
Technische Universität Berlin
Kungliga Tekniska Högskolan Stockholm
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1 English Abstract

Stream processing differs significantly from batch processing: Queries are long running,

continuously consuming data from input streams and, in turn, producing output streams.

A stream can be defined as a data source that infinitely produces/emits data-items. Hence,

it is impossible to store all the history of emitted items in order to query them. In

order to produce answers to a given query over an infinite set of items, a stream is split

(or, discretized) into smaller subsets of data-items, called windows. Consecutively, an

operation such as a Join, Aggregation or a Reduce operator is applied on the discretized

window.

In this thesis, we designed and implemented highly expressive means of window discreti-

sation in the Apache Flink stream processing engine. The rules for the discretization of a

stream are called windowing policies. Our discretization operators are event-driven, and

triggered by data-item arrivals. When a data-item arrives, trigger and eviction policies

are notified. A trigger policy specifies, when a reduce function is executed on the current

buffer content. An eviction policy specifies when data-items are removed from the buffer.

This thesis is the first to our knowledge to propose the use of windowing policies in

the form of User Defined Functions (UDFs) in a data parallel execution engine. Ex-

pressing windowing policies as UDFs results in very high expressivity and flexibility.

Thus, very complex queries can be defined, going much beyond the predefined count-,

time-, punctuation-, and delta-based windows. This thesis is also the first to implement a

streaming Application Programming Interface (API) that allows user-defined trigger and

eviction policies in a data-parallel stream processing engine.

Jonas Traub: Rich window discretization techniques in distributed stream processing
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2 Deutscher Abstract

Die Datenstromverarbeitung (stream processing) unterscheidet sich signifikant von der

Stapelverarbeitung (batch processing): Programme haben lange Laufzeiten, konsumieren

Daten kontinuierlich von Eingabeströmen und produzieren im Gegenzug Ausgabeströme.

Ein Datenstrom kann definiert werden als eine Datenquelle, welche kontinuerlich Datenele-

mente produziert/ausgibt. Daher ist es unmöglich die gesamte Historie der ausgegebenen

Datenelemente für eine Abfrageausführung zu speichern. Um Ergebnisse für eine gegebene

Anfrage über eine unendliche Menge von Datenelementen berechnen zu können, wird ein

Datenstom in kleinere Teilmengen von Datenelementen, sogennannte Fenster, unterteilt

(diskretisiert). Eine Operation wie ein Join, eine Aggregation oder eine Reduce-Funktion

werden forlaufend auf Fenster angewendet.

Im Rahmen dieser Thesis haben wir eine äußerst ausdrucksstarke Diskretisierungsmeth-

ode entworfen und in der Apache Flink Datenstromverarbeitungsplattform implementiert.

Wir nennen Diskretisierungsregeln Fenster-Policies. Trigger- und Evictionpolicies werden

über ankommende Datenelemente banchrichtigt. Eine Triggerpolicy spezifiziert, wann

eine Reduce-Funktion auf den aktuellen Pufferspeicher angewendet und ein Ergenis aus-

gegeben wird. Eine Evictionpolicy gibt an, wann Datenelemente aus dem Pufferspeicher

entfernt werden.

In dieser Thesis werden erstmals Fenster-Policies in Form von benutzerdefinierten Funk-

tionen in einer datenparallelen Ausführungsumgebung eingeführt. Die Möglichkeit be-

nutzerdefinierten Funktionen als Fenster-Policies zu verwenden hat eine große

Ausdrucksstärke und bietet eine hohe Flexibilität, die weit über die vordefinierten Policies,

wie zum Beispiel zähler-, zeit-, interpunktions- und deltabasierte Trigger- und Eviction-

policies, hinaus geht. Zusätzlich stellt diese Thesis erstmals eine Applikationsprogram-

mierungsschnittstelle vor, welche die Verwendung von benutzerdefinierten Trigger- und

Evictionpolicies in einer datenparallelen Plattform (namentlich, Apache Flink) ermöglicht.

2
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3 Introduction

There are many data processing engines, which are especially designed for stream pro-
cessing such as Storm1 [54], Naiad2 [57] and Cloud Dataflow3. Beside this, many big data
processing engines, which were not designed for stream processing, integrate additional
features to enable stream processing besides their core functionality. Popular examples
are Flink4 [5] and Spark5 [70].

In Fundamentals of Stream Processing [6], Andrade et al. describe a streaming data source
as the producer of a data stream. Such a stream usually is a sequence of data-items, also
called tuples. Data-items are the smallest atomic portion of data which may be processed
by a query. Data-items possibly contain multiple attributes described by a schema. A
data-stream is possibly infinite and consists of tuples, which share a common schema. [6]

Stream processing differs significantly from batch processing: Queries are long running
(theoretically even infinitely running), continuously consume data from inbound streams
and produce an output stream. Thereby, the data rate is controlled externally, which
means data is pushed to the processing engine from the outside and not pulled as needed
from storage.

A stream source is a data source that possibly emits an infinite number of data-items.
Thus, it is not possible to store the whole history of emitted items. Moreover, evaluating
a query over an infinite stream would never emit results due to blocking operations such
as joins and synopses [4], that need to have a view of the full input dataset in order to
produce results. Thus, a stream is usually split into smaller finite chunks of data, which
are called windows. Often an aggregation, such as calculating the sum or the average, is
done for each window. As the result is only calculated over a portion of the stream it is
said to be an approximate summary [41], also called synopse [7] or digest [71].

1Apache Storm: https://storm.apache.org/
2Microsoft Naiad: http://research.microsoft.com/en-us/projects/naiad/
3Google Cloud Dataflow: https://cloud.google.com/dataflow/
4Apache Flink: http://flink.apache.org/
5Apache Spark: http://spark.apache.org/
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There are three basic window types, namely tumbling, sliding and hopping. Systems like
Storm, Naiad, Cloud Dataflow, Spark and Flink, provide the possibility to define and
compute all three kinds of windows.

Tumbling means that a data-item is contained in exactly one window.

Sliding means that at least one data-item will be contained in multiple windows.

Hopping means that at least one data-item lies between two consecutive windows and is
excluded from both.

Micro-Batching vs. Streaming. A streaming query evaluation engine is not always
required in order to evaluate streaming queries; stream processing has been shown to
work under certain limitations even on top of batch systems. To do that, one has to
treat a streaming computation as a series of deterministic micro-batch computations.
Micro-batches are sequences of data chunks, that are made periodically from small time
intervals. The streaming computation can then be computed as a series of jobs on a
batch-processing system. For instance, Discretized Streams (D-Streams) [70], a streaming
abstraction built on top of Spark, can perform micro-batch processing. However, win-
dow sizes can only be defined as multiples of the micro-batch granularity (slices to time
windows). This limitation, stems from the fact that Spark implements a batch execution
engine: the execution of a job graph is done in stages, and the outputs of each operator
are materialized in memory (or disk) until the consuming operator is ready to consume
the materialized data. Thus, true streaming is not possible. Apache Flink, however,
implements a streaming/pipelined execution engine [14]. This entails that the whole job
graph is deployed in the cluster and once an operator emits a data-item, that data-item
can be immediately forwarded to the next consumer operator. In Flink’s version 0.7,
windows could be defined based on the data-item count (sequence number) or time.

Rich Window Discretization. The International Business Machines (IBM) Stream
Processing Language (SPL) is a query language for defining queries over data streams that
are executed on the IBM InfoSphere streaming platform [44]. SPL introduced separate
trigger and eviction policies for the first time. These policies allow a user to specify
different rules for the expiration (or, eviction) of data-items and the emission (or trigger) of
windows. IBM provides a predefined set of policies containing time-, count-, punctuation-,
and delta-based rules [27, 28, 44]. The expressivity in the definition of windows is crucial
when a stream processing engine is selected to solve a specific problem. While in a lot
of use cases, purely time based discretization is sufficient, there are also use cases where
the system has to split the stream into windows with regards to query-specific data-item
properties. For instance to react on concept drifts [63]. Unfortunately, SPL does not allow
a queries with user-defined policies; as a result, examples like the detection of concept
drifts cannot be expressed using SPL.

4
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Performance Optimization. Another crucial point is the performance of a stream
processing engine. In the Catalog of Stream Processing Optimizations [46], Hirzel et al.
presented twelve different kinds of optimizations that apply in stream processing. The
cost that one has to pay in order to have more expressive windowing semantics often
hinders optimization possibilities. For instance, a very common optimization is to share
computations among multiple aggregations on different windows. However, a set of user
defined windows (expressed in a turing-complete language like Java, or Scala) cannot be
easily analyzed and optimized. Thus, a good stream discretization model should serve
a good trade off between the ability to apply performance optimizations and providing
expressive windowing semantics.

3.1 Motivation

As mentioned in the previous section, current systems are designed to perform either
stream (e.g. [54, 57]), or batch processing (e.g. [5, 70]). Interestingly, it turns out that
batch processing can be simulated by streaming; a batch of data-items can also be seen
as a finite stream of data. Thus, a streaming execution engine can easily serve as an
execution engine for batch computations.

Nowadays data analytics very often requires stream and batch computations to be com-
bined in order to perform a computation. It is common that queries use historical data
stored in a filesystem along with streaming data arriving at a fast pace. For instance, a
concept drift [63] can be detected by a streaming query and, once the drift is detected,
the actual concept has to be recomputed from the historical data together with the newly
arrived data. To implement such an query using historical and streaming data, an an-
alyst needs two execution engines: one for the batch (historical) computations and one
for the streaming computations. This entails that the analyst has to maintain two code
variations and deploy multiple systems for a single query. Moreover, data cannot be easily
shared between batch and stream processing computations. As a result, databases and/or
filesystems are used as means of exchange (or, storage) of intermediate results between
multiple execution engines.

To solve these issues, systems like Spark and Flink, implement both stream and batch
processing capabilities. However, Spark processes streams only as micro-batches. There-
fore, windows in Spark have to be multiples of the micro-batch granularity, so that the
window result can be derived from the micro-batch computations. On the other hand,
Flink implements true (non micro-batch) streaming capabilities. However, the program-
ming model for expressing windows (at v0.7) is very limited: only count- and time-based
windows are allowed.

Jonas Traub: Rich window discretization techniques in distributed stream processing
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Part of SPL’s success, is its ability to express very complex windows through flexible
eviction and trigger policies. As it turns out, having the ability to split a stream in
query-specific, user-defined windows, can enable programmers to specify more complex
algorithms (such as the example of calculating a concept drift). However, no streaming
computation engine so far gives the ability to define user-defined window discretization
policies. Today’s stream processing systems can express windows only based on time,
data-item counts, punctuations and deltas between data-items. These cannot be used to
express complex queries.

This thesis aims at enabling:

• (true) streaming and batch capabilities on a single system

• user-defined window discretization capabilities to allow complex algorithms that
perform a mix of batch and streaming computations to be expressed in a single
programming model and run on a single execution engine.

None of the present systems [3, 16, 19, 43, 44, 45, 57, 70] can be programmed to evaluate
complex queries like the concept drift example mentioned above. Instead, programmers
have to use very low level systems like Storm [54] that require the programmer to fully
understand and hard code all details of windowing semantics, and to have very deep
knowledge of distributed systems, cluster computing, and query optimization.

Thesis Objective. In this thesis, we design flexible windowing semantics that allow
programmers to express very complex window-based streaming queries, without the ad-
ditional programming requirements needed in Storm-like systems. We generalize rules for
window discretisation, so that the logic for such rules can be provided in an user-defined
fashion without introducing further implementation overhead to the programmer.

6
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3.2 Contributions

In this thesis we design and implement highly expressive window discretization primitives
in the Apache Flink stream processing engine. The contributions include the specifi-
cation and implementation of the API as well as the architecture and development of
the discretisation operators that are running underneath. We draw SPL’s eviction and
trigger policy primitives as they provide high expressivity in window specification, while
we generalize those primitives such that we allow user-defined windowing policies. Such
windowing policies are currently not allowed by any stream processing system.

The contributions of this thesis go as follows:

1. This thesis is the first to propose expressing windowing policies as UDFs . The
ability to express windowing policies as UDFs , results in very high expressivity and
flexibility. As a result, very complex queries can be defined, going much beyond the
predefined count-, time-, punctuation-, and delta-based windows that other systems
provide [3, 16, 19, 43, 44, 45, 57, 70].

2. We are the first to implement a streaming API that allows user defined eviction and
trigger policies in a data-parallel stream processing engine.

3. We provide the basis for streaming pre-aggregate sharing optimizations across win-
dows as well as an architecture for parallelizing streaming window discretization and
aggregation.

4. The results of this thesis were contributed and are now included in the open-source
Apache Flink project (since v 0.8). The results of this thesis have been thoroughly
tested and are in use by a number of Apache Flink users.
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3.3 Thesis Outline

Section 4. In section 4, we present the backgrounds of parallel data processing and dif-
ferentiate types of parallelization, including the Map Reduce programming model, which
is the most widely used for data parallel processing. Furthermore, we provide an introduc-
tion to stream processing and window types. The section concludes with the presentation
of the Apache Flink software stack for big data processing.

Section 5. Section 5 provides a survey through related publications. The section is split
in two subsections. First, we provide an overview of available stream processing engines
and languages. Thereby, we describe the windowing semantics of the two most closely
related systems (namely IBM SPL and Apache Flink) in more detail. We conclude with
a survey through different means of optimizations for stream processing.

Section 6. In section 6 we present our architecture for rich window discretization tech-
niques. We describe the concept discretization operators and window discretization based
on trigger and eviction policies. Moreover, we show several query examples and the API
design for window discretization.

Section 7. We designed our solution in a way, that it serves well possibilities for par-
allelization. In section 7, we provide two different possible ways to parallelize our dis-
cretization operators. While the first is general applicable, the second serves an higher
parallelization degree for some types of queries.

Section 8. When a stream-processing platform is selected to solve a query, the perfor-
mance of the engine might be one of the most important criterias. Section 8 first points
out the dimensions for optimizations, then it categorizes queries regarding the used win-
dowing policies. Several optimizations are presented, which apply for certain categories
of queries.

Section 9. In the evaluation section we point out the expressiveness of our solution in
comparison to other systems. Furthermore, we depict test results for the throughput of
our window operator and show that it scales linear with the amount of processed data.

Conclusion. On page 75, we provide an overview of the thesis results.

Appendix In the appendix, we present a detailed documentation of the implementation
of our window discretization operators and policies. Additionally, we present pre-defined
policies which can serve examples for the implementation of user-defined policies.

8
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4 Background

In this chapter, we present the backgrounds of this thesis. In section 4.1 we present the
data parallel processing model. Data parallelism becomes a requirement when the anal-
ysis on a single machine is unfeasible due to the sheer amount of data to process. In
section 4.1.1 we present Map Reduce (MR), which is the most widely used programming
model for data parallel applications. Unfortunately, MR has several limitations and dis-
advantages, presented in section 4.1.2. Moreover, it cannot be used to process streams.
We provide an introduction to stream processing, including definitions and window types
in section 4.2. Section 4.3 concludes with a presentation of the Flink big data processing
platform on which we implemented the discretization techniques presented in this thesis.

4.1 Parallel Data Processing

The sheer amount of data nowadays makes data processing and analysis on single machine
unfeasible. To overcome the single-machine limitations, parallel data processing becomes
a requirements [30]. Multiple types of parallelism have been proposed in the past, the most
important of which are depicted in Figure 1, namely pipeline-, task-, and data-parallelism.

Pipeline-parallelism. Pipeline parallelism is a parallelization technique where one op-
eration is executed after each other concurrently; as a result each item or set of items that
are produced by one task, are directly fed intor the task that follows. Since the two tasks
can process data concurrently, they can be scheduled into two different cpus/machines.

Task-parallelism. Task parallelization (b) means, that there are different operation,
to be executed on the data-items. This (independent) operations on the same data-item
can be executed at the same time. In the depicted example, these are the operations
D and E. [46] Since pipeline- and task-parallelism are limited by the number of tasks

Figure 1: Figure from [46], showing pipeline, task, and data parallelism in stream graphs.
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which are present in a program, they they cannot form a basis for massively parallel data
processing [30].

Data-parallelism. In data-parallel processing [17], different data-items (or sets of data-
items) are distributed to different cpu cores or machines that are running the same task;
the same operator, is present in multiple cpus/machines which run in parallel [30].

The main idea distinguishing data parallelism from task- and pipeline-parallelism is, that
there are multiple instances of the same operator; in our example, the operator G. An
input stream is split, such that each instance of G processes different data-items using the
same logic. Afterwards the outputs of the parallel instances of G are merged again [30, 46].

4.1.1 The MapReduce Programming Model

Map Reduce (MR) [25, 26] is a programming model for data-parallel processing. MR
programs are inherently parallel [25]. MR is optimized to work with distributed file
systems like the Hadoop Distributed File System (HDFS) [60]. Most difficulties which
come up in large clusters are handled by a MR framework. MR is the most widely used
programming paradigm in today’s big data platforms. It influenced and is part of many
parallel batch and stream processing engines, such as Spark, Flink, and Hadoop [66, 68].

We will often refer to map and reduce functions in this thesis, when it comes to parallel
data transformation and aggregation. In this section we will focus on the programming
model itself and the motivation behind it. Finally we will show an example and point out
some limitations and disadvantages of MR.

During the last two decades the capacity of hard drives has increased massively. Also the
amount of data generated on each day is much bigger than a few years ago. Sure, it is very
difficult to measure the whole amount of data in the ”digital universe” but an International
Data Corporation (IDC) estimate [36] put the size at 281 exabytes (2.25·1021bits) in 2007.
At this time it already was expected to grow to be ten times more in 2011. [68]

One problem is, that the reading and writing speed of hard drives has not increased that
much than the storage per unit did. This results in a higher required time to read the full
data from a disk. The idea for the solution is simple: If it is possible to read parts of the
data from several hard drives in parallel, there will be much less time required. HDFS [60]
in an example for a solution providing this functionality in a computing cluster. Another
problem is the increased total amount of data. Massive parallel processing is required to
analyse complete data sets. The MR programming model allows to address both issues

10
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Figure 2: The execution flow of a Map Reduce job.

with its parallel nature and has evolved to the most widely used paradigm in today’s big
data analysis solutions.

From a programmer’s perspective, in a MR application, the execution is split in two
phases. A map and a reduce phase. In between there is a shuffling, done by the underlying
MR framework. Figure 2 depicts the execution flow of a MR job. As you can see, multiple
mappers and reducers can run in parallel within the respective phase, while there is a
synchronization point between the phases. It is a pipelined execution, where on phase
gets executed after the previous is completed. This is a contrast to continuous long
standing processing of streams.

The data model of MR is based on key-value-pairs. We say a key value pair is element of
(K × V ), where K is the set of keys and V is the set of values. We use the indexes m, r,
and o to differentiate between the sets of keys and values present in the input to the map
phase, input to the reduce phase, and the output. The star symbol indicates either a list
of values out of a set or a list of tuples, when placed after the closing parentheses [53].

Table 1 depicts an overview of the used User Defined Functions (UDFs) and the processing
phases. The map and the reduce phase can be seen as higher order functions. They take
the user-defined mapper and reducer implementations as parameter and apply them to
each input tuple. The result of the phase is the concatenation of the results from the runs
of the UDFs . The shuffling phase takes the output tuples produced by the map phase
and groups them by key. For each key, one output tuple is produced, containing the key
and a list of values, which is the concatenation of the values from the grouped tuples.

Jonas Traub: Rich window discretization techniques in distributed stream processing
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Functions Framework User Defined

Map Shuffle Reduce Mapper Reducer

Input (Km × Vm)∗ (Kr × Vr)
∗ (Kr × V ∗r )∗ (Km × Vm)[53] (Kr × V ∗r )[53]

Output (Kr × Vr)
∗ (Kr × V ∗r )∗ (Ko × Vo)

∗ (Kr × Vr)
∗[53] (Ko × Vo)

∗[53]

Table 1: Inputs and outputs of functions and processing phases in Map Reduce.

Now, after we’ve presenting the theoretical backgrounds, let’s have a look on a concrete
example. Table 2 shows a data transformation of a word count application using exactly
the input and output formats specified in Table 1. The input file is split by lines, so that
an input tuple contains the line id as key and the content of the line as value. The mapper
splits the input values at each space-character. For each split, one tuple is produced as
output, containing the individual word as key and 1 as value. The reduce function sums
up the values per key. The final output are key-value-pairs containing a word as key and
the number of the occurrences of the word as value.

While the simplicity of the user defined functions and the parallelism are big advantages
of MR, there are also downsides of the approach. Within a single job, there is always only
one map and one reduce phase. As the output and the input of the job are both key-value-
pairs, it is possible to run a transformation consisting of multiple jobs. Anyhow, running
multiple jobs, one after each other, is not only inconvenient. It also comes with the cost
of serialization of the intermediate results between jobs. Usually, MR frameworks also
serialize the outputs of each individual mapper and reducer and write them to disk, to be
able to execute following operations again in case of failures. The frequent serialization
is not always necessary, but can cause a massive increase of the computation time.

Input Output

File Line 1: Beer Beer Tea Coffee
File Line 2: Tea Tea Beer Tea
Map 1: (1, Beer Beer Tea Coffee) [(Beer,1),(Beer,1),(Tea,1),(Coffee,1)]
Map 2: (2, Tea Tea Beer Tea) [(Tea,1),(Tea,1),(Beer,1),(Tea,1)]
Reduce 1 (Beer,[1,1,1]) (Beer,3)
Reduce 2 (Coffee,[1]) (Coffee,1)
Reduce 3 (Tea,[1,1,1,1]) (Tea,4)

Table 2: Word Count Example: Sample data transformation.
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4.1.2 Database Systems vs. MapReduce

Since its publication in 2004, MapReduce has been used to implement various data
analysis tasks, like joins and aggregations, on which database systems excelled. While
MapRedce is easy to program and is very versatile, it still poses a number of limitations
compared to database systems [9].

Compared to Relational Database Management Systems (RDBMSs), four main disadvan-
tages of MR must be pointed out:

1. MR is a programming model. It is not a query language like the Structured Query
Language (SQL). When using MR, programmers must specify the how to do the
data transformation which leads to the desired result. In SQL, the programmer only
describes the result and the Relational Database Management System (RDBMS)
selects and applies the required transformations automatically.

2. Due to the massive use of UDFs and the possible split of tasks in multiple jobs,
it’s much harder to apply data flow optimizations in MR frameworks, as it is in
RDBMSs . Hueske et al. [47] argue that classical RDBMS optimizers have, if they
use UDFs , very strict templates for them. The main challenge is then to estimate
whether it is beneficial to reorder operators in a parallel data flow. In opposite to
this, in MR like applications already the purpose of the UDF is unknown and it is
already a problem to verify that a reordering of operations is possible. Nevertheless,
the authors show how a reordering in data flow programs that consist of arbitrary
imperative UDFs can look like and which conditions have to be fulfilled to allow
such an optimization.

3. Some operations like joins are complex to implement in MR. [68] RDBMSs often
provide different kinds of implementations for the same logic operations and can
select the best performing alternative depending on the situation automatically. In
MR, the programmer has to decide which type of join to use and statically implement
it in the MR program.

4. MR is heavily dependent on a distributed file systems, where a lot of the complexity
is moved. Popular examples for such file systems are HDFS [60] and Google File
System (GFS) [40].

Unfortunately, MR does also not work for the processing of data streams without changes.
Due to the synchronization points between the different execution phases, MR would never
produce a result in case the data source is a stream. Streams are possibly infinite, which
means that the map phase can never tell that it is completed and the reduce phase will
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never start. Anyhow, a stream is usually split into smaller finite chunks of data, which
are called windows. Such finite chunks can then be processed by a MR application.

