUDA pro-
posed by various authors.

Chapter 3 describes about the methodology followed to implement the exper-
iment and speci�cation of experimental setup.

Chapter 4 is about the results obtained from the experiments conducted by
varying the input (size and dimension), which are used to compare the perfor-
mance.
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Chapter 5 is about analysis of the results obtained and also presents the
veri�cation and validation of the experiment and outcomes.The analysis helps to
answer the research questions.

Chapter 6 gives the conclusion which means solutions to research questions
mentioned and future work to our research.



Chapter 2

Background

2.1 k -Nearest Neighbor

kNN is one of the simplest of all machine learning algorithms. kNN is used
in pattern recognition for classi�cation and regression. For both classi�cation
and regression the input consists of the k nearest training examples in sample
space and the output depends on classi�cation or regression. kNN has been
used in statistical estimation and pattern recognition [6]. There are di�erent
measures for distance calculation like Euclidean, Euclidean Squared, City-block
and Chebyshev. Among all these Euclidean is most popular choice to measure
the distance between to the two points [13].

Euclidean distance [13] (d) between two points x and y of M dimensions is
given by:

d(x, y) =

√√√√ M∑
i=1

(xi − yi)2 (2.1)

2.1.1 Classi�cation

kNN classi�cation is to classify an unknown object from known objects. Let us
consider a simple example, there are plus and minus signs and the query point
with red circle as shown in �gure 2.1. Now we need to �nd the class of red
circle, whether it belongs to plus or minus by calculating the distance from query
point(red dot) to each and every point(plus and minus). Depending on the k

value, the class of the object changes accordingly [13].

2.1.2 Regression

kNN regression is the simple implementation to calculate the average value of the
k -Nearest Neighbors. Both kNN regression and kNN classi�cation uses the same
formula [13].

5



Chapter 2. Background 6

Figure 2.1: kNN Classi�cation [13]

2.2 Parallel Computing

There are many hardware and software improvements that are made in order
to achieve high performance, which results in increase of clock speed, pipelined
functional units, hyper threading, etc., and this leads to additional cooling system
in the hardware and increases the cost of the hardware. Due to these challenges
computer industries shifted to multi-core CPU's, which establishes a platform for
parallel computing.

2.2.1 Use of parallel computing

Complex problems can be solved with faster computers and the computations
can be performed in a better way in the same or less amount of time. Parallel
computing adds an speedup to an application using certain method. One of the
method is by dividing the data into number of chunks and executing these chucks
of data simultaneously.

2.2.2 Pthreads

In a single core CPU, computation is done using single core, where as multi-core
has more than one core for computation. The �gure 2.2 shows the single core
architecture and �gure 2.3 shows multi-core architecture.

Multi-core processors works on Multiple Instructions Multiple Data (MIMD),
in which di�erent threads can be launched on di�erent parts of the memory. The
aim is to convert sequential program into a simultaneous process where the tasks
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Figure 2.2: Single core CPU [14]

are run independent of each other which results in the increase of the speed of
the process.

Parallelism can be done in various ways like domain decomposition, task de-
composition and pipelining. In domain decomposition method large data is di-
vided into small chunks of data and the data is processed by each thread inde-
pendently with other threads. Each thread executes the same instruction with its
set of data and after, all the data execution, output from each thread combines
to produce �nal output.Where as in task decomposition method large task is di-
vided into subtasks and each thread is executed independently.In pipelining, two
threads executes two tasks concurrently overlapping the execution and making it
faster. The following are important to make the task parallel:

• Check if the algorithm is suitable for parallelism.

• Find which part of the algorithm can be parallelised.

• Disturbing the tasks to all the available threads.

• Synchronisation of execution.

POSIX threads, popularly known as Pthreads by which the implementation
of parallelism became easy on multi-core CPU's. This is an standard C-language
library, speci�ed by IEEEPOSIX 1003.1C standard [16] and can be downloaded
for free from IEEE and other sites online.In thread library all the identi�ers
are begin with pthread_. The Pthreads API can be informally classi�ed into
four major groups, namely thread management, mutexes, condition variables and
synchronization.

i. Thread management: The routines that works on threads for creating,
detaching, joining, etc.



Chapter 2. Background 8

Figure 2.3: Multi-core CPU [15]

Any program initially runs on single thread which is an default. Threads can
be launched explicitly by the programmer using routines.

• pthread_create creates a new thread and this can called many number
times within code.The following is syntax:

pthread_ create(thread,attr,start_routine,arg)

• pthread_create arguments:

thread: This is an unique identi�er for the new thread returned by
subroutine.

attr: An attribute used to set the thread attributes. Thread at-
tribute can be speci�ed or NULL for default.

start_routine: Thread will execute once it is created.

arg: This is a single argument that may be passed to start_routine
by reference as a pointer or NULL if no there are arguments to pass.

• The number of threads that can be launched in program is dependent
but if the program that exceed the maximum number of threads may
results in wrong results.

• pthread_attr_init and pthread_attr_destroy are used to initialize and
destroy the thread attribute.
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• pthread_exit() is used to terminate the thread that launched and it also
checks whether its work is done or not.

• pthread_clsoe() routine is used to cancel the thread via another thread.

• pthread_join() is used to call the thread until speci�ed threadid thread
terminates.

ii. Mutexes: Mutexes is an abbreviation for mutual exclusion, which deals
with synchronization.This function provide for creating, destroying, locking
and unlocking mutexes.

iii. Condition variables: Condition variables is a routine that is used for com-
munication between threads that share a mutex.This group also includes
functions like create, destroy, wait, etc.

iv. Synchronization: Synchronization routine is used for managing read/write
locks and barriers.

2.3 GPU computing

2.3.1 History of GPU

In early days GPU's were mainly used for graphic applications. While devel-
oping TESLA GPU architecture NVIDIA realized its potential if programmers
could think of GPU like a processor. Then NVIDIA selected a programming
approach in which programmers would explicitly declare data parallel aspects of
their work load. NVIDIA added memory load and store instruction with random
bytes addressing capability to support the requirements of compiled C program.
Programmers no longer need to use the graphics API to access the GPU parallel
computing capabilities.

NVIDIA also developed the CUDA with C/C++ compiler, libraries and run
time software which helps programmers to access the new data parallel com-
putation model and develop applications. E�cient threading support has been
provided which allows the applications to handle large amount of parallelism
than the available hardware execution. A graphic program or CUDA program is
written once and runs on a GPU with many number of processor cores [17].

2.3.2 Overview and architecture of GPU

The reason why there is a large performance di�erence between many-core GPU
and general purpose multi-core CPU's is because the di�erences in fundamen-
tal design of two processors and are shown in the �gure 2.4. As shown in the
�gure 2.4, GPU consists more number of ALU's than typical CPU and fewer
components for cache and �ow control, which implies high arithmetic intensity
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of operation and capacity to process parallel arithmetic operations, this helps in
same operation can be performed on many di�erent data elements. The hardware
in GPU takes an advantage of large number of executions which means threads
to do work, where some of them waiting for long latency [17]. In GPU, small
cache memories are used to help control the bandwidth requirements of appli-
cation hence multiple threads that access same memory data do not need to go
back to DRAM. Any application whose function can be parallezied is perfectly
suitable to implement on GPU for faster outputs [22].

Figure 2.4: Fundamental designs of CPU and GPU [17]

The design of CPU is more e�cient for sequential code performance and
an other important aspect is the large cache memories are provided to reduce
the instruction and data access lantenices of large complex applications.Memory
bandwidth is the most important issue in CPU's because graphic chips have ap-
proximately 10 times the bandwidth of that of CPU [17].

The design of GPU is shaped by fast growing video gaming industry, which
adds an tremendous performance on a massive number of �oating point calcula-
tion per video frame in advanced graphic video games. The hardware takes an
advantage of executing the threads to do the work load when some of the threads
are waiting for long latency memory access. Here small cache memory plays a
very important role because the applications need bandwidth. The threads using
same memory data do not need to go all the way to the DRAM for �oating point
calculations [17].

