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Abstract—Evolutionary optimization algorithms have param-
eters that are used to adapt the search strategy to suit different
optimization problems. Selecting the optimal parameter values
for a given problem is difficult without a-priori knowledge.
Experimental studies can provide this knowledge by finding
the best parameter values for a specific set of problems. This
knowledge can also be constructed into heuristics (rule-of-
thumbs) that can adapt the parameters for the problem. The
aim of this paper is to assess the heuristics of the Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) optimization
algorithm. This is accomplished by tuning CMA-ES parameters
so as to maximize its performance on the CEC’15 problems, using
a bilevel optimization approach that searches for the optimal
parameter values. The optimized parameter values are compared
against the parameter values suggested by the heuristics. The
difference between specialized and generalized parameter values
are also investigated.

I. INTRODUCTION

The Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) [1], [2] is a single objective evolutionary opti-
mization algorithm that for certain problems outperforms other
evolutionary algorithms, like genetic algorithms, differential
evolution and particle swarm optimization [3], [4], [5]. CMA-
ES generates new search points by sampling them from a
multi-variate normal distribution. A normal distribution is
determined by its mean m ∈ R, standard deviation σ ∈ R and
its covariance matrix C ∈ Rn×n. By modifying the covariance
matrix the search distribution is made to fit the contour lines
of the objective function, thereby increasing the probability of
generating good solutions.

The no free lunch theorem [6] states that no optimization
algorithm can be better than all other algorithms on all
problems. Optimization algorithms try to circumvent this fact
by using parameters that can be tweaked to alter its search
behavior. Experimental studies can be used to find the appro-
priate parameter values for a given problem and optimization
algorithm. However, this is both difficult and time-consuming,
since many experiments are required to obtain reliable results.
Another approach is to use existing heuristics or rules of
thumb to estimate good parameters for new problems. This is
less computationally expensive, since it does not require any
experiments. There is, however, no guarantee that the selected
parameters will actually work well for that problem.

CMA-ES has heuristics for all of its parameters. They
estimate parameter values mostly based on the number of
dimensions of the problem. The heuristics are derived from

TABLE I. SUMMARY OF CEC’15 EXPENSIVE TEST PROBLEMS.

Categories No Functions Related Basic Functions F∗
i

Unimodal
Functions

1 Rotated Bent Cigar Function Bent Cigar Function 100

2 Rotated Discus Function Discus Function 200

Simple
Multimodal
Functions

3 Shifted and Rotated Weierstrass Function Weierstrass Function 300

4 Shifted and Rotated Schwefel’s Function Schwefel’s Function 400

5 Shifted and Rotated Katsuura Function Katsuura Function 500

6 Shifted and Rotated HappyCat Function HappyCat Function 600

7 Shifted and Rotated HGBat Function HGBat Function 700

8
Shifted and Rotated Expanded Griewank’s
plus Rosenbrock’s Function

Griewank’s Function
Rosenbrock’s Function

800

9 Shifted and Rotated Expanded Scaffer’s
F6 Function

Expanded Scaffer’s F6 Function 900

Hybrid
Functions

10 Hybrid Function 1 (N=3)
Schwefel’s Function
Rastrigin’s Function
High Conditioned Elliptic Function

1000

11 Hybrid Function 2 (N=4)

Griewank’s Function
Weierstrass Function
Rosenbrock’s Function
Scaffer’s F6 Function

1100

12 Hybrid Function 3 (N=5)

Katsuura Function
HappyCat Function
Griewank’s Function
Rosenbrock’s Function
Schwefel’s Function
Ackley’s Function

1200

Composite
Functions

13 Composite Function 1 (N=5)

Rosenbrock’s Function
High Conditioned Elliptic Function
Bent Cigar Function
Discus Function
High Conditioned Elliptic Function

1300

14 Composite Function 2 (N=3)
Schwefel’s Function
Rastrigin’s Function
High Conditioned Elliptic Function

1400

15 Composite Function 3 (N=5)

HGBat Function
Rastrigin’s Function
Schwefel’s Function
Weierstrass’s Function
High Conditioned Elliptic Function

1500

both empirical studies and inherent properties of CMA-ES.
They are also designed to be effective over a diverse set
of problems. The aim of this paper is to investigate how
good these heuristics are at selecting the optimal parame-
ter values for the CEC’15 expensive problems [7]. Table I
provides a summary of the included functions. A bilevel
optimization approach will be used to search for the parameters
that maximizes the performance of CMA-ES on the CEC’15
problems. This will allow for a comparison of the difference
in performances between the optimized and default (heuristic
suggested) parameter values.

Another important aspect of parameter tuning regards gen-
eralized and specialized parameter values. Generalized param-
eter values are those that are meant to work across many differ-
ent problems, while specialized parameter values are fine-tuned
against a small set of problems. This is important because the
optimal parameter values of an optimization algorithm can be
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quite different between problems and also between specialized
and generalized parameter values [8]. Generalized parameter
values are often more useful for the practitioner because they
are designed to be applicable to a wide range of problems.