4.2 Stream Processing

The stream programming model is powerful, widely used, and implemented by many
systems [30]; for example in Nephele [14], which is the basis of nowadays Apache Flink
runtime, Naiad [57], and Storm [54]. In addition, streaming like behaviour on top of a
batch execution engine can be archived using Discretized Streams (D-Streams) [70], which
is done by Apache Spark.

In common with MR is that programs are composed from sequential code blocks. Such
code blocks can be executed in parallel, which means that they run in multiple instances
at the same time, processing different data-items. Thus, the different instances are inde-
pendent for each other [30].

The sequential code blocks are arranged in a graph, which is possibly cyclic [46], even
though, many systems are limited to Directed Acyclic Graphs (DAGs). The code blocks
(henceforth called operators) are the vertices in this graph and data-items are forwarded
along edges. This generalizes the model of MR. While in MR operators have to be either
a map or a reduce function, operators can apply arbitrary data transformations in the
streaming model [30].

4.2.1 Definitions

In this thesis we will use the common vocabulary introduced by Hirzel et al. [46] and
inspired by Gamma et al. [35] and Fowler et al. [33].

Data Stream A conceptual/possibly infinite sequence of data-items which comes from a
stream source. Streaming systems implement streams as first in first out (FIFO)
queues.

Stream Source A stream source is a data source that possibly emits an infinite number
of data-items.

Operator A code block , which consumes data-items from incoming stream(s) and pro-
duces data-items on outgoing stream(s). Thereby it performs a continuous data
transformation.
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Query A streaming query consists of operators which are vertices in a graph. The edges
of the graph represent the data flow between operators. A streaming query combines
multiple operations to a data transformation flow. Queries are also called applica-
tions.

Data-item The smallest unit of data, which is processed by the streaming query, is called
data-item. It is also the smallest unit of communication along edges in the query.
Anyhow, data-items can consist of several attributes.

Window A finite subsequence or chunk of data-items from a stream.

4.2.2 Window Types

Evaluating a query over an infinite stream would never emit results due to blocking
operations such as joins and aggregations. Thus, a stream is usually split into smaller
finite chunks of data, which are called windows. We differentiate three types of windows:

Tumbling In case a window is tumbling it always contains all data-items which arrived
already and have not been included in any previous window.

Sliding In case a window is sliding it can contain data-items which have been already
included in a previous window again. In case three windows A, B, C follow each
other in this order, a data-item X can be included in A&B&C, A&B or B&C but
not only in A&C. After the element was present in A and not present in (removed
before) B it cannot reappear in C again.

Hopping An hopping is present if there are data-items, which are not included in any
emitted window at all.

Figure 3 shows an example for a tumbling window. The left column shows a stream with
arriving data-items. In the middle is the current data-item buffer and on the right are
all the data-items which have been deleted from the buffer. From top to bottom, in each
row arrives one of the input data-items. The setting in the example is a tumbling window
by the count three, meaning that the buffer has a size of three data-items. A window is
emitted (marked black), whenever the buffer is full. Every time a window is emitted, the
complete buffer is deleted afterwards [28].
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Step Arriving data-items Buffer Evicted data-items

0) 6 5 4 3 2 1

1) 6 5 4 3 2 1

2) 6 5 4 3 2 1

3) 6 5 4 3 2 1

4) 6 5 4 3 2 1

5) 6 5 4 3 2 1

6) 6 5 4 3 2 1

Figure 3: The data-item buffer states with count-based tumbling windows of the size three.
Emitted windows are marked black.

Step Arriving data-items Buffer Evicted data-items

0) 6 5 4 3 2 1

1) 6 5 4 3 2 1

2) 6 5 4 3 2 1

3) 6 5 4 3 2 1

4) 6 5 4 3 2 1

5) 6 5 4 3 2 1

6) 6 5 4 3 2 1

Figure 4: The data-item buffer states with count-based sliding windows having the window
size three and the slide size two. Emitted windows are marked black.
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Step Arriving data-items Buffer Evicted data-items

0) 6 5 4 3 2 1

1) 6 5 4 3 2 1

2) 6 5 4 3 2 1

3) 6 5 4 3 2 1

4) 6 5 4 3 2 1

5) 6 5 4 3 2 1

6) 6 5 4 3 2 1

Figure 5: The data-item buffer states with count-based hopping windows having the win-
dow size two and the slide size three. Emitted windows are marked black.

Sliding windows overlap with previously emitted windows. A common way to define
sliding windows, is to set a window size (sw) and a slide size (ss). The window size
specifies the length of the window; the slide size specifies how far the window is moved
on each step. Figure 4 shows the processing steps for a window discretisation based on
data-item counts, where the window size is three and the slide size is two.

Hopping windows are a special case of sliding windows, where the slide size is greater
than the window size. This means that data-items are skipped without being included in
any window at all. Figure 5 shows the vice versa setup of the previous example; the slide
size is three and the buffer size two.
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Figure 6: Figure from [64]: The Apache Flink Software Stack.

4.3 Apache Flink

Apache Flink consists of an open source software stack for parallel big data analysis.
Apache Flink, also known as Stratosphere [5], offers a broad set of features and rich
programming APIs . Flink implements both, a batch-processing and a stream-processing
API, while all programs are executed on a unified runtime layer.

The runtime layer is based on Nephele/PACTs [14], which is a programming model and
execution framework for web-scale data analysis. Nephele receives a PACT program,
which consists of parallelizable operators. Hence, PACT programs fit our definition of a
streaming query.

Once a PACT program is executed on the Nephele runtime, operators are spanned to
multiple parallel instances, which allows data-parallel processing of streams. In opposite
to Hadoop MR, where the map and the reduce phase run one after each other, Nephele
is a real stream processing engine, where data is passed from one operator to the next,
while operators run concurrently.

Figure 6 depicts the different layers of nowadays Flink versions. Flink is compatible with
a variety of cluster management and storage solutions, such as HDFS [60], Kafka [49],
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YARN [65] and Apache Tez6. The communication with these systems is done by the Flink
runtime and thereby mostly transparent to the programmer.

Programmers write an query using one of Flink’s APIs . This program is then compiled
to a program in the form of an operator DAG. The common API, which is the common
layer below all APIs for programmers, applies flow optimizations and creates a DAG
representing the job graph. The job graph is a generic streaming program, which can be
executed on the flink runtime engine.

Flink is compatible to Hadoop MR. We can write a program doing the word-count
example shown in Table 2 to run it on Flink using the same functions as we would do
in Hadoop. In the following we will show a mapper and reducer implementation using
the FlatMapFunction and the GroupReduceFunction interfaces from the Flink project.
The input for our example could be the same as seen before in the data transformation
example (Table 2). The file is split by lines, so that an input tuple contains the line id as
key and the content of the line as value. The mapper (Listing 1) splits the input values
at each space-character. For each split, one tuple is produced as output, containing the
individual word as key and 1 as value. The reduce function (Listing 2) sums up the values
per key. The final output are key-value-pairs containing a word as key and the number
of the occurrences of the word as value.

These same functions can be applied for both, stream- and batch-processing. Map and
reduce are operators. Map operations can be applied on streams on a per data-item basis
without any modification, while the application of the reduce operation (aggregation)
requires a finite set of data. Thus, reduce operations succeed discretisation operations
and are applied on windows.

6Apache Tez: http://tez.apache.org/
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1 private class Mapper implements FlatMapFunction<String,Tuple2<String,Integer>>{

2 @Override

3 public void flatMap(String value, Collector<Tuple2<String,Integer>> out){

4 for (String word:value.split(" ")){

5 out.collect(new Tuple2<String,Integer>(word,1));

6 }

7 }

8 }

Listing 1: Word Count Example: A mapper implementation using Flink.

1 private class Reducer implements GroupReduceFunction<Tuple2<String,Integer>, Tuple2<

String,Integer>> {

2 @Override

3 public void reduce(Iterable<Tuple2<String,Integer>> values,Collector<Tuple2<String,

Integer>> out){

4 Iterator<Tuple2<String,Integer>> iterator = values.iterator();

5 Tuple2<String,Integer> firstTuple=iterator.next();

6 String key=firstTuple.f0;

7 int sum=firstTuple.f1;

8 while (iterator.hasNext()){

9 sum+=iterator.next().f1;

10 }

11 out.collect(new Tuple2<String,Integer>(key,sum));

12 }

13 }

Listing 2: Word Count Example: A reducer implementation using Flink.
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5 Related Work

This thesis describes rich window discretization techniques in a stream processing system.
Several research works on streaming systems and languages are related to this thesis. We
provide an overview of systems and languages, focusing on different windowing semantics,
in section 5.1.1. Two systems are the most closely related to the solution we propose.

1. IBM SPL serves as inspiration; our work is a generalisation of the windowing seman-
tics provided by SPL. We explain the windowing semantics of SPL in section 5.1.2.

2. Flink is the system on which we implemented the windowing semantics introduced
in this thesis. Section 5.1.3 describes the windowing semantics provided by earlier
Flink versions.

When windowing is followed by aggregations, several types of optimizations can be ap-
plied. Section 5.2 provides a survey of different related optimization techniques proposed
in the literature.

5.1 Streaming Systems and Languages

5.1.1 Windowing Semantics in different Systems and Languages

In the following we provide a survey through published streaming systems and languages.
In section 9.1, we compare all the windowing semantics of all systems and languages
presented here in order to evaluate the expressiveness of different window discretization
techniques.

InfoSphere/SPL. The IBM Stream Processing Language (SPL) [37, 45, 44] was the
first to introduce window discretisation based on trigger- and eviction policies. The work
presented in this thesis is a generalisation of the windowing semantics introduces by SPL
to enables the use of user-defined policies. We present SPL in more detail in section 5.1.2.

Flink v 0.7 Flink version 0.7 is the Flink version which was present before the work
on this thesis started. Flink implements a streaming API allowing time and count based
windows discretizations. Flink, former known as Strotosphere [5], executes streaming
on its own runtime engine which is based on Nephele/PACTs [14]. We present Flink
streaming in more detail in section 5.1.3.
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Spark/DStream. Spark implements a batch execution engine: The execution of a job
graph is done in stages, and the outputs of each operator are materialized in memory
(or disk) until the consuming operator is ready to consume the materialized data. To
allow stream processing, Spark uses Discretized Streams (D-Streams) [70]. Streams are
interpreted as a series of deterministic batch-processing jobs with a fixed granularity. All
windows defined in queries must be multiples of this smallest granularity.

Naiad. The goal of Naiad [57] is to offer an high throughput, which is typical for batch
processors, together with low latency, known from stream processors, in a singly system.
Additionally, Naiad has the ability to process iterative data flows. Unfortunately, Naiad
can discretise windows only based on time.

StreamInsights. StreamInsights [43] is the streaming platform which is available through
Microsoft’s cloud. It allows three types of windows, namely count-, time- and snapshot-
based. In snapshot-based windows, the discretisation is done regarding start- and end-
markers provides within the stream. This makes it a punctuation-based approach.

Aurora. Aurora [18] is a landmark system in the history of distributed stream process-
ing since it is the first design and implementation that parallelises stream computation
with rich operation and windowing semantics, thus, being the first distributed stream
management system of its kind. Aurora allows to specifies windows on any attribute of
the data-item. Even though Aurora can apply windowing on different attributed than
timestamps, windows are always specified as ranges on some scale. This is what we call
time based with user-defined timestamps in case result emissions are done periodically or
delta-based in case emissions not periodic.

NiagaraCQ/CQL. NiagaraCQ [19] focuses more on scalability than on the flexibility.
The system provides various optimizations techniqes to share common computation within
and across queries. Discretisation is thereby only possible based on time.

Esper. Esper [16] is an open source Complex Event Processing (CEP) engine which
processes event-streams. It is tightly coupled to Java; made in a way, that it can be
executed on Java Enterprise Edition (EE) application servers and describing events in
Plain Old Java Objects (POJOs). Windows are either time-based or count-based windows.

In the next two sections, we present the window discretisation done by IBM SPL and
Apache Flink (v 0.7). These two systems are the most related to this thesis. We im-
plemented and contributed the rich window discretization techniques presented in this
thesis to the open source Flink project. The introduce trigger and eviction policies are a
generalisation of the windowing policies provided by SPL.
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5.1.2 The IBM Stream Processing Language

The IBM Stream Processing Language (SPL) [44] was the first introducing trigger and
eviction policies. The trigger and eviction policies specified by SPL inspired the window
discretization architecture presented in this thesis. In both cases, a trigger policy specifies,
when a window ends and, consecutively, when further operations are applied on the
discretised window. Both solutions have a data-item buffer. Once a window ends, the
resulting window consists of the data-items in this buffer. The eviction policy7 specifies,
when data-items are deleted from the buffer.

Unfortunately, the runtime implementation behind the IBM SPL is not available to the
public as open source project. Thus, we can only analyse the language itself, but not the
actual logic used for the execution of the specified programs/queries.

A processing flow in SPL consists of a directed graph, which is similar to the Nephele
execution engine on which the Flink runtime is based. The vertexes in the graph are
operators. They are connected with edges. The data is passed from operator to operator
along the edges.

The main three differences between the discretization solution presented in this thesis and
the one present in IBM SPL are:

1. In IBM SPL, the window discretization is set as parameter to an operator, while
we propose to make the discretization an operator itself. SPL wants to simplify the
construction of window-based operators by decoupling operator logic and windowing
from each other [37]. We have the same goal, but achieve is by putting the windowing
operator in front of batch-processing-like succeeding operators.

2. While in IBM SPL only a limited set of pre-defined windowing policies can be used,
our solution generalizes policies, such that users can apply their own user-defined
discretization logic, implemented in user-defined policies.

3. Our solution allows to apply multiple trigger- and eviction policies at the same
time. In SPL, there always have to be exactly one trigger policy and optionally one
eviction policy.

7In SPL, tumbling windows are said to have only one policy, which is called eviction policy. In this work,
we say that there is always both a trigger policy and an eviction policy. In case of tumbling windows,
the programmer specifies a trigger policy and the eviction policy is set to TumblingEvictionPolicy

automatically.
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Figure 7: Figure from [45]: Window types in SPL.

In their paper IBM Streams Processing Language: Analyzing Big Data in motion [44],
Hirzel at al. show different examples of SPL programs. Listing 3 shows an excerpt of a
program based on their example.

In this example, an input stream is transformed to an output stream containing data-
items of a custom type, called MyType. Assume this type to be defined before, having
two attributes called attribute1 and attribute2. The stream-type is comparable to
the DataStream in Flink. It is the abstraction for a data-stream on which further data
transformations can be applied.

The example discretises windows from the given InputStream and applies an aggregation.
The discretization rules are passed as parameter following the window-keyword. First,
the user needs to specify, that the window is supposed to be a sliding window. Then the
trigger policy and the eviction policy are specified. The logic for the aggregation follows
the output keyword. It uses the attributes a1, a2, and a3 from the data-items in the
InputStream and calculates the attribute values for the output from them.

There are four different kinds of policies provided by SPL and shown in Table 3: time-
based, count-based, delta-based and punctuation-based. There is a correspondent to all
of them implemented in Flink and presented in section C. A good introduction to window
policies in SPL is provided by Dan Debrunner in two blog posts covering sliding [27] and

1 stream<MyType> outputName = Aggregate(InputStream){

2 window InputStream : sliding, delta(...), count(...);

3 output outputName : attribute1=Sum(a1*a2), attribute2=Sum(a3);

4 }

Listing 3: An example window discretization and aggregation in IBM SPL. [44]
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Type Trigger Policy Eviction Policy

Count: window emission on each n-th data-item
arrival.

Keep the last n data-items in the buffer.

Time: Emit a window every n time-units. Delete all data-items which are older
than n time-units.

Delta: Emit a window if the delta between the
data-item which caused the last trigger
and the currently arrived data-item ex-
ceeds a threshold.

Delete all data-items for which the delta
to the currently arrived exceeds a thresh-
old.

Punctuation: Emit a window, whenever a given punc-
tuation is detected.

Unavailable: No punctuation based evic-
tion is provided.

Table 3: Types of windowing policies in SPL.

tumbling [28] windows. The limitation to a small number of predefined policies reduces
the total amount of possible different discretisation settings massively. As Figure 7 shows,
there are only 13 possible combinations in SPL.

Delta-based policies are sensitive to the content of the arrived data-items. The delta-
based eviction deletes all items where the distance to the currently arrived data-items
exceeds the threshold. Using this approach, data-items can be deleted from the buffer
out-of-order. This is the only feature we cannot provide with the solution presented in
this thesis, as we assume the buffer to be a FIFO buffer.

As this thesis provides the use of windowing policies in the fashion of user-defined function,
we shall have a look on UDFs in SPL as well. SPL provides a wide range of implementa-
tion possibilities for operators as UDFs . Additionally, it comes with the ability to apply
optimizations even on the UDFs . [44] Anyhow, there is no possibility to implement win-
dowing policies as UDFs . Policies are added as parameters to operators, thus, they are
no operators themselves. Unfortunately, only operators can be implemented as UDF.

5.1.3 Window Discretization in Flink Streaming

Before the work presented in this thesis started, Flink streaming allowed only two types
of window discretization: time-based and count-based. Windows were either sliding or
tumbling [10].

Operators. Technically, the discretization was realized by two operators. One for count-
based and one for time-based windows. This operators already coupled the discretization
together with the aggregation of the discretised windows. Discretisation operators were
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optimized for their single case of use, which allows a very good performance for the par-
ticular use-case. The work presented in this thesis is a generalization of the discretization,
allowing user-defined windowing semantics. We implemented completely new operators
to allow the processing of such a user-defined discretization.

Notion of Time. In Flink’s streaming API, users are allowed to implement their own user
defined Timestamp [11] which represents an arbitrary time measure. This can be some
globally maintained time from a time server or, in the simplest case, just the current
system time. If the time is freely defined by the user, the user-defined Timestamp-object
is used to determine the time, represented as long-value, for each data-item.

Whenever a user applied the default time-measure, the window operator started a sep-
arated thread. In this thread, a periodically check was done, telling whether a window
end has been reached or not. If so, a result for the ended window got emitted. When
user-defined timestamps were used, the end of a windows was detected whenever the first
data-item with a timestamp beyond the window end arrived. We generalized the idea of
having separated threads, which trigger window emissions, such that it can be used in a
user-defined fashion. This feature is now available through active trigger policies.

Grouped Discretization. It was also possible to apply window discretization on grouped
data streams: ”For example a ‘dataStream.groupBy(0).batch(100, 10)‘ produces
batches of the last 100 elements for each key value with 10 record step size.” [10]
In opposite to the solution presented in this thesis, the discretization was always done on
a per-group basis. This is the same what we call distributed policies, when we explain our
solution for policy-based grouped windowing in section 6.10. Beside this, the operators
presented in this thesis can apply windowing policies on the data-stream as a whole, even
when the stream is grouped. This allows for example to emmit a result for all groups
after a sepecific number of data-items (in total) arrived. In previous versions, this was
only possible on a per-group counter basis.

Pre-Aggregation. In case sliding windows are used, the application of the aggregation
on the data-item buffer can be optimized. We will explain in much more detail how this
can be done in section 8. Previous versions of Flink streaming implemented an micro
batch pre-aggregation based on the greatest common divisor (gcd) of the window size
and the slide size. Pre-aggregation were made with the granularity of the gcd. This pre-
aggregations were reused for the result emissions across multiple (overlapping) windows.
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5.2 Optimizations for Streaming Systems

Several publication regard sharing of common computations for sliding windows (shared
overlapping computation) or even for common processing steps across multiple queries.
In this thesis we focus on the optimizations which can be made when an aggregation
function is applied on a window.

Aggregation sharing. Krishnamurthy et al. [50] proposed in 2006 three different tech-
niques for aggregation sharing across queries and across overlapping windows. The one
closest related to the work in this thesis is time sliding.

Time slicing can be used when cross-query sliding windows exhibit differences in range or
slide but still maintain periodicity. This technique does not work for arbitrary windows
as we define them in this thesis (section 8.6). Also deterministic windows as defined in
this thesis (section 8.4) are insufficient for the application of this technique.

At first, two types of window slicing are recognised: paned window slices where pre-
aggregates are always computed in the lowest granularity (ie. gcd(range, slide)) and paired
window slices as an optimization with lower final aggregation cost. The combination of
multiple paired windows is done by extending the composed window up to the lowest
common multiple of the participating query window slides. Thus, all aggregates are
guaranteed to be derived from the composed partial pre-aggregates by using time slicing.
The performance benefits of shared sliced aggregation are clearly visible when the data
input rate is high. Implementation-wise, the slicing is done incrementally by a slice
manager that is being updated in an ad-hoc manner with added or removed paired window
definitions and then marks the points in the input stream where the pre-aggregate are to
be computed.

Flink streaming also uses pre-aggregations based on the gcd of window size and slide size.
We will explain this solution in section 5.1.3 and section 8.5. Additionally, we propose a
border to border pre-aggregation, which we will present in section 8.4.

Sliding-window aggregates using panes. In 2005, Li et al. [51] proposed the concept
of panes, which is very closely related to window sub-aggregates already introduced in
previous work. This work is easy to read and understand. It is a good introduction to
the basic idea of window pre-aggregates in a simple form.

The authors propose to use the gcd of the window size and the slide size to define the
pane window intervals on which pre-aggregates can be computed. As we will show in sec-
tion 5.1.3 and section 8.5, this optimization was already implemented in Flink streaming,
before the work on this thesis began.
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The proposal is followed by an analysis regarding the function types supported and opti-
mizations for differential functions. It should be also noted that the authors argue that
windows with different semantics for eviction and triggering cannot be defined by using
panes. We can only partially confirm this statement. As we will show in section 8.4, the
ability to calculate pre-aggregations relies more on the determinism of the policies than
on their type. Still, it is not possible to combine arbitrary policies.

Incremental sliding-window evaluations. In 2007, Ghanem et al. [39] published a
work focusing on the incremental calculation of sliding windows by using the previous
windows. Two ways of defining the the windows are presented: The Input Triggered
Approach (ITA) and the Negative Tuples Approach (NTA). While in ITA the eviction of
data-items from the data-item buffer is done based on the arriving items, in NTA data-
items can set to expired by sending a so called negative item which removes or neutralizes
the data-item which has expired.

As each data-item needs to expire at some time, it can be observed that the amount of
data transferred doubles using NTA because each data-item causes a negative version of
itself at some time. ITA does not have this problem, but can cause recognizable latency
in window emissions if the triggering input elements arrives late.

Different optimizations are proposed for the NTA approach to reduce the described prob-
lem. Such optimizations either reduce the overhead caused by negative data-items or the
amount of negative items.

A technique called piggybacking describes the adding of negative data-items to positive
data-items. The result are combined items which allow expiration without having the
requirement of processing the negative items separately. For example: If the aggregation
does a sum, the value 5 would become expired by sending the negative value -5. If there
arrives a positive value 2, it could be combined with the -5 to -3.

In addition to the content summarized here, an experiment is done to compare ITA,
NTA and NTA when using the described optimizations. Therefore, the NTA approach
is analysed in more detail providing a classification of different incremental operators,
especially joins, regarding their optimization possibilities when using NTA.

The authors describe the expiration of data-items in ITA as based only on the timestamp
of the newly arriving positive items, but not on other characteristics, like for example a
delta-based policy. This lets ITA seem less powerful than it actually is. One could say,
that our policy based windowing approach is an extension of the ITA they described,
as it only reacts on input data-items, but also has fake data-items, which could be seen
as negative items in their naming context. Anyhow, we neither use incremental window
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evaluation like they defined it nor NTA similar to their definition. Thus, most of the
proposals are not close enough related to our ecosystem for being reused.

