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Abstract

Mobile applications should work regardless of which type of wireless inter-
face is used, and should be able to conceal unstable connections from the
user to improve user experience. Therefore, network testing is important
when developing mobile applications, but it is a challenge to reproduce net-
work conditions when using real cellular networks since the test engineer has
no control over the quality of the cellular network. Existing software tools
can restrict bandwidth and add latency to the connection, but these tools
do not accurately emulate cellular networks.

This thesis proposes a system where it is possible to shape the network
tra�c for connected devices to mimic the network patterns of a real cellu-
lar connection when running on a WiFi connection. The design presented
in this thesis is intended for testing mobile applications under diverse 3G
connection parameters, such as latency, bandwidth and other characteristics.

This thesis was conducted at Spotify, a company that provides a music
streaming service which is a frequent user of network data tra�c. The 3G
emulator was evaluated using the Spotify Android application by measur-
ing the correlation between packet traces from a real 3G connection and
the 3G emulator. This correlation was compared to the correlation between
packet traces from a real 3G connection and the current network emulator at
Spotify. The evaluation shows that the proposed 3G emulator outperforms
the current network emulator when performing tests on the Spotify appli-
cation for Android. By using this emulator, we expect the network testing
to become more e↵ective as any 3G condition can be tested with repeatable
results.
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Chapter 1

Introduction

When considering the perceived quality of a software from the end user’s
perspective, not only functional factors are important. One must also con-
sider factors such as performance and energy consumption since these factors
make a big impact on the user experience, especially in devices with limited
hardware and battery life.

In the case of software which is dependent on wireless networks for com-
munication, testing becomes very complex as di↵erent types of networks, in-
cluding WiFi, 3G, Long-Term Evolution (LTE) etc. behave very di↵erently.
This means that data patterns (patterns in which data packets are received
and transmitted over the network), delays, bandwidth and signal strength
changes drastically over time as opposed to wired technologies which keep
a comparatively constant quality over time. The network behavior of a
mobile application has significant impact on the above mentioned quality
metrics. A mobile application must function properly regardless of which
wireless technology is used, and should be robust enough to conceal varying
or unstable wireless network conditions for the user.

Therefore, testing these adverse conditions is very important, but it is
not trivial. The feasibility of testing a mobile application under diverse
and realistic network settings is limited by the testing environment where
di↵erent conditions are generally hard to mimic. The delays in network
tra�c introduced by di↵erent cellular operator settings, variations of signal
strength and latencies in the network are a few examples of network condi-
tions that the application tests should consider. Performing tests to cover
these cases pose a problem without the correct tools to emulate the network
conditions.

Emulating is the term we will be using in this thesis to explain the act of
mimicking the outwardly observable behavior of a technology. An emulator
is a device (hardware or software) which performs emulation, which in the
case of this thesis means to shape the network tra�c.

The vision of the project is that, if a certain 3G network in a far away

4



1.1. PROBLEM DEFINITION CHAPTER 1. INTRODUCTION

place has problems, one can emulate this network on the emulator to repro-
duce the problems without leaving the o�ce. A WiFi network is much easier
to control than a cellular network since the evaluator has control over the
WiFi access point. A WiFi network is also more a↵ordable than a cellular
network, i.e performing extensive tests on a cellular network requires a ded-
icated SIM card for each network type (3G, 4G, and di↵erent configurations
of them). By using a WiFi network and shaping the network data tra�c
to mimic the data patterns of a cellular connection instead of using a real
cellular connection one can use the same network settings each test session,
and therefore make it easier to reproduce issues connected to networking.

1.1 Problem Definition

This thesis aims to solve the problem of cellular network emulation over a
WiFi network by developing and evaluating a tool which emulates cellular
network interfaces by shaping the outgoing and incoming network tra�c of
a device. Any WiFi compatible device should be able to connect to the
emulator, and thereby have an emulated 3G connection.

The main goals of the thesis are:

1. Design and develop a solution to emulate 3G tra�c using a
WiFi connection

The implemented tool will be carefully designed to mimic a 3G con-
nection as accurately as possible. The implementation will take into
account the round trip time (RTT), variances in RTT, bandwidth as
well as the radio allocation mechanism of 3G that impacts the data
patterns.

2. Evaluate the data pattern created by the solution against real
3G network traces

To ensure that the implemented 3G emulator behaves more accurately
than Spotify’s previous network testing solution, Snigel which only
emulates RTT and bandwidth, an evaluation of the 3G emulator’s and
Snigel’s similarity to a real 3G connection will be conducted. Since
the emulator solution is developed at Spotify, the evaluation will be
done using the Spotify Android application with several use-cases to
generate several di↵erent sets of network data.

1.2 Methodology

In the interest of structure, the project is split into several steps. The first
three steps correspond to the first goal, and the fourth step corresponds to
the second goal. The explanation of each phase is described below:
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1.3. INTENDED AUDIENCE CHAPTER 1. INTRODUCTION

1. Study the main mechanisms that impact the tra�c patterns
in wireless networks.

We will survey the recent research literature about 3G and WiFi net-
works as well as network emulation and performance testing.

2. Perform an evaluation of the available tools and methods used
for network emulation in order to select the most appropriate
approach for the project.

The evaluation will be done by studying literature concerning relevant
tools for general network emulation (Netem, WANem etc.) as well as
tools specifically used for 3G emulation. The tools will be compared
and considered for usage in the implementation for this thesis.

3. Design and develop a solution to mimic the dynamic envi-
ronment of 3G networks.

This is the main implementation part of the project. A tool which
emulates 3G network interfaces will be developed for the purposes of
this project. We will use the knowledge from the literature studies
as well as the evaluation of current tools to decide how to build the
hardware- and software architecture, as well as to decide which tools
to use to develop the 3G emulator. A functional test will be done to
verify correct behavior of the implementation.

4. Evaluate the 3G emulation against real 3G network.

The evaluation criteria includes comparisons of RTT, bandwidth and
packet inter-arrival time. Network packet traces will be recorded from
the mobile device during a Spotify session. The same session will be
recorded on a real 3G network, the current network test environment
Snigel as well as the newly implemented 3G emulator. The recorded
packet traces will then be compared with each other based on packet
inter-arrival times to ensure that the new 3G emulator performs more
accurately than Snigel. The packet inter-arrival times will make a good
metric because it captures the timing characteristics of the network
connection.

1.3 Intended Audience

This thesis is intended for people interested in network emulation, network
testing, and in particular 3G. The report should be understandable by any-
one with basic knowledge of the Linux operating system and knows the
di↵erence between kernel level and user level applications. Basic program-
ming knowledge is also necessary as well as basic understanding of computer
networks. Knowledge of network programming in Linux and 3G technology
is not necessary as everything that is needed will be explained later in this
thesis.

6



1.4. RELATED WORKS CHAPTER 1. INTRODUCTION

1.4 Related Works

This section describes some related previous works and similar projects.

1.4.1 Network Emulation

Network emulation is not a new idea, it is commonly used by developers but
it seldom o↵ers any sophisticated emulation features. Some of the functions
in these emulators, such as restricting bandwidth and increasing the delay
in the network are also desired in this thesis. Therefore, we look at previous
implementations of these functions.

Snigel Spotify uses the Snigel system, which is a simple network restrictor
developed internally at Spotify. Snigel internally uses Netem which has
the possibility to throttle the network by adding delay and restricting the
bandwidth.

3G Emulation When it comes to emulating 3G networks, there does
not exist many options. There are some solutions developed, for example,
López-Beńıtez et al. [7] and Teyeb et al. [13]. These two papers presents
two di↵erent solutions to emulate 3G connections in real-time with the aim
to evaluate quality of service. Another attempt, very similar to the solution
developed for this thesis is presented by Andres Lagar-Cavilla [6]. This is an
open source emulator developed for an older Linux kernel 2.6.18 (released in
September, 2006). We were not able to find any public evaluations of this
tool.

Emulation Comparisons Nussbaum et al. [10] have presented a detailed
comparison of three di↵erent network emulation tools, where they explain
the technical di↵erences and how these translate to functional di↵erences.
The main focus of the article is the accuracy of latency and bandwidth
emulation. Their tests are valuable for this thesis, as it is used as inspiration
for our implementation.

Velásquez and Gamess [15] gives a similar comparison of six di↵erent
network emulation tools. The accuracy of bandwidth, delay and packet loss
is evaluated with both IPv4 and IPv6 tra�c.

Bandwidth restriction In 2013, Moe [9] implemented bandwidth restric-
tion to Netem. The implementation is well documented, and the function-
ality of qdiscs is properly explained.

1.4.2 Mobile Application Testing

3G and WiFi Network Testing Wasserman [18] discusses the issues
of mobile application development and mention the problem of testing for

7



1.5. CONTRIBUTIONS CHAPTER 1. INTRODUCTION

di↵erent kind of networks (3G, 4G, WiFi). There is no solution suggested,
but the issue is emphasised.

1.4.3 Mobile Energy Consumption

EnergyBox Vergara et al. [17] present the EnergyBox tool, which anal-
yses real network tra�c traces and estimates the energy consumed by the
wireless interface. EnergyBox models the power consumption by estimating
the state in which the 3G interface is, and how this changes over time. The
implementation is quite similar to how parts of the implementation in this
thesis can be implemented. The di↵erence is that we have to model it in
real-time while EnergyBox uses stored packet traces.

1.5 Contributions

The contribution of this thesis is a 3G emulator which allows any WiFi
enabled device to connect and have it’s network tra�c restricted and shaped
as if it were connected to a real 3G network. The emulator is intended to
be used when testing mobile applications which are heavy users of mobile
data tra�c.

To achieve this, a Linux kernel module was developed to shape the out-
going network tra�c to replicate a 3G connection. This module is based on
the tool created by Andres Lagar-Cavilla mentioned above, but improved
to properly emulate both uplink and downlink tra�c. The kernel module
was installed on a server at Spotify and configured to replicate the Telia 3G
network in Stockholm, Sweden. An evaluation of the 3G emulator was then
conducted by using realistic use-cases from the Spotify client.

1.6 Report Structure

In chapter 1, the problem definition and methodology is explained. Also, re-
lated works are described here. Chapter 2 starts by explaining how Spotify
uses network testing and the future requirements for their testing environ-
ment. Further, we explain the basics about WiFi and 3G networks and data
pattern characteristics which is necessary to fully understand this thesis. In
chapter 3, all the tools considered to implement in the solution are explained
and discussed. Chapter 4 contains the design choices as well as explanation
of the hardware and software used in this thesis. In this chapter, the de-
veloped 3G emulator software is explained, and configuration details are
presented. To emulate a 3G network, one have to measure certain parame-
ters of the 3G network first. These measurements are presented in chapter
5. The evaluation of the 3G emulator is addressed in chapter 6. The results
are summarised in chapter 7 as well as a discussion about the feasibility of
the proposed solution.
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Chapter 2

Background

This chapter explains the necessary background information regarding WiFi,
3G and the current network testing at Spotify. This background information
is important to fully understand the implementation and evaluation of the
solution proposed in this thesis.

