

i

Degree thesis

Modeling Intel® Cilk™ Plus Programs with

Unified Modeling Languages

 Authors: Ata-Ul-Nasar, Mansoor

 Supervisor: Dr Sabri Pllana
 Examiner: Mathias Hedenberg

 Semester: VT 2014
 Subject: Computer Science

ii

Abstract

Recently multi-core processors have become very popular in computer systems. It allows

multiple threads to be executed simultaneously. The advantage of multi-core comes by

parallelizing codes to expand the work across hardware. Furthermore, this can be done

by using a parallel environment developed by M.I.T. called Intel Cilk Plus, which is

design to provide an easy and well-structured parallel programming approach.

 Intel Cilk Plus is an extension of C and C++ programming languages that describes

data parallelism. This extension is very helpful and easy to use among other languages in

this field. It has different features including keywords, reducers and array notations etc.

In general, this article describes Intel Cilk Plus and its features. In addition, Unified

Modelling Language, activity diagrams are used in term of graphical modelling of Intel

Cilk Plus by describing the process of a system, capturing the dynamic behaviour of it

and representing the flow from one activity to another using control flow. Later on Intel

Cilk Plus keywords and UML diagrams tools will be evaluated, a comparison of different

UML modelling tools will also be provided.

List of keywords: Parallel Programming, Intel Cilk Plus, Unified Modelling-

Languages, Activity Models.

iii

Preface

First of all I will like to thank my supervisor, Prof. Dr. Sabri Pllana, for his continuous

support, encouragement and patience. His continuous good mood and humour has

always been encouraging and inspiring for me.

 I wish to thank my sisters, brothers and my parents, especially my brother for being

so kind and loving to me. I am also thankful to all of those who supported me during the

completion of the thesis.

iv

Contents
1. Introduction .. 1

1.1 Problem definition ... 1

1.2 Scope ... 1

1.3 Related work ... 1

1.4 Outline ... 1

1.5 Social considerations .. 2

2 Background... 3

2.1 Intel Cilk Plus .. 3

2.1.1 Keywords .. 3

2.2 UML .. 4

2.2.1 UML Activity Diagram ... 5

3 Tools ... 13

3.1 Modelling tools ... 13

3.1.1 Microsoft Visio ... 13

3.1.2 Visual Paradigm .. 14

3.2 Integrated development environment .. 15

3.2.1 Microsoft Visual Studio .. 16

3.3 System ... 16

3.4 Survey tool .. 16

4 Results .. 18

4.1 Test programs .. 18

4.2 Modeling Intel Cilk Plus keywords ... 19

4.2.1 cilk_spawn and cilk_sync .. 19

4.2.2 cilk_for .. 33

4.3 Survey ... 39

4.3.1 Participants .. 39

4.3.2 Questions ... 40

4.3.3 Survey results .. 41

v

5 Discussion... 42

5.1 Pros and Cons .. 42

5.2 Comparison of feature ... 43

6 Conclusions .. 44

6.1 Intel Cilk Plus with UML activity ... 44

6.2 UML tools ... 44

7 Future work .. 45

7.1 UML tools ... 45

7.2 Intel Cilk Plus .. 45

Reference ... 46

Appendix ... a

Appendix A: Survey participants .. a

Appendix B: Survey .. c

Appendix C: Execution time of programs that use cilk_sync, cilk_spawn and cilk_for. e

vi

List of Figures

Figure 2.1 UML Representation of Activity ... 7

Figure 2.2. UML representation of Action .. 7

Figure 2.3. UML representation of Activity Edge. ... 8

Figure 2.4. UML representation of Object flow. ... 8

Figure 2.5. UML representation of Control flow. ... 8

Figure 2.6. UML representation of Activity final ... 8

Figure 2.7. UML representation of Initial Node ... 9

Figure 2.8. UML representation of Decision node .. 10

Figure 2.9. UML representation of Fork node .. 10

Figure 2.10. UML representation of Join node. .. 11

Figure 2.11. UML representation of Note ... 11

Figure 2.12. UML representation of Pin ... 11

Figure 2.13. UML representation of Expansion Region ... 12

Figure 2.14. UML representation of Call Behavior Action. ... 12

Figure 3.1. Working environment of Microsoft Visio. ... 14

Figure 3.2. Working environment of visual paradigm. ... 15

Figure 3.3. Working environment of Microsoft Visual Studio. .. 16

Figure 3.4. Working environment of freeOnlineSurvey tool. ... 17

Figure 4.1. An example of Pascal triangle .. 18

Figure 4.2. UML Activity diagram for Fibonacci method by Microsoft Visio. 20

Figure 4.3. UML Activity diagram for Fibonacci method by Visual Paradigm 21

Figure 4.4. UML Activity diagram for Fibonacci method by Papyrus 22

Figure 4.5. UML Activity diagram for pascalTriangleRow program by Microsoft Visio 24

Figure 4.6. UML Activity diagram for pascalTriangleRow program by Papyrus 25

Figure 4.7. UML Activity diagram for pascalTriangleRow program by Visual paradigm 26

Figure 4.8. UML Activity diagram for Karatsuba multiplication program by Microsoft Visio . 28

Figure 4.9. UML Activity diagram for Karatsuba multiplication program by Visual paradigm 30

Figure 4.10. UML Activity diagram for Karatsuba multiplication program by Papyrus 32