Processing hopping windows. In 2004, Babcock et al. [8] published a paper regarding
the problem of adapting to processing demands adaptively by dropping unprocessed data-
items. The main focus is on aggregation queries as a special case of minimising the
degree of accuracy introduced by such a sample reduction. We also provide for solution
for skipping unprocessed data-items in section 8.7. We have the definition of hopping
windows, which says, that there is a hopping situation in case there are data-items which
are not part of any emitted result.
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6 Architecture and API-Design

In this section, we are going to present an highly expressive way of window discretization.
The described discretization architecture was implemented in the Apache Flink stream
processing engine. During the work for this thesis, we did the specification and implemen-
tation of the API as well as the architecture and development of the operators running
underneath. A detailed documentation of the implementation can be found in appendix
B.

In the following, we first describe all fundamentals of our architecture in the sections 6.1
to 6.7, including example queries in section 6.3. Afterwards, we present the API design
in section 6.8.

Some use-cases require the use of fake data-items produced by so called active policies.
We present the concept of active policies in section 6.9. Finally, in section 6.10, we show
how the discretization is done in case data-items are grouped by some key.

6.1 Discretization Operators

Our solution is clearly separated from the one provided by SPL. While in SPL, the
window discretization is seen as parameter of an operator, we made it an operator itself.
This operator takes trigger and eviction policies as parameters and does the discretization.
Following operators can work with the resulting windows without having any knowledge
about the discretization. While SPL only provides a limited set of policies, we gener-
alized trigger and eviction policies and provide interfaces for both of them. Hence, our
discretization operators can work with the huge set of provided pre-defined policies, as
well as with user-defined policy implementations.

Discretising a stream to windows makes sense, because many algorithms can not be ap-
plied to infinite streams of data, as they could never produce a result. Anyhow, such
algorithms can be applied to finite chunks of data. A popular example for such algo-
rithms are Map Reduce (MR) applications. While the map phase can be applied to an
infinite stream, the shuffling and the reduce phase need to know, that the previous phase
is completed. From a users perspective, the reduce phase consumes the output of the
map-phase as a whole as input.

In the reduce phase, an aggregation is computed per group, while the groups are defined by
the keys of the output tuples of the map phase. Receiving the output of a map operation,
our discretization operators can (optionally) group the input data-items they receive,
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create finite chunks of the input data and apply an aggregation function implemented in
an user-defined reduce function. Finally, they output one aggregation result per group
and per window.

We implemented two discretization operators, namely Window and Grouped Window. Window
discretises the stream to windows by applying trigger and eviction policies. Grouped

Window additionally does a grouping of data-items by some key. It can apply policies to
the stream of data-items as a whole and on per-group basis. It can even do both at the
same time.

The discretization operators we provide, can even apply multiple trigger and eviction
policies at the same time, which allows to specify complex discretization rules such as
”Every 5 minutes return the sum of the last 1 million data-items, excluding data-items
which are older than 10 minutes” or ”Emit a window every 5 minutes, unless the current
aggregation result differs more than 20% from the one emitted before; in that case, emit
the window immediately.”. Hence, we can adjust the aggregation granularity regarding
the actual data characteristics.

6.2 Trigger and Eviction Policies

The discretization operators are event-driven. An event is essentially a data-item arrival;
when a data-item arrives, trigger and eviction policies are notified.

Trigger Policies (TPs) specify when the reduce function is executed on the current buffer
content and, thus, define the moment that results are emitted.

Eviction Policies (EPs) specify when data-items are removed from the buffer and, thus,
define the size of windows.

6.3 Query Examples

In the following, we will show two examples provided by the Flink streaming API guide [11]
for the not grouped case. Additionally, we will show two examples for the grouped case,
which we sent to the Apache Flink Developer mailing list [62] when we released the new
windowing semantics.
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The next example would create windows that hold elements of the last 5 seconds, and
the user defined aggregation/reduce is executed on the windows every second (sliding the
window by 1 second): [11] (Listing 4)

1 dataStream.window(Time.of(5, TimeUnit.SECONDS))

2 .every(Time.of(1, TimeUnit.SECONDS))

Listing 4: API Example: Not grouped discretization. [11]

Different policies (count, time, etc.) can be mixed as well; for example to downsample our
stream, a window that takes the latest 100 elements of the stream every minute is created
as follows: [11] (Listing 5)

1 dataStream.window(Count.of(100)).every(Time.of(1, TimeUnit.MINUTES))

Listing 5: API Example: Not grouped discretization with mixed policies. [11]

The new policy based windowing can also be used for grouped streams. For example: To
get the maximal value by key on the last 100 elements we use the following approach: [62]
(Listing 6)

1 dataStream.window(Count.of(100)).every(...)

2 .groupBy(groupingField).max(field)

Listing 6: API Example: Grouped discretization with central policies. [62]

To create fixed size windows for every key we need to reverse the order of the groupBy
call. So to take the max for the last 100 elements in Each group [...] This will create
separate windows for different keys and apply the trigger and eviction policies on a per
group basis. [62] (Listing 7)

1 dataStream.groupBy(groupingField).window(Count.of(100))

2 .every(...).max(field)

Listing 7: API Example: Grouped discretization with distributed policies. [62]
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6.4 Action Order

We call the startpoint and endpoint of a window interval borders of the window. As
specified above, trigger can only occur when a data-item arrives and data-items cannot
be partially deleted from the buffer, thus, borders are always bounded to data-items. The
data-item marking the startpoint of the window is included in the window interval. The
data-item marking the endpoint of the window is excluded.

Whether borders are included in, or excluded from emitted windows depends on the action
order. When a data-item arrives, three actions take place:

1. Notification of the Trigger Policy (TP): The current buffer content can be emitted
as a window if the trigger decides to.

2. Notification of the Eviction Policy (EP): Data-items can be deleted from the buffer
if the eviction decides to do so.

3. Adding to buffer: The arrived data-item is always added to the buffer (insert).

The order of these actions is a crucial design decision: while in IBM SPL, the order is
specified differently for each combination of policy types [37] (action orders in SPL can
be found in section D), we fix the order as described above.

SPL can achieve a reduced latency for some types of policy combinations by having a
different action orders, while other types of policies can only work correctly in case the
action order matches our fixed order. From the perspective of the TP, two architec-
tural alternatives are present; either to define the endpoint of a window to be included
(insert→trigger) in the window or to be excluded from the window (trigger→insert).

Defining the endpoint as included in the window can reduce the latency for some policies.
A positive effect of this solution always takes place in case the end of the window can
already be identified at the moment we see the last data-item of the window. One example
for this are count-based triggers: If we want to trigger after ten data-items, the policy
could already trigger when the tenth data-item, belonging to the current window, arrives.

Anyhow, there are cases where we cannot determine that the endpoint of a window has
been reached at the moment we see its last data-item. For instance, a time-based policy:
We can never know whether the next data-item will still arrive within the time interval
of the current window or not. Therefore, we can only decide whether a window end has
been reached (and whether the policy should trigger) after we’ve seen the first data-item
of the next window. Hence, the event order trigger→insert is essentially required for some
policies, such as the time-based ones.
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We estimate the benefit of using the first option (included upper border) to be relatively
small. Assuming a high data rate, the latency caused by triggering one data-item arrival
later should not preponderate. Providing both options would have several disadvantages
compared to providing only one option:

• It would cause a massively increased complexity of the discretization operators,
because we would need to provide two possible execution flows at the same time
including the interdependencies between them.

• It would cause a performance decrease because we would need to figure out which
execution flow to choose for each individual policy at runtime.

• It would cause an elimination of optimization possibilities as the order of triggers
and evictions becomes unpredictable when not only predefined policies are used,
but also user-defined ones.

• The interface to implement user-defined policies would become more complex, be-
cause it needs to enable the programmer to choose between both options. Alterna-
tively, different interfaces would be needed. One for each option.

With regard to this, we decided to always exclude the endpoint of the window from the
result (action order: trigger→insert). This solution works for all kinds of policies and
does not have preponderating disadvantages compared to the alternative solution.

The eviction happens between the trigger and the insert event. The over all event order
is trigger→eviction→insert. This order gives the guarantee that the data-item which
causes the eviction remains in the buffer. Furthermore, it guarantees that after the first
data-item arrival there is always at least one data-item in the buffer.

6.5 Memory Management

Our discretization operators maintain a data-item buffer. When the operator receives an
data-item as input, we say that the data-item arrives at the operator. The buffer at the
discretization operator is a first in first out (FIFO) buffer containing a subsequence of
the stream. Hence, data-items can only be deleted from the buffer in the same order they
arrived. Especially in case user-defined trigger or eviction policies are used, this limitation
has big benefits. It enables several possibilities for both, parallelization and automated
optimization.
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6.6 Aggregation Functions

Drawing from the Flink batch API, in Flink Streaming we also allow two types of reduce
functions:

1. Reduce. The reduce function is applied to data-item pairs continuously until only
one data-item is left. When using this function, a programmer has to specify how
to combine two input data-items to one output data-item.

2. Group Reduce. In opposite to the reduce function, the group reduce function re-
ceives an Iterator for a set of grouped data-items. The computation is done having
the view on the window as a whole. This function is similar to the reduce function
which is known from Hadoop MR.

An aggregation function like median, requires the use of the the GroupReduceFunction,
because it needs a complete view of the window. However, this requires the materializa-
tion of intermediate results in-memory and can cause problems at runtime. In contrast,
the ReduceFunction aggregates two data-items at a time, reducing the memory con-
sumption. Furthermore, certain reduce functions can be executed faster by performing
pre-aggregations. We provide more details on this, later in this section.

6.7 Aggregation Optimization

In the evaluation of streaming queries, there are often overlapping window aggregations
(sliding windows). Optimizations aim to calculate common sub-aggregates and reuse
them for multiple consecutive overlapping window aggregations. Thereby, aggregation
optimizations can minder the CPU- and memory utilization by eliminating recomputation.

Pre-aggregation computation has been proven to be feasible especially while using
associative-decomposable functions, such as the ReduceFunction [69].

Definition: associative-decomposable ”We use x to denote a sequence of data-items,
and use x1 ⊕ x2 to denote the concatenation of x1 and x2. A function H is decom-
posable if there exist two functions I and C satisfying the following conditions:

• H is the composition of I and C:
∀x1;x2 : H(x1 ⊕ x2) = C(I(x1 ⊕ x2)) = C(I(x1)⊕ I(x2))

• I is commutative: ∀x1;x2 : I(x1 ⊕ x2) = I(x2 ⊕ x1)
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• O is commutative: ∀x1;x2 : O(x1 ⊕ x2) = O(x2 ⊕ x1)

• C is associative: ∀x1;x2;x3 : C(C(x1 ⊕ x2)⊕ x3) = C(x1 ⊕ C(x2 ⊕ x3))” [69]

Yu et al. assemble a group reduce function (H) with two function (I and C) mapping to
an initial reduce and a combine in MR, where I reduces a sequence of input data-items
and C reduces a sequence of outputs from I. In case of our ReduceFunction, the input
and the output type is the same, thus, is can represent I and C at the same time.

A number of optimizations apply, which are mainly based on two facts:

• Pre-aggregation is allowed: The ReduceFunction leaves it to the operator, when a
data-item pair is reduced/combined to one data-item, thus, the aggregation of two
data-items can already be done, when one pair of items is available. In contrast to
this, the GroupReduceFunction can only be invoked when all data-items contained
in a window are available, increasing the latency of the operator execution.

• Pre-aggregations are reusable: The ReduceFunction allows to compute
pre-aggregations over parts of windows, thus, pre-aggregates can be calculated for
overlapping portions of (sliding) windows. Such pre-aggregates can be reused by
multiple aggregate computations.

In contrast, using the GroupReduceFunction instead of the ReduceFunction can cause
the following:

• Higher memory utilization results from the need to keep all individual data-items
in the buffer instead of pre-aggregation results. Moreover, is the window does not
fit in memory, the system may even crash.

• Higher latency results from the fact that full aggregation needs to be done once all
data-items of a window have arrived, while with the ReduceFunction, intermediate
results could already be pre-computed.

• Higher CPU utilization is caused by the elimination of pre-aggregation reuse across
overlapping windows. Computations for overlapping portions are done multiple
times.

• Inconstant CPU utilization is caused by executing the full aggregation on a window
at the time the window ended. Using the ReduceFunction, the work could be
spread across data-item arrivals.
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6.8 API Design

The Flink stream processing API offers the functionalities of data stream processing to
the user in a way, which is easy to learn and fast and simple to use. We integrated our
window discretization techniques in the API with regard to this philosophy. While most
users only apply classical time-based and count-based window semantics, there are some
users who want to use their own user-defined policies. Both features have to be available
in a way which is intuitive to use.

The changes/extensions to the API we made, consist of two main ideas:

1. The trigger and eviction policies are applied on a stream using two methods, called
window and every, followed by an aggregation method. The every method is
optional and allows to specify sliding and hopping windows. Tumbling windows can
be defined by using only the window method.

2. Pre-defined policies are available through helper classes which implement the
WindowingHelper interface. The helper classes prevent the user from a need to
know the exact constructor signatures of the policies and serves factory methods to
create pre-defined policies with different settings.

6.8.1 Discretisation Methods

A data stream is represented in the API by the class DataStream. This class implements
the method window which starts the definition of a discretization (Listing 8). In case only
window, but not every is used, this leads to a tumbling window setup, where the parameter
of the window method specifies when to trigger. The eviction policy is automatically set
to TumblingEvictionPolicy.

1 dataStream.window(...).every(...).reduce(...)

2 dataStream.window(...).every(...).reduceGroup(...)

3 dataStream.window(...).every(...).aggregate(...)

Listing 8: The discretization and aggregation functions in the Fling streaming API. [11]

After the window method, the user can call the every method to specify a sliding window
discretization. The parameter of the window method specifies then the size of the window
(represented internally by an eviction policy) and the every method specifies the slide
size of the window (represented internally by a trigger policy).

38
Jonas Traub: Rich window discretization techniques in distributed stream processing



6.8 API Design

Finally, the aggregation needs to be specified. The reduce method takes an instance of
ReduceFunction as parameter and the reduceGroup method allows to use a
GroupReduceFunction. Furthermore, pre-defined aggregation functions such as sum,
count, min, and max can be applied.

The window method is overloaded. it can either take an instance of WindowHelper as
parameter or two lists containing the trigger and eviction policies to be used. Thus, user-
defined policies can be passed as parameter directly to the discretization method as well
as helper classes which encapsulate pre-defined policies.

6.8.2 Helper Classes

We provide the helper classes Count, Time and Delta for the pre-defined count-based,
time-based and delta-based policies. All of them implement a static method called of.
This allows to specify policies very easily as Listing 9 shows.

In case of the Time helper class, the of-method is overloaded to allow different kinds
of settings. Users can provide their own user-defined Timestamp implementation or use
the SystemTimestamp as default by not providing any Timestamp implementation. The
additional method withDelay allows to delay the first occurrence of a trigger. This is
required to have constant window sizes, even at the stream start, in case sliding windows
are used. By using Java’s TimeUnit class, the user can decide in which time unit she
wants to specify the length of the windows. Possible units are days, hours, microseconds,
milliseconds, minutes, nanoseconds, and seconds, while seconds is the default.

Like the Time class, also the the Count class provides an additional method, to set a
custom start value for the counter. The usage of the method is optional. The of method

1 Time.of(long length, Timestamp<DATA> timestamp)

2 [.withDelay(long delay)]

3 Time.of(long length, Timestamp<DATA> timestamp, long startTime)

4 Time.of(long length, TimeUnit timeUnit)

5 [.withDelay(long delay)]

6

7 Count.of(int count)

8 [.startingAt(int startValue)]

9

10 Delta.of(double threshold, DeltaFunction<DATA> deltaFunction,

11 DATA initVal)

Listing 9: Helper classes representing pre-defined polices in the Flink streaming API. [11]
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of the Delta class expects all the required parameters to instantiate a delta-based policy.
We will describe these parameters in section C.3.

6.9 Active policies

The main idea behind active policies is to allow TPs to create fake data-items which are
processed by the systems in a special way. Our discretisation operators are event-driven
by data-item arrivals. There are some cases where we need to have policy notifications
between (real) data-item arrivals. Such additional notification are caused by fake data-
item arrivals.

Section 6.9.1 provides an example for a query where problems occur when not active poli-
cies are used. Afterwards we present the concepts of active policies and fake data-items.
In section 6.9.3 we apply the active policies to solve the problem shown in section 6.9.1.
Finally, we show in section 6.9.4 how active TPs can be used to reduce latencies in the
result emission.

6.9.1 Problems without Active Policies

For the following examples we assume time-based policies to be used as TP and EP.
Every two time units a window should be emitted containing the data-items of the last
four time units. Hence, we have a sliding window query, where windows are overlapping
by two time units.

Assumed time is determined by a user-defined Timestamp-implementation (as usually in
Flink streaming; see section 5.1.3), we know that we have to emit a result for the window
of the time interval [0,4) as soon as a data-item belonging to the time point four or
greater arrives.

The example depicted in Figure 9 shows the basic case, which is covered by non-active
policies already. Data-items arrive at the time points one, two, four, and fife. The arrival
of the data-item belonging to time point four causes a trigger to occur, which leads to the
emission of a result for the current data-item buffer, containing the data-items belonging
to time point one and two. Thus, the emitted result is the one for the window of the time
interval [0,4).

Let’s now extend Figure 9 up to time point eleven. In Figure 10, after the data-item
arrival at time point fife, the next data-items arrive at time nine and eleven. According
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Event marker: Data-item arrival, production, placement or window border.

emitted window (grey) with excluded upper border (white).

Delay/Latency between fake data-item placement and production.

Figure 8: Legend to Figure 9, 10, 11, and 12.

t=0 t=1 t=2 t=3 t=4 t=5 t=6

real item placem.

window

Figure 9: Time based windowing: The trivial case. (Find legend in Figure 8)

to the policies we defined, we expect results for the windows [0,4), [2,6), [4,8), and
[6,10) to be emitted.

When the data-item at time point nine arrives, we expect results for the two windows
[2,6) and [4,8). The last time the EP was notified is fife, which means it evicted only
data-items up to (including) time point one. In case a not active trigger is used and just
triggers when it is notified about the arrival of the data-item belonging to time point nine,
the result is produced for the current buffer as usual. That is why we receive an output
for the window [2,9), which is wrong. At the data-item arrival at time point eleven, we
have a similar problem. At least we do not miss a result emission, but the borders of
the result are still wrong. The last notification of the EP happened at time nine, which
causes the current buffer to represent the window [6,11).

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11

real item placem.

1st window

2nd window

3rd window

window borders

Figure 10: Time based windowing: The failure cases without active policies.
(Find legend in Figure 8)
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There is no way to achieve the correct result using the not active policies:

• In case a trigger occurs, the first action is the execution of the reduce function on the
current buffer followed by the emission of the result. Eviction policies are notified
afterwards. This can cause expired data-items to be included in the result.

• Trigger can only return true or false when they are notified. Hence, they can
only cause one window emission per data-item arrival. This can cause missed result
emission in case there arrives no data item between two window ends.

6.9.2 Active Policies and Fake Data-items

As already mentioned, we introduced so called active policies to address all issues pointed
out in the previous section. Such policies are called active because they can not only
react on data-item arrivals but also actively produce them. We call data-items which are
produced by an active trigger fake data-items.

Pre-Notification. An active TP is pre-notified before the already presented regular
notification of the trigger takes place. Like the regular notification method, also the
pre-notification method receives the arrived real data-item as parameter. On each pre-
notification, the policy can create fake data-items which are processed before the arrived
real data-item. Thus, the TP has the ability to put fake data-item arrivals between two
real data-item arrivals.

Data-item Placement. Where a data-item is placed, no matter whether it is a real
or fake data-item, depends on its characteristics. For example, in time-based window-
ing data-items have a timestamp defining their position on a time-scale. In delta-based
windowing, they have attributes from which a distance to the last window end can be
calculated.

Notification about Fake Data-items. Fake data-items are always considered to cause
the occurrence of a trigger, which means that each produced fake data-item causes the
emission of a result for the current buffer. Hence, there is no need to notify TPs about
fake data-item arrivals. EPs are notified about fake data-item arrivals in case they are
active EPs .

Buffer. Fake data-items are never added to the buffer. They only serve as a kind of
control elements causing triggers and evictions to occur.

Action Order. Whenever a fake data-item is processed, the action order is vice versa
compared to the order used when real data-items are processed. Fake data-items are
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never added to the buffer, thus, the action order is eviction→trigger. With regard to the
problems shown in the previous section, this action order is the most efficient. It allows
to adjust the buffer content and to cause the emission of the result using only one fake
data-item per emitted window.

6.9.3 Active Policy Example

Let’s now remember the example, we presented in Figure 10 and let’s utilize the possibil-
ities provided by active TPs and EPs to produce correct results.

In Figure 11 we added three new lines for event markers to the example. The first of
them shows the points in time, where fake data-items are produced, the second depicts
where fake data-items are placed (In this example, this means what timestamp they have),
and the third new line is the union of the real data-item placements and the fake data-
item placements. The window ends of the emitted windows contain all times where fake
data-items have been placed and, additionally, some of the times where real data-items
arrived.

In the previous example, we got wrong results because we missed the ends of the expected
windows [2,6), [4,8), and [6,10). With the possibilities provided by active policies,
we can produce fake data-items causing the triggers and evictions to occur which are
necessary to gain correct results.

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11

real item placem.

fake item prod.

fake item placem.

all item placem.

1st window

2nd window

3rd window

4th window

window borders

Figure 11: Time based windowing: Example for utilization of active policies.
(Find legend in Figure 8)
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Pre-notification. When the real data-item at time point nine arrives, there happens a
pre-notification before it is processed. The active TP figures out the time point of the
data-item, which is nine, and knows that there are two fake data-items needed. Hence,
the active TP creates two such items, having the timestamps six and eight. Because the
fake data-items are processed before the real one, trigger occur at the correct positions.

We actually simulate a situation in which real data-items would have been arrived at the
time points where the fake data-items are placed. Also at time eleven, one fake data-item
is produced which has the timestamp ten and causes the emission of the result for the
window [6,10).

Active Eviction. In all cases where fake data-items are processed, the eviction takes
place before the result is calculated. Hence, the lower border of the window is always
adjusted correctly.

Latency. The pre-notification of active TPs is always called when a real data-item arrives.
This is the variant which needs the lowest computation power but is still guaranteed to
produce correct results. Unfortunately, this solution comes with the price of having a
latency in result emissions which is the duration between the time an window actually
ends and the time the next real data-item arrives. This latency is depicted with black
arrows in Figure 11.

6.9.4 Active Trigger Policy Threads

In the example shown in section 6.9.2 (Figure 11) we depicted latencies using black arrows.
This latencies are the durations between the time windows actually end and the time where
the next real data-item arrives. At this time, fake data-items can be produced and will
cause the emission of results for the ended windows.

There are two possible cases where this latency becomes a problem:

• When the data-rate is very low in general or differs a lot, so that it is very low
at some time: In such a case, the latency, which is the time to wait for the next real
data-item, might increase to be unacceptable long.

• When the reduce function is very computation expensive: In such a case,
having multiple emission at the same time possibly causes back-pressure. At the
time where the real data-item arrives, not only one result for one windows needs to
be computed, but results for several windows. One for each produced fake data-item
and possibly one more after the regular notification of the triggers.
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We introduced another possibility to create fake data-items to be able to reduce the
latency in such cases. An active TP can provide a Runnable through a factory method.
The provided Runnable is executed in a separated thread and can produce and submit
fake data-items at any time through a callback method. This way of submitting fake
data-items is completely independent from the arrival of real data-items.