2.1 Network Testing at Spotify

Network testing at Spotify is currently done using the internally developed
system Snigel, see Figure 2.1. Snigel consists of a WiFi hotspot connected to
the Internet via a Linux computer (shaper) which individually restricts the
network for the connected devices. The resulting 3G emulator system de-
veloped in this thesis uses the same physical architecture, only the software
in the shaper is changed. The network restrictions that can be emulated by
Snigel are increased RTT, restricted bandwidth, packet loss, packet dupli-
cation, packet corruption and packet reordering.

One of the main upsides with Snigel is the simplicity to connect to it.
Any device with a WiFi interface can connect to it just as any other wire-
less network. The connection is then configured with connection parameters
(e.g. bandwidth or latency) individually for each IP address using a Repre-
sentational State Transfer (REST) application programming interface (API)
in the Snigel computer.

The Snigel computer runs a Linux distribution using kernel 3.13, and
uses the Linux Tra�c Control (TC) framework, an application level pro-
gram which lets the user control network queuing disciplines (qdisc) in kernel
space. TC and qdisc are further explained in section 3.1.1. The Snigel com-
puter contains two wired network interfaces, where the one named eth0 is
directly connected by wire to the WiFi bridge, and the interface named eth1
is connected to the Internet. The mobile devices are wirelessly connected to
the WiFi bridge.

Due to restrictions in TC and qdiscs, the Snigel computer can only shape

9



2.1. TESTING AT SPOTIFY CHAPTER 2. BACKGROUND

Figure 2.1: Snigel, the current network test setup at Spotify.

the outgoing network tra�c. When a data packet enters the Snigel computer
on eth0 it is directly bridged to eth1, and vice versa. By shaping the Snigel
computers’ outgoing data tra�c on eth0 according to the downlink rules,
and shaping outgoing tra�c on eth1 according to the uplink rules, all tra�c
to and from the device under test (DUT) will be shaped according to the set
up rules. The shaping is completely transparent to the devices connected to
Snigel and therefore allows any type of device to connect. Any data which
source or destination is an IP address which does not have any shaping rule
is not shaped.

The shaping in the Snigel system is simply the means of bu↵ering data
packets some time before they are sent. Packet loss is emulated by simply
not sending the packets. By doing this in certain ways, all of the above
mentioned restrictions can be made (increased RTT, restricted bandwidth,
packet loss, packet duplication, packet corruption and packet reordering).
The time the packets are stored in the Snigel computer before they are
sent depends on the configuration of the bandwidth restrictor (Hierarchical
Token Bucket) and the latency increaser (Netem). These will be explained
in more detail in chapter 3.

The functionalities of Snigel are enough for much of the testing conducted
at Spotify, but it does not provide enough functionality to realistically em-
ulate a 3G network. The current approach is able to emulate a bad WiFi
connection (increased RTT, reduced bandwidth etc.). However, this does
not represent a 3G connection since the network interfaces work di↵erently,
and thereby treats the sending and reveicing of data di↵erently. These dif-
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2.2. 3G CHARACTERISTICS CHAPTER 2. BACKGROUND

Figure 2.2: The RRC state machine inspired by Ericsson [19].

ferences are covered in section 2.2 and 2.3.

2.2 3G Characteristics

When considering performance, 3G di↵ers from WiFi in a number of ways.
One of the most important aspect is of course the bandwidth and RTT,
but we also have to consider more 3G specific aspects, such as the radio
allocation performed at the operator which introduces additional delays and
performance di↵erences. In this chapter, we explain and study these aspects
to be able to imitate them when considering the implementation of the 3G
emulator.

2.2.1 Radio Resource Control (RRC) Protocol

One of the most important aspects of 3G, which di↵ers a lot from WiFi, is
the state machine implemented by the mobile device and controlled by the
cellular operator. The state machine is shown in Figure 2.2. The states are
described below.

RRC States: The three states which the 3G interface can be in are idle,
Forward Access Channel (FACH) and Dedicated Channel (DCH) from the
least energy consuming to the most energy consuming. In the DCH state,
the user equipment (UE) is allocated a dedicated channel for communication
both uplink and downlink. This provides the highest possible bandwidth
and lowest RTT, but also results in the highest energy consumption at the
UE. In the FACH state, the UE monitors the downlink channel for incom-
ing packets, and is provided a shared uplink channel which can be used to

11



2.2. 3G CHARACTERISTICS CHAPTER 2. BACKGROUND

State radio power
Idle 200 mW
FACH 500 mW
DCH 1300 mW
Inactivity timer
DCH to FACH (T1) 4.1 sec
FACH to idle (T2) 5.6 sec
Transition duration
Idle to FACH 0.43 sec
Idle to DCH 1.7 sec
FACH to DCH 0.65 sec
DCH to FACH 0.7 sec
FACH to idle 0.3 sec
RLC Bu↵er threshold
Idle to DCH (Uplink) 1000 bytes
Idle to DCH (Downlink) 515 bytes
FACH to DCH (Uplink) 294 bytes
FACH to DCH (Downlink) 515 bytes

Table 2.1: Example of RRC states observed on an Ericsson F337 broadband
module and TeliaSonera 3G network at one location in Sweden, as reported
by Vergara et al. [17].

send small packets. The idle state does not provide any means of transmis-
sion, but continuously monitors the downlink channel to see if there are any
incoming packets.

The states provide di↵erent performance which varies between network
operators, UE and signal strength. For example, Perälä et al. [11] observes
a network where DCH provides 14.4 Mbit/s downlink bandwidth and 173 ±
11 ms RTT and FACH provides 4 kbit/s downlink bandwidth and an RTT
of around 578 ± 3.8 ms.

State transitions: Since the idle state does not allow any data to be sent
or received, when the device in idle wants to send or receive data, the device
will be told to switch to the FACH state. To be allowed to switch from the
FACH state to DCH, the device will need to fill the send or receive bu↵er,
which varies in size depending on the network operator’s settings. The
chance that a state promotion happens increases as the bu↵er allocation
gets closer to the threshold. A downswitch on the other hand, happens
when the device has been in low or no activity during a certain amount of
time. We call these timers the inactivity timers. The values of the timers
are decided by the network operator.

When the RRC decides to transition the 3G interface to a higher or a
lower state, a delay (transition duration) occurs before the device enters the
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new state since signaling occurs between the mobile device and the operator
to set up the new state. During this time, no data at all can be sent or
received. We expect this to have a negative impact on network performance,
and it will therefore be considered when implementing the 3G emulator.

Since the 3G interface uses much more power in DCH than in FACH
or idle, a long DCH to FACH tail will force the device to stay in the DCH
state even when the data usage is very small, or none at all. This will impact
the energy consumption a lot. If the network operator has the parameter
configured in the other extreme, a very short DCH to FACH tail, the device
would constantly switch between DCH and FACH and therefore cause un-
necessary state switches which negatively impact the network performance.
It is the network operator’s responsibility to configure these settings for
optimal balance between performance and energy consumption [12].

The bu↵er thresholds, inactivity timers and transition durations di↵er
between network operators, for example, the parameters of a network mea-
sured by Vergara et al. [17] are presented in Table 2.1, where the inactivity
timers are in the range of 4.1 to 5.6 seconds, transition durations in the
range of 0.3 to 1.7 seconds, and bu↵er thresholds in the range of 294 to 1000
bytes. Also, Qian et al. [12] measure a network with inactivity timers in
the range of 5 to 12 seconds, transition durations in the range of 1.5 to 2
seconds and bu↵er thresholds of 543 ± 25 to 475 ± 23 byte.

2.3 WiFi Characteristics

TheWiFi network is much simpler than the 3G network, it does not have any
forced energy saving features, and we should therefore be able to emulate the
RRC states on a WiFi network. However, emulating other networks over
WiFi has its limitations since the emulation will inherit the data pattern
characteristics of the WiFi interface. To know the operational range we
are given by the WiFi network we have studied the WiFi technology and
presented the findings in this section. Previous works [20] have shown that
power saving mode can impact the latency of the WiFi network, and thus
we disable all power saving features in the WiFi switch.

An interesting aspect of WiFi is that it uses CSMA (Carrier Sense Mul-
tiple Access). Carrier Sense means that the transmitter that wants to send
data first tries to detect the presence of a current sender, and if a sender is
detected the transmitter waits for a random amount of time before trying
again. This means that only one transmitter can send at a time. The e↵ect
of this is that the bandwidth and latency quickly deteriorates as more users
connect to the network [8]. This also applies on nearby networks which op-
erate on the same channel. Because of this, if the best possible emulation
is desired one has to isolate the testing environment from all other WiFi
networks, and make sure to only test one device at a time. This as done in
this project by selecting the least busy 5 GHz band to conduct all tests.
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Chapter 3

Tool Selection

To implement the 3G emulator, we first need to find the adequate tools to
use. In this chapter, we examine the most interesting tools in this field, and
decide on which to use for the implementation of the 3G emulator.

3.1 Network Shaping Tools

There exists a number of tools that are interesting for the purposes of this
thesis. This section will cover the most notable tools and explain the func-
tionality and mention use-cases for all of them.

3.1.1 Tra�c Control

Tra�c Control (TC) [4], is the user level application which controls the
Linux kernel’s network scheduling. TC allows the user to apply di↵erent
types of queuing disciplines (qdisc) and filters to a network interface.

Queuing Disciplines

In the context of networking, a qdisc decides how network tra�c should be
sent on the network. The default setting on any network interface in a Linux
environment is simply to use a FIFO queue, which sends the first available
packet out to the network.

A Linux system can use the standard FIFO queue, or use more com-
plex qdisc modules which could for example delay packets, or randomly
drop packets before they are sent. Qdiscs can be combined and applied in
sequence to obtain e↵ects like a tra�c shaper.

The qdiscs are applied between the data link layer and the network layer
(level 2 and 3) in the OSI model [14]. As such, all network tra�c sent is
captured by the qdisc. Each qdisc has two important virtual functions that
must be implemented: enqueuing packets to be sent and dequeuing packets
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Figure 3.1: Visual explanation of the qdisc and filter system of TC.

for sending away to the network interface. There are a wide selection of
qdiscs available in Linux1,2, the ones used in this thesis are explained later
in this chapter. Qdiscs are categorised in classless and classful qdiscs. Figure
3.1 shows a visual representation of classful and classless qdiscs.

Classless Qdisc: Classless qdiscs are those that can only delay or drop
packets. They can not divide data into di↵erent categories, and can therefore
only shape the entire network interface. A classless qdisc (FIFO, Token
Bucket Filter etc.) is the simplest type of qdisc and can be used as the
primary qdisc on a network interface, or as a child to a classful qdisc. A
classless qdisc cannot have an additional qdisc attached to it (child qdisc).
Therefore a classless qdisc will always be the leaf in a qdisc tree.