This paper analyzes both specialized and generalized
CMA-ES parameter values, both in terms of performance
and the differences of the optimal parameter values. To find
specialized parameter values each problem and dimension is
optimized individually, while generalized parameter values are
obtained by searching for the optimal parameter values across
all problems and dimensions.

It is possible to distinguish three layers in parameter tuning:
The application layer, the algorithm (lower) layer and the
design (upper) layer [9]. The problem to be solved is located
on the application layer and the metaheuristic to solve that
problem is on the algorithm layer. On the design layer is
the parameter tuner that tests different parameters for the
metaheuristic on the algorithm layer. To avoid confusion, the
quality of solutions for the problem on the application layer is
called fitness while the quality of the parameters in the design
layer is called utility [9].

Parameter tuning can itself be viewed as an optimization
problem in which the objective is to find the parameter values
that give the best performance on a particular problem or a
set of problems. This approach can be referred to as meta-
EA [9] or bilevel optimization [10]. In this paper, the objective
at the upper level optimization is the same as the CEC’15
expensive problems scoring method. The scoring method is
the summation of the mean and median of the best function
values over multiple runs of the 15 test problems, for both 10
and 30 dimensions, as shown below:

Minimize
p

15∑
i=1

mean(fi(p))

∣∣∣∣
D=10

+

15∑
i=1

mean(fi(p))

∣∣∣∣
D=30

+

15∑
i=1

median(fi(p))

∣∣∣∣
D=10

+

15∑
i=1

median(fi(p))

∣∣∣∣
D=30

where, fi(p) is the best function value obtained by
solving the ith CEC’15 problem of the following
form with parameters p

Minimize
x

f(x)

Subject to xl ≤ x ≤ xu
(1)

The algorithmic parameters of the lower-level optimization
problem become the variables for the upper-level optimization
problem. The objective for each test problem is calculated
according to the following equation, where MaxFEs is the
maximum number of function evaluations allowed for each
problem.

f(x) = 0.5 ∗ (fMaxFEs + f0.5×MaxFEs) (2)

The CEC’15 problems are called expensive problems be-
cause they only allow for small number of function evaluations,

500 and 1500 evaluations for 10 and 30 dimensions respec-
tively. Most studies use far more function evaluations (in [3]
the maximum was set at 107) when comparing optimization
algorithm performances. The size of the function evaluation
budget will most probably affect the optimal parameters. This
aspect is however not addressed in this paper.

The rest of the paper is organized as follows. Section II
introduces CMA-ES and its parameters. In Section III a
description of the experimental design is provided. The ex-
perimental results appear in Section IV. The conclusions are
summarized in Section V.

II. CMA-ES

There are several variants of CMA-ES. The one used in this
paper is the (µ/µw, λ)-CMA-ES. Here λ is the population size,
µ is the number of selected search points and µw indicates that
the new search points are weighted when updating the mean.

New search points are generated from a multi-variate
normal distribution. They are evaluated and ranked according
to their fitness. The best µ of all λ points are weighted
and summed to form the new mean. Instead of only using
the selection information from a single generation, CMA-ES
utilizes the path taken by the population over a number of
generations. This is called the evolution path. The covariance
matrix is updated by the evolution path and the µ weighted
difference vectors of previous and new search points. The
step size σ is also updated using an evolution path. Reliably
estimating the covariance matrix from a single generation is
not always possible. That is why information from previous
generations are also added, this is called the rank-µ-update.
For a complete description of CMA-ES, see [1]. The CMA-
ES implementation used in this paper is based on Hansen’s C
code [11].

A. Parameters and Heuristics

CMA-ES has strategy parameters that can be used to
control its search behavior. This section will provide a short
description of them and present the heuristics that are used
to set them. The heuristics are also based on those found in
Hansen’s C code [11]. In the following equations, N refers to
the dimension of the problem.

1) λ: The number of new search points generated in each
generation.

λ = 4 + b3 ∗ ln(N)c (3)

2) µ: The number of search points that will form the new
mean. Better points are given more significance using weights
given by Equation (5).

µ =

⌊
λ

2

⌋
(4)

wi = ln (µ+ 1)− ln (i); wi =
wi
µ∑
i=1

wi

(5)



3) cσ: The length of the evolution path horizon. This
controls the learning rate for the cumulation of the step size.

cσ =
µeff + 2

N + µeff + 3
(6)

µeff =

(
µ∑
i=1

wi
2

)−1

(7)

4) cc: The length of the evolution path horizon. This
controls the learning rate for the cumulation of the rank-one
update of the covariance matrix.

cc =
4

N + 4
(8)

5) ccov: The learning rate for the covariance matrix.

ccov =
1

µcov
∗ t1 +

(
1− 1

µcov

)
∗ t2 (9)

µcov = µeff (10)

t1 =
2

(N +
√
2)2

(11)

t2 = min

(
2 ∗ µeff − 1

(N + 2) ∗ (N + 2) + µeff
, 1

)
(12)

6) σ(0): The initial step size. The step size is problem de-
pendent, but the optimum of the optimized function should fall
within m(0) ± 2σ(0). With decision variables scaled between
[0, 10] and random m(0), the initial step size is chosen to be
2.