2.3.3 CUDA programming model

Many software applications that process a large amount of data and requires
longer execution times. To develop such large data a parallel programming model
is needed. CUDA is a parallel computing platform, which is used in GPU's
manufactured by NVIDIA. The CUDA C consists a compiler which manages
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the hardware resources and provides libraries, which makes the programmer to
implement parallelism in the program without any knowledge on low level hard
architecture of GPU processor. This CUDA program can be easily written by
any programmer who have a good knowledge in working with C programming
language [17].

CUDA program structure

A CUDA program consists of di�erent phases that are executed on either host
(CPU) or a device (GPU) [17]. On host, little or no data which can not be
parallelised are implemented whereas large data which can be parallelised are
implemented on GPU.

The host code is implemented in straight ANSI C code, which complies on
CPU whereas device code is written using extended ANSI C with some keywords
for indicating data-parallel function called kernels, which is complied by nvcc
(NVIDIA C compiler) and executed on GPU. The kernel function generates a
large number of threads in device to apply data parallelism [17]. The �gure 2.5
shows the execution of CUDA program.

Figure 2.5: Execution of CUDA program [17]

The execution starts with host code and then when kernel is launched, the
execution will processed on device where large number of threads are generated
to get data parallelism. When all threads complete their task the corresponding
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grid (grid means collection of blocks and blocks means collection of threads)
terminates and execution continues on the host until another kernel in launched.

CUDA threads

The GPU works on principle of single instruction multiple thread computing
for CUDA programming. Each and every thread executes same CUDA kernel.
These threads are hierarchically organized. The �gure 2.6 show the organization
of threads in blocks and blocks in grid.

Figure 2.6: Threads Organization in CUDA [17]

A grid consists of one or more blocks and a block consists of one or more
threads. Every block within a grid have unique block index to di�erentiate with
other blocks and similarly every thread within a block have unique thread id to
di�erentiate with other threads. The size of the grid is de�ned as M*N where M
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is the number of blocks and N is the number of threads in each block. The thread
id is given by following equation [17] (2.2)

threadID = blockIdx.x ∗ blockDim.x+ threadIdx.x (2.2)

Let us consider grid has 128 blocks (M=128) and each block has 32 threads
(N=32). The total number of threads is 128*32=4096 in the grid and blockDim
is 32 in the kernel. Thread 4 of block 5 has a threadID value of 5*32+4=164 and
thread 16 of block 102 has threadId value of 102*32+16=3280.

Figure 2.7: Overview of CUDA thread organization [17]

CUDA memory

Figure 2.8 shows the CUDA memory model. It consists of registers, global mem-
ory, shared memory, constant memory and texture memory. Since GPUs are
hardware cards that are come with inbuilt memory. For host and device have
di�erent memory spaces in CUDA programming. To launch a kernel in GPU
one has to allocate the required memory to store the data for execution, which
is transferred using PCI bus. Using global memory the communication between
host and device is established. The data which is stored in global memory can be
accessed by GPU for execution and after execution the output is transferred to
CPU using PCI bus. All the blocks in the device shares the global and constant
memory. All the threads in every block shares the memory of block, which have
its own shared memory. Each thread within a block has its own private memory
and registers.
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Figure 2.8: Overview of CUDA memory model [17]

CUDA program steps

The following are steps to launch a kernel in CUDA [17]:

• To store the input in the device allocate the su�cient memory.

• Copying the input data from host memory to device memory which is allocated
in GPU.

• Launch the kernel in device by selecting grid dimension.

• Copying the output from device memory to host memory (i.e to CPU).

• Empty the allocated memory in the device.

2.4 Previous work

Several parallel data mining algorithms are implemented such as parallel decision
tree, parallel ARM and parallel clustering. By using these algorithms and various
optimization techniques the performance can be increased.

In [1] the authors, implemented a CUDA based kNN algorithm and the data
segmentation method has been introduced to adapt to the CUDA thread model
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and memory. The authors have used adult data from UCI Machine Learning
Repository as a dataset to compare the performance of CUDA based GPU with
ordinary CPU and authors have also suggested that kNN method is e�cient for
applications with large amount of data.

In [2] the authors, implemented a CUKNN which constructs two multi-thread
kernels such as distance calculation kernel and sorting kernel. By using CUKNN,
15.2X of execution speed for dataset is observed.

In [3] the authors, implemented kNN Classi�cation using P-trees on spatial
data streams. The authors proposed a new approach called closed-kNN which
�nds closure of the kNN set, which includes all the points on the boundary even
if the size of nearest neighbor set becomes larger than k. The authors have used a
new distance metric Higher Order Bit (HOB) that provides an easy and accurate
way of computing closed-kNN.

In [4] the authors, proposed a fast and parallel k nearest neighbor and showed
the impact on content based image retrieval applications. The proposed technique
is implemented in C and MATLAB using GPU with CUDA.

In [7] the authors, proposed a new and e�cient algorithm for high-dimensional
nearest neighbor search based on ellipsoid distance, which uses Cholesky decom-
position thereby improving the e�ciency by skipping the unnecessary calcula-
tions.

In [8] the author, implemented a AES encryption of di�erent cipher key length
128-bits, 192-bits and 256-bits on GPGPU(General Purpose Graphics Processing
Unit) and CPU in order to evaluate the performance in di�erent levels of opti-
mization using Pthreads, CUDA and CUDA STREAMS. The author concluded
that GPU outperforms both single and multi threads of CPU whereas use of
CUDA STREAMS does not show impact on small data size, it shows the impact
on large data size.

In [9] the authors implemented a fast SVM using CUDA on GPU and the
performance is 100X when compared to CPU.

In [10] the authors implemented a CUDA based intrusion detection system
where maximum throughput of 2.3 GB/s is achieved.

In [11] the authors, proposed a tra�c classi�cation scheme based on machine
learning. The authors have considered di�erent Machine Learning(ML) algo-
rithms like TAN, L4.5, NBTree, Random form and the distance weighted kNN,
which are used to reach high classi�cation accuracy. The authors have collected
the required information from the internet which are labeled by payload or by
port. The authors have setup a local experiment for 100 hosts to generate sim-
ulated tra�c. The hosts are running on speci�c applications like HTTP, SMTP,
POP3, FTP and P2P which are very close to real internet tra�c.



Chapter 3

Methodology

This chapter describes about the methodology used for the research. This is
the crucial part of the research which gives the results to the research questions
and problem statement. This research is carried out in two stages, literature
review and in experiment. In the stage of literature review, researcher gains a
knowledge over the research domain and it helps to give hypothetical output of the
research. This is also helps to �ll the knowledge gap on kNN algorithm,parallel
programming on CPU and GPU. In the stage of experimentation, the gained
knowledge from literature review is used to implement to validate the hypothesis.
In this section the details or prerequisite for experiment, experiment setup and
experiment are explained brie�y.

3.1 Pre-Requisites for experiment

• CPU

- Intel®Core� i7-950 Processor

- No of cores:4

- No of threads: 8

- Clock speed: 3.2 GHz

• A CUDA-enabled GPU

- NVIDIA GeForce GTX 550 Ti

- 192 processing cores

• Windows 7 Operating System

• A CUDA supported Microsoft Visual studio 2013

• NVIDIA CUDA toolkit

3.2 Experimental Setup

Figure 3.1 shows the �ow of experiment.
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Figure 3.1: Experiment setup

3.3 Experiment

To evaluate the performance of kNN algorithm on CPU and GPU, a random
dataset generated using C program is considered. The generated dataset can be
varied according to the requirements, like size (no of datasets) and dimensions
of dataset. For each and every implementation the execution time is calculated
in order to search nearest neighbors for each input, which means if the dataset
consists of N samples with M dimensions then the time taken to �nd the nearest
neighbors for each sample is measured using Euclidean distance. The distance
is calculated between each sample of data to the remaining samples. First a
sequential program is implemented to �nd nearest neighbors for each sample of
data. A parallel program is implemented on CPU using multi threads and the
execution time is recorded. Also a parallel program is developed on GPU using
CUDA.