Classful Qdisc: Classful qdiscs on the other hand may divide the data
into di↵erent categories, and are therefore much more versatile. A classful
qdisc (Netem, Hierarchical Token Bucket etc.) can have child qdiscs, (class-
ful or classless) attached to it to make combinations of qdiscs. Some classful
qdiscs can even have several children, and divide the data tra�c between
the children qdiscs. To decide which data tra�c should go to which child,
filters are attached to the classful qdisc.

1http://tldp.org/HOWTO/Tra�c-Control-HOWTO/classless-qdiscs.html
2http://tldp.org/HOWTO/Tra�c-Control-HOWTO/classful-qdiscs.html
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Filters

Filters are applied to classful qdiscs to classify the data tra�c. For example,
filters can let packets from a certain IP address go through one set of qdiscs
and packets from all other IP addresses go through another set of qdiscs.
One of the most common filters is the u32 filter. This filter allows to filter
tra�c based on source and destination, port number etc. The filters let us
shape di↵erent kinds of tra�c with di↵erent qdiscs. Figure 3.1 contains a
visual representation of qdiscs and filters.

3.1.2 Netem

Netem is one of the most well known qdiscs used for emulation. Since
Linux kernel 2.6 Netem is delivered as part of the TC system [3]. The most
important feature of Netem is the possibility to delay packets before they are
sent, which is used as a way to emulate network connections with high round
trip time. Apart from delaying tra�c, Netem also provides functionality
for emulating packet loss, packet duplication, packet corruption, packet re-
ordering as well as throughput restriction.

Recently [9], bandwidth restriction was implemented into Netem by cal-
culating the time-to-send for each packet considering both the configured
latency and bandwidth when a packet enters Netem. This means that it is
no longer dependent on other qdiscs to restrict the bandwidth. Netem is
currently used for RTT emulation in the Snigel system at Spotify.

3.1.3 Hierarchical Token Bucket

The Hierarchical Token Bucket (HTB) qdisc is used to restrict the band-
width of several tra�c flows at the same time. With the use of filters, one
can direct di↵erent data tra�c to di↵erent qdiscs attached to the HTB. One
could, for example, restrict the bandwidth to a certain port or while allowing
full bandwidth to another port. The HTB is used to restrict the bandwidth
on the Snigel testing network at Spotify.

The HTB restricts bandwidth by allowing packets to be sent only if there
are enough tokens available. One token might, for example, represent one
byte. If we want to send a packet of 1200 bytes, the HTB will wait until
1200 tokens are available, and then send the 1200 bytes large packet. When
sending, the tokens that were needed to send are consumed, which means
that we in this case end up with 0 tokens left. The tokens are replenished
at a rate which is decided by the configured bandwidth [14].

As a result of the HTB algorithm, the maximum amount of tokens which
can be held will decide the amount of burstiness that is allowed. If the
maximum amount of tokens is 10000, then 10000 bytes can be sent in a quick
succession even if that means that the configured bandwidth is temporarily
exceeded. However, the average bandwidth over time will not exceed the
configured bandwidth.
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3.1.4 UMTS RRC Emulation Module

There exists a qdisc developed by Andres Lagar-Cavilla for AT&T released
under the GPL v2 [6], which emulates the delays caused by transitions in
the RRC state machine in 3G hardware as explained in chapter 2. The tool
is implemented as a qdisc for Linux kernel 2.6.18 and a patch to the TC
command line tool. The qdisc allows the user to specify many RRC param-
eters, such as RRC state transition times, bu↵er limits for state transitions,
rate limits, inactivity timers etc.

Apart from the RRC state machine, the UMTS RRC Emulation Module
(RRC-EM) works much like Netem, as it allows for configuration of RTT,
packet loss and bandwidth limitation. One limitation of this RRC-EM is
that the uplink and downlink emulations are completely separated. This
means that if a RRC state transition happens for the downlink emulation,
the same transition might not happen in the uplink emulation. This is not
a good enough emulation for our purposes. We want to always have the
same state for uplink and downlink emulation to realistically emulate a 3G
network.

The reason for this flaw is not very hard to understand. Since qdiscs
only apply to packets we are sending, we need to have two instances of the
emulator running to emulate both uplink and downlink. In the case of this
RRC-EM, two instances have no means of communicating with each other,
and therefore act as separated emulations.

The bandwidth restriction in the RRC-EM works by calculating the time-
to-send in the same way as in Netem. Upon inspection of the UMTS RRC-
EM and the Linux kernel revision history, it is clear that much has changed
in the Linux kernel between version 2.6 and the kernel the current Snigel is
using, 3.13. Thus, a complete rewrite would be necessary if we are to use
this kernel module for the purposes of this thesis.

3.1.5 WANem

TC can be complicated to configure with all command line options and
filters. Engineers at the Performance Engineering Research Centre at TATA
Consultancy Services3 tried to solve this by developing WANem. Everything
needed to emulate networks with a Linux distribution and providing an
easy-to-use web interface for configuration is included in WANem. WANem
makes use of TC as well as Netem and HTB to achieve the network emulation
[5].

WANem is an open source project built on a re-mastered Knoppix dis-
tribution [5], and could therefore be further modified for the purposes of
this thesis. This would provide a nice graphical user interface which can be
used by Spotify, but it would also require more work to integrate the missing
parts in a quite large system.

3http://wanem.sourceforge.net

17



3.2. TOOL SELECTION CHAPTER 3. TOOL SELECTION

3.1.6 Dummynet

Dummynet contains mostly the same functionality as TC/Netem, but has
some di↵erences in the implementation. Firstly, Dummynet was originally
developed for FreeBSD, but has since been ported to Linux, OS X and
Windows [2]. Dummynet is an open source project as well, so it can be
modified for this thesis. One of the most notable di↵erences compared to
TC/Netem is that Dummynet allows the user to configure both uplink and
downlink shaping on a single network interface. Dummynet contains a sim-
ilar implementation of bandwidth limitation as Netem. If used with high
resolution timers, this implementation prevents the bursty tra�c that the
token bucket could cause [10]. Instead, this method results in a very even
packet inter-arrival-time without any bursts.

3.2 Tool Selection

The tools described above are all capable of performing some parts of the
requirements of this thesis. Table 3.1 summarises all tools and their capa-
bilities. It is clear, however, that none of the tools provide everything that
we need to achieve the desired 3G emulation. It is therefore clear that we
have to develop a new tool, based on one of the emulation tools we have
studied.

There are functional di↵erences in the tools as well. According to Nuss-
baum and Richard [10], there are di↵erences in the RTT and bandwidth
emulation in these tools. There is a problem when using too low resolution
timers, that the emulated RTT is not accurate. TC can achieve considerably
better results by using High Resolution Timers.

Since we want to keep our new 3G emulator structurally as close as
possible to the current Snigel system, Dummynet is not an option since it
does not use the TC system, and will therefore not be compatible with the
current Snigel system.

WANem is a large project containing fancy configuration tools and graph-
ical user interface. For the size of this thesis, a rewrite of WANem to emulate
3G networks would require too much work.

HTB contains quite little functionality and does not provide anything
which is not already provided by Netem. Therefore the choice is between
implementing RRC state emulation in Netem, or converting RRC-EM to
Linux kernel 3.13 as well as implementing the uplink-downlink state commu-
nication. Since packet duplication, packet corruption and packet reordering
is not used at Spotify, these functionalities do not impact the decision.

The most interesting aspect to evaluate in the 3G emulation tool is the
RRC emulation. Therefore, this is the most important feature in the tool se-
lection. The advantage of the RRC-EM is that it is the only option providing
RRC state emulation. However, as previously mentioned, the RRC-EM has
flaws in the implementation that would lead to inaccurate state switching.
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Minimal features Netem 1.3 HTB RRC-EM WANem Dummynet
Open source Yes Yes Yes Yes Yes
Bandwidth No Yes Yes Yes Yes
Round trip time Yes No Yes Yes Yes
Packet loss Yes No Yes Yes Yes
RRC emulation No No Yes* No No
For kernel 3.13 Yes Yes No Yes Yes

Extra features Netem 1.3 HTB RRC-EM WANem Dummynet
Packet duplication Yes No No Yes No
Packet corruption Yes No No Yes No
Packet reordering Yes No No Yes No

Table 3.1: Comparison between three tools for network emulation.
* With limitations, RRC-EM separates uplink and downlink RRC emula-
tion. RRC states can be di↵erent for uplink and downlink network tra�c.

This is fixed by implementing shared data between the uplink and downlink
qdiscs.
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Chapter 4

Emulator Design and
Implementation

In this chapter, we will present the solution we propose for the 3G emulator.
The design choices are explained, both in terms of hardware and in terms of
software. Emulator installation and configuration are also explained in this
chapter.

4.1 Placement of 3G Emulator

The emulator placement in the network chain is an important design choice.
It decides which tools will be available, and which parts of the 3G network
that we can emulate.

For this thesis, two options for the emulator placement were considered.
Either we place the emulator on a separate server which all network tra�c
will be bridged through, or we place the emulator within the Device Under
Test (DUT) itself. Table 4.1 summarises the advantages and disadvantages
of both approaches which are described in the next paragraphs.

The applications running in the Android operating system are aware of

In phone In server
Platform independent No Yes
Easy setup in a new phone No Yes
Can be used with any device No Yes
Emulation on any WiFi network Yes No
Phone behaves as when connected to 3G Yes No

Table 4.1: Comparison between performing the 3G emulation in the phone
or performing it in an external server.
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which type of connection that is used (3G or WiFi). By placing the emulator
in an external server, we will not be able to trick the Android applications
to believe that they are connected to a 3G network. By placing the emulator
in the device itself instead we gain some additional control as we can tell
the applications that the phone is connected to a 3G network instead of the
WiFi network that the DUT actually is connected to. Placing the emulator
in the device itself would also make it possible to test the device on any
network, and we would not be tied to a certain test location.

However, by having the emulator in the device, the emulator would have
to be developed for every type of device we want to test (Android, iOS
etc.). At Spotify, both Android and iOS apps are developed, therefore it is
preferable if both platforms can use the 3G Emulator. This approach will
also make it necessary to tamper with the device itself, which is not desirable
as it might a↵ect test results and make it harder to test new devices.

If the emulation takes place in an external server, we will be tied to a
certain WiFi network, but we do not need to make any modifications to the
devices we want to perform tests on, and we can test all WiFi compatible
devices. By having the emulator behave in this plug-and-play manner, we
make it easier to perform tests on the 3G emulator. However, we lose the
knowledge of which network the device is connected to, which can mislead
intelligent applications that use the knowledge of which connection they are
using. Even with this downside, we decide to perform the emulation on a
separate server because the DUT remains untouched and it is easier to test
new devices.

4.2 Emulator Architecture

This section will describe the general architecture of the 3G emulator. In
the last section, we decided to place the 3G emulator on a separate server,
connected in one end to the WiFi bridge and in the other end connected to
the Internet. All tra�c will then be bridged through the 3G emulator. The
tools we are using are TC for the front end controller for the kernel-level 3G
emulator we have developed as a qdisc.