Active TP threads can only be used in case it is possible to determine window ends
without seeing a real data-item.

Applicability. This is for example not possible for arbitrary user-defined Timestamp

implementations. They expect a data-item as parameter and return the timestamp it
belongs to. This allows users to implement an extraction which reads timestamps from
attributes of the arriving data-items. Unfortunately, in such cases, we can only know that
a window ended when we see the first data-item which belongs to a point in time which
is later than the endpoint of the window duration. Without seeing a data-item, we can
not say anything about the current time defined by the Timestamp implementation. The
only guarantee we have is, that it is monotonically increasing.

In opposite to this, for Timestamp implementations we know, such as our default
SystemTimestamp, we can easily figure out the current time without the
need to see any real data-item. The current time is available through the
System.currentTimeMillis() method. Hence, we can always prove whether the cur-
rent time lies beyond a window duration or not.

Also user-defined active trigger policies can utilize the factory method for runnables in
case they can determine window ends without seeing a real data-item. For instance, in
case one implements a Timestamp which retrieves the current time from some central time
server. Here, the time is also independent from the actual data-items and it is always
possible to retrieve the current time.

Example. Let’s again take our example from the previous section into account, to show
how the described solution can reduce the latency. We now assume our Timestamp in
this example to be our default SystemTimestamp. We can let our active trigger policy
produce a Runnable, proving at each fourth point in time (counting from zero on), whether
a window end has been reached or not. If so, the Runnable, which runs in a separated
thread, can submit fake data-items directly. This fake data-items will then replace some
of those, who would otherwise have been produced on the pre-notification of the TP at
the next real data-item arrival.

Note that in practice, as this is another thread, it would not run with exactly the same
tact as the main thread, so the latency will be something from 0 to 1 time units more as
depicted here. Additionally, one would most probably check for window ends with a much
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real item placem.
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fake item prod.

fake item placem.
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2nd window
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Figure 12: Time based windowing: Example for utilization of active policies including
separated threads. (Find legend in Figure 8)

curse granularity to have less computation effort. It would also make sense to adjust the
granularity of checks done by the runnable with regard to the specified trigger frequency.
Anyhow, we use the simplified assumptions to keep the example as simple as possible.

In Figure 12, we added one more line to the diagram, showing the times where the
Runnable does its check for window ends. Remember that, due to the submission of fake
data-items threw the separated thread, there are less fake data-item creations done when
the pre-notifications of the triggers happen. The total amount of created fake data-items
and their positions remain the same as before.

When the data-item belonging to time point nine arrives, one fake data-item has been
produced already from the separated thread. This fake data-item caused the emission of
the result for the window with the duration [2,6). Hence, only one fake data-item is
created by the pre-notification method, causing the emission of the result for the window
with the duration [4,8).

When the data-item belonging to time point eleven arrives, we have a race condition.
Either the separated thread comes first and submits a fake data-item causing the result
for the window with the duration [4,8) to be emitted or the pre-notification is called
first and does the job. We use synchronization to ensure that it never happens twice.

As you can see, we reduced the latency for the emission of the result for the window
[2,6) by two thirds in the example. In general, we can give a guarantee, when active
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trigger runnables are used, saying that the latency will always be smaller or equal than
the interval between two proves, for reached window ends, done by the Runnable.

6.10 Grouped Window Discretization

The main idea of a grouped window discretization is to combine the already described
discretization functionality with a data-item grouping. There are many use-cases where
a grouping of arriving data-items is done. For example, imagine a stream containing
stock quote changes. It makes sense to group such a stream to gain several per-company
streams. Grouping within a stream can also be seen as a split of an input stream to
several output streams, while there is some rule to decide which data-item is forwarded
to which output stream.

The calculation of aggregations is always executed on a per-group basis. Hence, once
a trigger occurs, the reduce function is executed on the current buffer (per-group) and
results are emitted per group. TPs and EPs can either work on a central buffer (centralized
policies) or on per group buffers (distributed policies).

In this section, we present how data-item buffers look like in the grouped case in sec-
tion 6.10.1. Afterwards, in section 6.10.2, we describe how TPs and EPs work in both
cases, when they are central and when they are distributed. Furthermore, we explain how
they play together in case both, central and distributed policies, are present at the same
time using an example presented in section 6.10.3.

6.10.1 Data-item Buffers

The Grouped Window operator extracts the key from each arriving data-item. Then it
forwards the data-item to the group it belongs. The groups are represented by instance
of the Window operator (one instance per group). Similar to the not grouped case, each
instance of the Window operator keeps a FIFO data-item buffer. The Grouped Window

operator also has a buffer, but a virtual one.

Technically, the Grouped Window operator only remembers the order in which it forwarded
data-items to the different groups, but not the forwarded data-items themselves, therefore,
we call the central buffer virtual central buffer. From a logical point of view, we can
imagine one buffer per group, containing only the data-items belonging to the respective
groups, and one global buffer, containing all data-items from the stream as a whole.
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The communication between the Grouped Window operator and the Window operator in-
stances which represent the groups is unidirectional in the sense, that there is now infor-
mation flow from the groups back to the central (the Grouped Window operator). This
offers well opportunities for parallelization. The execution can be represented in a DAG,
where the Grouped Window operator sends messages to succeeding Window operator in-
stances, representing the groups.

6.10.2 Centralized vs. Distributed Policies

When a window discretization is applied on a grouped data stream, this can be done in
two different ways.

Centralized. The first option is to monitor the stream as a whole. In this case, there is
(from a logical point of view) only one central buffer. Data-items are added to this buffer,
when they arrive at the discretization operator. When a trigger occurs, the data-items
contained in the buffer are grouped by a key, an aggregation is calculated per group, and
one result per group is returned. This means that trigger occur always for all groups
together.

Data-items are still always deleted in the order they arrive (FIFO). In case the data-rate
is not identical for all groups, the emitted windows may have different sizes.

Because the policies work with only one centralized buffer, we call this option centralized.

Distributed. The second option is to separate the arriving data-items first, with regard
to their key. The operator keeps then one buffer for each unique key, respectively for each
group. Data-items are added to the buffer of the group they belong to. Policies operate
on a per-group basis and only take the data-items belonging to one group into account.
This means that trigger occur always only for an individual group.

Data-items are, from a global view, possibly deleted out of order. The FIFO characteristic
only holds when viewing the buffers for each group separately. In case the data-rate is not
identical for all groups, windows may be emitted at different times for different groups to
ensure constant window sizes across all result emissions.

Because the policies are replicated and work with separated buffers for each group and,
because the arriving data-items are distributed to these different groups, we call this
option distributed.

Technical Differences. From a technical point of view, there is only one difference
between the implementation of a centralized and a distributed policy. The usage in a
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distributed manner requires the policy to implement a clone-method. This clone method
is used to create replications of the policy object for each group.

6.10.3 Examples

The following examples clarify how centralized and distributed policies work. Imagine
that we measure the speed of cars passing by in front of the office. We can group the
resulting stream of speed measures by car facilitators to calculate the average speed per
facilitator.

Distributed Policies. A count-based policy makes sense to use as central as well as
as distributed policy. By using distributed policies, one can cause the emission of results
whenever one hundred cars from one facilitator passed by. This guarantees two things:

• That the evaluation per group (per car facilitator) is as up to date as possible.

• That the computed result covers a statistically sufficient amount of individual mea-
sures (always one hundred).

Centralized Policies. One may wants to figure out for every one hundred cars passes
by (in total), cars from which facilitator where the fastest. Using central policies, it is
possible to emit a result for all groups whenever one hundred cars passed by, no matter
how many of them belong to which group. This gives the guarantee that:

• We always receive a result for all types of cars, after we’ve seen one hundred cars in
total.

Mixed Policies. Our grouped discretization operator even allows to use both, central
and distributed policies, at the same time. In section B.7, we will explain in more detail
how they work together. In general, a time-based policy is one which makes most sense as
central policy. Taking our example into account, we could combine central and distributed
policies as follows: We use a central time-based trigger policy and a distributed count-
based eviction policy at the same time. The central time-based trigger guarantees, that
we receive a result for each facilitator periodically. The distributed count-based evictor
ensures, that we always keep exactly the one hundred most up to date measures per
facilitator. Thus, our guarantees are a combination of the aforementioned:

• We always receive a result for all types of cars, after some time (periodically).

• The computed result covers a statistically sufficient amount of individual measures
(always one hundred).

Jonas Traub: Rich window discretization techniques in distributed stream processing
49
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A discretization operation, in the current version of Flink streaming, always consists of a
window discretization and the application of a reduce function on the discretised windows.
The discretization is done by the application of TPs and EPs . The reduce function is
executed on the current data-item buffer whenever a trigger occurs. The emitted results
of the operator are aggregation results; one result per discretised window.

While the discretization is usually not parallelizable, there are possibilities for the execu-
tion of the reduce function in parallel. In the following, we assume that the
ReduceFunction interface is used and not the GroupReduceFunction interface. As de-
scribed in section 6.7, ReduceFunction serves better opportunities for a parallel execution
and further optimizations.

We show how the execution of the discretization operators can be done in parallel. Section
7.1 serves basic observations regarding the parallelizability of the window discretization
and aggregation. In section 7.2, we show how the window operator can be split in three
operators to allow a parallel aggregation. Afterwards, we extend this concept in section 7.3
to allow further parallelization for some types of policies. In section 7.4, we point out how
the grouped window operator can be parallelized.

7.1 Observations for Parallelizability

Parallelizability of Policies. As already mentioned, the window discretization cannot
be done in a parallel fashion, because arbitrary policies may have a state which is based on
the history of all previously arrived data-items. A policy may needs to see all data-items
in order to be able to decide when to trigger or evict.

Anyhow, there are some pre-defined policies, where a parallel execution is imaginable. A
time-based policy works with the current system time in the default case. Hence, the
state depends rather on the current time and the used time measure than on the seen
data-items.

History Dependent Policies. We say that a policy is not history dependent in
case it does not need to see all data-items of the stream in order to work correctly. In
opposite to this, delta-based policies and count-based policies are two examples from the
set of pre-defined policies who definitely need to see all data-items of the stream in order
to work correctly. Consecutively, such policies are called history dependent .
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In the following, in section 7.2, we assume a set of arbitrary, maybe user-defined policies
to be used. This means, that the discretization itself is inherently not parrallelizable,
because policies are history dependent.

Parallelizability of the Aggregation. What can be parallelized is the execution of
the reduce function. Moving away as much as possible parts of the execution from the
discretization operator makes sense. Due to the condition that it cannot be executed in
parallel, the vertex doing the window discretization might become a bottleneck for the
execution and should not be burdened with any additional load. In section 7.3, we will
show how a further parallelization can be done, in case not history dependent policies,
such as time-based policies, are used.

With a more differentiated view, two scenarios can be imagined when looking at the
discretization vertex as a bottleneck:

1. The bandwidth of the vertex doing the window discretization becomes a
problem. This will be especially the case if data-items are huge and/or the stream
has a high data rate. In this case, it is not recommended to apply the parallelization
we describe in section 7.2. The application of the reduce function within the same
vertex might reduce the amount of data at the vertex output significantly.

2. The memory or the CPU utilization at the vertex doing the window
discretization becomes a problem. This is highly probable in case the reduce
function is computation intensive or the window sizes are huge, which leads to
huge data-item buffers kept in memory. In this case, it makes sense to do apply
the parallelization we described in section 7.2, to allow a parallel execution of the
reduce function and to distribute the buffer.

7.2 Architecture for Parallel Aggregation

To allow a parallel execution of the reduce function and to distribute the buffer across mul-
tiple vertexes, we propose to split the functionality of the actually present
Window-operator in three separated operators. Figure 13 shows the data flow between
the operators and their parallel instances.

Central Window Discretization (CWD) This operator does the window discretization.
It executes the policies in a centralized manner, but does not do any reduce on the
data-items. Instead, meta data is added to the data-items to expose the information
about where windows start and end to the next vertices. The disadvantage of this
is, that it will cause the total amount of data at the output to be greater than the
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DPA

CFA OutputInput CWD

Figure 13: Operators for window discretization combined with window wise aggregation
in a parallel fashion.

amount of data at the input of the operator. The advantage is, that there remains
no need to keep a buffer at this operator and that the operator has no need to do
any calculations except of those which are included in the policies. The state to keep
in the memory here, is the state of policies. At least for all pre-defined polices, this
state has a very small size, as we will show in section C. The arriving data-items
are forwarded to the distributed pre-aggregation vertices. The simplest algorithm
for forwarding data-items would be round robin.

Distribruted Pre-Aggregation (DPA) This operator can be executed in higher paral-
lelism. The only thing which is important is, that the preceding and succeeding
operator knows how many parallel instances of the DPA are present. Data-items
are forwarded from the CWD-operator together with meta-data about window ends
(respectively occurred triggers) and window start items (respectively the occurrence
of evictions). Each instance of DPA keeps a part of the current data-item buffer.
Whenever a trigger occurs, each instance executes the reduce function on its part of
the buffer. The output of each DPA vertex is one pre-aggregation result per window.

Central Final Aggregation (CFA) The central final aggregation vertex waits until it has
received all preaggregation results from the preceding DPA instances for one window.
Then, it reduces this pre-aggregations to the final aggregation result for the window.
The produced output is thereby exactly one data-item per window, which is the
final aggregation result. The CFA-operator removes all meta-data which is added
by CWD and DPA. This leads to exactly the same output as the Window operator
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(described in section 6) would produce. Thus, the distributed execution can be
made fully transparent to the user.

In the following, we will describe the functionality of each of the three operators in detail.
Thereby, we specify what the input and output formats of each operator are and how
they behave.

7.2.1 Central Window Discretization

Input: <DATAITEM> Generic Type. The type of data which is delivered from the stream
source

Output: Tuple3<DATAITEM,Numeric,Numeric> A tuple with three fields containing a
data-item, which was provided as input, the id of the current window (only set if a
trigger occurs) and the number of elements to evict from the buffer.

There are three possibilities how data-items can arrive:

• An active TP produces fake data-items on pre-notification.

• An active TP thread/runnable produces a fake data-item.

• A real data-item arrives.

We modified execution flows which are needed for the three mentioned cases. In general,
CWD needs to keep a window counter. This counter counts the occurrences of triggers.
When an active trigger produces fake data-items on pre-notification, each produced fake
data-item is processed one after each other. First, it is send to all active EPs , to obtain the
number of data-items which shall be deleted from the buffer. From the obtained result,
the number of items to delete at each parallel instance of DPA can be calculated. This
is fairly simple in case round robin is used to forward real data-items to DPA instances,
but might be more complex, when another algorithms is used. Afterwards, the window
counter is increased by one. For each succeeding DPA instance, an output tuple is emitted,
containing null in the first field, the current window counter value in the second field, and
the number of data-items to be removed from the buffer of the respective DPA instance
in the third field. When an active trigger thread produces a fake data-item, the same
steps are are executed for this fake data-item.

When we do the processing of a real data-item, we do the pre-notification of the active
triggers first, allowing them to produce fake data-items. This might cause us to enter the
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execution flow described in the previous paragraph to process the fake data-items. After
the fake data-items have been processed the regular notification of triggers is done.

In case a trigger occurred, we increase the window counter by one and emit an output
tuple containing null in the first field, the window counter value in the second field and
zero in the third field. The output tuple is forwarded to all DPA instances, which causes
all of them to produce and emit a pre-aggregation for their current buffer content. Note
that the case that a real data-item causes a trigger is rare compared to the case that it
does not cause a trigger in most queries.

No matter whether a trigger occurred or not, we now notify the EPs and calculate how
many data-items shall be deleted from each of the buffers present at the DPA instances.
Additionally we apply our round robin algorithm (or any other suitable algorithm) to
figure out which DPA instance shall receive the currently arrived real data-item. To this
instance, we send an output tuple containing the data-item in the first field, -1 in the
second field, and the number of data-items to delete from the buffer of this instance in
the third field. To all other instances, we only send an output tuple in case data-items
shall be deleted from their buffers. If so, the output tuple contains null in its first field,
-1 in the second field, and the number of data-items to delete from the buffer in the third
field. Again, note that the case that an eviction occurs is rare compared to the case that
no eviction occurs in most cases.

The most frequent case when a real data-item arrives is, that it does neither cause the
production of fake data-items, nor a trigger to occur, nor an eviction to occur. The pro-
posed solution is optimized for this case. In such a case, only one output tuple is sent to
one succeeding DPA instance.

7.2.2 Distribruted Pre-Aggregation

Input: The same as the output of CWD.

Output: Tuple2<DATAITEM,Numeric> A Tuple with two fields containing a data-item
which represents a pre-aggregation result and the id of the window the
pre-aggregation belongs to.

Each parallel instance of this operator keeps a data-item buffer containing the individual
data-items which have been sent in the first field of the input tuples. On each arrival of
an input tuple, the operator executes three processing steps:
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1. The number of data-items specified in the third field of the input tuple is deleted
from the data-item buffer.

2. A check is done whether the second field of the input tuple is unequal to minus one.
If so, this means that a window id is provided and a trigger occurred at CWD. In
such a case, the reduce function is executed on the current buffer and an output
tuple is emitted.

3. If the third field of the input tuple is not null, the data-item provided in this field
is added to the buffer.

7.2.3 Central Final Aggregation

Input: The same as the output of DPA.

Output: <DATAITEM> Generic Type. The type of data which is delivered from the stream
source. The output format of CFA matches exactly the input format of CWD.

This operator knows how many parallel instances of DPA are present. It waits until it
has received all the pre-aggregations for a specific window id. Thereby, it only needs to
keep one data-item per window id in the buffer. As soon as a second pre-aggregation
result with the same window id arrives, the reduce function can be called immediately
and the two present pre-aggregations can be combined to one data-item. Once all pre-
aggregations for one window have been received, the resulting data-item, representing the
over-all aggregation result is emitted.

7.3 Parallelization for not History Dependent Policies

In case policies are not history dependent, even a parallelization of the window discretiza-
tion is possible. An example for this is time-based windowing. Figure 14 shows how a
further parallelization for not history dependent policy can look like. An implementation
and the design of this execution flow, which is based on the execution flow for history
dependent policies, was done by Gyula Fóra, a Apache Flink contributor and member of
the Flink streaming research team at the Swedish Institute of Computer Science (SICS)
in Stockholm.

We know from the nature of time, that it doesn’t matter whether we measure the time
at different places. We will, independent from the characteristics of the arriving data-
items, get the same times. The impact of the relativity of time [29] is negligible here.
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Figure 14: Fully parallelised window discretization and aggregation for not history depen-
dent policies.

The impact of not synchronized clocks at different places in a computing cluster might
be more important instead. Anyhow, in the following, we assume either a synchronized
clock or an externally provided timestamps to be used. Thus, the time is somehow the
same at all parallel instances.

Parallel Discretization and Pre-Aggregation. Instead of sending the input data
directly to a discretization operator, which we called CWD before, we place a split op-
erator. This operator sends arriving data-items to succeeding instances of a Distributed
Window Discretization (DWD) operator. The simplest possible algorithm for the distri-
bution of data-items to different succeeding vertecies is round robin, which is also used in
the current implementation.

Each instance of DWD does a window discretization independent from each other, but
all of them act identically, meaning that the sequence of emitted window ids is the same
at all parallel instances. The aggregation can be applied in exactly in the same way as
described in the previous section. In addition, one Distributed Window Discretization
(DWD) instance can always be co-located with a DPA instance. This allows a chaining of
the two operators and prevents us from doing any serialization within the boxes marked
grey in Figure 14.

Final Aggregation. What remains is the final aggregation. We can parallelise it across
multiple windows, but not within windows. In Figure 14, the CFA operator was replaced
with a Distributed Final Aggregation (DFA) operator. Between the DPA and the DFA
operation happens a shuffling. DFA instances receive pre-aggregation results grouped by

Jonas Traub: Rich window discretization techniques in distributed stream processing
57



7.4 Parallelization of the Grouped Case

window ids. As the number of expected pre-aggregations is known, the instances know
when they have received all pre-aggregations for one window. Final aggregations can be
done and emitted in the same way as described in the previous section. The architecture
at this point is closely related to the original MR programming model. DWD can be seen
as a mapper, DPA as a combiner, and DFA as a reducer. While it is not probable, that
the aggregations results are emitted out of order, it is theoretically possible. An order
guarantee for outputs can only be provided when either a CFA is used or an ordering
operator is placed after DFA.

7.4 Parallelization of the Grouped Case

The parallelization of the grouped discretization and aggregation can be done as extension
to the parallelizations described for the not grouped case. As described in section 6.10,
the logic to do group-wise window discretization utilizes execution flows from the not
grouped case.

Without any further adjustments, the logic of the Grouped Window operator could be used
in a parallel manner. As the communication from the Grouped Window operator to the
nested instances of the Window operator is unidirectional, it can be represented in a DAG.
This allows a parallelization per group using exactly the logic described in section 6.10.
The parallel execution described in the previous sections can then be present per group.

The alternative would be to extend the used window ids, such that they consist of a group
id and a (per-group) window id. This would have the advantage that parallel instances
can adaptively process data-items of separated groups. The parallel flows don’t have to be
group-wise separated. The disadvantages is, that the amount of added meta data would
increase again and the logic of the parallel operators would become more complex, because
they have to handle group-wise buffers and group-wise pre-aggregations. In opposite to
this, when having separated parallel sub-graphs per group, the grouping can be made
transparent for the operators in the sub-graphs.
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When a stream processing platform is selected in order to solve a query, the performance
of the platform is one of the crucial points influencing the decision. In this section we show
how the window discretization and aggregation can be done in a more efficient manner.

Section 8.1 points out the optimization dimensions. In section 8.2, we categorise queries
with regard to the used windowing policies. The succeeding sections show different means
of optimization which apply for the different categories of queries.

8.1 Optimization Dimensions

Beside classical benchmarking of query executions in a real system, a theoretical evaluation
of the required workload can be done, especially in case shared aggregations are used.
The following categories allow the analysis of the influences of different optimization
opportunities.

1. Pre-aggregation: The number of calls to the reduce function, done before
the window ends.
In case sliding windows are used, different windows can share some common pre-
aggregations such that the overall number of calls to the reduce function should
become much smaller. This is closely related to the CPU utilization of the dis-
cretization operators.

2. Final aggregation: The remaining number of calls to the reduce function,
at the moment the last data-item of a window arrives.
As soon as we know that a window ended, there will be some remaining computation
which needs to be done before the aggregation result for this window can be emitted.
For example, if windows in a sliding window setup share common pre-aggregations,
we need to reduce pre-aggregation results to gain an overall aggregation for the
window we have to emit. The amount of remaining computation at the end of a
window is closely related to the latency. In case a ReduceFunction is used, we can
evaluate the amount of remaining computation by counting the remaining calls to
the reducer when a window end has been detected.

3. Memory utilization: The amount of data-items stored in a buffer.
As we will describe in section C, the state size of policies is, at least for the pre-
defined policies, very small. The memory utilization of the discretization operators
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is instead mainly caused by the data-item buffers they keep in memory. Reducing
the number of data-items in the buffer leads to lower memory utilization.

4. IO Cost: The amount of data transferred over the network.
Whenever we introduce higher parallelism, the amount of data transferred over the
network might increase, while it is zero in a purely central computation. Thereby,
it’s important to check how much more or less data needs to be transferred when
using different optimizations. We can calculate the number of tuples transferred over
network to evaluate the tradeoff between parallel execution and network utilization.