In this experiment, we are going to calculate the execution time by varying
the size of dataset (N), dimensions (M) and number of nearest values(k) for each
implementation, which are considered from previous studies [2] [4].

Euclidean distance [13] (d) between two points x and y of M dimensions is
given by equation 2.1.
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3.3.1 Implementation on CPU single core processor

A single core processor is used to execute the implemented program in CPU. A
sequential code is written using C language and to store the input data, memory
is allocated. The structure of the program is showed in �gure 3.2. The program
is attached in appendix A. The execution time is taken for distance calculations
and sorting them for di�erent input samples and di�erent values of k.

Figure 3.2: programming structure for CPU single core
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3.3.2 Implementation on CPU Multi-core processor using

Pthreads

Multiple cores are used to execute the implemented program in CPU. In our
experiment CPU consists of 4 physical cores and 2 virtual cores. Using all the
available cores e�ciently one can achieve high performance. So total 8 threads
are used to process the entire dataset. The program is developed in such way that
entire input data is divided equally between the thread to execute. The structure
of the program is showed in �gure 3.3. The program is attached in appendix B.

3.3.3 Implementation on GPU using CUDA

The most time taking part of kNN is distance calculations and k nearest neighbor
selecting. Since GPU has many cores it is suitable for these type of applications.
So this can be implemented using two kernels,namely distance kernel and sorting
kernel. The structure of the program on host is showed in �gure 3.4 and program
on device is showed in �gure 3.5. The program is attached in appendix C. Here
grid dimensions varies with size of input and number of the threads launched per
block. 64 threads are launched in each block.

Distance kernel

The aim of implementing this kernel is to calculate the distance between all the
points which is done by di�erent threads. Distance calculations can be fully par-
allelized since it is independent between pairs of objects. The data is transferred
from CPU to GPU, whereas each and every thread involved in calculating the
distance. If the number of points are large, a large number of threads and blocks
are launched to execute this kernel. The following kernel is launched to calculate
distance:

d i s t ance << <numblocks , threadsperb lock>> > (d_a , d_c ) ;

Sorting kernel

This kernel is to �nd the k nearest neighbors. Once the distance kernel execution
is completed this kernel is invoked. The calculated distances are stored in shared
memory. Each thread takes care of one distance. Now the challenging task is to
�nd the k nearest neighbors. The distances in the shared memory are sorted and
then copied to global memory, where the k nearest neighbors are calculated and
copied back to CPU. The following kernel is launched for sorting the distances:

s o r t i n g << <numblocks , threadsperb lock>> > (d_c , k ) ;
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Figure 3.3: programming structure for CPU multi-core
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Figure 3.4: programming structure for GPU(Host code)
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Figure 3.5: programming structure for GPU(Device code)



Chapter 4

Results

The research work in this section gives the execution times in terms of perfor-
mance (better approach) for kNN algorithm on di�erent level of parallelism on
CPU and GPU.

4.1 Implementation on CPU single core processor

A single core program is implemented for kNN algorithm.Various input samples
are taken for di�erent k values. To get accurate results, 20 iterations of each
sample of inputs are taken. Table 4.1 shows the average execution time on CPU
single core processor and table 4.2 shows the standard deviation of execution
time. In appendix A, the results are shown for k=1, k=5 and k=10 for di�erent
input samples. Where n is number of inputs and d is dimension of each input.

4.2 Implementation on CPU Multi-core processor

using Pthreads

Multi-core program is implemented for kNN algorithm. Various input samples
taken for di�erent k values. To get accurate results, 20 iterations of each sample

Table 4.1: Average execution time in seconds on CPU single core processor

k=1 k=5 k=10
d=32 d=64 d=128 d=32 d=64 d=128 d=32 d=64 d=128

n=1200 0.2761 0.55775 1.11115 0.2774 0.55815 1.11355 0.276 0.55965 1.11435

n=2400 1.09785 2.23345 4.15715 1.09915 2.23325 4.2379 1.1047 2.2271 4.25215

n=4800 4.3835 8.7832 17.49 4.385 8.77575 17.48782 4.38435 8.781 17.48602
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Table 4.2: Standard deviation of execution time on CPU single core processor

k=1 k=5 k=10
d=32 d=64 d=128 d=32 d=64 d=128 d=32 d=64 d=128

n=1200 0.005418 0.005739 0.006467 0.00915 0.005499 0.005596 0.005026 0.002925 0.004782

n=2400 0.004246 0.018208 0.450279 0.008067 0.023668 0.03201 0.023245 0.005739 0.045188

n=4800 0.009356 0.035585 0.020926 .008974 0.011443 0.020184 0.009965 0.028079 0.016311

Table 4.3: Avergae execution time in seconds on CPU multi-core processor using Pthreads

k=1 k=5 k=10
d=32 d=64 d=128 d=32 d=64 d=128 d=32 d=64 d=128

1200 0.05465 0.12025 0.22345 .05615 0.12045 0.2246 0.05635 0.1211 0.2305
2400 0.223 0.4212 0.7661 0.2246 0.4225 0.76105 0.2276 0.42275 0.76825
4800 0.7752 1.49 2.87865 0.77575 1.4873 2.87515 0.777 1.4855 2.8603

of inputs are taken. Table 4.3 shows the average execution time on CPU multi-
core processors and table 4.4 shows Standard deviation of execution time. In
appendix B, the results are shown for k=1,k=5 and k=10 for di�erent input
samples. Where n is number of inputs and d is dimension of each input. Here 8
threads are launched, where entire input data is divided equal in such way that
each can handle same number of inputs.

Table 4.4: Standard deviation of execution time on CPU multi-core processor using Pthreads

k=1 k=5 k=10
d=32 d=64 d=128 d=32 d=64 d=128 d=32 d=64 d=128

n=1200 0.006459 0.009034 0.011293 0.00488 0.009449 0.011518 0.007191 0.009593 0.011459

n=2400 0.010809 0.01102 0.019287 0.012141 0.010195 0.014515 0.011213 0.007405 0.011876

n=4800 0.014443 0.020926 0.073878 .011443 0.019437 0.042019 0.016059 0.015313 0.033655
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Table 4.5: Avergae execution time in seconds on GPU using CUDA

k=1 k=5 k=10
d=32 d=64 d=128 d=32 d=64 d=128 d=32 d=64 d=128

1200 .02025 0.0817 0.1459 0.0305 0.08825 0.1673 0.0436 0.091775 0.19065
2400 0.11165 0.197 0.3439 0.1176 0.1957 .36725 0.1212 0.2107 0.3904
4800 0.3301 0.55495 1.03415 0.32945 0.5619 1.0395 0.343 0.56605 1.04395

Table 4.6: Standard deviation of execution time on GPU using CUDA

k=1 k=5 k=10
d=32 d=64 d=128 d=32 d=64 d=128 d=32 d=64 d=128

n=1200 0.002984 0.00389 0.003919 0.003204 0.004051 0.005079 0.003068 0.002696 0.001565

n=2400 0.04221 0.005675 0.013669 0.009332 0.0049 0.0067735 0.003708 0.010687 0.004978

n=4800 0.004064 0.011803 0.003468 .007316 0.006008 0.06126 0.009695 0.005799 0.003762

4.3 Implementation on GPU using CUDA

A CUDA program is implemented for kNN algorithm. Various input samples are
taken for di�erent k values. To get accurate results, 20 iterations of each sample
of inputs are taken. Table 4.5 shows the average execution time on GPU and
table 4.6 shows the standard deviation of execution time. In appendix C, the
results are shown for k=1,k=5 and k=10 for di�erent input samples. Where n is
number of inputs and d is dimension of each input. Here the number of blocks
launched depends on the input and the threads per block are launched. These
are passed as arguments in kernel function.
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Analysis

In this chapter, analysis of the results obtained from the experiment is presented
and explicated the e�ect of results obtained from various implementations.

5.1 For single core processor

The results obtained on single core processor shows that increase in the execution
time as the size of the input increases and slightly increases (in most of the cases)
when the k value increases. Since the program is implemented as serial program
using single core processor the execution time also increases. The following graph
shows the average execution time for di�erent input size (n), di�erent dimensions
(d) and di�erent k values.