The 3G emulator qdisc is inspired by the work of Andres Lagar-Cavilla on
the RRC Emulation Module for AT&T [6]. The new 3G emulator, however
is developed for a newer Linux kernel version (3.13), and provides proper
RRC state emulation, as the RRC state will always be the same for uplink
and downlink tra�c.

One of the most important parts of the 3G emulator is the software
implementation as a qdisc controlled by the TC command line tool. It is
important to keep in mind that the qdisc may only shape outgoing network
tra�c. Incoming tra�c to the network interface the qdisc is attached to
remains untouched and una↵ected.

However, we want to shape both incoming tra�c and outgoing tra�c.
The way we solve this is to set up the 3G emulator as a network bridge,
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Figure 4.1: The proposed 3G emulator.

according to Figure 4.1. We apply two instances of the 3G emulator qdisc,
one applied to the network interface eth0 to shape downlink tra�c, and
one applied to eth1 to shape uplink tra�c. The two instances are config-
ured independently to reflect the di↵erent network properties on uplink and
downlink data tra�c. The RRC states, however, are shared between the
two qdiscs since we want uplink and downlink emulation to always be in the
same state.

4.2.1 Hardware Environment

The WiFi bridge used in this thesis is a ZyXEL NWA1123-NI, operating in
the 5GHz frequency band. Every power saving feature is disabled on the
WiFi bridge, to get maximum performance. The WiFi bridge is connected
by Ethernet cable to the eth0 port on the computer running the emulator.

The 3G emulator runs on a Mac Mini (Late 2012) with Intel Core i5-
3210M running at 2.5 GHz and using 4 GB RAM. The Mac mini has Ubuntu
14.04 server edition installed. The Mac mini has two Ethernet ports, one
called eth0 and one called eth1. The WiFi bridge is connected to the Eth-
ernet port eth0, and the eth1 port is connected to the Internet via a router.

For the 3G emulator to handle both upstream and downstream network-
ing, the computer hosting the 3G emulator requires at least two physical
network interfaces. One interface (eth1) will be used for uplink shaping and
the other network interface (eth0) will be used for shaping downlink net-
work tra�c. The Mac Mini is configured as a bridge which simply forwards
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Figure 4.2: Software architecture overview.

all tra�c from the interface which shapes downstream (eth0) tra�c to the
interface which shapes upstream (eth1) and vice versa. Since the qdiscs only
shape outgoing tra�c, only the outgoing tra�c of the 3G emulator will be
shaped.

4.3 Kernel 3G Emulator

The 3G emulator software consists of two parts, TC and the 3G emulator
qdisc. TC is the front end that serves with communication to and configura-
tion of the emulation qdisc. TC is part of the Iproute2 tool suite for Linux,
which was modified for this project to provide the communication with the
new 3G emulation qdisc.

Figure 4.2 shows the software content of the 3G shaper from Figure 4.1,
and depicts the data flow within the 3G shaper. The uplink data tra�c
enters the emulator on the eth0 network interface, and is shaped before
leaving the emulator on the eth1. Downlink tra�c follows the reverse route.
There are two running instances of the 3G Emulator qdisc, one which shapes
uplink tra�c and one which shapes downlink tra�c. TC is used to setup
the two qdiscs as well as to modify their parameters at runtime.
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Emulation Module

As mentioned above, the 3G emulator software consists of the 3G emulation
qdisc and the patch to the TC command line tool. This section will explain
the 3G emulation qdiscs.

When TC is used to setup a new 3G emulation qdisc, TC first sanity
checks the configuration, and then calls the 3G emulation qdisc to setup the
emulator. The 3G emulation qdisc now maps the settings entered into TC
to the internal variables in the qdisc. The qdisc is now ready to handle the
network queue.

The qdisc contains many functions for queuing, such as functions for
dropping packets, changing settings during runtime, destructors and func-
tions for logging etc. The most important functions, however are the func-
tions which handle enqueuing and dequeuing. These functions are explained
in detail below.

Packet Enqueuing When a packet is going to be sent over the network
interface which has the 3G emulator qdisc attached, the packet is sent to the
function rrc enqueue where the scheduling of packets occurs. The enqueuing
function also handles much of the RRC state machine, the function consists
of eight parts explained below:

1. Fetch the state and state tail timers from the shared variables.

2. Check the inactivity timers and downswitch the state if an inactivity
timer has expired. See Figure A.1 for details.

3. Next, the upswitch state transition checks occur. The emulator al-
ways upswitch when it is in the idle state. Which state the emulator
upswitches to depends on whether the bu↵er exceeds the threshold or
not. See Figure A.2 for details.

4. The time at which the packet should be sent (time to send) is calcu-
lated based on the current time, the delay in the current RRC state
and an extra delay in case a state transition is currently in progress.
Also, a random jitter is added. See Figure A.3 for details.

5. Update the T1 and T2 (dch end and fach end) inactivity timers. See
Figure A.3 for details.

6. Remove transition flags if the transition has ended, see Figure A.4 for
details.

7. The shared variables are updated with the new state and the tail times
as previously updated.

8. Enqueue or drop the packet depending if the backlog limit is exceeded.
See Figure A.4 for details.
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Packet Dequeuing When the network interface is ready to send, the
function rrc dequeue is called to dequeue a packet from the send queue.
Similarly to the enqueuing function explained above, rrc dequeue can be
explained in three phases.

1. Fetch the state from the shared variables.

2. The token bucket algorithm updates the amount of tokens available.
This is done by multiplying the time elapsed since we last sent a packet
with the configured bandwidth. Since the tokens is only used in the
dequeuing step 3, we only need to update the amount of tokens at this
point.

3. The third phase takes a peek on the packet to be sent, and checks if
it is time to send it yet. If it is time to send the packet, the function
checks if there are enough tokens to sent. Then the packet is either
sent or requeued if there are not enough tokens available. See Figure
A.5 for details.

4.4 3G Emulator Setup

This section instructs the installation and usage of the 3G emulator.

Bridge Setup

The computer running the 3G emulator should be set up as a network bridge,
with the uplink and downlink interfaces bridged. This will allow both uplink
and downlink network tra�c to be shaped when the 3G emulation qdisc
is applied to both interfaces. The bridge can be set up using the brctl1

application:

sudo ifconfig eth0 0.0.0.0

sudo ifconfig eth1 0.0.0.0

sudo brctl addbr br0

sudo brctl addif br0 eth0

sudo brctl addif br0 eth1

sudo ifconfig br0 up

The first and second lines clear the IP addresses of the network interfaces
eth0 and eth1. The third line creates a new network bridge, and the fourth
and fifth lines adds eth0 and eth1 to the bridge. The last line activates the
newly created bridge. The 3G emulator is now forwarding all tra�c, and is
completely transparent to devices on both sides of the emulator.

1http://www.tldp.org/HOWTO/BRIDGE-STP-HOWTO/set-up-the-bridge.html
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3G Emulator Instructions

As mentioned earlier, the 3G emulator needs to run two instances, one for
uplink shaping and one for downlink shaping. An example of setting up the
3G emulator using the TC command line interface can be seen below:

sudo tc qdisc add dev eth0 root rrc dchulrate 15Mbps backloglimit

65525 tokenlimit 65535 idlepromomu 1500000 fachdchmu 1500000

rlcul 294

sudo tc qdisc add dev eth1 root rrc dchulrate 2Mbps backloglimit

65525 tokenlimit 65535 idlepromomu 1500000 fachdchmu 1500000

rlcul 294

Setting up the 3G emulator is quite straightforward regarding delay, state
transition tail, state transition delays and bu↵er thresholds. The bandwidth
emulation is a bit trickier to set up. By setting the dchulrate, you set
a maximum throughput. The backlog limit and token limit might have
to be increased to reach higher bandwidths, and lowered when emulating
lower bandwidths to avoid excessive delays introduced by the token bucket
algorithm.

The 3G emulation can be changed during runtime to provide more dy-
namic situations. This is done by the “qdisc change” command, with the
same syntax as the “qdisc add” command. To change the download speed
to 22 Mbit/s, one types:

sudo tc qdisc change dev eth0 root rrc dchulrate 22Mbps backloglimit

65525 tokenlimit 65535 idlepromomu 1500000 fachdchmu 1500000

rlcul 294

The 3G emulator can be disabled by deleting the qdisc, just as one deletes
any qdisc using TC:

sudo tc qdisc del dev eth0 root

This will delete all qdiscs and filters on the eth0 interface.
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Chapter 5

Emulator Parameter
Collection

In this chapter, a real 3G network is measured to find the parameters neces-
sary to emulate it with the 3G emulator. The impact of the WiFi network
is also measured. To make accurate evaluations, we need to estimate the
3G network parameters, which are later used to configure the 3G emulator.
By measuring the 3G network parameters as accurately as possible, we will
get more accurate results in the evaluation. The step of estimating 3G net-
work parameters will also be an important step for the end-user of the 3G
emulator since this will be important to accurately emulate a 3G network.

5.1 Measuring 3G Network Parameters

In the evaluation, we want the parameters of the 3G emulator to reflect
the real 3G network we want to emulate. Therefore, prior to evaluation,
the 3G network parameters are estimated by measurements. The estimated
parameters are presented in Table 5.1, and we explain how we obtain the
parameters in this chapter.

5.1.1 Measuring Inactivity Timers

Both inactivity timers are measured by sending ping packets with varying
delay to see which intervals cause a transition back to the previous state,
and which do not. The methods used in this section are inspired from the
methods presented by Vergara [16].

Inactivity Timer T1

The T1 inactivity timer denotes the time the device must be inactive until a
demotion from DCH to the FACH state occurs. To measure T1, we send 600
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Inactivity timer Measured Value
DCH to FACH 3.6 - 3.8 sec
FACH to idle 4.9 - 5.6 sec
Transition time
Idle to DCH 999 ms
FACH to DCH 617 ms
Idle to FACH 515 ms
DCH to FACH 981 ms
RLC Bu↵er threshold
Idle to FACH Always
Idle to DCH (Uplink & Downlink) 219 - 223 B
FACH to DCH (Uplink & Downlink) 222 - 261 B
Downlink Bandwidth
FACH 3.45 kbit/s
DCH 21.9 Mbit/s
Uplink Bandwidth
FACH 3.45 kbit/s
DCH 3.20 Mbit/s

Table 5.1: Measured parameters for the Telia 3G network in Stockholm,
Sweden.

large ping packets (1300 B) with a delay varying between 0 and 10 seconds
between the packets while recording the packets with Tcpdump1. We send
large packets to make sure to trigger a transition to DCH each time we send
or receive a packet. The RTT is measured by each ping packet, and by
analyzing this RTT we can determine if a state promotion takes place or
not. The RTT is measured with the ping tool, which sends a packet to a
given destination. The computer which receives the ping packet sends an
answer back to the sender. A ping measures the time between the packet is
sent and the answer is received. This time is called RTT. This is the method
we use when measuring RTT in this thesis.