Like mentioned in 4, the network traffic might increase due to higher parallelization. The
goal of parallelization is to remove/reduce bottlenecks by distributing work to multiple
machines or processing cores. The discretization itself can indeed hardly be parallelized
as shown in section 7. What can be parallelized is the aggregation. The most important
evaluation to make here, is to figure out the highest workload which has to be done on a
single machine.

The optimizations we present in the following sections mainly address the first three
dimensions: pre-aggregation, final-aggregation and memory utilization. The IO-Costs
and the parallelization of the execution are more difficult to evaluate and there is a
tradeoff between them. A higher parallelism might increase the IO as data-items need to
be sent more often over the network compared to a computation within a single vertex.
We presented approaches for the parallelization of the discretization operators in section 7.
We also stated there, in which cases a parallel execution is preferable over a not parallel
execution.

The discretization operators presented in this thesis always do a window discretization
and apply a reduce function on each discretised window. It is important to notice, that
reduce functions in Flink are not invertible. Once a ReduceFunction has been applied to
aggregate two data-items, the data-items given as parameter cannot be regained from the
result. All optimizations presented in the following assume the use of a ReduceFunction

implementation as aggregation function.

8.2 Categorization of Queries

For the optimization of the execution of a query, we can consider different kinds of queries.
Depending on to which category a query belongs, different optimizations can be applied
to address the optimization dimensions mentioned in the previous section.

In the following, we differentiate three different kinds of queries:
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1. Tumbling window queries
When tumbling windows are used, we know from the definition of tumbling windows,
that there will not be any overlap of emitted windows or hopping. All data-items
have to be included in exactly one window. We will show optimizations for such
queries in section 8.3.

2. Sliding window queries with deterministic policies
We say that a set of policies is deterministic, if we can tell at the time a data-item
arrives, whether it is a border data-item or not. This is always the case for window
ends, but only in special cases for window begins. We will explain this in more
detail in section 8.4.

3. Sliding window queries with arbitrary policies
Optimizations for all other sliding window queries are explained in section 8.6.

4. Hopping window queries
A hopping is present in case there are data-items which are not contained in any
window. In section section 8.7, we will present under which circumstances we can
detect such situations and how unnecessary computations can be avoided when
hopping is detected.

8.3 Pre-aggregation for Tumbling Windows

As already mentioned, tumbling windows are not overlapping and there will not be any
hopping. All data-items have to be included in exactly one window.

The total number of calls to the ReduceFunction per window, is the number of data-items
contained in the window minus one. This cannot be further optimized.

What can be optimized, is the final aggregation and the memory utilization. In a not
optimized execution, the operators would keep the individual data-items in the buffer
until a trigger occurs. Thus, the maximum number of data-items in the buffer would be
the number of data-items contained in the emitted window. Once the trigger occurs, the
ReduceFunction would get applied on the buffer content, meaning that the remaining
number of reducer calls (final aggregation) would be the number of data-items contained
in the emitted window minus one.

In an optimized execution, when the first data-item arrives, it is added to the buffer.
Whenever a further data-item arrives, the ReduceFunction is called immediately to com-
bine the one data-item from the buffer with the currently arrived data-item. The data-item
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in the buffer is then replaced with the result item returned from the ReduceFunction.
Once a trigger occurs, the one data-item contained in the buffer can be emitted as result
directly and will afterwards get replaced by the currently arrived data-item. This leads
to the situation, that only one data-item at a time is kept in the buffer and whenever
a window end is reached, no call to the aggregation function remains. The result can
be emitted directly. Remember, that the data-item causing the trigger will be excluded
from the current window (section 6) and is added to the data-item buffer after the result
emission.

Summarizing, for tumbling windows:

• We can reduce the number of data-items in the buffer from the number of items
contained in a window to be always one.

• We can fully eliminate final aggregation.

From a technical point of view, the detection of tumbling windows is fairly simple. When-
ever all EPs are instance of TumblingEvictionPolicy (see description in section C.5),
the current query is a tumbling window query.

8.4 Pre-aggregation for Deterministic Policies

This type of optimization can be done whenever a set of deterministic policies is used.
We say that a set of used policies is deterministic, if we can tell at the time a data-item
arrives, whether it is a border data-item or not. For TPs , this is obviously always the
case, but for EPs , figuring out whether it is deterministic, is more complex. It depends
on the policy itself and the used TPs .

Whenever a data-item arrives, a TP decides whether a window end has been reached and
an aggregation result should be emitted. An EP decides on each data-item arrival, how
many data-items shall be deleted from the buffer.

The questions is: Will the currently arrived data-item be the first data-item in the buffer
at the moment where any further trigger occurs?

For arbitrary policies, this question can only be answered at the time the trigger occurs,
but not at the time the lower border data-items arrives. Anyhow, some sets of policies are
deterministic in a way, that the question can be answered at the time a data-item arrives.
If a count-based TP is used together with a count-based EP, all window ends are known
in advance. In case a trigger occurs every n-th data-item, the window begins are also
known in advance, because they can be calculated by subtracting the window duration
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from the window ends. The same calculation can be done if both types of policies are
time-based (using the same type of timestamp).

Checking for Window Borders. One could imagine methods to implement in a TP
and a EP, to answer the question stated before. If this methods can be implemented, the
policies are deterministic. Imagine the following two methods to be present:

• At the trigger policy:
value getNextTriggerPosition(value previousTriggerPosition)

• At the eviction policy:
value getLowerBorder(value upperBorder)

Remark, that the type of value has to be the same at the trigger and the eviction policy.
In case a time-based TP is combined with a count-based EP (or the other way around),
we say that the policies operate on different scales. One operates on a scale of sequence
ids for data-item arrival and the other on a time-scale. In such a case, the set of policies
is not deterministic, because it is impossible to answer the given question. Even though
we can tell when the trigger occurs on one of the scales, we cannot say anything about
the placement of the occurred trigger on the other scale. Thus, we cannot provide the EP
with the information it needs to calculate the positions where windows begin.

Algorithm 1 can answer the question whether a currently arrived data-item is a border
item or not. This algorithm computes the borders of windows in a loop. It starts to obtain
window ends from the trigger policy, starting at the position where the currently arrived
data-item is placed. For each window end, it obtains the associated window begin from
the eviction policy. Whenever a border has been obtained from the TP or the EP, the
position of the currently arrived data-item is compared with this border. If the positions
match, the arrived data-item is a border item and the returned result is true. The loop
continues until the window begin has reached a value beyond the position of the arrived
data-item. If there was no position match before the loop stops, it means that the arrived
data-item will be deleted from the buffer and not be present in any further window (FIFO
buffer). Thus, it cannot be a border item and the returned result is false.

Periodicity. Deterministic sets of policies don’t necessarily cause periodic occurrences of
triggers and evictions, but the most common case is that they do. Assuming periodicity
allows much better evaluations of the impacts of an optimization. In the following, we
will assume periodically sliding window discretization. Anyhow, the described border to
border pre-aggregation optimization can be applied to any deterministic set of policies
and is not limited by any periodicity requirements.
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Data: position of the currently arrived data-item as itemPos
Result: boolean : true if the arrived data-item is a border item, otherwise false

currentLowerBorder ← minimum value;
currentUpperBorder ← itemPos - 1;
while itemPos > currentLowerBorder do

currentUpperBorder ← trigger.getNextTriggerPosition(currentUpperBorder);
if currentUpperBorder=itemPos then

return true;
else

currentLowerBorder ← evictor.getLowerBorder(currentUpperBorder);
if currentLowerBorder=itemPos then

return true;
end

end

end
return false;

Algorithm 1: Algorithm to prove if an arrived data-item is a border item or not.
This algorithm executed a maximum of sw/ss iteration of the contained loop.

We say, that a periodic sliding window setup has the following parameters:

• ss : The slide size of the window. A result emission happens every ss units.

• sw : The size (length) of a window.

• d : The duration (length) of a stream.
In the beginning of a stream, the lower border of multiple windows might be at position
0. At the end, as we always emit a last result for the current buffer content before shut-
down, there might be one last emission, having out of sequence upper and lower window
borders. In the following, for the reason of simplification, we assume the first trigger to
be delayed such that the size of emitted windows remains constant. We also assume the
duration (d) to be selected in a way, that its end matches a upper window border. In case
we would not make this assumption, we would have to special case the begin and the end
of the data stream.

Due to the definition of a sliding window, sw > ss must hold. Otherwise windows would
not overlap, which would mean that the setup is not a sliding window setup.

Number of emitted Windows and Border Items. In the following descriptions
and calculations, we assume count-based window discretization. Anyhow, the described
optimization is not limited to policies based on data-item counts.
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Due to the constant window size, the first trigger occurs after one window duration (sw)
has passed. Afterwards, trigger occur periodically with regard to the slide-size (ss). The
total number of emitted windows (|W |) within a duration (d) can be calculated by dividing
the duration of the stream (d) minus the duration of the first window (sw) by the slidesize
of the window (ss) and adding plus one for the first emitted window.

1. |W | = d−sw
ss

+ 1 (Number of emitted windows)

Each emitted window has two borders. In general, the set of window begins can be derived
from the set of window ends by subtracting sw from each entry in the set of window ends.
In case sw is a multiple of ss, all window begins will match exactly the positions of window
ends from previous windows. The only exception to this is the begin of the first window.
Otherwise, there will be no matches and each emitted window causes the presence of two
borders. With regard to this, the total number of window borders (|B|) can be calculated
as follows:

2. |B| =
{
|W |+ 1 + sw−ss

ss
, ∃x ∈ N+ : sw = xss

2|W |, otherwise
(Number of window borders)

Pre-aggregation Concept. To minimize the number of calls to the reduce function,
we can utilize the aggregation optimization which we already mentioned for tumbling
windows. We now do a pre-aggregation from border to border. When the first data-
item arrives, it is added to the buffer. When further data-items arrive, they are reduced
together with the last data-item in the buffer and the last data-item is replaced with the
result of the ReduceFunction. An exception to this is the case, that an arrived data-item
is a window border. In such a case, the data-item is added to the buffer as additional
entry, which means a new pre-aggregation starts.

Buffer Content. Instead of containing individual data-items, the buffer contains now
pre-aggregations reaching from on window border to the next. This reduces the maximal
size of the buffer. Without pre-aggregation, we keep each individual data-item for one
window duration in the buffer. With pre-aggregation, the maximal buffer size depends
on whether sw is a multiple of ss. If so, as already mentioned, lower borders will match
upper borders. Thus, the number of pre-aggregations covered by one windows is the factor
which gives sw when it is multiplied with ss. If the condition does not hold, lower and
upper borders are separated, which causes the number of borders to double. The number
of pre-aggregations increases respectively.

3. sbi = sw (Maximum buffer size with individual data-items)

4. sbp =

{
sw
ss
, ∃x ∈ N+ : sw = xss

2ḋ sw
ss
e+ 1, otherwise

(Max. buffer size with pre-aggregation)
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Final Aggregation. Whenever a trigger occurs, the remaining calls to the reduce
function are those needed to aggregate the pre-aggregations in the buffer to a single
result. Hence, a maximum of sbp − 1 calls is needed for the final reduce when using
pre-aggregations. Compared to this, in case we would keep individual data-items in the
buffer, the final aggregation would consist of sw − 1 calls to the reduce function.

5. rfi = sw − 1 (Final aggregation: Reducer calls with individual data-items)

6. rfp = sbp − 1 (Final aggregation: Max. reducer calls with pre-aggregations)

Pre-Aggregation Costs. Due to the overlap of sliding windows, pre-aggregations might
be used multiple times for several window emissions. This can reduce the total amount
of calls to the reduce function significantly. Having a global view on the stream for the
given duration d, the made pre-aggregations reach from border to border. A new pre-
aggregation is always started in case a data-item is a border item. The total number of
calls to the reduce function for the calculation of all pre-aggregations in the duration d
can be calculated as follows:

7. rp = d− |B|+ 1 (Calls to the reducer to calculate all pre-aggregations)

Total Aggregation Costs. Keeping the global view on the stream for the duration
d, the total amount of calls to the reduce functions consists of all the required calls,
necessary to produce the aggregations for all emitted windows. In a not optimized setup,
the reduce function is called on a data-item buffer, containing individual data-items, for
each emitted window separately. To reduce a single window requires rfi = ws− 1 calls to
the reduce function. Thus, in a not optimized execution (ws − 1)|W | calls are necessary
for the duration d. With border to border pre-aggregation only rfp final calls to the
reduce function are necessary per result emission. Additionally, pre-aggregations have to
be calculated, but this is not done per emitted window. Pre-aggregations can be reused
by several windows. With regard to this, the total number of calls to the reducer goes as
follows:

8. rti = (ws − 1)|W | (Total calls to the reduce function; not optimized)

9. rtp =

{
|W |rfp + rp, ∃x ∈ N+ : sw = xss
|W |rfp + rp − rfp , otherwise

(with pre-aggregation)

Eviction of Pre-Aggregation Results. When executing discretization and aggregation
with border to border pre-aggregations, the execution of the deletion of data-items from
the buffer needs to be modified. Whenever an eviction occurs, we know that it either evicts
data-items up to the next border or that there will be further evictions doing this, before
the next trigger occurs. Anyhow, to make it applicable for not periodic but deterministic
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policies, we need to remember the positions of borders. As soon as an eviction occurs,
we can remove the oldest pre-aggregation from the buffer. If further evictions occur, we
have to check whether they evict beyond the lower border of the currently present first
pre-aggregation. If so, we can delete it. Otherwise, we have to keep all pre-aggregations
in the buffer.

The presented border-to-border pre-aggregation serves always equal or better performance
than solutions based on the greatest common divisor (panes).

8.5 Pre-aggregation based on GCD (Panes)

As described in section 5.1.3, the previous versions of Flink streaming implemented a
pre-aggregation sharing based on micro batches. Therefore, the gcd of the slide size (ss)
and the window size (sw) was calculated. Pre-aggregations were calculated with the
granularity of the gcd and reused for several result emissions for (overlapping) windows.

The presented border to border pre-aggregation goes beyond this approach. In the worst
case, it has the same computation effort, but in many cases it performs much better.

By using the old gcd-based pre-aggregations, the computation effort can be calculated as
follows (under the same assumptions and using the same parameters as in the previous
section):

1. sbp = sw
gcd(sw,ss)

(Max. buffer size)

2. rp = d
gcd(sw,ss)

· (gcd(sw, ss)− 1) (reducer calls; calculate all pre-aggregations)

3. rfp = sw
gcd(sw,ss)

− 1 (Max. reducer calls; final aggregation)

4. rtp = |W |rfp + rp (Total calls to the reduce function)

8.6 Pre-aggregation for Arbitrary Windows

Whenever a set of used policies is not deterministic, this means that it is not possible to
know at the time a data-item arrives, if this data-item is a lower border of a window or
not. Regarding this, the pre-aggregation from border to border cannot be applied in this
case.
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Nevertheless, pre-aggregations can be calculated with a fixed granularity. Such pre-
aggregations than need to be stored in a separated buffer, in addition to the data-item
buffer which contains the individual data-items.

Whenever a data-item causes a trigger to occur, the aggregation of the for the window
consists of three parts:

1. The aggregation reaching from the end of the current window to the next smaller
multiple of the aggregation granularity is represented by the intermediate result of
the currently in progress pre-aggregation.

2. From there, the present pre-aggregations can be used for the aggregation until (in-
cluding) the pre-aggregation having the smallest begin position grater or equal to
the begin of the window to emit has been reached.

3. Due to the fact that ReduceFunction is not invertible, the individual data-items
are now required to calculate the remaining part of the aggregation.

Whenever an eviction occurs, it must be applied on both buffers. The deletion from the
buffer for individual data-items can happen like it would without pre-aggregation. The
deletion from the pre-aggregation can work in exactly the same way as described for the
border to border pre-aggregations.

The application of a pre-aggregation with fixed granularity comes with a trade-off be-
tween the different optimization dimensions. It has a negative impact on the buffer size,
because the pre-aggregations are stored in addition to individual data-items. On the
other hand it can reduce the reducer calls required for final aggregation, because of the
use of pre-aggregations. It can also reduce the total amount of reducer calls, because
pre-aggregations might be reused for several result emissions.

8.7 Hopping Windows

A hopping is present in case a data-item arrives at the discretization operator, which will
not be included in any emitted window. When periodic windows are used, this is the case
if the the slide size is greater than the window size.

When hopping is detected, the processing effort for the arrived data-item can be reduced.
While the notifications of the policies must be done in the same way as before, there
is no need to add the data-item to the buffer. In case pre-aggregation is used, there is
also no need to calculate a pre-aggregation which covers such data-items, because the
pre-aggregation would never be used.
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In queries with tumbling and overlapping sliding windows, there can of course never be
hopping. Thus, we can say that as soon as we see one of these window types, we can stop
proving for hopping.

Detecting hopping windows

In case we assume that deterministic policies are used like we defined them in section 8.4,
we can say that we know the placement of all window borders in advance. Thus, we can
count window ends and begins up to a specific point (on the scale the policies operate).
In case there is an equal amount of begins and ends before this specific point, a hopping
situation is present at this point. Having as much window ends as window begins means
that there is now window which began already but hasn’t ended.

The following algorithm is suitable to prove for hopping, when a deterministic set of
policies is used:

This algorithm is fairly simple. We just get the borders of the first window to emit, which
has a upper border beyond the currently arrived data-item. Then we check, whether the
currently arrived data-item is places before the lower border of this window. If not, it
is included in the next window and we have no hopping. If it is placed before the lower
border, it is evicted before the next window emission and we have a hopping. Due to
the characteristic of the buffer, saying that a deleted data-item can never reappear, this
means that it cannot be included in any future window. Remark that the border at a
window begin is excluded from the window. This means, that we can still have a hopping
even if the arrived data-item is placed at a window end.

In case non-deterministic policies are used, it is unfortunately not possible to detect
hopping. We can never know whether a data-item will be evicted before or after the
next occurrence of a trigger, which means we cannot know if it can be skipped for pre-

Data: position of the currently arrived data-item as itemPos
Result: boolean : true if the arrived data-item is included in a hopping situation.

nextUpperBorder ← trigger.getNextTriggerPosition(itemPos);
nextLowerBorder ← evictor.getLowerBorder(nextUpperBorder);
if nextLowerBorder > itemPos then

return true;
else

return false;
end

Algorithm 2: Detecting hopping windows with a deterministic policy-set.
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aggregation or not. This leads to the situation, that the application of the optimization
described in section 8.6 has a negative impact on the total number of calls to the reduce
function in case hopping is present.

Without using pre-aggregation techniques, we would just do the aggregation for the cur-
rent buffer once a trigger occurs. This means skipped data-items are already excluded
and are never aggregated. If we apply pre-aggregation, we always create pre-aggregations
of a specific granularity and discard them in case they are not needed.

When hopping with arbitrary policies is present, there is a trade off between the appli-
cation of pre-aggregation with fix-granularity and not applying any optimization. With
pre-aggregation, the final calls to the reduce function can be lowered. On the other hand,
the total amount of calls to the reduce function possibly increases, because data-items
cannot be discarded before a not needed pre-aggregation is computed.
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9 Evaluation

In this work, we introduced highly expressive means of window discretization. In sec-
tion 9.1, we compare our solution with the expressiveness of the window discretization in
other systems.

Furthermore, we proved in an experiment, which we present in section 9.2, that apart
from higher expressiveness the throughput of our discretization operator scales linearly
with the amount of processed data. Thus, the introduced higher expressiveness does not
have a negative influence on the scalability.

9.1 Expressiveness

System/Language Time Count Punctuation Delta User Defined

NiagaraCQ/CQL [19] X
InfoSphere/SPL [37, 45, 44] X X X X
Spark/DStream [70] X
Esper [16] X X
Naiad [57] X
StreamInsights [43] X X X
Aurora [3] X X X
Flink v 0.7 [5, 14] X X
This work (Flink v 0.8) X X X X X

Table 4: Stream Language Windowing Semantics

Many systems and languages allowing window discretization have been proposed already.
Table 4 provides an overview of such such systems and languages.

We provided a short description of all the listed systems in section 5.1.1. None of the
presented systems can provide user-defined window discretisation. Moreover, none of the
systems is able to answer complex queries like the following:

• Concept drift detection: ”Detect concept drifts [63] in the data stream. If a drift
is detected, recalculate the concept using the last one million data-items. Thereby,
do not include data-items which are older than ten minutes.
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• Session expiration: ”Transform an input stream of user actions to an output
stream of expired sessions, whereas a session expires in case there is no user action
for 20 minutes.”

In this thesis, we presented flexible windowing semantics that allow programmers to ex-
press very complex window-based streaming queries like the two above. The discretisation
techniques presented in this work go very beyond the one which are currently available in
stream processing systems and languages.

9.2 Performance

Experiment Setup. We measured the throughput of three different discretization op-
erators combined with an aggregation. For our measurements, we made an setup where
windows are discretised based on time. The window size was 50 time units and the slide
size was 21 time units. The applied aggregation function was the max function.

Time-based discretization is the most computation expensive from the set of pre-defined
policies. Both, TimeTriggerPolicy and TimeEvictionPolicy are active policies, which
means that pre-notifications are done for each data-item arrival. If we would use count-
based discretization we would avoid pre-notifications and gain even better results for the
policy-based windowing.

We made sure, that the data source is faster than the window operation, so that we
actually measure the throughput of the discretization operators and not the speed of
the data-source. The datasource was chained to the window-operators, which prevents
serialization between the source and the discretization operation.

To make sure we only compare the discretization operators and not the different Flink
runtime versions, we ported all three operator versions to the current runtime version.
Thus, all of them ran on the same (the current) version of the runtime and could benefit
from the latest performance improvements.

The shown processing duration also contains the start-up time of the job. We made sure
that the Java Virtual Machine (JVM)-memory was pre-allocated before the job executions
started. As the first start of a job within in a session takes much longer than the following,
we always made a first run with just ten timestamps, before we run the tests with larger
amounts of data. We excluded the first run with only ten processed data-items from the
evaluation. All tests where executed with parallelism one on a current version mac-book.
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Figure 15: Performance evaluation for discretization operators with logarithmic scales.

Compared Operators. The three different discretization operators we tested are:

1. Flink version 0.7 The version which was present before the work on this thesis
started).

2. Flink verion 0.8.1. The released version of the operators presented in this thesis

3. Current Master. A further optimized implementation done by Gyula Fóra, which
will be included in the next release. This version allows a parallel execution, but
removed the ability of having multiple policies at the same time.

Test Data. As input, we used a sequence of long-values. The size shown on the x-axis
of our plots is the number of values in this sequence. We used a custom Timestamp

implementation to interpret the generated long-values as timestamps. Thus, the x-axis
depicts the number of timestamps processed by the discretization operator and the y-axes
shows the time in milliseconds which was required for the processing.

Interpretation of the Results. Figure 15 shows the measured execution times for
the processing of up to 1010 (10 billion) timestamps. Both scales are logarithmic. Up
to 106 processed timestamps, the startup time has a considerable effect. Afterwards the
execution time increases linearly with the amount of processed data for all three versions
of the discretization operators. This is the expected result. The buffer sizes are not
effected by the total amount of processed data and the computation which needs to be
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Figure 16: Performance evaluation for discretization operators with linear time scale.

done per individual data-item also remains the same. Thus, there is no reason why any
of the three solution should not scale linearly.