Figure 5.1: Average execution times for di�erent input size n, dimensions d and
k nearest neighbor on CPU single core processor
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5.2 For multi-core processor

The results obtained on cpu multi-core processor shows that increase in the exe-
cution time as the size of the input increases and slightly increases (in most of the
cases) when the k value increases. This program is implemented using Pthreads.
The CPU used in these experiments is having 4 cores which means it can launch 8
threads to improve performance when compared to single core CPU. For example
if the input data of size 2400, each thread can handle 350 inputs. By comparing
the results that are obtained, implementation on multi-core CPU outperforms
the implementation on single core CPU. Because here the work load is shared by
the threads. The following graph shows the average execution time for di�erent
input size (n), di�erent dimensions (d) and di�erent k values.

Figure 5.2: Average execution times for di�erent input size n, dimensions d and
k nearest neighbor on CPU multi-core processor

5.3 For GPU using CUDA

The results obtained for kNN implementation on GPU shows that the increase in
the execution time as the size of input increases and also increases with increase
in k values. The program is implemented in such a way that the distance is
calculated by one kernel and sorting is done by another kernel which results in
better performance when compared to implementation on CPU by 5.8 to 16 times
on single core CPU and 1.2 to 3 times on multi-core CPU.
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Figure 5.3: Average execution times for di�erent input size n, dimensions d and
k nearest neighbor on GPU using CUDA

5.4 Validity Threat

There are two types of validity threats that need to be considered while conducting
research, which are internal validity and external validity.

5.4.1 Internal validity threat

Internal validity threat means the ability of research paper to be able to correlate
the cause and e�ect [18]. Deviation from this validity may a�ects the accuracy
of the results. To overcome the deviation, the following precautions should be
taken:

• 20 iterations are considered in each and every case to get accuracy of the
results. Standard deviation also calculated to check the consistency of the
results.

• The output generated in all the implementations are same, which means the
results for particular k nearest neighbors are same.

• The performance variations are observed for di�erent combinations of inputs.
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5.4.2 External validity threat

External validity threat means the generalization of results of research work out-
side the study [18]. This research work is carried out for parallel implementation
of kNN. Hence it depends on the dataset size, which e�ects the performance of de-
vices and not the algorithm complexity. The execution time depends on the type
of GPU used in implementation. In this research work, NVIDIA GeForce GTX
550 Ti GPU is used. The performance may vary in comparison factor between
di�erent types of GPUs used. From the general observation from the results and
literature study, NVIDIA GPUs using CUDA holds best results.
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Conclusion and Future Work

6.1 Answer to research questions

RQ1. What is the execution time of nearest neighbor search for large datasets on
CPU with sequential C program?

Ans. The execution times of one nearest neighbor search when the input size of
1200 and dimensions of 32, 64, 128 are 0.2761 sec, 0.55775 sec and 1.11115
sec respectively. And the execution times for one nearest neighbor when
input size of 2400 and dimensions of 32, 64 and 128 are 1.075 sec, 2.23345
sec, 4.15715 sec respectively. Similarly the input of 4800 are 4.385 sec,
8.7832 sec, 17.49 sec. Remaining values are tabulated in table 4.1. From
all the results we can say the execution time increased with increase in size
and dimension of data.

RQ2. What is the execution time of nearest neighbor search for large datasets on
CPU with parallel C program?

Ans. The execution times of one nearest neighbor search when the input size of
1200 and dimensions of 32, 64, 128 are 0.05465 sec, 0.12025 sec and 0.22345
sec respectively. And the execution times for one nearest neighbor when
input size of 2400 and dimensions of 32, 64 and 128 are 0.223 sec, 0.4241
sec and 0.7661 sec respectively. Similarly for the input of 4800 are 0.7752
sec, 1.49 sec, 2.87865 sec. Remaining values are tabulated in table 4.3.
From all the results we can say the execution time increased with increase
in size and dimension of data. These results outperforms then single core
processor approximately 5 times.

RQ3. What is the execution time of nearest neighbor search for large datasets on
GPU using CUDA?

Ans. The execution times of one nearest neighbor search when the input of 1200
and dimensions of 32, 64, 128 are 0.02025 sec, 0.0817 sec and 0.1459 sec
respectively. And the execution times for one nearest neighbor when input
size of 2400 and dimensions of 32, 64 and 128 are 0.223 sec, 0.4241 sec
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and 0.7661 sec respectively. Similarly for the input of 4800 are 0.03301 sec,
0.55495 sec, 1.03415 sec. Remaining values are tabulated in table 4.5. From
all the results we can say the execution time increased with increase in size
and dimension of data.

RQ4. Compare the performance of CPU and GPU on execution time of nearest
neighbor search for large datasets?

Ans. By comparing all the above results we can conclude that GPU outpeforms in
all the condition when compared implementation on CPU single core with
an factor of approximately 5.8 to 16 and implementation on CPU multi-core
with an factor of approximately 1.2 to 3. And the impact of k values is very
small for same number of input (n) and dimensions (d).

6.2 Future Work

• Due to limited time, this is research work is implemented on only one GPU
(NVIDIA GeForce GTX 550 Ti), since the performance may vary with
another version of NVIDIA GPU's.

• This implementation can be done on GPU using CUDA STREAMS,which
may give more optimized results then using CUDA.

• This implementation can be used for intrusion detection for more accuracy
and in faster way.

• OSPF is a routing protocol, which is used to �nd shortest path in the network
[24]. Since kNN is used to �nd nearest neighbor, this can be implemented
on OSPF to �nd in faster way.
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Appendix A

Program & Results for CPU single core
processor

A.1 program

#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <s t r i n g . h>
#inc lude <mal loc . h>
#inc lude <math . h>
#inc lude <time . h>
#de f i n e f i l ename " t e s t . csv "
#de f i n e rows 4800
#de f i n e c o l s 128
i n t main ( ){

i n t f ;
p r i n t f (" Enter the number o f nea r e s t ne igbours " ) ;
s can f ("%d" , &f ) ;
double tota l_time ;
c lock_t s ta r t , end ;
double **b = malloc ( rows* s i z e o f ( double * ) ) ;
i n t mat [ rows ] [ c o l s ] ;
f o r ( i n t i = 0 ; i < rows ; i++)
b [ i ] = mal loc ( rows* s i z e o f ( double ) ) ;
srand ( 0 ) ;
i n t l ;
FILE *myFile ;
myFile = fopen (" t e s t . csv " , " r " ) ;

// read f i l e i n to array
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i f ( myFile == NULL)
{

p r i n t f (" Error Reading F i l e \n " ) ;
e x i t ( 0 ) ;

}
f o r ( i n t i = 0 ; i < rows ; i++)
{

f o r ( i n t j = 0 ; j < c o l s ; j++)
{

f s c a n f (myFile , "%d " , &mat [ i ] [ j ] ) ;
}

}
f c l o s e ( myFile ) ;

s t a r t = c l ock ( ) ;
f o r ( i n t m = 0 ; m < rows ; m++)
{

f o r ( i n t t = m + 1 ; t < rows ; t++)
{

double sum = 0 ;
f o r ( i n t k = 0 ; k < c o l s ; k++)
{

double p = mat [m] [ k ] − mat [ t ] [ k ] ;
double s = p*p ;
sum += s ;

}

b [m] [ t ] = sq r t (sum ) ;

}

}
double temp ;

f o r ( i n t k = 0 ; k < rows ; k++)
{

f o r ( i n t i = k + 1 ; i<rows ; i++)
{

f o r ( i n t j = 0 ; j< c o l s ; j++)
{

i f (b [ k ] [ i ]<b [ k ] [ j ] )
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{
temp = b [ k ] [ i ] ;
b [ k ] [ i ] = b [ k ] [ j ] ;
b [ k ] [ j ] = temp ;

}
}

}

}

end = c lock ( ) ;

tota l_time = ( ( double ) ( end − s t a r t ) ) / CLK_TCK;
p r i n t f ("\n\ntime taken %f \n" , tota l_time ) ;

f o r ( i n t i = 0 ; i<rows ; i++){
f o r ( i n t j = 0 ; j < c o l s ; j++)

f r e e (mat [ i ] ) ;
}

f r e e (mat ) ;
r e turn 0 ;