Figure 5.1 shows the results of the test, where we can see that there
is a clear separation between packets causing a transition and packets not
causing a transition. We can see that when the interval between ping packets
is large, the resulting RTT is also large, which means that a state transition
from FACH to DCH occurred. On the other hand, when the interval between
packets is small, the resulting RTT is also small, which means that the RRC
state machine is still in DCH, and did not need to make a transition.

In Figure 5.1, we can see that in the delay interval 3.6 to 5.2 second, we
have a significantly higher RTT than the rest of the delays which caused
a transition. This is because the RRC has just started transitioning from
DCH to FACH when the next packet arrives. This leads to the RRC state

1http://www.tcpdump.org

28



5.1. MEASURING CHAPTER 5. PARAMETER COLLECTION

Transition DCH ! FACH ! DCH

Still in DCH

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

Delay between packets (seconds)

R
es
u
lt
in
g
R
T
T

(s
ec
on

d
s)

Transition to DCH
No transition

Figure 5.1: Estimation of inactivity timer T1.

machine transitioning down to FACH then up again to DCH before the
packet can be sent.

To get the lower bound of T1, we find the minimum ping interval that
caused a transition, which is 3.6 s and to find the upper bound, we find
the maximum ping interval that did not cause a transition, which is 3.8 s.
Therefore, a reasonable estimate for T1 is obtained: 3.6 s < T1 < 3.8 s.

Inactivity Timer T2

The T2 inactivity timer denotes the time the device must be inactive for a
transition from FACH to idle to occur. The estimation of the T2 timer is
quite similar to the estimation of the T1 inactivity timer. However, this time
we send 600 small ping packets (24 B) with varying intervals between 1 and
10 seconds, in order to not trigger a DCH transition, but instead trigger an
idle to FACH transition. Similar to the T1 test, we can see that when the
interval between ping packets is large, the resulting RTT is also large, and
vice versa. A small resulting RTT means that a transition to FACH did
not occur, since we are already in FACH, and a large RTT means that a
transition from idle to FACH occurred. Figure 5.2 shows the results of the
test. A similar pattern as in Figure 5.1 can be seen here as well. This occurs
between the delay interval 5 to 6 seconds, where a similar state transition
pattern occurs, this time from FACH to idle and back to FACH.

To get the lower bound of T2, we find the minimum ping interval that
caused a transition, which is 4.9 s and to find the upper bound, we find the
maximum ping interval that did not cause a transition, which is 5.6 s. Thus,
we estimate T2 as: 4.9 s < T2 < 5.6 s.

The reason that there is a relatively large range between 4.9 and 5.6
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Figure 5.2: Estimations of inactivity timer T2.

seconds could imply that there are errors in the estimation, or that the
actual T2 is not an exact number, but actually a variable number which can
change within the range. The fact that the T1 range is not as wide (3.6 to
3.8 seconds) suggests that the estimations are correct, and we conjecture
that the inactivity timers can are set by the operator dynamically.

5.1.2 Measuring Bu↵er Thresholds

Bu↵ers thresholds are tested by repeatedly sending packets of known size to
find the instant at which a state transition will happen at each packet size.

Bu↵er Threshold B1

The bu↵er threshold B1 denotes the threshold for the RRC to transition
from idle to DCH. To test this threshold, we first send a packet of a known
size, followed by two seconds delay, then we measure the RTT. The RRC
state machine will trigger a transition to FACH in cases when the amount
of data sent is lower than the threshold, and triggers a transition to DCH if
the amount sent is higher or equal to the threshold. A high RTT implies we
are in the FACH state, and a lower RTT implies we are in the DCH state.
Between each packet sent, the device will have to rest until the idle state is
entered. On the network and device we used in this test, based on the sum
of the inactivity timers, 20 seconds was enough rest time for the device to
enter the idle state each time.

The test repeated 500 times on packets sizes in the range of 210 to 230
B, the results can be seen in Figure 5.3. The idle to DCH bu↵er threshold
is within the range of 219 to 223 B, where a transition is more likely to
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Figure 5.3: Estimation of the idle to DCH bu↵er threshold.

be triggered when sending larger packets, which is shown in Figure 5.4.
Thereby, we estimate B1 to: 219 B  B1  223 B.

Bu↵er Threshold B2

The bu↵er threshold B2 denotes the bu↵er threshold for the RRC to tran-
sition from FACH to DCH. The estimation of this threshold is quite similar
to the previous threshold. During the entire test, we send small ping pack-
ets every 2 second to keep the RRC state machine in FACH state, but not
trigger a transition to DCH. Every 10 seconds, we send a packet of known
size to trigger a transition from FACH to DCH. The RTT is measured two
seconds after the packet is sent to determine which state the device is in. As
in the previous test, a high RTT indicates FACH and a low RTT indicates
DCH. Figure 5.5 shows the size of the packets and the chance this size has
to trigger a FACH to DCH state transition. The result is that the FACH to
DCH bu↵er threshold is estimated as: 222 B  B2  261 B.

5.1.3 Transition Durations

Transition Duration TIdle�DCH When measuring this delay, we send
large packets (1300 B) to trigger the DCH transition by exceeding the idle
to DCH bu↵er threshold. The packet is send every 20 seconds to give the
RRC state machine time to be demoted down to idle before the next packet
is sent.

To account for the RTT in the DCH state, we measure the RTT in the
DCH state by sending the 1300 B ping packet 100 times when the device is
in the DCH state. The mean RTT in DCH is calculated to 181 ms, and the
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Figure 5.6: Probability to transition to from FACH to DCH.

mean RTT measured in the idle to DCH transition is 1180 ms. Therefore
the approximate transition duration TIdle�DCH = 1180 - 181 = 999 ms.

Transition Duration TFACH�DCH To measure the TFACH�DCH delay,
we send small packets every two seconds to keep the device in the FACH
state. We also send a large (1300 B) ping packet every 8 seconds to trigger
the FACH to DCH transition and record the RTT for this packet. The rea-
son for sending the packet every 8 second, is because we want the device to
transition back to FACH before sending the next ping. The test is repeated
100 times. To account for the usual delay in the DCH state, we must reduce
the measured RTT with the RTT of a ping when in the DCH state for the
1300 B large packets. The mean RTT for the DCH state was previously
measured to 181 ms, and the mean time measured for the FACH to DCH
transition is measured to 798 ms. Therefore the approximate transition du-
ration TFACH�DCH = 798 - 181 = 617 ms.

Using a similar approach as the ones above, we estimated TIdle�FACH

as 515 ms and TDCH�FACH as 981 ms.

5.1.4 Measuring Bandwidth

DCH Bandwidth The uplink and downlink bandwidth in the DCH state
was measured using the Ookla Speedtest.net service [1] by using the available
Android application. Just before we measure the bandwidth, a large packet
(1300 B) is sent to trigger a transition to DCH. The test was repeated 30
times for uplink bandwidth and 30 times for downlink bandwidth. Figure 5.7
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Figure 5.7: 3G bandwidth in DCH

shows a box plot for the test. The median downlink bandwidth is calculated
to 21.9 Mbit/s and the median uplink bandwidth is 3.20 Mbit/s.

FACH Bandwidth The FACH bandwidth is determined by the FACH
to DCH bu↵er threshold and by the speed which the bu↵er is emptied.
Therefore, since the FACH to DCH bu↵er is the same size on both uplink
and downlink, the bandwidth will also be the same. The Bandwidth is
measured by sending ping packets, and calculating the maximum bandwidth
we can achieve. The highest throughput we were able to achieve while still
in the FACH state was when sending 220 B packets (just below the FACH
- DCH threshold) every 510 ms, which translates to 220/0.51 ⇡ 431.25 B/s
= 3.45 kbit/s.

5.2 Impact of WiFi on 3G Emulator

The WiFi network restricts the 3G emulation to some degree. We have to
consider the latency introduced in the WiFi network, as well as the band-
width of the WiFi interface since these will interfere with the emulation. In
this section we will study these factors to see how they will impact our 3G
emulation.

5.2.1 Impact of WiFi RTT

To measure the RTT characteristics of WiFi, we want to capture the char-
acteristics during the course of a complete day to consider the variations
which occur during the course of a full day. We use the ping tool on an
Android phone connected to the WiFi network where Snigel is installed.
We sent 10 pings/second to a nearby external server with stable connection
(www.su.se) over the course of roughly 24 hours, which resulted in 800,000
RTT samples. The same test was also conducted on the Telia 3G network.
To keep the device in the DCH state during the entire test, we sent one large
packet (2000 B) each second to prevent state downswitch.

The frequency 10 pings per second was empirically verified to be the
highest multiple of 10 which did not deteriorate the result. Higher frequen-
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WiFi 3G
Mean RTT 2.68 ms 26.4 ms
Median RTT 2.50 ms 22.8 ms
Standard deviation 1.39 ms 8.67 ms
Minimum RTT 1.90 ms 18.9 ms
Maximum RTT 81.2 ms 258 ms

Table 5.2: Statistical values for the WiFi and 3G RTT tests.

cies were tried, but this propagated in more inconsistent results. Therefore,
10 pings per second is used hereinafter used when measuring RTT.

The results from the test can be seen in Figure 5.8, where a cumulative
distribution function has been calculated using the 800,000 ping samples.
One can see that the WiFi connection is quite stable and adds only a small
delay of around 2.68 ms when only one user is connected as in this test. If
we assume that we want at least 99.9% chance to correctly emulate a certain
RTT, we need to look at the distribution of RTT over WiFi. We can see
that 99.9% of the WiFi RTT samples are equal to or lower than 22.3 ms.
By accepting 22.3 ms as the baseline, and given the RTT values of the 3G
network we want to emulate, the risk of an error when emulating a 22.3 ms
RTT (a packet is delayed more than what we expect) is 0.01%

As Table 5.2 shows, the maximum RTT measured during the test was
81.2 ms. This means that there are a few outliers among the samples, but
this should not impact the performance of the emulator significantly since
the vast majority of samples are close to the median, as seen in Figure
5.8 and in the standard deviation of 1.39 ms. Keep in mind that these
measurements corresponds to the WiFi network we have set up at the Spotify
o�ce, and should not be interpreted as a general performance measure of
WiFi networks.

The mean RTT for the 3G samples as shown in Table 5.2 is 26.4 ms,
this RTT is more than the baseline of 22.3 ms, which means that this 3G
network should be possible to emulate in our test environment without any
performance issues. Also, from the statistics Table 5.2, we can see that the
median RTT of 3G is close to the lowest 3G RTT measured. In Figure
5.8 we can see that the 3G distribution looks much like a folded normal
distribution. This means that most samples are close to the median, and
the remaining samples are higher than the median. This is a characteristic
that we have taken into consideration when developing the 3G emulator by
randomly adding an extra delay on only a selection of the packets. This
means that around 6% of the packets gets delayed by a random amount of
time in addition to the usual emulated RTT.
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Figure 5.9: WiFi bandwidth.