σ(0) = 2 (13)

7) dσ: Dampening for the step size update.

dσ = t1 ∗max

(
0.3, 1− N

1e−6 + MaxFEs
λ

)
+ cσ (14)

t1 = 1 + 2 ∗max

(
0,

√(
µeff − 1

N + 1

)
− 1

)
(15)

III. EXPERIMENTAL DESIGN

Each experiment in this study has a set t that either include
one or all test problems. Experiments with only one test
problem find specialized parameter values and experiments
with all problems find generalized parameter values. In total,
there are 31 experiments, 15 test problems × 2 dimensions
for the specialized experiments and 1 experiment for the
generalized experiment.

The bilevel optimization approach to parameter tuning
only provides a single optimized parameter set p∗ for each
experiment. To get a larger sample size to draw conclusions
from, each experiment is independently replicated 20 times.
The outcome of each replication is the set of parameter values
with the best objective value, as measured by Equation (2).
Therefore, each experiment produces 20 sets of optimized
parameter values. Within each experiment, every evaluated
parameter set p is independently replicated 20 times. The
average fitness from these optimization is then used as the
utility of that parameter set.

The experiments were run on three Dell PowerEdge R420
servers, each with two Intel Xeon E5-2400 V2 processors for a
total of 72 logical cores. The optimization runs were distributed
across the servers using an optimization framework written in
C++. The framework has the capability of distributing and
running independent optimizations in parallel, allowing for
an efficient use of all the available computing resources. The
experiments took 85 hours to complete.

A. Design Layer

CMA-ES is used to solve the single objective minimization
problem, Equation (1), at the design layer. There are two
main reasons for choosing CMA-ES. It is known to be an
effective single objective optimization algorithm and it has
default values for most parameters [3], [4]. λ is set to 10 which
is slightly larger than the default. All parameters at the design
layer are scaled so they fall in the range [0, 10] and because
of that σ(0) is set to 2. All other parameters use their default
values as described previously.

The maximum iterations allowed at the design layer is
6000, with restarts at iteration 2000 and 4000. Restarts are
used to reduce the probability of CMA-ES getting trapped in a
local optimum. Initial experiments showed that improvements
had plateaued by 2000 iterations, which is why each restart
was separated by to that number of iterations.

B. Algorithm Layer

The algorithm (lower) layer is where the utility of a
parameter set p is evaluated. The evaluation is performed by
starting instances of CMA-ES against a set t containing one or
more of the CEC’15 problems. The composition of the set t is
different for each experiment. For every problem in the set t
20 instances of CMA-ES are started with the parameter set that
is being evaluated. The utility of the parameter set p is then
calculated as the sum of all mean and median fitnesses obtained
by these optimizations, as shown in the objective function in
Equation (1).

There are 15 functions included in the CEC’15 expen-
sive problems. Each function is optimized for 10 and 30



dimensions, which are allowed a maximum of 500 and 1500
function evaluations. The decision variables are scaled so
that they fall in the range [0, 10]; they are originally in the
range [−100, 100]. The fitness for a test problem is calculated
according to Equation (2).

C. Starting Positions

Each experiment replication is assigned a set of 20 (one
for each lower level replication) random starting positions for
the initial mean. That means that CMA-ES instances within a
replication use the same set of starting positions for evaluating
any given parameter set p, and that the starting positions
are different between replications. Every parameter set p is
evaluated against all starting positions in the assigned set.

By evaluating each parameter set p against different start-
ing positions, the probability of specifically optimizing the
parameters for a particular starting position is reduced. Using
the same set of starting positions for all evaluations within a
replication reduces the effect of the starting position from the
performance of a particular parameter set. An alternative to
statically assigning starting positions would be to randomly
generate them at the start of each optimization. That approach
avoids the issue of sub-optimizing for a particular starting
position, but it also makes the comparison between parameters
sets unfair since they do not have the same starting conditions.

D. Parameters

The following CMA-ES parameters are tuned in this study.

1) λ: The population size: an integer in the range [2, 300].

2) µ: The number of selected search points as a percentage
of the population size: a real-value in the range [0, 1].

3) cσ: Learning rate for the cumulation of the step size: a
real-value in the range ]0, 1].

4) cc: Learning rate for the cumulation of the rank-one
update: a real-value in the range ]0, 1].

5) ccov: Learning rate for the covariance matrix update: a
real-value in the range [0, 1[.

6) σ(0): The initial step size: a real-value in the range
[0, 10].

7) dσ: Dampening parameter for step size update: a real-
value in the range [0, 10].

The parameters of the optimization on the algorithm layer
in Equation (1) become variables for the optimization on the
design layer. Thus the variable vector p in Equation (1) is
p = {λ, µ, cσ, cc, ccov, σ(0), dσ}.

IV. EXPERIMENTAL RESULTS

The results are divided into two sections, the first section
consists of the results of the parameter tuning and it is followed
by a comparison of the optimized versus the default parameter
values. The parameter tuning experiments use Equation (2)
to calculate the fitness, while the replicated generalized and
default parameter values use Equation (16).

f(x) = fMaxFEs (16)

TABLE II. COMPUTATIONAL COMPLEXITY FOR DEFAULT (T̂1) AND
OPTIMIZED (T̂2) PARAMETER VALUES.