}
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A.2 Results

Number of inputs = 1200 & dimension =32

No.of.iterations k=1 k=5 k=10
1 0.286 0.28 0.28
2 0.28 0.28 0.28
3 0.27 0.28 0.28
4 0.27 0.27 0.27
5 0.281 0.27 0.28
6 0.28 0.271 0.27
7 0.28 0.28 0.27
8 0.28 0.27 0.27
9 0.27 0.274 0.27
10 0.278 0.27 0.28
11 0.27 0.27 0.28
12 0.274 0.283 0.28
13 0.282 0.28 0.28
14 0.27 0.28 0.27
15 0.28 0.31 0.27
16 0.28 0.27 0.27
17 0.271 0.28 0.28
18 0.27 0.28 0.28
19 0.27 0.27 0.28
20 0.28 0.28 0.28
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Number of inputs = 1200 & dimension =64

No.of.iterations k=1 k=5 k=10
1 0.56 0.55 0.56
2 0.55 0.55 0.56
3 0.56 0.562 0.56
4 0.561 0.56 0.566
5 0.561 0.561 0.56
6 0.55 0.555 0.55
7 0.55 0.56 0.56
8 0.55 0.56 0.56
9 0.56 0.55 0.56
10 0.571 0.56 0.555
11 0.56 0.562 0.56
12 0.56 0.563 0.56
13 0.56 0.56 0.56
14 0.55 0.55 0.562
15 0.56 0.56 0.56
16 0.56 0.56 0.56
17 0.55 0.56 0.56
18 0.56 0.55 0.56
19 0.562 0.56 0.56
20 0.56 0.57 0.56
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Number of inputs = 1200 & dimension =128

No.of.iterations k=1 k=5 k=10
1 1.11 1.11 1.112
2 1.11 1.12 1.12
3 1.12 1.11 1.11
4 1.11 1.121 1.12
5 1.122 1.122 1.122
6 1.112 1.11 1.111
7 1.11 1.101 1.12
8 1.11 1.113 1.12
9 1.12 1.12 1.112
10 1.11 1.111 1.11
11 1.11 1.111 1.112
12 1.11 1.112 1.11
13 1.098 1.118 1.11
14 1.118 1.11 1.12
15 1.11 1.11 1.112
16 1.11 1.12 1.112
17 1.1 1.11 1.112
18 1.111 1.121 1.11
19 1.102 1.11 1.11
20 1.12 1.111 1.122
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Number of inputs = 2400 & dimension =32

No.of.iterations k=1 k=5 k=10
1 1.102 1.09 1.101
2 1.09 1.101 1.1
3 1.1 1.1 1.1
4 1.1 1.09 1.096
5 1.1 1.112 1.2
6 1.1 1.092 1.116
7 1.1 1.1 1.096
8 1.1 1.09 1.11
9 1.102 1.1 1.1
10 1.092 1.092 1.09
11 1.1 1.102 1.091
12 1.1 1.099 1.1
13 1.096 1.09 1.1
14 1.101 1.11 1.096
15 1.1 1.12 1.1
16 1.09 1.1 1.101
17 1.091 1.092 1.101
18 1.101 1.1 1.09
19 1.1 1.103 1.104
20 1.092 1.1 1.102
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Number of inputs = 2400 & dimension =64

No.of.iterations k=1 k=5 k=10
1 2.249 2.238 2.23
2 2.271 2.33 2.223
3 2.266 2.225 2.23
4 2.265 2.228 2.225
5 2.262 2.221 2.222
6 2.22 2.224 2.222
7 2.222 2.23 2.214
8 2.224 2.23 2.233
9 2.232 2.22 2.231
10 2.22 2.23 2.219
11 2.223 2.231 2.235
12 2.23 2.223 2.23
13 2.222 2.224 2.225
14 2.216 2.227 2.23
15 2.222 2.24 2.223
16 2.233 2.23 2.228
17 2.222 2.227 2.222
18 2.22 2.221 2.233
19 2.22 2.244 2.235
20 2.23 2.222 2.232
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Number of inputs = 2400 & dimension =128

No.of.iterations k=1 k=5 k=10
1 4.52 4.238 4.33
2 4.233 4.33 4.223
3 4.233 4.225 4.23
4 4.22 4.228 4.225
5 4.22 4.221 4.222
6 4.23 4.224 4.222
7 4.233 4.225 4.314
8 4.232 4.33 4.233
9 4.232 4.22 4.335
10 4.249 4.23 4.219
11 4.271 4.231 4.235
12 2.266 4.223 4.23
13 4.265 4.224 4.225
14 4.262 4.225 4.33
15 4.22 4.23 4.223
16 4.242 4.23 4.228
17 4.34 4.227 4.222
18 4.232 4.231 4.33
19 4.22 4.244 4.235
20 4.223 4.222 4.232
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Number of inputs = 4800 & dimension =32

No.of.iterations k=1 k=5 k=10
1 4.403 4.381 4.4
2 4.395 4.391 4.392
3 4.384 4.389 4.387
4 4.378 4.392 4.383
5 4.374 4.376 4.394
6 4.392 4.382 4.396
7 4.375 4.398 4.374
8 4.393 4.369 4.362
9 4.38 4.375 4.382
10 4.384 4.379 4.377
11 4.375 4.391 4.388
12 4.374 4.392 4.376
13 4.374 4.387 4.364
14 4.383 4.383 4.386
15 4.394 4.388 4.39
16 4.374 4.377 4.393
17 4.37 4.382 4.392
18 4.391 4.378 4.381
19 4.384 4.382 4.386
20 4.393 4.408 4.384
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Number of inputs = 4800 & dimension =64

No.of.iterations k=1 k=5 k=10
1 8.762 8.762 8.762
2 8.772 8.782 8.792
3 8.792 8.772 8.762
4 8.762 8.762 8.772
5 8.772 8.772 8.782
6 8.782 8.782 8.782
7 8.882 8.792 8.792
8 8.882 8.762 8.752
9 8.792 8.782 8.792
10 8.772 8.762 8.762
11 8.752 8.771 8.782
12 8.782 8.762 8.792
13 8.762 8.792 8.762
14 8.772 8.782 8.772
15 8.782 8.792 8.772
16 8.764 8.76 8.742
17 8.782 8.79 8.782
18 8.752 8.782 8.792
19 8.772 8.772 8.882
20 8.774 8.782 8.792
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Number of inputs = 4800 & dimension =128

No.of.iterations k=1 k=5 k=10
1 17.492 17.472 17.502
2 17.482 17.482 17.452
3 17.542 17.472 17.462
4 17.492 17.472 17.482
5 17.482 17.5172 17.492
6 17.522 17.492 17.5172
7 17.472 17.472 17.492
8 17.502 17.472 17.482
9 17.472 17.492 17.482
10 17.472 17.492 17.472
11 17.532 17.492 17.482
12 17.482 17.496 17.482
13 17.472 17.462 17.502
14 17.502 17.492 17.472
15 17.462 17.462 17.472
16 17.482 17.482 17.482
17 17.492 17.482 17.492
18 17.482 17.5172 17.492
19 17.482 17.492 17.5172
20 17.482 17.544 17.492
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Program & Results for CPU multi core
processor

B.1 program

#inc lude <s td i o . h>
#inc lude <pthread . h>
#inc lude<math . h>
#inc lude<time . h>
#de f i n e T 8
#de f i n e N 4800
#de f i n e M 128
i n t A[N ] [M] ;
double C[N ] [N] = { { 0 } } ;

void *kNN( void * arg ) {
i n t id = *( i n t *) arg ;
i n t i , j , k ;

f o r ( i = id ; i < N; i += T)
{

// p r i n t f (" id=%d \ t " , id ) ;

f o r ( j = i + 1 ; j < N; j++)
{

i n t sum = 0 ;
f o r ( k = 0 ; k < M; k++)
{

i n t temp = A[ i ] [ k ] − A[ j ] [ k ] ;
i n t s = temp * temp ;