5.2.2 WiFi Bandwidth

The WiFi bandwidth is measured using the Ookla Speedtest.net service
[1], using the Android application. The test is repeated 30 times for both
uplink and downlink bandwidth. The results are presented in Figure 5.9,
where the median downlink bandwidth is measured to 38.8 Mbit/s, and
the median uplink bandwidth is 39.8 Mbit/s. This will be the absolute
maximum throughput which the 3G emulator can emulate with the current
equipment. We can thereby expect to see degraded performance when the
emulator tries to emulate bandwidths close to 39.8 Mbit/s.
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Chapter 6

3G Emulator Evaluation

In this chapter, the 3G emulator is evaluated using combinations of syn-
thetic network tra�c and realistic usage of the Spotify Android client. The
emulator uses the network parameters measured in chapter 5.

The purpose of this chapter is to evaluate the 3G emulator’s similarity
to a real 3G connection. The real 3G connection is our ground truth, which
the emulator would ideally mimic perfectly. However, we do not expect
to achieve a perfect emulation and will therefore also make comparisons
between the 3G emulator and Snigel, the currently active network testing
system at Spotify.

6.1 Metrics

There are three aspects we take into consideration in the evaluation of the
3G emulator: RTT, throughput and data communication pattern.

The main metric used in the evaluation of latency and packet inter-arrival
times is the Pearson product-moment correlation coe�cient (PPMCC) of the
Cumulative Distribution Function (CDF). The PPMCC provides the linear
correlation between two variables describing the similarity. 1 is a total posi-
tive correlation, whereas 0 represents no correlation. The PPMCC between
di↵erent variables can then be compared to each other to determine the sim-
ilarity between di↵erent network connections. The formula for calculating
the PPMCC for two variables {x1, ..., xn} and {y1, ..., yn} is:

r =
Pn

i=1(xi�x̄)(yi�ȳ)pPn
i=1(xi�x̄)2

pPn
i=1(yi�ȳ)2

Where:

x̄ = 1
n

Pn
i=1 xi
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When performing the tests, it is clear that di↵erent sessions in the same
network show di↵erences, this means that the variations in the network will
have to be considered in the baseline. Having the 3G as baseline is hard
to handle since it is not a stable connection. Each measurement we do on
3G is di↵erent from the next measurement. Therefore, we make five mea-
surements on the inter-arrival times on 3G, create the CDF graphs for each
measurement, and calculate the PPMCC for the first 3G CDF to the second
3G CDF, then we do the same for all combinations of the 3G measurements
to finally calculate the average PPMCC, which is considered our baseline.

When regarding throughput evaluation, we use the relative error to the
baseline 3G throughput, where the relative error is calculated as:

�x = �x
x

Where x is the 3G throughput (baseline) and �x is the absolute error:

�x = |x0 � x|

Where x0 is the measured throughput of the 3G emulator, or Snigel.

6.2 Operational Parameters

During the evaluations in this thesis, we use the network parameters pre-
sented in section 5.1. To get the emulator working, we also need some extra
parameters for the bandwidth restriction in DCH state to behave as we ex-
pect. These parameters are presented in Table 6.1. The backlog limit is
the amount of bytes that the emulator can store before they are sent. If
the backlog is full, additional packets will be dropped. The token limit is
the maximum amount of tokens that the emulator can store. One token
represents sending one byte.

The values of these parameters are empirically derived. A too low back-
log limit will result in bandwidth being throttled, and a too high backlog
limit will result in increased RTT since packets wait in the queue for a long
time. The value of this parameter is determined by gradually increasing
it while measuring the bandwidth until the bandwidth is close to the ex-
pected value. For any bandwidth that is entered in the emulator, the value
of this parameter will have to be reevaluated. The token limit determines
the “burstiness” of the emulator. We do not want the emulator to allow any
excessive bursts, and this parameter should therefore be as low as possible
while still providing the full bandwidth.

6.3 Functional Testing of RRC States

We verified the bu↵er sizes which cause RRC state transitions and state
inactivity timers of the 3G emulator by sending packets of controlled sizes
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Emulator Parameter Value
Backlog Limit 500000 B
Token Limit 25000 B

Table 6.1: Parameters used by the 3G emulator bandwidth restriction.
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Figure 6.1: Box plot over 3000 RTT samples.

according to the same algorithmic methods used for finding the 3G net-
work parameters in chapter 5.1. The results are positive, and the emulator
behaves as expected.

6.4 Round Trip Time

The RTT has a quite significant impact on the user experience. The high
RTT of the 3G network might decrease the responsiveness of the application
under test even when very small amounts of data are sent or received. The
RTT emulation of the 3G emulator is therefore evaluated and compared to
the real 3G network, our baseline. This section also includes comparisons
with Snigel.

As we want to measure the RTT at a specific moment, but also want
to make an accurate measurement, we measure sample the RTT during 60
seconds. For the same reason as in section 5.2.1, we use the same frequency
of 10 pings per second, which is enough to keep the device in DCH state
during the entire test. During the second period we send 600 pings using the
ping tool in a similar way as we perform the tests described in section 5.2.1.
To obtain the baseline, we first measure the RTT to a nearby server with a
quick connection (www.su.se). The test is repeated 5 times, which results
in 3000 RTT samples. We measure the mean RTT of all 3000 samples to be
37.9 ms.

To evaluate the accuracy of the RTT in the emulator, the RTT we mea-
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Figure 6.2: Compilation of RTT metrics: Mean RTT and RTT Standard
Deviation.

sured for our baseline, the 3G network is used as configuration setting to the
3G emulator and Snigel. All other configuration parameters are the ones we
measured in chapter 5.1. Now, we measure the RTT on the 3G emulator
and Snigel in the same way as we measured our baseline RTT.

The distribution of all RTT samples are presented as a box plot in Figure
6.1. The mean RTT for the 3G emulator is measured to 38.2 ms and Snigel
was measured to 37.6 ms. 3G, Snigel and 3G emulator shows very similar
results in regards to mean RTT. The evaluation is further visualised as a
scatter plot in Figure 6.2 where the mean RTT and standard deviation is
presented, grouped in sample sizes of 600 (one test iteration).

Furthermore, Figure 6.2 shows that there is a significant di↵erence in
regards to standard deviation within the test iterations, where Snigel gen-
erally shows lower standard deviation than 3G and 3G emulator, median
at 3.6 ms for Snigel versus the median standard deviation of 3G and 3G
emulator which is almost the double, at 6.6 and 6.7 ms respectively.

To capture the entire characteristics for the RTT, we create an empirical
Cumulative Distribution Function (CDF) shown in Figure 6.3, where all
3000 samples for all network connections are considered. The empirical
CDF plots the chance that a RTT sample is below a given value. This
figure gives a representation of the RTT distribution on the di↵erent network
connections, and is therefore interesting from the evaluation standpoint.
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Figure 6.3: Empirical CDF for the RTT using 3G, Snigel and the 3G emu-
lator.

PPMCC 3G
Emulator 0.997
Snigel 0.959

Table 6.2: PPMCC of CDF of RTT between 3G emulator and Snigel com-
pared to 3G.

Snigel seems to capture the RTT between 30 to 33 ms better than the 3G
emulator, while the 3G emulator seem to handle RTT from 33 to 55 ms
better than Snigel. Also interesting to note is the staircase shape of the real
3G connection, with one step every millisecond. A similar shape is barely
noticeable in the 3G emulator.

To make comparisons between the CDF’s of di↵erent network types, we
use the PPMCC explained in section 6.1. The PPMCC between 3G and 3G
emulator and between 3G and Snigel are presented in Table 6.2. We can see
that the correlation between 3G and 3G emulator is slightly higher than the
correlation between 3G and Snigel. The increase in correlation we get from
using 3G emulator instead of Snigel is calculated to (0.997� 0.959)/0.959 ⇡
4%.

In conclusion, both the 3G emulator and Snigel can simulate RTT accu-
rately. However, the 3G emulator achieves slightly better results in terms
of correlation of the RTT distribution.

6.5 Throughput

The throughput emulation is an important aspect of the 3G emulator. It
must be able to emulate both the downlink and uplink throughput of the
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3G network. We therefore consider the median throughput of the real 3G
connection to be our baseline that we want to mimic with the 3G emulator.

6.5.1 Throughput Emulation

The first part of the throughput evaluation is to evaluate the accuracy, and
compare it to a real 3G connection as well as Snigel. We first configure
the 3G emulator and Snigel with the parameters presented in Table 5.1 to
reflect the 3G network. The most important parameters being the downlink
bandwidth on 21.9 Mbit/s and uplink bandwidth on 3.2 Mbit/s. Again,
we use the Ookla Speedtest.net service to measure the bandwidth. We
repeat the measurement 30 times on each network type (3G, Snigel and 3G
emulator).

Downlink The results from this test are presented as a box plot in Fig-
ure 6.4, where the whiskers represent the minimum and maximum recorded
bandwidths. We can see that the real 3G network has a median bandwidth
of 21.9 Mbit/s, but also has a quite large interquartile range (IQR) of 3.0
Mbit/s. However, this spread was not taken into consideration when emu-
lating the throughput. The goal of the bandwidth emulation is to provide
an accurate and stable emulation to provide an environment where tests are
repeatable. This means that we value a stable emulation with IQR much
higher than an emulation which has similar spread as the baseline. The 3G
emulator provides a stable emulation with an IQR of just 0.4 Mbit/s and
throughput median of 21.8 Mbit/s, which gives us a relative error compared
to the baseline of 0.46%.

Snigel on the other hand has a median of 25.5 Mbit/s, which gives a
relative error to the baseline of 14%. Snigel also has a higher IQR of 4.5
Mbit/s.

Uplink The median 3G uplink throughput is 3.2 Mbit/s. The 3G emulator
has a slightly higher median throughput, 3.6 Mbit/s, which gives a relative
error of 11%. The 3G emulator achieves a small IQR of 0.2 Mbit/s.

Snigel provides similar results, with a median of 3.7 Mbit/s, which gives
a relative error of 14%. Snigel achieves an IQR on 0.04 Mbit/s, which
is very good. Both the 3G emulator and Snigel manage to emulate the
real 3G network bandwidth quite well, but the 3G emulator behaves much
more accurately on the downlink throughput, while the uplink throughput
is managed equally.

We observed that the uplink bandwidth emulation was much worse than
the downlink emulation. We did not, however search for the reason to this
di↵erentiation. It would be interesting to try the same tests with a di↵erent
WiFi hardware, to see if the problem might be in the WiFi switch, or even
in the phone’s WiFi interface.
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Figure 6.4: Box plots over 30 throughput samples for uplink and downlink.

6.5.2 Operational Range of Throughput

To compare the bandwidth restriction accuracy and the operational range
between Snigel and the 3G emulator more closely in a large range of settings,
we perform a test where we make measurements on both Snigel and the 3G
emulator using the Ookla Speedtest.net service on eight selected bandwidths
between 0.5 and 64 Mbit/s. The baseline in this test is the expected value
of the test, e.g if 4 Mbit/s is used as input to the emulator, then 4 Mbit/s
is the expected result and baseline.