N T0 T̂1 T̂2 T̂1/T0 T̂2/T0

10 0.03 5.9 6.0 196.6 200.0

30 0.03 35.8 39.9 1193.3 1330

TABLE III. BEST, MEDIAN AND MEAN RESULTS FROM 20 PARAMETER
TUNING EXPERIMENTS FOR SPECIALIZED PARAMETERS (CMAES-S) AND

GENERALIZED PARAMETERS (CMAES-G).

CMAES-S CMAES-G
Func N Best Median Mean Best Median Mean Min

1 10 1.077E+07 7.440E+07 3.662E+07 3.820E+07 6.722E+07 6.599E+07 200
30 4.646E+07 7.284E+07 6.870E+07 7.013E+07 1.689E+08 1.108E+08 200

2 10 5.295E+04 5.880E+04 5.808E+04 7.093E+04 1.021E+05 1.024E+05 400
30 2.258E+05 2.359E+05 2.363E+05 2.786E+05 2.994E+05 2.953E+05 400

3 10 6.103E+02 6.118E+02 6.120E+02 6.129E+02 6.158E+02 6.157E+02 600
30 6.318E+02 6.351E+02 6.339E+02 6.472E+02 6.543E+02 6.527E+02 600

4 10 2.602E+03 3.183E+03 3.189E+03 3.437E+03 4.087E+03 4.109E+03 800
30 7.975E+03 8.750E+03 8.673E+03 9.802E+03 1.235E+04 1.204E+04 800

5 10 1.001E+03 1.001E+03 1.001E+03 1.005E+03 1.006E+03 1.006E+03 1000
30 1.000E+03 1.001E+03 1.001E+03 1.004E+03 1.008E+03 1.008E+03 1000

6 10 1.201E+03 1.201E+03 1.201E+03 1.201E+03 1.201E+03 1.201E+03 1200
30 1.201E+03 1.201E+03 1.201E+03 1.201E+03 1.202E+03 1.201E+03 1200

7 10 1.401E+03 1.402E+03 1.401E+03 1.401E+03 1.402E+03 1.402E+03 1400
30 1.401E+03 1.401E+03 1.401E+03 1.401E+03 1.401E+03 1.401E+03 1400

8 10 1.610E+03 1.613E+03 1.613E+03 1.615E+03 1.947E+03 1.648E+03 1600
30 1.682E+03 1.834E+03 1.767E+03 1.812E+03 3.884E+04 2.321E+03 1600

9 10 1.808E+03 1.808E+03 1.808E+03 1.808E+03 1.808E+03 1.808E+03 1800
30 1.827E+03 1.827E+03 1.827E+03 1.828E+03 1.828E+03 1.828E+03 1800

10 10 1.163E+05 1.765E+05 1.744E+05 9.096E+05 1.852E+06 1.770E+06 2000
30 2.660E+06 3.650E+06 3.631E+06 1.148E+07 1.580E+07 1.473E+07 2000

11 10 2.212E+03 2.212E+03 2.212E+03 2.216E+03 2.219E+03 2.219E+03 2200
30 2.242E+03 2.247E+03 2.246E+03 2.246E+03 2.260E+03 2.258E+03 2200

12 10 2.708E+03 2.739E+03 2.739E+03 2.852E+03 2.976E+03 2.981E+03 2400
30 3.313E+03 3.444E+03 3.454E+03 3.763E+03 4.083E+03 4.094E+03 2400

13 10 3.255E+03 3.258E+03 3.258E+03 3.272E+03 3.298E+03 3.300E+03 2600
30 3.372E+03 3.388E+03 3.384E+03 3.409E+03 3.433E+03 3.426E+03 2600

14 10 3.207E+03 3.209E+03 3.209E+03 3.214E+03 3.217E+03 3.217E+03 2800
30 3.261E+03 3.267E+03 3.266E+03 3.281E+03 3.300E+03 3.300E+03 2800

15 10 3.718E+03 3.765E+03 3.777E+03 3.813E+03 3.911E+03 3.902E+03 3000
30 4.264E+03 4.414E+03 4.427E+03 4.704E+03 4.836E+03 4.836E+03 3000

The results of four different variants of CMA-ES are
presented in this section. CMAES-S and CMAES-G denote
the specialized and generalized parameters experiments re-
spectively. CMAES-R is the best parameter set p∗ from the
generalized parameter experiment replicated on a new set of
starting positions. The same set of starting position is used to
get the results for the default parameters, CMAES-D.

The computational complexity for the default and opti-
mized parameter values are shown in Table II, calculated
according to the guidelines given in [7].

A. Parameter Tuning Results

Since the same formula is used for the design layer problem
as the scoring method in the CEC’15 expensive problems, the
results for the parameter tuning experiments are representative
of the final score.

Table III shows the best, median and mean utility from
each experiment. The scores, as calculated by the objective
function in Equation (1), are shown in Table IV. For CMAES-S
the values are the summation of all individual problems. Thus,
the difference of CMAES-S and CMAES-G is the performance
gain (or loss) of allowing each test problem to use specialized
instead of generalized parameters.