48



Appendix B. Program & Results for CPU multi core processor 49

sum += s ;
}

C[ i ] [ j ] = sq r t (sum ) ;

}
}

double temp ;
f o r ( i n t k = id ; k < N; k+=T)
{

f o r ( i n t i = k + 1 ; i<N; i++)
{

f o r ( i n t j = 0 ; j< M; j++)
{

i f (C[ k ] [ i ]<C[ k ] [ j ] )
{

temp = C[ k ] [ i ] ;
C[ k ] [ i ] = C[ k ] [ j ] ;
C[ k ] [ j ] = temp ;

}
}

}

}

pthread_exit (NULL) ;
}

i n t main ( )
{

p r i n t f (" Enter the number o f nea r e s t ne igbours " ) ;
s can f ("%d" , &f ) ;
srand ( 0 ) ;
i n t l ;
FILE *myFile ;
myFile = fopen (" t e s t . csv " , " r " ) ;
double tota l_time ;
c lock_t s ta r t , end ;
pthread_t thread [T ] ;
i n t t i d [T ] ;
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i n t i , j ;
i n t f ;
// read f i l e i n to array

i f ( myFile == NULL)
{

p r i n t f (" Error Reading F i l e \n " ) ;
e x i t ( 0 ) ;

}
f o r ( i n t i = 0 ; i < N; i++)
{

f o r ( i n t j = 0 ; j < M; j++)
{

f s c a n f (myFile , "%d " , &A[ i ] [ j ] ) ;
}

}
f c l o s e ( myFile ) ;

s t a r t = c l ock ( ) ;
// time re co rd ing s t a r t s

f o r ( i = 0 ; i < T; i++) { // launching threads
t i d [ i ] = i ;
pthread_create(&thread [ i ] , NULL, kNN, &t i d [ i ] ) ;

}

f o r ( i = 0 ; i < T; i++)
pthread_join ( thread [ i ] , NULL) ;

end = c lock ( ) ; / / time re co rd ing s tops

tota l_time = ( ( double ) ( end − s t a r t ) ) / CLK_TCK;

p r i n t f ("\n\ntime taken %f \n" , tota l_time ) ;
p r i n t f ("\n " ) ;
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re turn 0 ;
}

B.2 Results

Number of inputs = 1200 & dimension =32

No.of.iterations k=1 k=5 k=10
1 0.05 0.06 0.05
2 0.06 0.06 0.05
3 0.056 0.06 0.05
4 0.05 0.05 0.05
5 0.06 0.05 0.06
6 0.05 0.05 0.06
7 0.06 0.06 0.07
8 0.05 0.05 0.06
9 0.05 0.06 0.05
10 0.067 0.06 0.05
11 0.05 0.06 0.05
12 0.05 0.05 0.05
13 0.05 0.06 0.06
14 0.05 0.06 0.06
15 0.07 0.05 0.05
16 0.05 0.06 0.05
17 0.05 0.053 0.06
18 0.06 0.06 0.067
19 0.05 0.06 0.06
20 0.06 0.05 0.07
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Number of inputs = 1200 & dimension =64

No.of.iterations k=1 k=5 k=10
1 0.133 0.112 0.11
2 0.13 0.133 0.12
3 0.11 0.11 0.13
4 0.12 0.13 0.1
5 0.121 0.11 0.11
6 0.11 0.11 0.12
7 0.12 0.13 0.11
8 0.1 0.13 0.13
9 0.12 0.122 0.12
10 0.12 0.11 0.12
11 0.11 0.133 0.12
12 0.13 0.11 0.112
13 0.12 0.119 0.13
14 0.13 0.12 0.12
15 0.13 0.11 0.12
16 0.13 0.13 0.12
17 0.12 0.11 0.14
18 0.12 0.13 0.13
19 0.11 0.12 0.13
20 0.121 0.13 0.13
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Number of inputs = 1200 & dimension =128

No.of.iterations k=1 k=5 k=10
1 0.22 0.24 0.22
2 0.22 0.22 0.24
3 0.21 0.22 0.22
4 0.21 0.23 0.22
5 0.239 0.22 0.24
6 0.22 0.23 0.24
7 0.22 0.21 0.23
8 0.22 0.24 0.22
9 0.24 0.232 0.22
10 0.23 0.22 0.22
11 0.21 0.21 0.24
12 0.22 0.23 0.24
13 0.24 0.22 0.22
14 0.23 0.25 0.26
15 0.22 0.22 0.22
16 0.22 0.22 0.23
17 0.24 0.23 0.23
18 0.24 0.2 0.24
19 0.21 0.23 0.22
20 0.21 0.22 0.24
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Number of inputs = 2400 & dimension =32

No.of.iterations k=1 k=5 k=10
1 0.23 0.22 0.24
2 0.23 0.24 0.21
3 0.22 0.2 0.24
4 0.21 0.23 0.24
5 0.21 0.24 0.23
6 0.24 0.23 0.24
7 0.23 0.202 0.22
8 0.21 0.22 0.22
9 0.21 0.23 0.232
10 0.23 0.23 0.24
11 0.21 0.24 0.22
12 0.24 0.23 0.21
13 0.22 0.22 0.22
14 0.21 0.22 0.24
15 0.22 0.23 0.22
16 0.22 0.24 0.21
17 0.23 0.21 0.22
18 0.22 0.22 0.23
19 0.23 0.23 0.23
20 0.24 0.21 0.24
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Number of inputs = 2400 & dimension =64

No.of.iterations k=1 k=5 k=10
1 0.454 0.42 0.42
2 0.422 0.432 0.436
3 0.422 0.42 0.422
4 0.422 0.412 0.432
5 0.412 0.43 0.42
6 0.42 0.422 0.422
7 0.422 0.41 0.42
8 0.412 0.42 0.422
9 0.432 0.422 0.42
10 0.412 0.412 0.42
11 0.422 0.42 0.422
12 0.41 0.442 0.426
13 0.412 0.43 0.422
14 0.422 0.41 0.422
15 0.41 0.432 0.42
16 0.422 0.442 0.422
17 0.412 0.432 0.435
18 0.422 0.412 0.4
19 0.42 0.42 0.422
20 0.442 0.41 0.43
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Number of inputs = 2400 & dimension =128

No.of.iterations k=1 k=5 k=10
1 0.782 0.752 0.782
2 0.752 0.752 0.772
3 0.762 0.772 0.772
4 0.762 0.752 0.762
5 0.792 0.752 0.762
6 0.752 0.762 0.762
7 0.772 0.773 0.762
8 0.762 0.742 0.772
9 0.762 0.782 0.752
10 0.762 0.772 0.762
11 0.832 0.762 0.782
12 0.752 0.732 0.78
13 0.772 0.752 0.769
14 0.742 0.782 0.8
15 0.752 0.752 0.762
16 0.752 0.782 0.752
17 0.772 0.772 0.774
18 0.764 0.762 0.752
19 0.762 0.742 0.772
20 0.762 0.772 0.762
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Number of inputs = 4800 & dimension =32

No.of.iterations k=1 k=5 k=10
1 0.762 0.762 0.762
2 0.772 0.782 0.792
3 0.792 0.772 0.762
4 0.762 0.762 0.772
5 0.772 0.772 0.782
6 0.782 0.782 0.782
7 0.802 0.792 0.792
8 0.802 0.762 0.752
9 0.792 0.782 0.792
10 0.772 0.762 0.762
11 0.752 0.771 0.782
12 0.782 0.762 0.792
13 0.762 0.792 0.762
14 0.772 0.782 0.772
15 0.782 0.792 0.772
16 0.764 0.76 0.742
17 0.782 0.79 0.782
18 0.752 0.782 0.792
19 0.772 0.772 0.802
20 0.774 0.782 0.792
21 0.7752 0.77575 0.777
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Number of inputs = 4800 & dimension =64