In Figure 16 we changed the y-axis to have a linear scale. Beside this, the figure depicts
the identical measurements. On the linear scale it is good to see that even though all
three versions of the window discretization scale linearly, there is a performance difference
between them. The 0.7 version is the fastest, which comes from the fact that it has no
overhead at all. It is a single stand alone operator which can only do time-based window
discretization but nothing else. This operator is well optimized for the single use case we
tested. The version presented in this thesis (v 0.8) is the slowest, but it provides the best
expressiveness, as it is also able to do discretization with user-defined policies and even
with multiple policies at the same time.

The remaining solution (current master) shows a performance between the two mentioned
before. It is faster than the solution presented in this thesis, because further optimizations
were made and the ability of having multiple policies at the same time was removed. It
runs still slower than the 0.7 version, because it also has an higher expressiveness causing
the overhead of policy notifications. As the current master version was made to be able
to run in parallel (see section 7.3), it has to start up multiple operators instead of only
one. This causes an increased overall execution time for our query, which is considerable
when smaller amounts of data are processed.
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10 Conclusion

In this work we introduced highly expressive means of window discretization, going much
beyond the one which have been provided earlier by any stream processing system or
language. Windowing semantics are decomposed into trigger and eviction functions, that
can be combined arbitrarily. We generalized this functions, such that they can be imple-
mented as User Defined Functions (UDFs).

We showed that there are many parallelization and optimization means that apply when
using our discretization operators. The presented border-to-border pre-aggregation serves
always equal or better performance than solutions based on the greatest common divisor
(panes).

We proved in an experiment, that (apart from higher expressiveness) the throughput
of our discretization operator scales linearly with the amount of processed data. The
application of the presented parallelizations can make the processing even faster. The
introduced higher expressiveness does not have preponderating effects on the operator
throughput.

The presented windowing semantics have been integrated in the Apache Flink open source
project and are deployed in production by several Flink users.

We plan to extend our windowing operators with more parallelization techniques. Fur-
thermore, we believe that there are many research opportunities for single and multi query
optimization using policy based window discretization.
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A Implementation Backgrounds

A.1 Object Oriented Programming

Object oriented programming is a widely used approach in software development. The
implementations presented in this thesis are done in Java, one of the most popular ob-
ject orientated programming languages. Object orientation provides many advantages
especially for managing the complexity of huge software projects. With its principles it
provides uniformity, understandability, flexibility, stability and reusability of implemen-
tations. [20]

To understand the architectural concepts presented in this thesis it is highly important to
understand the principles of object oriented programming. Object oriented programming
became famous in the beginning of the 90th and several authors stated it to be an rev-
olutionary change in programming [20, 24]. While in the beginning Smalltalk and C++
where the most used object oriented programming languages, nowadays Java evolved to
be most widely used, especially in big data processing.

Moreover, the development of the solutions presented in this thesis was done using Java,
hence presented architectural concepts and the explanations in this section are related to
the Java language and do not include any features, which are unavailable there, such as
multiple inheritance or overloading with different return types. Anyhow, we summarize
the principles of the object oriented programming model and clearly define the terminology
used in the following chapters. We do not provide a full tutorial threw the Java language,
nevertheless, we state specialities of Java wherever we consider them to be relevant for
the following sections.

Before we come to more details, let’s have a look on the most elementary definitions:

Object In general ”an object is a person, place, or thing.” [20] In object oriented design
it is ”an abstraction of something in the domain of a problem or its implementation,
reflecting the capabilities of a system to keep information about it, interact with it,
or both; an encapsulation of attribute values and their exclusive services.” [22]

Class In general ”a class is a grouping of objects together, based on common
characteristics.” [20] In object-oriented design, it is a ”description of one ore more
objects, describable with a uniform set of attributes and services; in addition, it may
describe how to create new objects in the class.” [22] In Java, when a new object of
a class is created, a special method of the class, called constructor, is executed.
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Abstract Class ”In OOP a class that has no objects is called an abstract class” [20]
”An abstract class can never be instantiated. Its sole purpose, mission in life,
raison d’être, is to be extended (subclassed).” [61] This allows the reuse of code by
inheritance and to write code working with instances of (we define instance of below)
the abstract class, even if not all functionality can be provided on the abstraction
level of the abstract class.

Interface Interfaces are special versions of abstract classes having only abstract meth-
ods.8 ”When you create an interface, you’re defining a contract for what a class can
do, without saying anything about how the class will do it. An interface is a con-
tract.” [61] All classes implementing the interface must implement all the methods
specified by the interface (except the class is abstract). [61]

Package ”Java organizes classes into packages, and uses import statements to give pro-
grammers a consistent way to manage naming of, and access to, classes they
need.” [61] The package structure is same as the folder structure in the file sys-
tem, where the code is located.

The main idea behind object orientation is an encapsulation of data by code. In princi-
ple all data in an object should (and can9) only be accessed threw procedures mediating
access to the data. [24] Thereby, the data and the logic working with the data is en-
capsulated within an object. This clearly separates object oriented programming from
earlier approaches, which tried to separate the data and the program state from the logic.
The second main approach is inheritance. It allows to share common behaviour among
multiple classes. Programmers don’t start each class from scratch, but make their class
extend an already present one from the library. Thereby an hierarchy of classes is build
where code is broadcasted automatically from top to bottom. The top classes are the
most general ones, while each inheriting class is a specialisation of the extended class.
The statements written by the programmer define how the specialised class differs from
the general one. [24]

So far we already mentioned three techniques used for managing complexity: Abstraction,
Encapsulation and Inheritance. One more is Association. [21] All of these techniques
make Object orientation a powerful tool to handle complexity. In the following we provide
definitions of the four mentioned techniques. Further techniques and detailed descriptions
of each technique can be found in the book Object-oriented analysis [21] by Coad and
Yourdon.

8With Java 8, Oracle introduced default implementations of methods in interfaces. Therefore it is
nowadays possible to put logic inside an interface. [67] In this thesis we only use Java up to version 7
and do not use default implementations in interfaces.

9In Java the technical possibility of accessing a variable directly rather than threw a procedure call,
depends on the selected access modifier.
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Abstraction ”The principle of ignoring those aspects of a subject that are not relevant
to the current purpose in order to concentrate solely on those that are” [48]

Encapsulation ”A principle, used when developing an overall program structure, that
each component of a program should encapsulate or hide a single design decision.
[...] The interface to each module is defined in such a way as to reveal as little as
possible about its inner workings.” [48] (Synonym: Information hiding) [21]

Inheritance ”A mechanism for expressing similarity among classes, simplifying definition
of classes similar to one(s) previously defined. It portrays generalisation and spe-
cialisation, making common attributes and services explicit within a class hierarchy
or lattice.” [21]

Association ”The action of combining together for a common purpose.” [2] ”People use
association to tie together certain things that happen at some point in time or under
similar circumstances.” [21]

Different classes and objects can be associated with each other using different kinds of
relationships which are defined in the following.

is-a (also referred to as gen-spec [20]) ”In OO, the concept of IS-A is based on class
inheritance or interface implementation. IS-A is a way of saying ’This thing is a
type of that thing.’ For example, a Mustang is a type of horse, so in OO terms
we can say, ’Mustang IS-A Horse.’ [...] You express the IS-A relationship in Java
through the keywords extends (for class inheritance) and implements (for interface
implementation).” [61]

has-a ”HAS-A relationships are based on usage, rather than inheritance. In other words,
class A HAS-A B if code in class A has a reference to an instance of class B.” [61]

instance of An object of class A is an instance of class B if A IS-A B. An object of A
is an instance of A, all classes A inherits from, and all interfaces it implements.
Additionally, when a class extends another, it inherits also the IS-A relationships
of the extended class. [61] ”In Java the instanceof operator is used for object
reference variables only, and you can use it to check whether an object is of a
particular type.” [61]

Each class consists of procedures, which are called methods in Java, and variables (and
constants), which are called attributes. The combination of the values of the attributes
of an object is said to be the objects state. In Java, programmers have the possibility to
use overloading and overriding when implementing methods in a class.
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Overloading ”Overloaded methods let you reuse the same method name in a class, but
with different arguments. [...] Overloaded methods MUST change the argument
list.” [61] They are allowed to change the return type and the access modifier and
they can throw broader or new checked exceptions. [61]

Overriding ”Any time you have a class that inherits a method from a superclass, you
have the opportunity to override the method.10 [...] The key benefit of overriding is
the ability to define behavior that’s specific to a particular subclass type.” [61] Over-
riding a method means, that a method with the same signature11 is implemented in
a inheriting class, replacing the functionality inherited from the extended class.

When developing an object oriented program, the goal is to archive tight encapsulation,
loose coupling, and high cohesion in classes. We already described encapsulation. Let’s
have a look at coupling and cohesion as well now to complete the set of architectural
goals.

Coupling ”Coupling is the degree to which one class knows about another class. If the
only knowledge that class A has about class B, is what class B has exposed through
its interface, then class A and class B are said to be loosely coupled [...] If, on the
other hand, class A relies on parts of class B that are not part of class B’s interface,
then the coupling between the classes is tighter” [61]

Cohesion ”Cohesion is all about how a single class is designed. The term cohesion is
used to indicate the degree to which a class has a single, well-focused purpose. [...]
The more focused a class is, the higher its cohesiveness [...] The key benefit of
high cohesion is that such classes are typically much easier to maintain [...] than
classes with low cohesion. Another benefit of high cohesion is that classes with a
well-focused purpose tend to be more reusable than other classes.” [61]

10In Java, ”A method marked with the final keyword cannot be overridden.” [61] A class marked with
the final keyword cannot get extended. ”You cannot override a method marked static.” [61]

11In Java, the signature don’t have to match exactly. The access modifier can be same or less restrictive,
the return type can be any subtype of one declared in the overridden method, and thrown catched-
exception can be any subtype of the one declared by the overridden method. [61]
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A.2 Software Testing

In software engineering, software testing is an essential part of quality assurance. Testing
allows to detect symptoms caused by bugs rather then preventing bugs in the system.
With a clear diagnoses of such symptoms bugs can be corrected easily. Anyhow, prevent-
ing bugs is the main goal of software testing. Already the test design requires thinking
about possible corner cases and program states and thereby lowers the risk of introducing
bugs before the software is coded. [15]

More formalized, ”Testing is a collection of activities that provides a practical demon-
stration of conformity between the program and the specification, based upon systematic
selection of test cases and execution of program paths and segments.” (Wasserman [1]).
According to this, testing is clearly separated from debugging, which ”is to find a known
error, or to find out if there are any obvious errors”(Miller [1]).

Software testing is one of the oldest fields in computer science. Already in the end of the
70th there was a state of the art report on this topic [1] and even in this report authors
refer to a long history of software testing. Miller, who also published an early annotated
bibliography [56] remarks: ”In fact, there is even a citation to Turing indicating that
’testing is the empirical way of software quality assurance, while proving the theoretical
way’” [1].

Already at this early time the field was split in the sub-fields ”verification techniques”,
”static testing”, ”test data selection” and the ”automation of testing techniques”. [1] Ver-
ification techniques try to logically proof the correctness of an application. Thereby it is
closely related to many proofing techniques known from today’s field of theoretical com-
puter science. Unfortunately, a formal proof is in most cases as error-prone as testing while
the effort to spent is much higher. [42] Static testing (also called static analysis [13, 15])
means testing without running the code. [1] According to this, the simplest method of
static testing is a manual code review. Automated testing (also called dynamic analy-
sis [13, 15]) is the opposite of static testing where at least parts of the code are executed
during the test.

Whenever a test is automated, the selection of sufficient test data is crucial to ensure
the tested software reaches all states one wants to test. Until today automated software
testing has evolved to be practically applicable and many test automation frameworks are
available on the market. Nevertheless, the three general limitations first stated by Manna
1978 [52] remained unchanged:

1. ”We can never be sure that the specifications are correct.”

2. ”No verification system can verify every correct program.”
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3. ”We can never be certain that a verification system is correct.”

Having this limitations in mind one has to define a reasonable trade-off between effort to
spent on test design and the complexity of the execution of the test on one side and the
fraction of the situations/states which are validated by the test on the other side.

During the last decade, test standardisation continuously won in importance and job roles
such as test analyst and technical test analyst have been established, including standard-
ized certification programs for professionals. [13] Thus, kinds of systems, the steps of test
processes, testing approaches, and test purposes have been pointed out and categorized
in literature. The software test engineers handbook [13] provides a complete list and
description.

A.3 Unit testing

All our test cases for automated testing are implemented using the JUnit test framework.
We designed and implemented a wide range of tests to ensure a correct implementa-
tion as far as possible (Remember the three genera limitations of testing [52] stated in
section A.2).

JUnit is a unit test framework for programs implemented in the Java programming lan-
guage. In general, as the name tells, automated tests per unit unit are executed. A unit
is an isolated and understandable (small) piece of code. In object oriented programming,
units are usually represented by classes or methods. [55]

Different definitions of unit tests are present in literature. In 2005, Feathers [31] stated
that different types of tests are no unit tests. Especially, if they talk to a database,
communicates across the network or touch the file system. Otaku [58] criticises this
limiting definition. [55] As we are implementing unit tests for a big data processing engine,
it is important to run tests accessing files and data-bases. Even though it might not fit to
all unit-test definitions, we use the term unit-test for test-cases which can be implemented
in JUnit.

As classes and methods can be seen as units, it makes sense to have a one to one mapping
between test classes (implementing the tests) and real classes (implementing the logic to
be tested) and an one to one mapping between accessible methods in the real class and
methods in the corresponding test class. The test classes are then named test cases. The
methods in the test classes are called test methods. [55]

A.6
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When a test case is implemented in JUnit, the programmer marks the test method with
an @Test annotation. Inside the test method implementation, the programmer can use
different assert-methods to compare actual with expected results of the program execu-
tion. [55]

Listing 10 shows an example test case implementation. The test class called MyClassTest

tests a method in the class MyClass. It is a method which calculates sum of two numbers.
For the reason of simplicity, the test is not complete in the sense, that is is sufficient to
prove the correct implementation. It just verifies that a the single addition 2 + 3 = 5 is
done correctly. If not, the test will fail and an error message will be printed.

1 public class MyClassTest {

2 @Test

3 public void sumTest() {

4 assertEquals("2 + 3 must be 5", 5, MyClass.sum(2,3));

5 }

6 }

Listing 10: An example JUnit test case implementation

In the Apache Flink project, JUnit is the standard tool for the implementation of auto-
mated tests. Hundreds of test cases are present in the project to ensure that all imple-
mented features still work correctly after a change was made.
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B Implementation

B.1 Overview

Figure 17: Implementation overview: Discretization operator implementations and inter-
faces in the windowing package.

Figure 17 shows the two newly introduced discretization operators and their dependencies.
More generally spoken, it depicts all the is-a and has-a relationships between the shown
classes and interfaces, which are part of the solution we propose.

In the following sections, we will describe the different interfaces and the operators in
more detail.

B.2 The Window Operator

In this section we will describe the execution flow at the WindowInvokable. In section 6.9,
we introduce active policies to cover some special cases. In section B.2.1 we present the
basic execution flow without active polices. In section B.2.2 we extend it to also deal with
active TPs and EPs .
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B.2.1 Basic Execution Flow

One of the main ideas behind the concept we present is, that the window discretization is
done by an own operator. The WindowInvokable implements the logic for this operator.
The TPs and EPs are parameters of the discretization operator. This clearly separates the
approach from SPL where the window discretization is set as a parameter to an operator
instead of being an operator itself.

Another main point is that the discretation operator is event driven. All actions which
happen at the WindowInvokable are always caused by the arrival of a data-item. A data-
item can either be real or fake. Real data-items are all data-items which come from a data
source12. Fake data-items are all data-items which are produced by ActiveTriggerPolicy

implementations. For the moment, we only take real data-items into consideration.

For any real data-item arrival the following actions are executed:

1. The TPs are notified with the arrived data-item as parameter. Thus, a check is
executed whether the arrived data-item is a window end border or not. In case
multiple TPs are present, all of them are notified. A result is emitted in case at
least one of them triggers.

2. In case a trigger occurred, the user-defined reduce function is executed on the current
data-item buffer and the result is emitted. This automatically makes the first data-
item in the buffer the begin border of the window.

3. The EPs are notified with the arrived data-item as parameter. In case multiple EPs
are present, all of them are notified. For the further actions, the greatest returned
value is considered as the number of data-items to delete from the buffer.

4. If the number of data-items to evict from the buffer is greater than zero, the respec-
tive number of data-items is deleted from the buffer.

5. The arrived data-item is added to the data-item buffer. Because this is done as
last step, there will be always at least one data-item in the buffer after the first
data-item arrival. This also leads to the behaviour that in case a data-item causes
a trigger, it will not be contained in the result emission it causes. In section 6 we
explained why this behaviour is desirable.

12Note, that data source means a data source of the WindowInvokable here. Any vertex/operator can
be connected to the WindowInvokable and will then be its data source. It doesn’t have to be a
DataStreamSource.
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:WindowInvokable :Trigger1 :Trigger2 :Evictor1 :Evictor2 :ReduceF

notify(DATA datapoint)

boolean

notify(DATA datapoint)

boolean

reduceBuffer()

result

output result

altalt if at least one TP returned true

notify(Object datapoint, int bufferSize)

int num

notify(Object datapoint, int bufferSize)

int num

evict max.

addToBuffer(DATA datapoint)

Figure 18: Sequence diagram for the basic execution flow at the window invokable.
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Figure 18 visualizes the explained execution flow for an example query as Unified Modelling
Language (UML) sequence diagram. The diagram shows all processing steps which are
done when a data-item arrives. Two TPs and two EPs are used in the example. In
general, any number of TPs and EPs can be used at the same time, but there has to be
at least one of each kind. The two TPs and the two EPs are always notified directly after
each other. In case there would be more than two of them, the third would follow directly
after the second, the fourth after the third and so on and so forth.

B.2.2 Extended Execution Flow with Active Policies

The extended execution flow at the WindowInvokable covers the processing of fake data-
items in addition to real data-items. As soon as one active trigger policy is present, fake
data-items can appear in addition to real data-items in two ways:

1. They can be returned by the pre-notification method of an active TP when a real
data-item arrives.

2. They can be created by a Runnable which is returned by the factory method of an
active TP and is executed in a separated thread.

Due to the first point, the execution flow needs to be extended such that, it first calls
the pre-notification methods of active TPs and afterwards processes the fake data-items
they returned. Both needs to happen before the regular notification methods of the TPs
are called. If multiple fake data-items are returned from pre-notification methods of the
active TPs , they are processed one after each other in the order they are returned. For
each fake data-item, the eviction happens first and the calculation and the emission of
the result for the current buffer is done afterwards (Action order eviction→trigger).

Figure 19 visualises the extended execution flow for an example query as UML sequence
diagram. The diagram shows all processing steps which are done when a real data-item
arrives. Two active TPs and two active EPs are used in the example. In general, any
number of TPs and EPs can be used at the same time, but there has to be at least one
of each kind. The two TPs and the two EP are always notified directly after each other.
In case there would be more than two of them, the third would follow directly after the
second, the fourth after the third and so on and so forth. There is also no limitation in
the combination of active and not active TPs and EPs . In case a TP is not active it is
not pre-notified and cannot produce fake data-items. In case an EP is not active, it is not
notified for fake data-items.
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:WindowInvokable :ActiveTP1 :ActiveTP2 :ActiveEP1 :ActiveEP2 :ReduceF

preNotifyTrigger(DATA datapoint)

Object[ ] fdi1

preNotifyTrigger(DATA datapoint)

Object[ ] fdi2

notifyEvictionWithFakeElement(Object datapoint, int bufferSize)

int num

notifyEvictionWithFakeElement(Object datapoint, int bufferSize)

int num

evict max.

reduceBuffer()

result

output result

looploop for each Object o in fdi1 and fdi2

notify(DATA datapoint)

boolean

notify(DATA datapoint)

boolean

reduceBuffer()

result

output result

altalt if at least one trigger returned true

notify(Object datapoint, int bufferSize)

int num

notify(Object datapoint, int bufferSize)

int num

evict max.

addToBuffer(DATA datapoint)

Figure 19: Sequence diagram for the extended execution flow at the window invokable.

Jonas Traub: Rich window discretization techniques in distributed stream processing
A.13



B.2 The Window Operator

The calls to the factory methods (for Runnable instances) in the active TPs are done
when the WindowInvokable is instantiated. Also the separated threads, which execute
the returned runnables, are created and started at the time of instantiation. The logic for
both is implemented in the constructor of the WindowInvokable. Hence, this is not part
of the execution flow depicted in Figure 19, because it is completely independent from
the arrival of real data-items.

Due to the creation of fake data-items in separated threads, the WindowInvokable cannot
be seen as single threaded any more and we have to think about problems coming up,
when the processing flows for multiple data-items run concurrently. While a real data-
item is processed, no fake data-items produced by other threads can be processed and
vice versa. Otherwise, the processing flows possibly interleave each other which would
cause unexpected results because of unexpected data-item deletions from the buffer.

It’s important to understand, that fake data-items, which are created by the pre-notification
method of an active trigger policy, are not created by another thread, but within the same
thread. Accordingly, they are processed before the real data-item as usual.

In Figure 19, we depicted the execution for real data-item arrivals. This automatically
includes the processing of fake data-items which are produced when the pre-notification
methods of active TPs are called. The execution flow for fake data-item arrivals, which are
caused by the creation of fake data-items through separated threads, should never be exe-
cuted at the same time. Both flows are accessed through a method in the WindowInvokable.
We prevent the interleaving of the two execution flows by adding Java’s synchronized

keyword to these methods. This provides us the guarantee, that never both execution
flows are executed at the same time and that no interleaving is possible.

In figure Figure 20, we depict the execution flow for fake data-item arrivals which are
caused by the creation of fake data-items through separated threads. You can assume
the same setup as in the previous example. Because fake data-items are not send to
any TP again, we removed the lines for the two active TPs . Instead, we added two
new lines for the Runnable which creates the fake data-item and the callback object
(ActiveTriggerCallback) it uses to submit the fake data-item. ActiveTriggerCallback
is implemented as inner class in the WindowInvokable. Hence, it has access to its meth-
ods and can forward the produced fake data-item. The Runnable can be implemented as
inner class in an active TP. Hence, it can get access to the state of the TP.

A.14
Jonas Traub: Rich window discretization techniques in distributed stream processing



B.3 The Trigger Policy Interface

:TRunnable :CallBackObj. :WindowInv. :ActiveEP1 :ACtiveEP2 :ReduceF

Submit fake data-item

Submit fake data-item

notifyEvictionWithFakeElement(Object datapoint, int bufferSize)

int num

notifyEvictionWithFakeElement(Object datapoint, int bufferSize)

int num

evict max.

reduceBuffer()

result

output result

Figure 20: Sequence diagram for the extended execution flow at the window invokable
for fake data-item arrivals which are caused by the creation of fake data-items
through separated threads.

B.3 The Trigger Policy Interface

On each data-item arrival, a TP proves and returns whether a window end has been
reached or not. If so, a result for the current buffer, which represents the window, is
emitted. We say ’a trigger occurs’ meaning that the notification method of some trigger
returns true.

1 public boolean notifyTrigger(DATA datapoint);

Listing 11: The interface for trigger policies.

In section 6.4, we described our fixed action order. By deciding for only one fixed action
order, we are able to keep the interface for TPs as simple as possible, defining only one
method shown in Listing 11. To make it applicable for arbitrary kinds of data streams,
the TriggerPolicy-interface uses the generic type DATA, representing the type of the
data-items it expects as parameter of the notification method.
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B.4 The Eviction Policy Interface

An Eviction Policy (EP) specifies under which condition data-items should be deleted
from the buffer. Like a TP, an EP is notified threw a notification method, whenever a
data-item arrives. On data-item arrival, the policy proves if and how many data-items
should be deleted from the data-item buffer.