This test was performed by entering a desired bandwidth in the 3G
emulator and Snigel, then measuring the resulting throughput with Ookla
Speedtest.net, and recording the average of five measurements. The results
from the test are presented in Figure 6.5, where each mark represents the
average of the measurements at the desired throughput. Figure 6.6, depicts
the relative error to the desired throughput. The relative error is calculated
as explained in chapter 6.1.

Downlink We can see that the downlink performance is very good up to
32 Mbit/s on both systems. After 32 Mbit/s, neither of the systems can keep
up with the speed. The reason for this is the WiFi network that bottlenecks
the throughput performance. When the emulator is disabled and the WiFi
switch is used on its own, we get a median downlink throughput of 38.8
Mbit/s as was measured in chapter 5.2.2, a throughput limit which the
emulation is getting close to. This explains the performance degradation
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Figure 6.5: Desired throughput and the measured throughput for the 3G
emulator and Snigel.
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after 32 Mbit/s.

Uplink The uplink performance is generally worse than the downlink per-
formance. As in the downlink emulation, we experience a degradation after
32 Mbit/s, as we are getting close to the limit of the WiFi network. The
uplink emulation also performs worse than the downlink emulation at low
bandwidths. As seen in Figure 6.5, the Snigel emulation results in almost the
double desired throughput as the downlink throughput results in 6.9 Mbit/s
when it should have emulated 4 Mbit/s. The same kind of performance
degradation as in Snigel is also measured in the 3G emulator.

Both Snigel and the new 3G emulator experience similar problems in
uplink throughput restriction, and the 3G emulator use the same code for
both uplink and downlink emulation. This makes us believe that the prob-
lem which cause this degradation lies elsewhere than in the software. The
problem probably is the WiFi interface in either the smartphone or the
WiFi switch which interferes with the emulator. We did not investigate this
any further, but it is an interesting aspect of the bandwidth emulation to
investigate further in future development.

6.6 Data Communication Patterns

RTT and throughput plays a large part in the 3G characteristics, but these
factors do not take the RRC state transitions into consideration. The delays
caused by the state transitions have a huge impact on the characteristics as
well, especially in situations with intermittent network tra�c when state
transitions are frequent. Previously, we have only used synthetic tra�c
to evaluate the emulator. This chapter aims to prove that the suggested
solution emulates 3G realistically even when used on a real application with
use-cases based on real world usage. Realistic in this context, is the notion
of having similar distribution of inter-arrival times compared to 3G, when
the same automatic test is conducted on 3G as well as on the 3G emulator.

To evaluate the 3G emulator in a realistic scenario, the packet traces from
three Spotify use-cases are recorded. Spotify is a streaming music streaming
service which uses the relatively high bandwidth of a mobile connection to
download small music files. The files are downloaded in batches, starting
with a couple of seconds of the song at first, then gradually increasing the
burst sizes until the entire song is downloaded. To make sure the tests are
performed in the same way each time, we use the monkeyrunner tool which
is delivered as part of the Android SDK. Monkeyrunner lets us simulate
screen touches on a real devices to perform deterministic GUI tests.

The phone has a Facebook account logged in to allow login using Face-
book in Spotify. The Spotify account has a premium subscription to prevent
commercials interfering with the test. The test is performed on a “rooted”
Samsung Galaxy S3 (gt i9305) with no other applications than Spotify and
Facebook installed (except for the default apps still present after factory
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reset). The data network tra�c from Spotify is isolated by restricting the
background data on all installed apps except for Spotify using the built in
Android feature.

Unfortunately, it is impossible to perform these tests in a completely
deterministic manner since we are not in control of the load on our Inter-
net service providers network or the load on the Spotify server. For these
reasons, we perform the tests five times on each network connection to see
which variations we encounter.

We first measure the 3G network parameters as explained in chapter 5.1,
and apply these to the 3G emulator and Snigel to emulate the 3G network
as closely as possible. All tests in this section are to five times on 3G,
Snigel and on the 3G emulator. The packet traces are captured using the
tcpdump tool installed on the Android phone. This means that outgoing
data is captured as they leave the phone and incoming data is captured
when it arrives to the phone. The same measurement setup is used in all
tests, regardless of which network connection is used.

The characteristics from the test are presented as empirical CDF of
packet inter-arrival time, which is the time between two consecutive packets.
This graph gives an overview over the patterns in the network tra�c. The
data that is sent in the tests, regardless of which connection is used should
have the same packet sizes. What di↵ers is therefore the frequency that the
packets are sent and received. The inter-arrival time metric captures the
time between packets, but also aspects such as bandwidth, since a lower
inter-arrival time suggests high throughput as the packet size is the same.
The baseline in these tests is the empirical CDF of the 3G connection. To
determine the similarity between two iterations of the test, we calculate the
PPMCC of all combinations of CDF. The RRC should have more impact on
test cases with intermittent tra�c since then the RRC will make more state
transitions. We therefore expect to see an increase in accuracy compared to
Snigel when intermittent tra�c cases are considered.

The three di↵erent use-cases are described in text in the following sec-
tions.

6.6.1 Streaming Music

This Spotify session represents an active listening scenario. The user searches
for a band, starts listening and skips some songs. Then searches for a new
band and listens for a couple of minutes. The Spotify cache and data are
deleted before each test to clear all cached songs and account information.
This test took 9 minutes and resulted in around 35 MB data being trans-
ferred. This is the core use-case in the Spotify app, and should therefore
be the most interesting in this evaluation. This use-case contains intermit-
tent tra�c, with some periods of high intensity tra�c, and some periods
with low intensity tra�c. This intermittent tra�c should make the RRC
state machine trigger many state transitions, which the 3G emulator should
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handle much better than Snigel. The Spotify session is described in detail
below:

1. Start Spotify

2. Log in using Facebook

3. Search for “ARCTIC MONKEYS”

4. Open the Arctic Monkeys artist page

5. Start the first song (“Do I Wanna Know?”)

6. Open the album view

7. Swipe to the next song four times (1-5 seconds between each swipe)

8. Swipe to the next song four times quickly (1 second between each
swipe)

9. Close the album view

10. Search for “DUNDERTAGET”

11. Open the Dundert̊aget artist page

12. Start the first song (”Ifr̊an mej själv”)

13. Keep listening for 5 minutes (the next song will start playing auto-
matically)

6.6.2 Downloading Playlist

This Spotify session contains a download of a playlist with 10 songs. The
songs are downloaded in normal quality. The Spotify cache and data are
deleted before each test. This test took 2 minutes and resulted in around 45
MB data being transferred. This case is a very network intense, therefore the
improvement over Snigel is not expected to be as significant as in the other
two cases since the RRC state machine will not trigger as much transitions,
the DCH state will be active most of the time.

1. Start Spotify

2. Log in using Facebook

3. Enter the settings screen and enable the “sync over mobile network”
setting

4. Open the playlist

5. Press the “Available o✏ine” button

6. Wait two minutes for the download to finish
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6.6.3 Playing O✏ine Music

This session represents a use case which should not be as data tra�c intense
as the previous tests. Before we do the test, we download a playlist of five
songs. The test is simply to listen to this playlist during 9 minutes, which
corresponds to three complete songs, and just starting the fourth. Listening
to a downloaded playlist does not require nearly as much data as streaming
music, but low volumes of tra�c such as log data and user statistics are still
being sent as usual. The playlist is downloaded before the first iteration of
the test, and auto login is enabled. This test took 6 minutes and resulted in
around 300 KB data being transferred. This very low intensity case, where
the RRC state machine will be in FACH or idle state much of the time, we
expect to see some improvement over Snigel, credited to the RRC transitions
and the FACH bandwidth restriction.

1. Start Spotify

2. Open the playlist

3. Start playing the first song (shu✏e is disabled)

4. Wait nine minutes

6.6.4 Data Pattern Analysis

To see the di↵erence of the three use-cases, the characteristics of the packet
inter-arrival times and packet sizes are presented in Figure 6.7. In this
figure, we can see that we expect to see much longer inter-arrival times
when listening to o✏ine music than when we are streaming or downloading.
Also, the packet sizes are more diverse when listening to o✏ine music, as
opposed to streaming, where almost 92% of the packets are 1388 B, and
when downloading, where 30% of the packets are 1388 B, and 65% of the
packets are 1400 B.

It is important to understand that even sessions performed on the real
3G network di↵ers each time we perform a test. Therefore, we perform
several sessions of each test even on the 3G network, and use the 3G to 3G
correlation coe�cient as baseline.

The baseline for this test is calculated by calculating the PPMCC of 3G
packet traces to other 3G packet traces for the same 3G connection.

The PPMCC to real 3G of the empirical CDF is calculated for all connec-
tions and presented in Table D.1, D.2 and D.3 in appendix D. However, to
simplify the reading of these tables, we summarised the data by presenting
the mean PPMCC to 3G for each connection in Table 6.3. We can see that
the 3G emulator achieves a slightly higher correlation to 3G than Snigel.
This means that the 3G emulator behaves more similarly to 3G than Snigel.
For details of the empirical CDF:s for all three tests, see Figures C.1, C.2
and C.3 in appendix D.
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Figure 6.7: The data pattern and inter-arrival times for the three Spotify
use cases measured using 3G in a mobile device.
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PPMCC to 3G Music streaming Downloading playlist O✏ine listening
3G 0.9982 0.9968 0.9979
Emulator 0.9731 0.9860 0.9708
Snigel 0.8775 0.9693 0.9343

Table 6.3: Mean PPMCC to 3G of inter-arrival time CDF in three use cases.

Relative Error Music streaming Downloading playlist O✏ine listening
Emulator 2.6% 1.1% 2.8%
Snigel 14% 2.8% 6.8%

Table 6.4: Relative error of inter-arrival time CDF correlation.

We calculate the relative error to the baseline by calculating the absolute
error of the PPMCC to the baseline and dividing this with the PPMCC. The
relative errors are presented in Table 6.4. Snigel has an error of 2.8 to 14%,
and by using the 3G emulator, we managed to get the error as low as 1.1 to
2.8%.

To summarise, the new 3G emulator provides an inter-arrival time distri-
bution which has a relative error from a real 3G connection of 1.1 to 2.8%.
This is a decrease from the current Snigel system, which achieved a relative
error of 2.8 to 14%. This increase should provide Spotify the means to use
a WiFi connection instead of the 3G network to performance test mobile
apps.

As expected, the music streaming case shows a significant improvement
in relative error from 14% in Snigel to 2.6% in the new 3G emulator. This
improvement can be credited to the RRC state machine, which proves it’s
applicability to software testing. Since the playlist downloading case does
not involve the RRC state machine as much, the result is not as significant,
but still we see the relative error dropping from 2.8% to 1.1%, presumably
due to better throughput restriction and RTT emulation. Lastly, the o✏ine
listening cases resulted in the relative error dropping from 6.8% to 2.8%,
where again the RRC state machine have been involved in restricting the
bandwidth during a period of low tra�c by emulating the FACH state.
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Chapter 7

Conclusions and Future
Works

This chapter contains the final conclusions from the works performed in this
project. The feasibility of the proposed solution is discussed, and suggestions
on future work related to this thesis are proposed.