TABLE IV. THE SCORE AS CALCULATED BY THE OBJECTIVE
FUNCTION IN EQUATION (1). THE SPECIALIZED PARAMETERS SCORE

(CMAES-S), IS THE SUMMATION OF ALL INDIVIDUAL RESULTS.

Best Worst Median Mean Min
CMAES-S 6.035E+07 3.567E+08 1.095E+08 1.514E+08 48000

CMAES-G 1.379E+08 1.248E+09 1.982E+08 2.543E+08 48000



The specialized parameters are able to improve the perfor-
mance by 81% for the median and 128% for the best result.
This shows that the no free lunch theorem holds for CMA-ES
and the CEC’15 problems, because no set of parameters could
be found that are optimal across all problems. From the results
it is also clear that functions 1, 2, 10 are the most difficult ones.
It is reasonable to assume that those functions will influence
the general parameters the most, because of the formulation
of the scoring method.

The optimized parameter values from all 20 replications,
for both 10 and 30 dimensions, are shown as boxplots in
Figures 1-7. The function labeled G in the plots uses the
generalized parameters.

1) Figure 1: The median values for σ(0) vary between
problems. The variation pattern is roughly the same for both
10 and 30 dimensions. However, 30 dimensions have lower
values. For 10 dimensions all median values are below 4, while
for 30 dimensions the median values are below 2.

2) Figure 2: The median values for µ do not significantly
change between problems. The exceptions are functions 9 and
15, which have lower values than the rest. Another observation
is that 30 dimensions have in general higher values than 10
dimensions.

3) Figures 3, 4 and 5: No clear patterns can be observed
with dσ , cσ and cc. Although the significance of dσ seems
to be higher for 30 dimensions, especially for function 1.
More experiments are needed to determine if they do not
influence the performance in a significant way or if they have
dependencies on other parameters which allow them to have
a wide range of optimal values.

4) Figure 6: The median values for cccov vary between
problems. One trend that can be observed is that the values
for 30 dimensions are smaller than for 10. Smaller values are
clearly preferred for the generalized parameters.

5) Figure 7: In general, optimized λ values are around 10,
with exceptions for functions 5, 9 and 15 with 10 dimensions
and 2, 5 and 9 with 30 dimensions. Apart from those excep-
tions, there are no discernible differences between 10 and 30
dimensions.

B. Tuned Parameters vs Default Parameters

Table V shows the parameters with the best utility from
each experiment. The row labeled Generalized are the best
generalized parameters and Default are the parameters as sug-
gested by the heuristics. The optimized λ and µ parameters are
smaller than the default. This will lead to faster convergence
at the cost of reduced global search capability. It is difficult to
draw any conclusions about the other optimized parameters as
they are similar to the default values.

Tables VII and IX shows the performance of the gener-
alized parameters on the CEC’15 problems, for 10 and 30
dimensions. For comparison, the performance using default
values are shown in Table VI and VIII. The fitness values for
those experiments are calculated using Equation (16). Note that
this is different from the parameter tuning experiments which
used Equation (2).

TABLE V. OPTIMIZED PARAMETER VALUES: THE PARAMETER VALUES
FROM THE EXPERIMENT REPLICATION WITH THE BEST PERFORMANCE

Func N σ(0) µ dσ cσ cc ccov λ

1 10 1.341E+00 9.994E-02 2.934E+00 4.739E-02 6.693E-08 1.499E-01 5.000E+00
30 1.337E+00 3.932E-01 5.024E-01 3.554E-01 5.272E-01 7.450E-04 7.000E+00

2 10 8.550E-01 3.555E-01 4.954E+00 4.965E-01 9.793E-01 8.161E-01 1.800E+01
30 6.286E-01 5.599E-01 1.292E-01 1.344E-01 4.651E-01 2.906E-01 1.500E+01

3 10 1.851E+00 2.724E-01 1.000E+01 2.886E-01 1.217E-05 1.814E-01 9.000E+00
30 2.824E+00 4.494E-01 2.722E-01 1.058E-01 9.398E-01 3.914E-04 1.300E+01

4 10 7.575E-01 1.383E-01 1.492E+00 3.821E-01 3.565E-04 3.412E-01 1.400E+01
30 4.324E-01 2.531E-01 1.158E+00 6.300E-01 1.212E-04 6.571E-02 1.100E+01

5 10 9.748E-02 5.291E-01 3.206E-01 6.470E-02 6.863E-01 4.627E-01 1.300E+01
30 1.346E-01 2.801E-01 8.376E-02 1.149E-02 6.462E-01 2.871E-02 1.400E+01

6 10 1.635E+00 1.935E-01 5.480E+00 6.873E-01 4.618E-06 1.495E-01 6.000E+00
30 4.682E-01 2.050E-01 9.983E+00 6.617E-01 2.078E-06 4.764E-02 6.000E+00

7 10 2.285E+00 6.032E-02 6.916E+00 6.475E-01 4.428E-06 2.086E-01 8.000E+00
30 1.551E+00 2.320E-01 4.200E-01 3.779E-01 8.272E-01 1.494E-02 7.000E+00