No.of.iterations k=1 k=5 k=10
1 1.492 1.472 1.502
2 1.482 1.482 1.452
3 1.542 1.472 1.462
4 1.492 1.472 1.482
5 1.482 1.512 1.492
6 1.522 1.492 1.512
7 1.472 1.472 1.492
8 1.502 1.472 1.482
9 1.472 1.492 1.482
10 1.472 1.492 1.472
11 1.532 1.492 1.482
12 1.482 1.496 1.482
13 1.472 1.462 1.502
14 1.502 1.492 1.472
15 1.462 1.462 1.472
16 1.482 1.482 1.482
17 1.492 1.482 1.492
18 1.482 1.512 1.492
19 1.482 1.492 1.512
20 1.482 1.544 1.492
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Number of inputs = 4800 & dimension =128

No.of.iterations k=1 k=5 k=10
1 2.862 2.842 2.852
2 2.852 2.872 2.872
3 2.822 2.862 2.872
4 2.853 2.842 2.866
5 2.852 2.952 2.832
6 2.854 2.812 2.842
7 2.902 2.962 2.832
8 2.872 2.902 2.832
9 2.902 2.862 2.952
10 2.842 2.852 2.832
11 2.852 2.942 2.922
12 2.862 2.852 2.852
13 3.182 2.852 2.822
14 2.862 2.862 2.902
15 2.872 2.862 2.842
16 2.862 2.862 2.842
17 2.882 2.842 2.833
18 2.852 2.852 2.873
19 2.882 2.943 2.852
20 2.852 2.874 2.882
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Program & Results for GPU

C.1 program

#inc lude "cuda_runtime . h"
#inc lude "device_launch_parameters . h"

#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <s t r i n g . h>
#inc lude <time . h>
#inc lude <math . h>

#de f i n e rows 4800
#de f i n e c o l s 128

i n t aa [ rows ] [ c o l s ] ;
double cc [ rows ] [ rows ] ;
double cpu_out [ rows ] [ rows ] ;
i n t K;

__global__ void d i s t anc e ( const i n t * dev_a , double * dev_c , dim3 thPerblk )
{

i n t th_num = blockIdx . x*64 + threadIdx . x ;
double sum = 0 ;

f o r ( i n t k = th_num + 1 ; k < rows ; k++)
{

f o r ( i n t c = 0 ; c < c o l s ; c++)
sum += (dev_a [ th_num* c o l s + c ] − dev_a [ k* c o l s + c ] ) * ( dev_a [ th_num* c o l s + c ] − dev_a [ k* c o l s + c ] ) ;

60
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dev_c [ th_num ] = sq r t (sum ) ;
}

// p r i n t f ("Sum: %d \ t " , sum ) ;

}
__global__ void s o r t i n g ( double *dev_c , double * sor t , i n t K, dim3 thPerblk )
{

i n t temp ;
i n t i ;
i = blockIdx . x*64 + threadIdx . x ;
f o r ( i n t r = 0 ; r < rows ; r++)
{

f o r ( i n t c = 0 ; c < c o l s ; c++)
{

i f ( dev_c [ c o l s * r + c]<dev_c [ c o l s * i + c ] )
{

temp = dev_c [ c o l s * r + c ] ;
dev_c [ c o l s * r + c ] = dev_c [ c o l s * i + c ] ;
dev_c [ c o l s * i + c ] = temp ;

}

}

}
}

i n t main ( )
{

p r i n t f (" ente r the number o f K nea r e s t ne ighbors : " ) ;
s can f ("%d" , &K) ;

FILE *myFile ;
myFile = fopen (" t e s t . csv " , " r " ) ;
i f ( myFile == NULL)
{

p r i n t f (" Error Reading F i l e \n " ) ;
e x i t ( 0 ) ;

}
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char bu f f e r [ 1 0 2 4 ] ;
i n t i = 0 , j = 0 ;
char * record , * l i n e ;
whi l e ( ( l i n e = f g e t s ( bu f f e r , s i z e o f ( bu f f e r ) , myFile ) ) != NULL)
{

j = 0 ;
record = s t r t ok ( l i n e , " , " ) ;
whi l e ( r ecord != NULL)
{

// p r i n t f ("%d \ t %d \ t %d \n" , ( c o l s * i ) + j , i , j ) ;
aa [ i ] [ j ] = a t o i ( r ecord ) ;
r ecord = s t r t ok (NULL, " , " ) ;
j++;

}
i++;

}

f c l o s e ( myFile ) ;

cudaError_t cudaStatus ;

cudaStatus = cudaDeviceReset ( ) ;
i f ( cudaStatus != cudaSuccess ) {

f p r i n t f ( s tde r r , " cudaDeviceReset f a i l e d ! " ) ;
r e turn 1 ;

}

cudaStatus = cudaSetDevice ( 0 ) ;
i f ( cudaStatus != cudaSuccess ) {

f p r i n t f ( s tde r r , " cudaSetDevice f a i l e d ! Do you have a CUDA−capable GPU i n s t a l l e d ? " ) ;
goto Error ;

}
e l s e

p r i n t f ("Working \n " ) ;

c lock_t s t a r t ;
s t a r t = c l ock ( ) ;

i n t *d_a = 0 ;
cudaStatus = cudaMalloc ( ( void **)&d_a , rows* c o l s * s i z e o f ( i n t ) ) ;
i f ( cudaStatus != cudaSuccess ) {

f p r i n t f ( s tde r r , " cudaMalloc f a i l e d ! " ) ;
goto Error ;
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}
e l s e

p r i n t f (" Success ! ! ! \n " ) ;

cudaStatus = cudaMemcpy(d_a , aa , rows* c o l s * s i z e o f ( i n t * ) , cudaMemcpyHostToDevice ) ;
i f ( cudaStatus != cudaSuccess ) {

f p r i n t f ( s tde r r , "cudaMemcpy f a i l e d ! " ) ;
goto Error ;

}
e l s e

p r i n t f (" Success ! ! ! \n " ) ;

double *d_c = 0 ;
cudaStatus = cudaMalloc ( ( void **)&d_c , rows* rows * s i z e o f ( double ) ) ;
i f ( cudaStatus != cudaSuccess ) {

f p r i n t f ( s tde r r , " cudaMalloc f a i l e d ! " ) ;
goto Error ;

}
e l s e

p r i n t f (" Success ! ! ! \n " ) ;
double * s o r t = 0 ;
cudaStatus = cudaMalloc ( ( void **)& sort , rows* rows * s i z e o f ( double ) ) ;
i f ( cudaStatus != cudaSuccess ) {

f p r i n t f ( s tde r r , " cudaMalloc f a i l e d ! " ) ;
goto Error ;

}
e l s e

p r i n t f (" Success ! ! ! \n " ) ;

i n t threads = 64 ;
whi l e ( rows%threads != 0)

threads++;

p r i n t f ("TH: %d \n" , threads ) ;
// re turn 0 ;

dim3 threadsPerBlock ( threads ) ;
dim3 numBlocks ( rows / threadsPerBlock . x ) ;

d i s t anc e << <numBlocks , threadsPerBlock >> >(d_a , d_c ) ;
s o r t i n g << <numBlocks , threadsPerBlock >> >(sort , K) ;

cudaStatus = cudaGetLastError ( ) ;
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i f ( cudaStatus != cudaSuccess ) {
f p r i n t f ( s tde r r , "addKern launch f a i l e d : %s \n" , cudaGetErrorStr ing ( cudaStatus ) ) ;
goto Error ;

}

cudaStatus = cudaDeviceSynchronize ( ) ;
i f ( cudaStatus != cudaSuccess ) {

f p r i n t f ( s tde r r , " cudaDeviceSynchronize returned e r r o r code %d a f t e r launching addKernel ! \ n" , cudaStatus ) ;
goto Error ;

}

// re turn cudaStatus ;
cudaStatus = cudaMemcpy( cc , d_c , rows* rows * s i z e o f ( double ) , cudaMemcpyDeviceToHost ) ;
i f ( cudaStatus != cudaSuccess ) {

f p r i n t f ( s tde r r , " addKernel launch f a i l e d : %s \n" , cudaGetErrorStr ing ( cudaStatus ) ) ;
goto Error ;