7.1 Conclusions

In this thesis, we have proposed a solution for emulating 3G over a WiFi
connection for use during the testing of mobile applications at Spotify. The
3G emulator will provide Spotify means to emulate 3G networks of varying
quality. By using the emulator, Spotify gets the means to test mobile apps
on a 3G-like network with a predefined quality which allows for performing
repeatable tests.

The solution was evaluated and compared to the previously active net-
work testing system Snigel. The RTT emulation in the new 3G emulator
increases the RTT accuracy by 4% compared to Snigel.

The bandwidth emulation in the new 3G emulator performs better than
Snigel in both downlink and uplink emulation. The downlink emulation
shows a significant increase in accuracy, and achieves a relative error of 0.46%
compared to the 14% of Snigel. The uplink emulation performs slightly
better than Snigel, with a 11% relative error compared to the 14% of Snigel.

The characteristics of the resulting tra�c and the behavior of the 3G
emulator was compared to the one of Snigel. Snigel showed a relative error
compared to a real 3G connection of 2.8 to 14%, while the 3G emulator
showed convincing results with a relative error as small as 1.1 to 2.8%.
This is a compelling result and this new 3G emulator should therefore be a
promising new test tool for the industry. We expect the tool to be a valuable
asset to the testing environment at Spotify.
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7.2 Future Work

In this section, we discuss interesting ways this thesis could be extended for
future academic work or further development internally at Spotify.

7.2.1 LTE Support

The current emulator developed for this project does only support the em-
ulation of 3G connections. To add LTE support, a new WiFi switch which
supports higher downlink throughput than the current hardware must be
installed. Also, the RTT will have to be re-evaluated since LTE under good
conditions can have very low RTT. It has to be ensured that the WiFi con-
nection has even lower RTT than the LTE connection that is to be emulated.

The state machine within the emulator will have to be extended to sup-
port the conceptually similar states of LTE, and the rules for switching
between states will have to be discovered, together with tail times as done
in this thesis.

7.2.2 Emulator Accessibility

By providing easier means of accessing the 3G emulator, chances that it is
used will increase. One could integrate the emulator with the usual WiFi
network already present at the o�ce. By doing this, it would be possible
for developers to test their network code directly at their desks instead of
having to connect devices to a special WiFi network in a dedicated testing
room.

Additionally, providing some standard emulation profiles which simulate
a certain signal strength on a certain network with all the correct parameters
could decrease the knowledge needed to perform tests on the 3G emulator.
At first, the user interface of the 3G emulator can seem intimidating, since
it requires the user to enter parameters from the 3G network, which are not
known by the average software developer.

7.2.3 Simultaneous Connections

The proposed solution in this thesis only allows for one connected user at
a time. To provide 3G emulation for several devices at the same time, the
3G emulator could be modified and installed on a more powerful server. A
more robust WiFi network would also be necessary to allow several connec-
tions without degrading the performance. Most of the work in this project
would be to evaluate the solution, and create models for how many Spotify
sessions can be accurately emulated at the same time. One has to take into
consideration that only one device can communicate on the WiFi network
at any given time, while other devices will have to wait for their turn to
communicate. This might cause RTT fluctuations because of the waiting
time, which can be hard to control.
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7.2.4 Automatic RTT Control

If the emulator could adapt to such a situation by continuously monitoring
the RTT and compensating the RTT addition to match the target RTT, it
would be possible to allow the user to input the desired RTT instead of the
RTT addition as in this thesis.

7.2.5 RTT and Bandwidth From Distributions

Instead of just adding a random jitter to the RTT, an improvement would
be the ability to tell the 3G emulator to let the RTT follow a certain dis-
tribution, for example a normal distribution with a standard deviation as
input. This could further improve the accuracy of the emulator, but would
also require more thorough studies of the RTT in 3G networks, to see which
distributions would be viable options. The same addition could be added to
the bandwidth emulation as well.

7.2.6 Automatic Regression Tests and Energy Consump-
tion

By implementing automatic regression tests which make use of the 3G em-
ulator, it will be possible for Spotify to monitor the performance on mobile
networks in a controlled environment and automatically report regressions
in the Spotify apps. It could also be possible to implement EnergyBox [17]
to the test environment to automatically analyse the battery consumption
during automatic tests.
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Appendix A

3G Emulator Flowcharts

The flowcharts in this appendix describe the functionality of the developed
3G emulator qdisc.
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Figure A.1: Part 2 of enqueuing.

Figure A.2: Part 3 of enqueuing.



Figure A.3: Part 4 (Left) and 5 (Right) of enqueuing.

Figure A.4: Part 6 (Left) and 8 (Right) of enqueuing.



Figure A.5: Part 3 of dequeuing.



Appendix B

Playlists

The playlists presented here are the playlists used for in the evaluation of
the 3G emulator.

Artist Song
Red Hot Chili Peppers Californication
Red Hot Chili Peppers Otherside
Red Hot Chili Peppers Under The Bridge
Red Hot Chili Peppers Can’t Stop
Red Hot Chili Peppers Snow [Hey Oh]
Red Hot Chili Peppers Scar Tissue
Red Hot Chili Peppers By The Way
Red Hot Chili Peppers The Adventures Of Rain Dance Maggie
Red Hot Chili Peppers Dani California
Red Hot Chili Peppers Soul To Squeeze

Table B.1: Playlist used for download test.
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Artist Song
The O↵spring Slim Pickens Does The Right Thing
Arctic Monkeys Reckless Serenade
Iggy Azalea, Jennifer Hudson Trouble
Sherlock Brothers My Way
Tricky Paranthesis

Table B.2: Playlist used for o✏ine listening test.



Appendix C

CDF of Packet
Inter-arrival Times

The three CDFs presented in this appendix depict the combined data from
the evaluations of music streaming, playlist downloading and listening to a
downloaded playlist.

As seen in Figure C.3, listening do a downloaded playlist results in higher
concentration of high packet inter-arrival times. The reason for this is be-
cause there are much lower data tra�c volume in this test, which results in
longer times between each packet.
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Figure C.1: Empirical CDF of packet inter-arrival times while streaming
music on Spotify. Combined results of all five tests.
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Figure C.2: Empirical CDF of packet inter-arrival times while downloading
a Spotify playlist. Combined results of all five tests.
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Figure C.3: Empirical CDF of packet inter-arrival times while listening to
a downloaded playlist on Spotify. Combined results of all five tests.



Appendix D

Correlation Tables

The tables in this appendix are all combinations of PPMCC of the CDFs
for the three use-cases evaluated in section 6.6. The averages of all 3G to
3G, 3G to emulator and 3G to snigel PPMCCs are used in the evaluation
in chapter 6.
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PPMCC 3G (1) 3G (2) 3G (3) 3G(4) 3G (5)
3G (1) 1 0.9974 0.9973 0.9995 0.9976
3G (2) 0.9974 1 0.9995 0.9972 0.9996
3G (3) 0.9973 0.9995 1 0.9971 0.9997
3G (4) 0.9995 0.9972 0.9971 1 0.9974
3G (5) 0.9976 0.9996 0.9997 0.9974 1
Emulator (1) 0.9798 0.9735 0.9759 0.9819 0.9748
Emulator (2) 0.9702 0.9622 0.9663 0.9717 0.9646
Emulator (3) 0.9713 0.9643 0.9677 0.9735 0.9663
Emulator (4) 0.9784 0.9716 0.9737 0.9809 0.9727
Emulator (5) 0.9807 0.9742 0.9755 0.9834 0.9749
Snigel (1) 0.8134 0.8155 0.8123 0.8123 0.8120
Snigel (2) 0.8325 0.8355 0.8310 0.8311 0.8312
Snigel (3) 0.9514 0.9490 0.9471 0.9471 0.9469
Snigel (4) 0.8917 0.8919 0.8890 0.8890 0.8889
Snigel (5) 0.9043 0.9025 0.8998 0.9046 0.8998

Table D.1: Pearson product-moment correlation coe�cient between the
packet inter-arrival time CDF while streaming music.

PPMCC 3G (1) 3G (2) 3G (3) 3G(4) 3G (5)
3G (1) 1 0.9979 0.9947 0.9998 0.9996
3G (2) 0.9979 1 0.9991 0.9981 0.9986
3G (3) 0.9947 0.9991 1 0.9951 0.9959
3G (4) 0.9998 0.9981 0.9951 1 0.9999
3G (5) 0.9996 0.9986 0.9959 0.9999 1
Emulator (1) 0.9667 0.9769 0.9830 0.9678 0.9691
Emulator (2) 0.9595 0.9722 0.9795 0.9608 0.9625
Emulator (3) 0.9633 0.9747 0.9814 0.9644 0.9659
Emulator (4) 0.9702 0.9790 0.9843 0.9713 0.9723
Emulator (5) 0.9622 0.9739 0.9808 0.9635 0.9650
Snigel (1) 0.9291 0.9458 0.9558 0.9284 0.9303
Snigel (2) 0.9176 0.9351 0.9458 0.9158 0.9181
Snigel (3) 0.9188 0.9366 0.9475 0.9177 0.9198
Snigel (4) 0.9197 0.9373 0.9482 0.9186 0.9207
Snigel (5) 0.9419 0.9566 0.9658 0.9417 0.9434

Table D.2: Pearson product-moment correlation coe�cient between the
packet inter-arrival time CDF while downloading a playlist.



PPMCC 3G (1) 3G (2) 3G (3) 3G(4) 3G (5)
3G (1) 1 0.9990 0.9970 0.9944 0.9983
3G (2) 0.9990 1 0.9953 0.9921 0.9965
3G (3) 0.9970 0.9953 1 0.9985 0.9990
3G (4) 0.9948 0.9921 0.9985 1 0.9982
3G (5) 0.9983 0.9965 0.9990 0.9982 1
Emulator (1) 0.9897 0.9924 0.9833 0.9817 0.9868
Emulator (2) 0.9915 0.9942 0.9840 0.9812 0.9873
Emulator (3) 0.9897 0.9912 0.9864 0.9873 0.9895
Emulator (4) 0.9922 0.9943 0.9870 0.9846 0.9898
Emulator (5) 0.9834 0.9874 0.9724 0.9660 0.9759
Snigel (1) 0.9728 0.9773 0.9569 0.9482 0.9620
Snigel (2) 0.9841 0.9874 0.9725 0.9665 0.9769
Snigel (3) 0.9798 0.9844 0.9665 0.9589 0.9707
Snigel (4) 0.9852 0.9882 0.9741 0.9676 0.9778
Snigel (5) 0.9408 0.9413 0.9483 0.9582 0.9489

Table D.3: Pearson product-moment correlation coe�cient between the
packet inter-arrival time CDF while playing o✏ine music.
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