8 10 3.250E+00 1.399E-02 1.000E+01 9.300E-03 1.212E-08 2.793E-01 1.100E+01
30 8.221E-01 3.907E-01 9.477E-01 4.005E-01 9.992E-01 8.285E-04 8.000E+00

9 10 2.246E+00 9.116E-02 4.103E+00 2.033E-01 9.590E-01 8.284E-01 3.900E+01
30 1.873E+00 5.461E-02 5.706E+00 2.136E-01 1.827E-01 3.811E-01 3.500E+01

10 10 1.370E+00 1.339E-01 6.347E+00 4.320E-01 8.358E-01 2.989E-01 6.000E+00
30 1.086E+00 2.904E-01 3.039E+00 7.439E-01 5.137E-01 1.462E-01 1.000E+01

11 10 2.581E+00 2.417E-01 9.192E+00 9.964E-01 6.081E-01 3.129E-01 8.000E+00
30 2.575E+00 2.454E-01 3.206E-01 9.489E-02 2.544E-01 2.010E-02 8.000E+00

12 10 2.958E+00 1.494E-01 8.872E+00 5.143E-01 2.276E-01 4.474E-01 1.500E+01
30 9.861E-01 3.173E-01 4.710E+00 2.676E-01 8.234E-01 2.935E-01 1.500E+01

13 10 4.026E+00 2.875E-01 2.686E-01 5.115E-02 9.365E-01 2.592E-01 8.000E+00
30 7.501E-01 2.974E-01 8.156E-01 7.556E-01 6.063E-01 2.166E-02 8.000E+00

14 10 1.247E+00 1.997E-01 2.225E+00 3.027E-01 4.124E-01 2.420E-01 9.000E+00
30 6.248E-01 2.756E-01 2.228E+00 8.839E-01 1.888E-01 1.615E-02 7.000E+00

15 10 2.796E+00 7.519E-03 2.124E+00 3.883E-01 4.969E-01 3.731E-01 3.500E+01
30 3.394E-01 3.728E-01 9.461E+00 5.925E-01 5.177E-01 8.894E-03 7.000E+00

Generalized 1.336E+00 2.629E-01 5.206E-01 2.777E-01 6.560E-01 2.632E-03 6.000E+00

Default 10 2.000E+00 5.000E-01 1.130E+00 3.299E-01 2.857E-01 3.246E-02 1.000E+01
20 2.000E+00 5.000E-01 8.942E-01 1.742E-01 1.176E-01 6.573E-03 1.400E+01

TABLE VI. CMAES-D, RESULTS FOR 10D

Func Best Worst Median Mean Std
1 4.914E+06 6.702E+08 4.275E+07 9.261E+07 1.479E+08
2 1.524E+04 2.063E+05 4.694E+04 6.232E+04 4.452E+04
3 3.032E+02 3.109E+02 3.063E+02 3.066E+02 2.107E+00
4 1.419E+03 2.563E+03 2.278E+03 2.187E+03 3.059E+02
5 5.019E+02 5.044E+02 5.028E+02 5.029E+02 5.829E-01
6 6.004E+02 6.016E+02 6.007E+02 6.007E+02 2.666E-01
7 7.004E+02 7.038E+02 7.006E+02 7.008E+02 7.462E-01
8 8.045E+02 9.544E+02 8.065E+02 8.145E+02 3.302E+01
9 9.036E+02 9.044E+02 9.042E+02 9.041E+02 2.723E-01
10 1.388E+05 2.954E+06 4.438E+05 7.204E+05 8.054E+05
11 1.106E+03 1.115E+03 1.109E+03 1.108E+03 2.161E+00
12 1.296E+03 1.655E+03 1.466E+03 1.480E+03 1.141E+02
13 1.621E+03 1.727E+03 1.638E+03 1.649E+03 2.835E+01
14 1.596E+03 1.619E+03 1.612E+03 1.610E+03 5.338E+00
15 1.559E+03 2.060E+03 1.952E+03 1.942E+03 1.011E+02

TABLE VII. CMAES-R, RESULTS FOR 10D

Func Best Worst Median Mean Std
1 1.106E+03 4.433E+07 1.490E+05 2.486E+06 9.853E+06
2 9.478E+03 6.443E+04 3.756E+04 3.725E+04 1.670E+04
3 3.033E+02 3.104E+02 3.063E+02 3.067E+02 1.841E+00
4 8.827E+02 2.674E+03 2.009E+03 1.912E+03 5.718E+02
5 5.010E+02 5.040E+02 5.030E+02 5.027E+02 8.442E-01
6 6.003E+02 6.008E+02 6.005E+02 6.005E+02 1.253E-01
7 7.002E+02 7.062E+02 7.005E+02 7.009E+02 1.305E+00
8 8.037E+02 3.690E+03 8.053E+02 9.496E+02 6.451E+02
9 9.039E+02 9.046E+02 9.040E+02 9.041E+02 1.997E-01
10 2.680E+04 3.712E+06 4.013E+05 8.762E+05 1.013E+06
11 1.104E+03 1.113E+03 1.107E+03 1.108E+03 2.786E+00
12 1.235E+03 1.699E+03 1.421E+03 1.429E+03 1.194E+02
13 1.618E+03 2.023E+03 1.632E+03 1.657E+03 8.793E+01
14 1.592E+03 1.618E+03 1.602E+03 1.603E+03 6.737E+00
15 1.514E+03 2.084E+03 1.913E+03 1.900E+03 1.438E+02