}
f o r ( i n t i = 0 ; i <= K; i++){

}

p r i n t f ("GPU Time Taken : %f \n" , ( double ) ( c l o ck ( ) − s t a r t ) / CLK_TCK) ;
f o r ( i n t l =0; l<=K; l++){
f o r ( i = 0 ; i < rows ; i++)

{
f o r ( i n t j = 0 ; j < rows ; j++)
{
p r i n t f ("% f \ t " , cc [ ( rows * i ) + j ] ) ;
}

}
}

Error :
// p r i n t f (" Ex i t ing . . \n " ) ;
cudaFree (d_c ) ;
cudaFree (d_a ) ;

r e turn cudaStatus ;

}
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C.2 Results

Number of inputs = 1200 & dimension =32

No.of.iterations k=1 k=5 k=10
1 0.023 0.04 0.045
2 0.02 0.03 0.045
3 0.02 0.03 0.043
4 0.023 0.03 0.045
5 0.01 0.035 0.045
6 0.019 0.03 0.04
7 0.019 0.03 0.04
8 0.02 0.03 0.048
9 0.019 0.03 0.047
10 0.02 0.03 0.046
11 0.025 0.03 0.047
12 0.019 0.035 0.04
13 0.019 0.03 0.039
14 0.021 0.03 0.048
15 0.021 0.03 0.044
16 0.023 0.03 0.045
17 0.019 0.03 0.045
18 0.021 0.025 0.04
19 0.021 0.025 0.04
20 0.023 0.03 0.04
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Number of inputs = 1200 & dimension =64

No.of.iterations k=1 k=5 k=10
1 0.08 0.093 0.1
2 0.081 0.09 0.093
3 0.08 0.082 0.09
4 0.08 0.09 0.09
5 0.08 0.09 0.09
6 0.082 0.09 0.092
7 0.08 0.09 0.0901
8 0.079 0.09 0.09
9 0.081 0.09 0.09
10 0.081 0.08 0.092
11 0.082 0.09 0.092
12 0.08 0.08 0.09
13 0.08 0.09 0.0902
14 0.078 0.09 0.09
15 0.078 0.09 0.09
16 0.083 0.09 0.092
17 0.089 0.09 0.0902
18 0.089 0.08 0.096
19 0.089 0.09 0.096
20 0.082 0.09 0.092
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Number of inputs = 1200 & dimension =128

No.of.iterations k=1 k=5 k=10
1 0.14 0.17 0.19
2 0.145 0.16 0.189
3 0.145 0.176 0.19
4 0.15 0.17 0.19
5 0.149 0.17 0.191
6 0.15 0.16 0.189
7 0.149 0.16 0.188
8 0.145 0.17 0.189
9 0.14 0.16 0.193
10 0.15 0.16 0.19
11 0.149 0.17 0.19
12 0.14 0.17 0.19
13 0.148 0.17 0.19
14 0.14 0.17 0.193
15 0.144 0.17 0.193
16 0.14 0.17 0.19
17 0.149 0.17 0.191
18 0.149 0.16 0.193
19 0.148 0.17 0.191
20 0.148 0.17 0.193



Appendix C. Program & Results for GPU 68

Number of inputs = 2400 & dimension =32

No.of.iterations k=1 k=5 k=10
1 0.11 0.11 0.12
2 0.11 0.12 0.13
3 0.11 0.124 0.12
4 0.11 0.11 0.12
5 0.11 0.117 0.121
6 0.11 0.13 0.12
7 0.12 0.132 0.12
8 0.11 0.144 0.12
9 0.108 0.12 0.112
10 0.11 0.11 0.12
11 0.11 0.12 0.121
12 0.108 0.11 0.121
13 0.11 0.11 0.121
14 0.11 0.11 0.12
15 0.11 0.12 0.13
16 0.12 0.115 0.122
17 0.12 0.11 0.12
18 0.108 0.12 0.123
19 0.11 0.11 0.12
20 0.119 0.11 0.123



Appendix C. Program & Results for GPU 69

Number of inputs = 2400 & dimension =64

No.of.iterations k=1 k=5 k=10
1 0.2 0.193 0.21
2 0.2 0.192 0.2
3 0.2 0.2 0.22
4 0.2 0.2 0.22
5 0.198 0.2 0.202
6 0.2 0.204 0.203
7 0.198 0.204 0.2
8 0.19 0.197 0.2
9 0.19 0.195 0.2
10 0.201 0.194 0.2
11 0.19 0.201 0.22
12 0.2 0.195 0.223
13 0.191 0.195 0.223
14 0.201 0.187 0.233
15 0.201 0.197 0.2
16 0.2 0.19 0.2
17 0.21 0.19 0.21
18 0.19 0.191 0.21
19 0.19 0.199 0.22
20 0.19 0.19 0.22



Appendix C. Program & Results for GPU 70

Number of inputs = 2400 & dimension =128

No.of.iterations k=1 k=5 k=10
1 0.35 0.37 0.396
2 0.33 0.359 0.39
3 0.353 0.365 0.393
4 0.3 0.369 0.397
5 0.353 0.375 0.39
6 0.335 0.37 0.391
7 0.33 0.36 0.39
8 0.35 0.371 0.393
9 0.33 0.374 0.391
10 0.333 0.363 0.396
11 0.353 0.366 0.39
12 0.351 0.355 0.389
13 0.35 0.36 0.38
14 0.351 0.363 0.38
15 0.351 0.364 0.391
16 0.35 0.366 0.393
17 0.351 0.373 0.38
18 0.357 0.367 0.392
19 0.35 0.385 0.393



Appendix C. Program & Results for GPU 71

Number of inputs = 4800 & dimension =32

No.of.iterations k=1 k=5 k=10
1 0.33 0.333 0.35
2 0.32 0.34 0.348
3 0.33 0.35 0.33
4 0.33 0.332 0.331
5 0.321 0.33 0.34
6 0.33 0.335 0.33
7 0.33 0.32 0.351
8 0.33 0.33 0.35
9 0.34 0.33 0.34
10 0.33 0.33 0.34
11 0.332 0.324 0.35
12 0.332 0.33 0.35
13 0.33 0.33 0.33
14 0.33 0.321 0.35
15 0.33 0.33 0.35
16 0.332 0.322 0.36
17 0.332 0.33 0.35
18 0.334 0.32 0.35
19 0.329 0.332 0.33
20 0.33 0.32 0.33



Appendix C. Program & Results for GPU 72

Number of inputs = 4800 & dimension =64

No.of.iterations k=1 k=5 k=10
1 0.552 0.56 0.56
2 0.556 0.56 0.562
3 0.55 0.56 0.56
4 0.553 0.57 0.565
5 0.554 0.56 0.576
6 0.556 0.56 0.561
7 0.534 0.57 0.566
8 0.56 0.56 0.56
9 0.55 0.56 0.57
10 0.56 0.56 0.57
11 0.53 0.56 0.57
12 0.53 0.56 0.572
13 0.56 0.55 0.572
14 0.566 0.572 0.57
15 0.568 0.571 0.559
16 0.57 0.572 0.57
17 0.56 0.557 0.562
18 0.56 0.56 0.576
19 0.56 0.562 0.56
20 0.57 0.554 0.56



Appendix C. Program & Results for GPU 73

Number of inputs = 4800 & dimension =128

No.of.iterations k=1 k=5 k=10
1 1.033 1.039 1.044
2 1.04 1.041 1.04
3 1.041 1.04 1.044
4 1.033 1.032 1.044
5 1.03 1.058 1.043
6 1.032 1.044 1.04
7 1.033 1.04 1.044
8 1.03 1.042 1.042
9 1.033 1.033 1.042
10 1.037 1.03 1.052
11 1.037 1.036 1.044
12 1.033 1.041 1.042
13 1.03 1.034 1.041
14 1.03 1.045 1.05
15 1.037 1.042 1.041
16 1.033 1.044 1.04
17 1.037 1.042 1.043
18 1.037 1.035 1.051
19 1.03 1.036 1.042
20 1.037 1.036 1.05