The buffer is a FIFO buffer. Data-items can only be deleted in the order they arrived.
Therefore, the notification method only returns the number of data-items to be removed
from the buffer instead of references to specific objects.

1 public int notifyEviction(DATA datapoint, boolean triggered, int bufferSize);

Listing 12: The interface for eviction policies.

The EvictionPolicy-interface is shown in Listing 12 and defines only one method. The
generic type DATA is again the place-holder for the data-item type handled by the policy.
Respectively, the datapoint parameter is used to give the arrived data-item to the policy.
Beside the arrived data-item, the notification method receives two further parameters
called triggered and bufferSize.

The parameter triggered of the notification method is not desperately needed, but it
allows to achieve a better performance. Hence, we decided to lower the encapsulation
of EvictionPolicy in order to gain performance benefits. The parameter will be set to
true in case the given data-item also caused a trigger to occur. In some cases the EP can
be prevented from doing computations again, which were already done by the previously
executed TP. The most obvious case is the usage of tumbling windows. Here, the EP can
just delete the complete buffer in case a trigger occurred.

The remaining parameter contains the current buffer size as data-item count. This pa-
rameter is required for some policies in case multiple EPs are used at the same time. EPs
possibly need to know, whether another EP caused the occurrence of an eviction. For
instance if one wants to keep 1k data-items in the buffer, but never a data-item which
is older than 10 minutes. One would use two EPs at the same time in this case: A
count-based and a time-based. Both need to know, whether the other caused an eviction.
The time-based EP always needs to check whether the oldest data-item in the buffer is
expired. Hence, it needs an information in case the oldest data-item has changed. The
count-based EP keeps a data-item count. Hence, it needs to update its counter in case
the time-based policy caused an eviction.
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B.5 The Active Trigger Policy Interface

Active trigger policies are defined with an interface called ActiveTriggerPolicy. This
interface extends TriggerPolicy and thereby inherits its regular notification method. Ad-
ditionally, two new methods are defined called preNotifyTrigger and
createActiveTriggerRunnable. Listing 13 shows the complete interface for active trig-
ger policies.

1 public interface ActiveTriggerPolicy<DATA> extends TriggerPolicy<DATA> {

2 public Object[] preNotifyTrigger(DATA datapoint);

3 public Runnable createActiveTriggerRunnable(ActiveTriggerCallback callback);

4 }

Listing 13: The interface for active trigger policies.

For each real data-item arrival, the preNotifyTrigger methods of all present active
trigger policies are called first and can produce fake data-items. The produced fake data-
items are then processed before the real data-item. Anyhow, after all fake data-items
have been processed, the regular notification methods are called as usual. Also with the
real data-item as parameter. The policy can still trigger as usual and thereby mark the
real data-item as window end (border) which causes the emission of a result.

A speciality of the pre-notification method is its return type. It returns an array of objects
instead of an array of the generic type DATA. We allowed the method to return instances of
the most general possible class, which is Object in Java. All classes inherit from Object.
This prevents active policies from being enforced to produce fake data-items which are
instance of exactly the same class as the real data-items. Even though, we expect them
to be of the same type from a logical point of view.

There are cases where it makes sense to return instances of a different class than DATA

as fake data-items. An active time-based trigger can be prevented from having a need
to know how to create instances of DATA and from having the overhead of doing it. This
reduces the complexity of the policy implementations, increases the performance and
makes the predefined time-based trigger policy generally applicable for arbitrary types of
real data-items.

Instead of fake data-items which are instance of DATA, the TimeTriggerPolicy returns
instances of Long as fake data-items which represent the timestamps where the fake data-
items shall be placed. Thus, all required information is contained in the long-value.
Active EPs can work with the directly provided timestamp in the same way as they
would do it with one they extracted from a real data-item. Anyhow, the EP needs to be
aware of possibly receiving data-items which are instances of different classes than DATA.
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Hence, the parameter types in ActiveEvictionPolicy are adjusted respectively. We will
have a closer look on this interface in section B.6.

The mentioned factory method for runnables is called createActiveTriggerRunnable.
This method is called at the start-up of the operator. The method receives an instance of
ActiveTriggerCallback as parameter. Listing 14 shows this interface. The purpose of
the callback interface is, to provide the ability to send fake data-items from the produced
Runnable back to the operator instance.

1 public interface ActiveTriggerCallback {

2 public void sendFakeElement(Object datapoint);

3 }

Listing 14: The callback interface for active trigger policies.

We encapsulated the callback in a separated interface to prevent the policies from a need
to be changed in case the discretization operators get changed. From the perspective of the
WindowInvokable, ActiveTriggerCallback can be implemented in an inner class. Thus,
access rights to methods and variables of the WindowInvokable can be easily provided to
the ActiveTriggerCallback without hurting its cohesion and encapsulation.

B.6 The Active Eviction Policy Interface

There are not only active TPs but also active EPs . In comparison to the already known
EPs , an ActiveEvictionPolicy is notified even when the processed data-item is a fake
data-item. The ActiveEvictionPolicy interface is shown in Listing 15. It extends
EvictionPolicy and adds one further method called notifyEvictionWithFakeElement.
For each fake data-item, the policy is notified threw this method with the fake data-item
and the current buffer size as parameter.

1 public interface ActiveEvictionPolicy<DATA> extends EvictionPolicy<DATA> {

2 public int notifyEvictionWithFakeElement(Object datapoint, int bufferSize);

3 }

Listing 15: The interface for active eviction policies.

As already mentioned in the previous section, fake data-items can (from a technical per-
spective) be instance of any type. Hence, the interface for active eviction policies declares
the type of the fake data-item, passed as parameter to the pre-notification method, to
be an Object. This does not effect the regular notification method which is inherited
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from EvictionPolicy. The regular notification method still expects to receive data-
items of the generic type DATA as parameter. In most cases, fake data-items will either
always be instance of DATA, like real data-items, or always be instance of one specific
other class. Therefor, it is in most cases not required to do an instance of check in the
notifyEvictionWithFakeElement-method. Anyhow, if one wants to be completely type
save, there is no way around it.

Active EPs are notified through different methods depending on whether the data-item
is real or fake, thus, an EP can act differently in the two cases. This provides a high
flexibility when implementing user-defined active EPs .

In the current implementation of the pre-defined time-based eviction policy, we already
utilize this flexibility although there is no logical difference between the processing of
real and fake data-items. While in case of real data-items, we extract the time from the
data-item using a Timestamp instance, we directly send Long objects as fake data-items,
which represent the timestamps where the fake data-items shall be placed. Hence, the
technical realizations of the pre-notification and the notification method are different.
One receives timestamps directly but has to perform a type cast from Object to Long

and the other needs to figure out the timestamp by passing the data-item to a Timestamp-
implementation.

B.7 The Grouped Window Operator

In this section we describe the technical backgrounds of Grouped Discretization Operator
presented in section 6.10.

Grouping by Key. In case of Flink streaming, a grouping is always done by key. Keys
are extracted from data-items using a KeySelector instance. The KeySelector interface
allows the user to implement the extraction of a key from arbitrary data-item types.
Hence, similar to policies, a KeySelector receives an arrived data-item as parameter.
The return value is then the key of the data-item. Our grouped discretization operator
creates one group per unique key.

Overview of Classes and Objects. Figure 21 depicts the different classes, which are
used in the grouped case, in an Entity Relationship (ER) diagram. Classes are therefore
treated as entities. The diagram shows the relations between objects of each type at
runtime, including the cardinalities.

The grouped discretization operator is implemented in the class
GroupedWindowInvokable. At the runtime, the operator has multiple instances of
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Figure 21: Grouped windowing: Used classes in an ER diagram, showing the relations
between objects of each type, including the cardinalities, at runtime

WindowInvokable. One for each group. Both, the GroupedWindowInvokable and the
WindowInvokable can have any number of active and/or not active trigger and eviction
policies. Additionally, the figure contains different buffers, cloneable policies, and the
reduce function to be used.

Cloneable Interfaces. The interfaces CloneableTriggerPolicy, which extends
TriggerPolicy, and CloneableEvictionPolicy, which extends EvictionPolicy, spec-
ify the clone-method needed for the usage of policies in a distributed manner. All pre-
defined policies are cloneable. Using the clone-method, copies of a policy can be created,
such that each group has its own set of policy objects which are independent from the
policy objects used by other groups.

Nested Window Operators. The execution at the grouped discretization operator is
driven by two invokables. One of them, the GroupedWindowInvokable is actually executed
by the system as an operator. It has one instance of WindowInvokable per group. Thus,
the second invokable is not executed in an own vertex, but just kept as instance by the
first one. This allows to reuse parts of the logic implemented and described before and
prevents duplicated code.

Execution Flow at the Grouped Window Operator. In the following we will
describe the execution at the GroupedWindowInvokable. Thereby, we refer to the logic
which is implemented in other classes as sub-programs. Finally, we will show a summary
of the communication between the GroupedWindowInvokable and the nested instances of
the WindowInvokable. Figure 22 shows the execution flow for a real data-item arrival in
the grouped case.

Whenever a real data-item arrives, the first action which takes place is the extraction of
its key. Afterwards, the invokable proves whether a group for this key is already present.
If not, a new group with the respective key is created.
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The creation of a new group covers to create a clone of all distributed policies. There-
fore, the distributed policies passed to the constructor are kept as they are, with their
initial state. For each group, a new set of clones is created based on the policies given at
construction time. This, assumed that the clone-method was implemented by the user
correctly, leads to the guarantee, that all groups behave similar, because their processing
always starts with policy instances having the same initial state. After the creation of the
clones, the instance of the WindowInvokable to represent the new group is created, receiv-
ing the distributed policies as parameter. The present groups are stored in a HashMap,
mapping the group keys to the WindowInvokable instances which are used to process
data-items belonging to the respective group.

After it is ensured, that the group where the just arrived data-item belongs to is present,
the pre-notification methods of all central active TPs are called and can produce fake
data-items. For each produced fake data-item, the central active EPs are called first
and can request the deletion of data-items from the buffer. Such deletions are executed
through the virtual central buffer. Afterwards, the produced fake data-item is broadcasted
to all groups and is there processed as usual (see description in section B.2.2).

As next step, all central triggers are notified with the arrived data-item as parameter
threw their regular notification methods. Depending on whether a trigger occurs or not,
different actions take place.

• If no central trigger occurs: This is the simpler of the two cases. The data-
item is just forwarded to the group it belongs to. Within the group, it is processed
exactly the same way as described in section B.2.2.

• If a central trigger occurs: In case there occurs a central trigger, the processing is
slightly more complicated. We expect the emission of a result for all present groups
now. Additionally, as this was an occurrence of a trigger on the regular notification
call, the eviction needs to be executed after the emission of the result.

We introduced a new method in the WindowInvokable, which allows us to forward
a real data-item to the group, saying that it shall be considered as causing the
occurrence of a trigger in any case, even if no trigger in the WindowInvokable

occurs. We give the arrived data-item to the group it belongs using this method.
Beside the remembered trigger, the processing within the group follows the same
flow as in the not grouped case.

Now, we have to realize the emission of an result for all other groups. We cannot
give the arrived data-item to the groups as real data-item, because it would be
added to the buffers there, even though it doesn’t belong to the group. Hence, we
have to forward it as fake data-item. Remember that fake data-items are always

Jonas Traub: Rich window discretization techniques in distributed stream processing
A.21



B.7 The Grouped Window Operator

considered to cause the occurrence of a trigger. Again, as this was an occurrence
of a trigger on the regular notification call, the eviction needs to be executed after
the emission of the result. This is not the usual behaviour of the WindowInvokable

when it processes fake data-items. It was required to add another method to the
class which emits a result first and notifies the active distributed EPs afterwards.

By now, we did all the processing steps which are needed per group. What remains is the
notification of the central EPs and, if requested, the deletion of data-items through the
virtual central buffer. Finally, we add the group reference of the arrived data-item to the
virtual buffer.

A.22
Jonas Traub: Rich window discretization techniques in distributed stream processing



B.7 The Grouped Window Operator

start

get key of the data-item

is group
with key
present?

create new group with key

pre-notification of cen-
tral active triggers

notify central triggers

central
trigger

occured?

process real data-
item in its group

notify/execute central evictiors

Add group ref. to vir-
tual central buffer

process real data-item
in its group (triggered)

process data-item as fake
data-item in remaining groups end

no

yes

no

yes

Figure 22: Execution flow for a real data-item arrivals at the grouped window discretiza-
tion operator.
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Communication Summary. Summarizing the communication between the
GroupedWindowInvokable and the nested WindowInvokable instances, the
WindowInvokable provides four methods to send data-items to it and one for the eviction
of data-items:

1. Real data-item processing: A method receiving a real data-item as parameter.
The execution flow in the group is then exactly the one shown in section B.2.2.

2. Triggered real data-item processing: The same as the first, but with the guar-
antee that the data-item is considered to cause a trigger. This is used to send real
data-items which caused the occurrence of a central trigger.

3. Processing of fake data-items: The regular fake data-item processing flow. This
is used to send fake data-items produced either by separated threads or on pre-
notification of central TPs . The execution flow for fake data-item processing in the
group is exactly the one shown in section B.2.2.

4. Processing of real data-items as fake data-items: This is the only newly added
execution flow. It is used to send real data-items which caused a central trigger to
occur to the groups they don’t belong to. Here the emission of the result happens
first, then the active distributed EPs are notified, treating the passed data-item as
fake data-item. The data-item is not added to the groups buffer.

5. Eviction of data-items: When a central TP requests the deletion of data-items
from the buffer, it does it through the virtual buffer. The virtual buffer stores not
the actual data-items, but the references to the groups where data-items have been
forwarded to. Thus, deletion requests for data-items are forwarded to the group to
which the data-items where sent.

Remark, that the communication is unidirectional in the sense, that WindowInvokable

never returns a value to the GroupedWindowInvokable. This offers well opportunities for
parallelization. The execution can be represented in a DAG, where the
GroupedWindowInvokable sends messages to the WindowInvokable instances.
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B.8 Open source contribution and Design principles

Apache Flink, including the streaming API, is implemented in the object oriented pro-
gramming language Java. Additionally, there are APIs provided for other languages. In
case of streaming, there is a Scala-API as alternative to the Java-API.

The architecture we presented in this thesis, was implemented and contributed to the
Apache Flink project. Most of the presented features have been released with Flink
version 0.8.1. There is a one to one mapping between program classes and JUnit test
classes validating the correctness of the implementation. The overall contribution, made
to the Apache Flink open source project in the context of this thesis, consists of more
than 7800 lines of code.

We presented the object oriented programming model in section A.1. When a object
oriented application is developed, there are three general design goals one want to archive
in and between classes: tight encapsulation, loose coupling, and high cohesion. [61] The
architecture presented in this thesis was made in a way that covers all three design goals.

Cohesion All classes we presented have a single and well defined purpose, which serves
a high cohesion. The purpose of almost every used class or interface, can be sum-
marized in one sentence:

• WindowInvokable : Applying windowing policies and an aggregation function
on a stream of data-items.

• GroupedWindowInvokable : Applying windowing policies to a stream of data-
items and forward data-items to succeeding operators/groups regarding the
data-item keys.

• TriggerPolicy : Specify when a window ends.

• EvictionPolicy : Specify when data-items in the buffer expire.

• Timestamp : Map timestamps to data-items.

• ReduceFunction : Combine two data-items two one by applying an aggrega-
tion.

Coupling All implemented classes expose their functionality only through their interfaces.
In case of policies, timestamps and aggregation functions, methods are even defined
in separated interface-classes. Furthermore, there are no global variables used. All
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attributes are marked with the private keyword. Summarizing, the presented archi-
tecture provides a very loose coupling.

Encapsulation The details about the implementations are hidden from the view of other
classes. Like mentioned before, we made intensive use of interfaces, especially for
the definition of policies. This is the basis for user-defined windowing policies.
Thus, the information about the design decisions, made in (user-defined) policies,
is indeed hidden from the operators. To be able to work with user-defined policies,
aggregations and timestamps might be the best prove for a tight encapsulation.
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Policies)

Figure 23: UML class diagram of the windowing package.

Beside the possibility of having user-defined policies, we implemented a powerful set of
pre-defined policies using the same interfaces, which can also be used for user-defined once.
Thus, the pre-defined policies are on one hand sufficient for most use cases and serve on the
other hand as examples for user-defined policies. Additionally, the pre-defined policies can
be seen as a prove of the expressiveness which is provided by the presented architecture.
Figure 23 shows the interfaces and classes present in the windowing package. We presented
most of the depicted interfaces already in section 6 and section B. The missing ones are
all related to delta-based policies and we will explain them in section C.3.

In the following sections, we will describe the different implementations of the interfaces,
serving various kinds of policies, delta functions, and data-extraction functionalities. Ta-
ble 5 provides an overview of all policy implementations and also depicts which of them
are active, cloneable and stateful and what the size of the state is for each of them.

Jonas Traub: Rich window discretization techniques in distributed stream processing
A.27



Policy Type Cloneable Active Stateful Statesize

Count
Trigger 3 7 3 4 B
Eviction 3 7 (3) 4 B

Time
Trigger 3 3 (3) 8 B
Eviction 3 3 3 8y B

Delta
Trigger 3 7 3 xB
Eviction 3 7 3 x · y B

Punctuation
Trigger 3 7 7 0 B
Eviction 3 7 (3) 4 B

Tumbling Eviction 3 7 (3) 4 B

Activation Wrapper Eviction like nested 3 like nested like nested

Multi
Trigger if all nested

are cloneable
(3) if at least one

nested has state

∑
nested

Eviction if all nested
are cloneable

(3) if at least one
nested has state

∑
nested

Table 5: Characteristics and state-sizes of predefined policies. A data-item has a size of
xB and the data-item buffer contains y data-items.)

Although, Java objects always have a state, we say that a policy has a state only if the
policy acts differently depending on the data-items it has seen so far. When calculating
the size of the state, we count only the class attributes which are required to keep the
necessary information about the seen data-items. For example, in case of a count-based
TP, this is only one int-value keeping the current data-item count.

For the reason of simplification, we assume collections and arrays to have a size of zero
and take only the items they contain into account. We assume an int-value to have a
size of 4 B and a long-value to have a size of 8 B. Additionally, we say that a data-item
has a size of xB and that the data-item buffer contains y data-items.

All pre-defined policies are cloneable, which means they can be used as distributed poli-
cies by the GroupedWindowInvokable.
The three classes ActiveEvictionPolicyWrapper, MultiTriggerPolicy, and
MultiEvictionPolicy are special policies which wrap around other policies and add fur-
ther functionality to them. Whether they are cloneable or not depends on the cloneability
of the nested policies. In case all nested policies are cloneable, the classes
ActiveCloneableEvictionPolicyWrapper, CloneableMultiTriggerPolicy, and
CloneableMultiEvictionPolicy can be used, which allows to use the wrapping poli-
cies as distributed policies in grouped windowing.

Only time-based policies and wrapper policies are active.
For the ActiveEvictionPolicyWrapper, being active is its whole purpose, as we will
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explain in section C.6. The multi policy wrappers are always active, but in case they
only wrap around not active policies, they simply do nothing on pre-notification (in case
of TPs) and on fake data-item arrivals (in case of EPs). Accordingly, one could also say
that they are not active in such cases even though they are technically always instance of
ActiveTriggerPolicy or ActiveEvictionPolicy.

Finally, let’s have a look on the states of policies. It’s important to evaluate what the
actual size of states is. When it comes to fault tolerance it might be crucial for the perfor-
mance to have as small as possible state sizes. To provide fault tolerance in stream pro-
cessing the state of a policy needs to be serialized and stored periodically (check-pointing).
In case of failure, the execution can be replayed starting from the latest checkpoint.

For a count-based TP, as already mentioned, the state has a size of 4 B an contains
one int-value to keep a count of data-items. In the current implementation the same
holds for the count-based EP, the punctuation-based EP and the tumbling EP. Never-
theless, there are possibilities to make them stateless. The tumbling EP could simply
return Integer.MAX VALUE. All three mentioned policies could also act with regard to the
buffersize-parameter of the notification method and thereby be avoided from having
a state. The reason for implementing them using an own counter is to make them as
independent from external circumstances as possible to have a better encapsulation.

The implementation is already planned to be used with pre-aggregation optimizations
and in highly distributed fashions. In such cases the buffer-size might be unknown at the
vertex where the policy is placed. Additionally, when multiple policies are used, users
consider a TP and a EP often to work like a pair, which is wrong. Anyhow, keeping own
counts in the policies allows to implement them in a way which let them behave like those
users expect them to behave.

A time is represented by a long-value. Therefore, the time-based TP keeps the time it
triggered last as state. This is required to know which fake data-items need to be emitted
on pre-notification or whether this was already done by a separated thread. The time-
based EP needs to keep the timestamps of all elements which are in the buffer to check
whether they are expired or not.

For delta-based TPs , we need to keep one data-item as old data-item from which the delta
to the current data-item can be calculated. Hence, one data-item is required the be kept
as state. For the delta based EP we need to be able to compare each individual data-item
in the buffer to check whether it is expired or not by calculating its delta to the newest
data-item. As long as the buffer and the policy are located at the same vertex, this does
not cause a huge memory utilization because the policy will not clone the data-items but
just keep a reference to them. Anyhow, when it comes to serialization, the references will
cause the data-items in the buffer to be serialized together with the policy.
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What remains are the punctuation-based TP and wrapping policies. The punctuation-
based TP is stateless. When it is notified, it checks for the punctuation and in case the
punctuation is present it returns true. There is nothing to keep as state. The wrapping
policies does not have an own state, but inherit the state characteristics of their nested
policies. Hence, whether they are statefull or not depends on whether at least one nested
policy has a state and the state-size is the sum of the state-sizes of the nested policies.

C.1 Count-based Trigger and Eviction

The CountTriggerPolicy counts the arriving data-items. It is not active, so only real
data-items are counted. The threshold of the counter is set in the constructor. The
constructor also allows to set a custom start value for the data-item counter. This can be
used to delay the first trigger by setting a negative start value.

Often the first trigger should be delayed in case sliding windows are used. For example,
if the size of a window should be four data-items and a trigger should happen every
two data-items, a start value of minus two would allow to also have the first window
of size four. Without the negative start value the first window would contain only two
data-items.

For count-based EPs the constructor of CountEvictionPolicy also allows to set up the
number of data-items to be deleted from the buffer in case of an eviction. Eviction only
takes place if the counter of arriving data-items would be higher than the set threshold
otherwise. In such a case, not the whole buffer, but the specified number of data-items is
deleted. As Listing 16 shows, the counter of arriving data-items is adjusted respectively,
but never set below zero.

1 counter=(counter-deleteOnEviction<0)?0:counter-deleteOnEviction

Listing 16: Calculation of the counter value in the count-based eviction policy.

The manual setting of the number of data-items to delete on eviction is useful in case the
user wants to specify a custom overlap of windows. For example, we can trigger every
three data-items and set the start value of the count-based TP to minus two. Additionally,
we set the number of elements to delete on eviction to three and the maximum number
of data-items in the buffer to fife in the count-based EP. Using this setup, we will receive
windows containing fife elements with an overlap of two elements.

A.30
Jonas Traub: Rich window discretization techniques in distributed stream processing



C.2 Time-based Trigger and Eviction

C.2 Time-based Trigger and Eviction

The TimeTriggerPolicy works based on time measures. To determine the time for a
data-item, this policy uses a Timestamp-implementation. Thus, the time measure can
either be a pre-defined (default) one or any user-defined time measure (UDF-Timestamp).
In the current version, Flink streaming uses the system time provided by the JVM
(System.currentTimeMillis()) as default time measure. A point in time is always
represented as long-value. Hence, the window granularity can be set as long value as
well. If the granularity attribute is set to 100 for example, the policy will trigger at every
100th point in time. In addition to the granularity and the Timestamp-implementation,
a delay can be specified for the first trigger. If the start time given by the Timestamp-
implementation is x, the delay is y, and the granularity is z, the first trigger will happen
at x + y + z.