TABLE VIII. CMAES-D, RESULTS FOR 30D

Func Best Worst Median Mean Std
1 2.784E+07 3.736E+08 1.230E+08 1.219E+08 7.569E+07
2 1.021E+05 2.181E+05 1.574E+05 1.504E+05 3.346E+04
3 3.112E+02 3.232E+02 3.182E+02 3.177E+02 3.380E+00
4 7.198E+03 8.982E+03 8.149E+03 8.102E+03 5.238E+02
5 5.029E+02 5.054E+02 5.043E+02 5.043E+02 5.577E-01
6 6.005E+02 6.011E+02 6.008E+02 6.008E+02 1.614E-01
7 7.004E+02 7.014E+02 7.006E+02 7.008E+02 2.996E-01
8 8.191E+02 9.451E+02 8.284E+02 8.426E+02 3.109E+01
9 9.133E+02 9.141E+02 9.139E+02 9.138E+02 2.369E-01
10 4.747E+06 4.865E+07 1.551E+07 2.012E+07 1.284E+07
11 1.122E+03 1.170E+03 1.130E+03 1.132E+03 1.019E+01
12 2.038E+03 2.868E+03 2.408E+03 2.424E+03 2.349E+02
13 1.677E+03 2.034E+03 1.769E+03 1.791E+03 8.348E+01
14 1.628E+03 1.712E+03 1.661E+03 1.665E+03 2.131E+01
15 2.079E+03 2.501E+03 2.335E+03 2.304E+03 1.084E+02



TABLE IX. CMAES-R, RESULTS FOR 30D

Func Best Worst Median Mean Std
1 9.691E+03 1.476E+07 2.264E+05 1.289E+06 3.347E+06
2 8.245E+04 2.078E+05 1.420E+05 1.416E+05 3.037E+04
3 3.185E+02 3.327E+02 3.250E+02 3.253E+02 3.919E+00
4 3.209E+03 8.927E+03 5.435E+03 5.773E+03 1.905E+03
5 5.005E+02 5.053E+02 5.043E+02 5.041E+02 1.066E+00
6 6.004E+02 6.009E+02 6.007E+02 6.007E+02 1.510E-01
7 7.003E+02 7.011E+02 7.004E+02 7.006E+02 3.107E-01
8 8.195E+02 8.413E+02 8.259E+02 8.273E+02 6.642E+00
9 9.135E+02 9.143E+02 9.140E+02 9.139E+02 2.178E-01
10 1.221E+06 1.148E+07 3.116E+06 4.122E+06 2.974E+06
11 1.119E+03 1.236E+03 1.123E+03 1.136E+03 3.454E+01
12 1.482E+03 2.503E+03 1.794E+03 1.861E+03 2.499E+02
13 1.671E+03 1.747E+03 1.691E+03 1.693E+03 1.618E+01
14 1.621E+03 1.666E+03 1.633E+03 1.635E+03 1.177E+01
15 1.940E+03 2.526E+03 2.351E+03 2.296E+03 1.710E+02

TABLE X. PERFORMANCE DIFFERENCE OF DEFAULT (CMAES-D)
AND OPTIMIZED PARAMETER VALUES (CMAES-R).