Time policies are active policies, which means that time-based TP might have to produce
fake data-items. We provided a detailed description of the concept behind active policies
in section 6.9. If the time-based TP is used together with SystemTimestamp (default
case), the trigger will also provide a runnable, which actively creates fake data-items
without the need of waiting for a real data-item arrival.

The TimeEvictionPolicy evicts all data-items which are older than a specified time.
Listing 17 shows a pseudo code for the removal of elements from the buffer. The check
for expiration will start with the first data-item in the current buffer and end as soon as
the buffer is either empty or its first data-item is not expired.

1 while (time(firstInBuffer)<current_time-granularity){

2 evict firstInBuffer;

3 }

Listing 17: Eviction algorithm for the pre-defined time-based eviction policy

In general, the time-based policies expect data-items to arrive in order. An arriving data-
item should always have a greater or equal timestamp than the maximum timestamp seen
at any data-item arrived previously. The only exception are fake data-items. As they are
never added to the buffer, they could theoretically occur out of order to enforce special
eviction or trigger behavior. Anyhow, the currently provided implementations always
keep the order, even for fake data-items.
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C.3 Delta-based Trigger and Eviction

The DeltaPolicy implements both, TriggerPolicy and EvictionPolicy. If it is used
as TP, it calculates a delta between the data-point which triggered last and the currently
arrived data-point. It triggers if the delta is higher than a specified threshold. In case
it is used for eviction, the policy starts from the first element of the buffer and removes
all elements from the buffer which have a higher delta to the currently arrived data-item
then the threshold. As soon as the first data-item in the buffer has a lower delta, the
eviction stops. By default, this policy is not active and does not react on fake data-items.
It can be made an active EP using a wrapper class as described in section C.6.

The DeltaFunction to be used has to be provided as parameter to the constructor. As
DeltaFunction is an interface, any user defined distance measure can be used. Addition-
ally, a sample data-item needs to be provided as parameter. This is used to calculate the
deltas before the first trigger or eviction occurred.

C.3.1 Delta Functions

Listing 18 shows the methods which needs to be implemented in order to implement the
DeltaFunction interface. The method uses the generic type DATA and thereby just expects
to get two inputs of the same type. The calculated delta between the two data-items is
returned as double-value.

1 public double getDelta(DATA oldDataPoint, DATA newDataPoint)

Listing 18: The interface for delta functions used by the delta-based policies.

In many cases the delta should be calculated using only some attributes included in the
data-item, instead of the data-item as a whole.
The abstract class ExtractionAwareDeltaFunction is provided to allow the application
of an Extractor before the delta is calculated. All predefined delta functions extend
this class. Listing 19 shows an excerpt of the class containing all important methods
and the constructor. The Extractor interface and predefined extractors are presented
in section C.3.2. ExtractionAwareDeltaFunction implements DeltaFunction. In the
getDelta-method it either converts directly from FROM to TO in case no extractor is
present or it applies the extractor to do the converting if one is present. The actual delta
is then calculated by the abstract method getNestedDelta which has the same signature
as getDelta but with parameters of the extracted type (TO). All classes inheriting from
ExtractionAwareDeltaFunction, which are all pre-defined delta functions, implement
this abstract method instead of the getDelta-method.
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1 public ExtractionAwareDeltaFunction(Extractor<DATA, TO> converter) {

2 this.converter = converter;

3 }

4 @Override

5 public double getDelta(DATA oldDataPoint, DATA newDataPoint) {

6 if (converter == null) {

7 return getNestedDelta((TO) oldDataPoint, (TO) newDataPoint);

8 } else {

9 return getNestedDelta(converter.extract(oldDataPoint), converter.extract(

newDataPoint));

10 }

11 }

12 public abstract double getNestedDelta(TO oldDataPoint, TO newDataPoint);

Listing 19: The extraction aware delta function (abstract class).

Two different delta functions are implemented so far as examples. One is the euclidean
distance (de(p, q)), implemented in EuclideanDistance, and the other is the cosine dis-
tance (dc(p, q)), which is defined as one minus the cosine similarity (sc(p, q)) and has been
implemented in CosineDistance.

The euclidean distance is the most intuitive distance measure. p and q are said to be points
in a n-dimensional euclidean space. First the distance is calculated for each dimension.
The results are squared and summed up. Finally we take the positive square root of the
calculated sum [59].

de(p, q) = de(q, p) =
√

(q1 − p1)2 + (q2 − p2)2 + ... + (qn − pn)2 =
√∑n

i=1(qi − pi)2 [59]

In case of the cosine distance, p and q are said to be vectors with n dimensions. Two
vectors are said to be equal if they point in the the same direction. The resulting distance
will be 0 in this case. The highest possible distance would be 1 in case the vectors are
independent13 [23].

dc(p, q) = 1− sc(p, q) = 1− p·q
|p||q| = 1−

∑n
i=1 piqi√∑n

i=1 p2
i ·
√∑n

i=1 q2
i

[23]

13”Let x1, x2, ..., xk be vectors of the linear space K over a field K, and let α1, α2, ..., αk be numbers
from K. Then the vector y = α1x1 + α2x1 + ... + αkxk is called a linear combination of the vectors
x1, x2, ..., xk.” [38] If y = 0 ”is only possible in the case where α1 = α2 = ... = αk = 0, the vectors
x1, x2, ..., xk are said to be linear independent (over K).” [38]
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It’s important to notice, that there are different definitions of the cosine distance present
in literature [23, 59]. The one we implemented (and which is shown above) is the algebraic
one which is most commonly defined [23].

C.3.2 Extractors

1 public interface Extractor<FROM, TO> extends Serializable {

2 public TO extract(FROM in);

3 }

Listing 20: The Extractor interface to isolate partial data from data-items.

The Extractor interface (Listing 20) was build to provide a good abstraction of an
arbitrary data transformation from one data type to another. Extractors can be used
to isolate parts of the incoming data point. Later on, a delta between the extracted
parts from two data-items can be calculated. Extractors are also used in punctuation-
based policies to isolate the punctuation from the data-item. Currently, six different pre-
defined Extractor-implementations are available, providing a huge variety of standard
extraction procedures. Anyhow, user-defined extractors can easily be implemented and
used. Extractions can also consist of a concatenation of extraction procedures provided
by multiple Extractor-implementations. The class ConcatinatedExtract, which itself
is an Extractor, can be used to encapsulate such an extraction flow. Table 6 list all
pre-defined extractors with their input and output types and a short description.
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Name FROM TO

ArrayFromTuple Tuple Object[ ]
Short description: This extractor converts a Tuple to an array. If the default constructor

is used, the fields of the Tuple will be contained as elements in the
output array in same order as they are in the Tuple. By using the
constructor with a var-args parameter, one can select any fields from
the Tuple by putting the respective field ids. The order of fields in
the output array will then be the same as the order of the ids passed
to the constructor.

FieldFromArray Object[ ] OUT (Generic)
Short description: This extractor returns a single field of the generic type OUT from an

array. The id of the field needs to be set as parameter in the constructor.

FieldFromTuple Tuple OUT (Generic)
Short description: This extractor returns a single field of the generic type OUT from a

Tuple-type. The id of the field needs to be set as parameter in the
constructor.

FieldsFromArray Object[ ] OUT[ ] (Generic Array)
Short description: This extractor allows to isolate fields of the same type (instance of

OUT) from an array. To be able to create an array of the generic type
OUT, a Class of this type needs to be passed to the constructor as
first parameter. The second parameter is a var-arg parameter to set
the ids of the fields to be extracted. The order of fields in the output
will be the same as specified in this constructor parameter.

FieldsFromTuple Tuple double[ ]
Short description: This extractor isolates double-values from a Tuple-type and returns

them as array. This can be used produce a double vector from some
fields of a Tuple. The indexes of the fields to be extracted can be
specified in the constructor using a var-args parameter. The order of
fields in the output will be the same as specified in the constructor
parameter.

ConcatinatedExtract Input type of first Output type of second
Short description: The constructor of this extractor expects two extractors as parameter

and will concatenate their extractions. Hence, the input type is the
input type of the first nested extractor, the output type of the first
nested extractor have to be the same as the input type of the second
nested extractor and the output type at the end is the one of the second
nested extractor.

Table 6: An overview of all pre-defined extractors.
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C.4 Punctuation-based Trigger and Eviction

The PunctuationPolicy implements both, TriggerPolicy and EvictionPolicy. Hence,
it can be used to trigger and evict based on a punctuation which is present within the
arriving data. Using this policy, one can react on an externally defined arbitrary win-
dowing semantics. The constructor expects a sample of the punctuation as parameter.
The policy then uses the equals-method to compare the sample punctuation with the
one which is present in any arrived data-item.

In case this policy is used for eviction, the complete buffer is deleted in case the punctua-
tion is detected. By default, this policy is not active and does not react on fake data-items.
It can be made an active EP using a wrapper class as described in section C.6. When the
policy is used as TP, it triggers if the punctuation is detected.

Optionally, an Extractor implementation can be provided as second parameter of the
constructor. The extractor is then uses to isolate the punctuation from the incoming
data-item. Hence, it is simply possible to extract a punctuation which is present in a field
of an array, a Tuple-type or any other arbitrary complex data structure. The available
predefined extractors are presented in section C.3.2. If no extractor is provided, the
arrived data-item itself (as a whole) is compared with the sample punctuation.

C.5 Tumbling Eviction Policy

The TumblingEvictionPolicy was made to prevent the EP from doing computations,
which where already done by the TP, again. In case tumbling windows are used, we need
to clear the whole buffer whenever a trigger occurred. If we want to achieve this behaviour
having a count-based TP, we could use a count-based EP, but this is inconvenient. The
EP would do the same counting task again. Additionally, it is complex when multiple
TPs are used at the same time. The TumblingEvictionPolicy serves better performance
and simplicity. It is sensitive to the triggered parameter of the notifyEviction method
and deletes the whole buffer whenever this parameter is set to true which means that a
trigger occurred.

By default, TumblingEvictionPolicy is not instance of ActiveEvictionPolicy, because
there are some use-cases where the buffer should not be deleted when fake data-items are
produced. Anyhow, one can make TumblingEvictionPolicy active by wrapping it in
ActiveEvictionPolicyWrapper as described in section C.6.
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C.6 Active Eviction Policy Wrapper

The ActiveEvictionPolicyWrapper takes any EvictionPolicy instance as parameter in
its constructor. It wraps around this given policy and thereby makes it an
ActiveEvictionPolicy. Technically, this is done by forwarding all notifications caused
by fake data-item arrivals to the regular notification method of the nested EP.

In case an already active policy is wrapped into ActiveEvictionPolicyWrapper, the
wrapper will hide the nested policy’s method for fake data-item notifications and forward
fake data-items to the regular notification method, like it is usually only done with real
data-items.

C.7 Multi Policy Wrapper

As described previously already, it is possible to use multiple EPs and TPs at the same
time. This can be done by adding these policies directly to the
WindowInvokable or GroupedWindowInvokable. In addition to this way of having multi-
ple policies, there is another way of doing it. The class MultiTriggerPolicy implements
ActiveTriggerPolicy and can encapsulate multiple TPs . MultiEvictionPolicy imple-
ments ActiveEvictionPolicy and can do the same for EPs .

Both approaches have advantages and disadvantages. Having the policies directly in the
invokable makes it much easier to identify logical equivalences across queries or within huge
queries. Hence, this approach might serve better optimization opportunities. Having poli-
cies separated can also allow better parallelization opportunities, because different steps
in the window discretization can possibly be split across multiple execution vertexes. The
biggest disadvantage is the increased complexity of the invokables. Having multiple poli-
cies requires to have an extension made to the execution flow and enforces the developer of
the invokable to handle a bunch of corner cases and dependencies between the data-item
buffer and multiple policies. Preventing this increased complexity is on the other hand
the most important advantage of using MultiTriggerPolicy and MultiEvictionPolicy

instead.

Another advantage is the possibility of having different strategies for multiple triggers
and evictions. For triggers, the invokables always says that a trigger occurred in case at
least one policy triggered. For evictions the invokables always take the greatest returned
value into account. The multi policy wrappers can provide different strategies without
increasing the complexity at the invokable. The application of the strategy is encapsulated
by the wrapper and thereby completely transparent from the invokable’s perspective.
Different strategies for TP could for example be that all nested TPs need to trigger or that
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1 case MAX:

2 result = 0;

3 for (Integer item : items) {

4 if (result < item) {

5 result = item;

6 }

7 }

8 return result;

Listing 21: The MAX eviction strategy

1 case MIN:

2 result = Integer.MAX_VALUE;

3 for (Integer item : items) {

4 if (result > item) {

5 result = item;

6 }

7 }

8 return result;

Listing 22: The MIN eviction strategy

1 case SUM:

2 result = 0;

3 for (Integer item : items) {

4 System.out.print(item+":");

5 result += item;

6 }

7 System.out.println(result);

8 return result;

Listing 23: The SUM eviction strategy

1 case PRIORITY:

2 for (Integer item : items) {

3 //first value != 0

4 if (item > 0) {

5 return item;

6 }

7 }

8 return 0;

Listing 24: The PRIORITY eviction
strategy

exactly one needs to trigger. For EPs , four different strategies have been implemented,
shown in listings 21 to 24. All available strategies are listed in an enum. Within a
switch-case-block, only the selected strategy is applied.

Combining both approaches even allows to have different strategies for different groups
or groups of groups of policies within the same setup. This can be a powerful tool and
enables many possibilities to make policies reusable for different queries.

In general, when a multi policy wrapper is notified, it will notify all nested policies through
their respective methods and collect the return values. The selected strategy is then ap-
plied on the set of collected return values to calculate a result which can be returned to the
invokable. A special case is the factory method for runnables in active triggers. When this
factory method is called in MultiTriggerPolicy, it collects the runnables from all nested
active TPs , but can only return one runnable to the invokable. MultiTriggerPolicy has
its own Runnable-implementation as inner class, which is returned to the invokable. This
inner class takes all the collected runnables as parameter in the constructor. At the mo-
ment the Runnable is executed by the invokable, it will start one separated thread for
each of the runnables it got as parameter in its constructor.
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D Action Order in SPL

Figure 24 is an excerpt from Generic windowing support for extensible stream processing
systems [37] by Gedic. It shows the action orders in SPL for different combinations of
policies.

Figure 24: Figure from [37]: Order of actions for tumbling and sliding windows in SPL.
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E Entity Relationship Diagrams and Flow Charts

This thesis contains entity relationship diagrams with cardinality symbols according to
the Richard Barker annotation[12].

Figure 25: Elements of entity relationship diagrams according to the Richard Barker an-
notation [12]

Furthermore this thesis contains flow charts according to DIN 66001[34] and ISO 5807[32].

Figure 26: Flow chart elements according to DIN 66001[34] and ISO 5807[32] [Image:
internationalpbi.com]
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F Referenced Java Classes

ActiveCloneableEvictionPolicyWrapper org.apache.flink.streaming.api.windowing.
policy.ActiveCloneableEvictionPolicyWrapper
DOCHOME/api/java/org/apache/flink/streaming/api/windowing/policy/ActiveCloneableEvictionPolicyWrapper.html

ActiveEvictionPolicy org.apache.flink.streaming.api.windowing.policy.
ActiveEvictionPolicy
DOCHOME/api/java/org/apache/flink/streaming/api/windowing/policy/ActiveEvictionPolicy.html

ActiveEvictionPolicyWrapper org.apache.flink.streaming.api.windowing.policy.
ActiveEvictionPolicyWrapper
DOCHOME/api/java/org/apache/flink/streaming/api/windowing/policy/ActiveEvictionPolicyWrapper.html

ActiveTriggerCallback org.apache.flink.streaming.api.windowing.policy.
ActiveTriggerCallback
DOCHOME/api/java/org/apache/flink/streaming/api/windowing/policy/ActiveTriggerCallback.html

ActiveTriggerPolicy org.apache.flink.streaming.api.windowing.policy.
ActiveTriggerPolicy
DOCHOME/api/java/org/apache/flink/streaming/api/windowing/policy/ActiveTriggerPolicy.html

CloneableEvictionPolicy org.apache.flink.streaming.api.windowing.policy.
CloneableEvictionPolicy
DOCHOME/api/java/org/apache/flink/streaming/api/windowing/policy/CloneableEvictionPolicy.html

CloneableMultiEvictionPolicy org.apache.flink.streaming.api.windowing.policy.
CloneableMultiEvictionPolicy
DOCHOME/api/java/org/apache/flink/streaming/api/windowing/policy/CloneableMultiEvictionPolicy.html

CloneableMultiTriggerPolicy org.apache.flink.streaming.api.windowing.policy.
CloneableMultiTriggerPolicy
DOCHOME/api/java/org/apache/flink/streaming/api/windowing/policy/CloneableMultiTriggerPolicy.html

CloneableTriggerPolicy org.apache.flink.streaming.api.windowing.policy.
CloneableTriggerPolicy
DOCHOME/api/java/org/apache/flink/streaming/api/windowing/policy/CloneableTriggerPolicy.html

ConcatinatedExtract org.apache.flink.streaming.api.windowing.extractor.
ConcatinatedExtract
DOCHOME/api/java/org/apache/flink/streaming/api/windowing/extractor/ConcatinatedExtract.html

CosineDistance org.apache.flink.streaming.api.windowing.deltafunction.
CosineDistance
DOCHOME/api/java/org/apache/flink/streaming/api/windowing/deltafunction/CosineDistance.html

Count org.apache.flink.streaming.api.windowing.helper.Count
DOCHOME/api/java/org/apache/flink/streaming/api/windowing/helper/Count.html

CountEvictionPolicy org.apache.flink.streaming.api.windowing.policy.
CountEvictionPolicy
DOCHOME/api/java/org/apache/flink/streaming/api/windowing/policy/CountEvictionPolicy.html
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CountTriggerPolicy org.apache.flink.streaming.api.windowing.policy.
CountTriggerPolicy
DOCHOME/api/java/org/apache/flink/streaming/api/windowing/policy/CountTriggerPolicy.html

DataStream org.apache.flink.streaming.api.datastream.DataStream
DOCHOME/api/java/org/apache/flink/streaming/api/datastream/DataStream.html

Delta org.apache.flink.streaming.api.windowing.helper.Delta
DOCHOME/api/java/org/apache/flink/streaming/api/windowing/helper/Delta.html

DeltaFunction org.apache.flink.streaming.api.windowing.deltafunction.DeltaFunction
DOCHOME/api/java/org/apache/flink/streaming/api/windowing/deltafunction/DeltaFunction.html

DeltaPolicy org.apache.flink.streaming.api.windowing.policy.DeltaPolicy
DOCHOME/api/java/org/apache/flink/streaming/api/windowing/policy/DeltaPolicy.html

EuclideanDistance org.apache.flink.streaming.api.windowing.deltafunction.
EuclideanDistance
DOCHOME/api/java/org/apache/flink/streaming/api/windowing/deltafunction/EuclideanDistance.html

EvictionPolicy org.apache.flink.streaming.api.windowing.policy.EvictionPolicy
DOCHOME/api/java/org/apache/flink/streaming/api/windowing/policy/EvictionPolicy.html

ExtractionAwareDeltaFunction org.apache.flink.streaming.api.windowing.
deltafunction.ExtractionAwareDeltaFunction
DOCHOME/api/java/org/apache/flink/streaming/api/windowing/deltafunction/ExtractionAwareDeltaFunction.html

Extractor org.apache.flink.streaming.api.windowing.extractor.Extractor
DOCHOME/api/java/org/apache/flink/streaming/api/windowing/extractor/Extractor.html

FlatMapFunction org.apache.flink.api.common.functions.FlatMapFunction
DOCHOME/api/java/org/apache/flink/api/common/functions/FlatMapFunction.html

GroupedWindowInvokable org.apache.flink.streaming.api.invokable.operator.
GroupedWindowInvokable
DOCHOME/api/java/org/apache/flink/streaming/api/invokable/operator/GroupedWindowInvokable.html

GroupReduceFunction org.apache.flink.api.common.functions.GroupReduceFunction
DOCHOME/api/java/org/apache/flink/api/common/functions/GroupReduceFunction.html

HashMap java.util.HashMap
http://docs.oracle.com/javase/7/docs/api/java/util/HashMap.html

KeySelector org.apache.flink.api.java.functions.KeySelector
DOCHOME/org/apache/flink/api/java/functions/KeySelector.html

Long java.lang.Long
http://docs.oracle.com/javase/7/docs/api/java/lang/Long.html

MultiEvictionPolicy org.apache.flink.streaming.api.windowing.policy.
MultiEvictionPolicy
DOCHOME/api/java/org/apache/flink/streaming/api/windowing/policy/MultiEvictionPolicy.html

MultiTriggerPolicy org.apache.flink.streaming.api.windowing.policy.MultiTriggerPolicy
DOCHOME/api/java/org/apache/flink/streaming/api/windowing/policy/MultiTriggerPolicy.html
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Object java.lang.Object
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html

PunctuationPolicy org.apache.flink.streaming.api.windowing.policy.PunctuationPolicy
DOCHOME/api/java/org/apache/flink/streaming/api/windowing/policy/PunctuationPolicy.html

ReduceFunction org.apache.flink.api.common.functions.ReduceFunction
DOCHOME/api/java/org/apache/flink/api/common/functions/ReduceFunction.html

Runnable java.lang.Runnable
http://docs.oracle.com/javase/7/docs/api/java/lang/Runnable.html

SystemTimestamp org.apache.flink.streaming.api.windowing.helper.
SystemTimestamp
DOCHOME/api/java/org/apache/flink/streaming/api/windowing/helper/SystemTimestamp.html

Time org.apache.flink.streaming.api.windowing.helper.Time
DOCHOME/api/java/org/apache/flink/streaming/api/windowing/helper/Time.html

TimeEvictionPolicy org.apache.flink.streaming.api.windowing.policy.
TimeEvictionPolicy
DOCHOME/api/java/org/apache/flink/streaming/api/windowing/policy/TimeEvictionPolicy.html

Timestamp org.apache.flink.streaming.api.windowing.helper.Timestamp
DOCHOME/api/java/org/apache/flink/streaming/api/windowing/helper/Timestamp.html

TimeTriggerPolicy org.apache.flink.streaming.api.windowing.policy.TimeTriggerPolicy
DOCHOME/api/java/org/apache/flink/streaming/api/windowing/policy/TimeTriggerPolicy.html

TimeUnit java.util.concurrent.TimeUnit
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/TimeUnit.html

TriggerPolicy org.apache.flink.streaming.api.windowing.policy.TriggerPolicy
DOCHOME/api/java/org/apache/flink/streaming/api/windowing/policy/TriggerPolicy.html

TumblingEvictionPolicy org.apache.flink.streaming.api.windowing.policy.
TumblingEvictionPolicy
DOCHOME/api/java/org/apache/flink/streaming/api/windowing/policy/TumblingEvictionPolicy.html

Tuple org.apache.flink.api.java.tuple.Tuple
DOCHOME/org/apache/flink/api/java/tuple/class-use/Tuple.html

WindowInvokable org.apache.flink.streaming.api.invokable.operator.WindowInvokable
DOCHOME/api/java/org/apache/flink/streaming/api/invokable/operator/WindowInvokable.html
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