Func N CMAES-D CMAES-R Diff Min
1 10 1.354E+08 2.635E+06 1.327E+08 200

30 2.449E+08 1.515E+06 2.434E+08 200

2 10 1.093E+05 7.481E+04 3.445E+04 400
30 3.078E+05 2.836E+05 2.419E+04 400

3 10 6.128E+02 6.130E+02 -1.848E-01 600
30 6.359E+02 6.503E+02 -1.440E+01 600

4 10 4.465E+03 3.921E+03 5.442E+02 800
30 1.625E+04 1.121E+04 5.042E+03 800

5 10 1.006E+03 1.006E+03 1.610E-01 1000
30 1.009E+03 1.008E+03 1.410E-01 1000

6 10 1.201E+03 1.201E+03 5.121E-01 1200
30 1.202E+03 1.201E+03 1.711E-01 1200

7 10 1.401E+03 1.401E+03 -3.719E-02 1400
30 1.401E+03 1.401E+03 3.318E-01 1400

8 10 1.621E+03 1.755E+03 -1.339E+02 1600
30 1.671E+03 1.653E+03 1.794E+01 1600

9 10 1.808E+03 1.808E+03 1.079E-01 1800
30 1.828E+03 1.828E+03 -1.997E-01 1800

10 10 1.164E+06 1.277E+06 -1.133E+05 2000
30 3.563E+07 7.238E+06 2.839E+07 2000

11 10 2.217E+03 2.214E+03 2.681E+00 2200
30 2.263E+03 2.259E+03 3.276E+00 2200

12 10 2.945E+03 2.850E+03 9.574E+01 2400
30 4.832E+03 3.654E+03 1.178E+03 2400

13 10 3.287E+03 3.289E+03 -1.686E+00 2600
30 3.561E+03 3.383E+03 1.774E+02 2600

14 10 3.222E+03 3.205E+03 1.694E+01 2800
30 3.327E+03 3.268E+03 5.827E+01 2800

15 10 3.894E+03 3.813E+03 8.078E+01 3000
30 4.639E+03 4.647E+03 -8.247E+00 3000

All 4.176E+08 1.309E+07 4.045E+08 48000

The optimized parameter values are able to improve on the
default parameter values in most of the CEC’15 problems, see
Table X. Functions 1, 2 and 10 are the ones that did improve
the most. For the total score over all problems, the optimized
parameters increased the performance by a factor of almost
32.

V. CONCLUSIONS

This paper tuned the parameters of CMA-ES with the
aim of maximizing its performance on the CEC’15 expensive
problems. A bilevel optimization approach was used to search
for both generalized and specialized parameters. The results
show that generalized parameters have lower performance than
specialized parameters, and that the general parameters can
have values that are different from any of the specialized
parameters.

The optimized parameter values were also compared
against the values suggested by the heuristics, both in terms
of performance on CEC’15 problems and how similar they
were. Two notable differences have been seen in the λ and µ
parameters. Small values for the population size parameter λ
leads to fast convergence and large values help in avoiding lo-
cal optima. Compared to the default parameters, the parameter
tuning results show that a smaller λ provide a better trade-
off for the CEC’15 problems. Larger values of µ increase the
explorative behavior. The default heuristic for µ, Equation (4),
from [11] suggested a value of 0.5. The results show that the

optimized value of 0.26 is closer to the proposed value of 0.27
in [1]. Even though λ and µ are highlighted here, that does
not mean that they are solely responsible for the performance
increase. Further work needs to be done to determine the
significance of each parameter and how they interact with each
other.

No parameters have been found that are optimal across
all problems, which is in agreement with the no free lunch
theorem. The parameters found in this study are influenced
by the CEC’15 scoring method and the fact that a relatively
limited function evaluation budget was used. How well these
parameters work on other problems with different function
evaluations budgets is difficult to estimate, without doing
further experiments.

The heuristics are designed to scale the parameters with
the dimension of the problem. This aspect of the optimized
parameters are not studied in this paper. Experiments that
find optimal parameters for different dimensions are needed
to address this issue.
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Results of 31 Algorithms from the Black-box Optimization Bench-
marking BBOB-2009,” in Proceedings of the 12th Annual Conference
Companion on Genetic and Evolutionary Computation, ser. GECCO
’10. New York, NY, USA: ACM, 2010, pp. 1689–1696.

[6] D. Wolpert and W. Macready, “No free lunch theorems for optimiza-
tion,” IEEE Transactions on Evolutionary Computation, vol. 1, no. 1,
pp. 67–82, Apr. 1997.

[7] Q. Chen, B. Liu, Q. Zhang, J. J. Liang, P. N. Suganthan, and B. Y.
Qu, “Problem Definition and Evaluation Criteria for CEC 2015 Spe-
cial Session and Competition on Bound Constrained Single-Objective
Computationally Expensive Numerical Optimization,” Computational
Intelligence Laboratory, Zhengzhou University, Zhengzhou China and
Technical Report, Nanyang Technological University, Singapore, Tech-
nical Report, Nov. 2014.

[8] S. K. Smit and A. E. Eiben, “Parameter Tuning of Evolutionary
Algorithms: Generalist vs. Specialist,” in Applications of Evolutionary
Computation, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, Jan. 2010, no. 6024, pp. 542–551.

[9] A. E. Eiben and S. K. Smit, “Parameter tuning for configuring and ana-
lyzing evolutionary algorithms,” Swarm and Evolutionary Computation,
vol. 1, no. 1, pp. 19–31, Mar. 2011.

[10] A. Sinha, P. Malo, P. Xu, and K. Deb, “A Bilevel Optimization
Approach to Automated Parameter Tuning,” in Proceedings of the 2014
Conference on Genetic and Evolutionary Computation, ser. GECCO
’14. New York, NY, USA: ACM, 2014, pp. 847–854.

[11] N. Hansen, “CMA-ES code in C,” 2014. [Online]. Available:
https://github.com/cma-es/c-cmaes



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 G
Function

0

2

4

6

8

10

σ
(0

)

N=10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 G
Function

0

2

4

6

8

10

σ
(0

)

N=30

Fig. 1. Parameter tuning results for parameter σ(0).
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Fig. 2. Parameter tuning results for parameter µ.
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Fig. 3. Parameter tuning results for parameter dσ .
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Fig. 4. Parameter tuning results for parameter cσ .
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Fig. 5. Parameter tuning results for parameter cc.
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Fig. 6. Parameter tuning results for parameter ccov.
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Fig. 7. Parameter tuning results for parameter λ.