Figure 4.11. UML Activity diagram for intSum function by Visual Paradigm 33

Figure 4.12. UML Activity diagram for intSum function by Papyrus .. 34

Figure 4.13. UML Activity diagram for bubble sort function by visual paradigm 35

Figure 4.14. UML Activity diagram for bubble sort function by Papyrus 36

Figure 4.15. UML Activity diagram for primeNumber function by Visual Paradigm. 38

Figure 4.16. UML Activity diagram for primeNumber function by Papyrus. 39

Figure 4.17. An example question used in the survey. .. 40

Figure 4.18. Results of our survey in bar chart ... 41

1

1. Introduction
Nowadays multi-core processors become popular in Desktops, servers and in laptops, it

enable multithreading to be executed simultaneously. To take advantage of our multi-core

hardware we can parallelize our code, and expand our work across our hardware. To do

this we can use parallel environments. There are several parallel environments available

like μC++, OpenCL, OpenACC, Intel Cilk Plus etc. In my case I will use Intel Cilk Plus;

it is an extension of C and C++, and will model it using UML activity diagrams. The

selection of this parallel environment will be based on its less number of keywords or

directives, and easy in understanding

1.1 Problem definition
Intel Cilk Plus is an extension for C and C++ programming languages; it supports data

and task parallelism. Sometimes, it is hard to understand how parallelism works in Intel

Cilk Plus. The proposed research is aimed to model Intel Cilk Plus using UML activity

diagrams to develop a better understanding for Intel Cilk Plus codes. A survey will be

conduct among the researchers and students of computer science to evaluate the

understanding of these models. Different tools are available to draw UML activity

diagrams, but not all of them provide full support and are easy to use. A comparison of

some well-known UML drawing tools for activity diagrams will be developed in this

research, too.

1.2 Scope
Multiprocessing is very important and widely used in multi core processors. Parallel

programming is the best way to utilize those multi core processors. C and C++

programming languages provide support for parallel programming via their Intel Cilk

Plus extension. It is hard to understand the flow of parallel programs in Intel Cilk Plus.

That is why, this thesis attempts to provide a better understanding of Intel Cilk Plus, and

other parallel programming environments also.

1.3 Related work
In general modeling parallel programing with UML has been addressed before. Previous

research focuses on high performance computing that includes MPI and OpenMP parallel

programs [1].

 However, to our best knowledge the UML modelling of Intel Cilk Plus programs has

not been investigated so far. In this thesis we address suitability of the UML activity

diagrams for modelling Intel Cilk Plus programs. In addition we evaluate existing popular

UML tools with respect to modelling Intel Cilk Plus programs.

1.4 Outline

This thesis provides a background information and introduction to Intel Cilk Plus

keywords and UML activity classes. Later on in chapter 3, a short introduction of each

used tool will be provided. In chapter 4 in results part, three programs for each Intel

Cilk Plus keyword are graphically model and explained using UML activity diagrams,

the execution time of each program is also provided on different core with different

input values. In chapter 5 in discussion, we are going to discuss advantages and

2

disadvantages of different used tools. In addition, we have made a comparison of

different features in different tools. In chapter 6, we have concluded various facts

regarding our research. Furthermore, a discussion about different possibilities for

extending this work in different directions is provided.

1.5 Social considerations

This section provides a discussion regarding the social considerations and their ethical

issues, and impact of my work in society.

 The thesis work is involved with an online survey with computer science students.

During this we consider all ethical issues e.g.

Handling personal data: We only request student’s name while completing

Personal identification: We did not show any personal identification of student at any

stage including its name, email, age etc.

Specific requirements:

Privacy policy: There was nothing confidential from our perspective in the survey.

Recommended content: All contents in the survey were recommended to fill.

Permission: We had permission from survey participants to use the survey data for

research purpose. [21]

 This thesis provides more understanding of Intel Cilk Plus keywords and helps to

choose suitable modelling tools for computer science students. This good understanding

will help them to contribute in the field of UML modelling and in parallel computing,

and that is the need of current the age.

3

2 Background
In this section we provide background information that is relevant for this thesis. We

will introduce the Intel Cilk Plus programming language, and thereafter we give an

overview of the UML.

2.1 Intel Cilk Plus

Intel Cilk Plus is an extension of C and C++ programming languages. It is used for data

parallelism and task parallelism. Intel Cilk Plus is designed to provide simple and well-

structured codes. It is easy to learn and simple to use; it supports both C and C++

languages. It was developed at Massachusetts Institute of Technology (M.I.T.) and first

released in 2010. It has two major elements keywords and reducers [2].

2.1.1 Keywords

Intel Cilk Plus has three keywords: cilk_sync, cilk_spawn and cilk_for. These names were

chosen to minimize the conflicting with keywords used in already existing programs and

they are difficult to type [3, 27].

cilk_spawn

The Intel Cilk Plus keyword cilk_spawn allows parallel operations. In cilk_spawn we

can execute more than one instruction in parallel without waiting for previous

instruction to finish and return. In other words, cilk_spawn allows next instruction to

run in parallel with the current instruction.

Syntax

The syntax of cilk_spawn is as follows:

spawning-expression:

cilk_spawn function-or-functor (expression-list_opt)

sync-statement:

cilk_sync ;

According to the above syntax, we can use normal function call, a member function call

or the function call operation of a function object as an expression following the

cilk_spawn keywords [3, 27].

cilk_sync

The Intel Cilk Plus keyword cilk_sync specifies that all child functions spawned from

this function must be complete before execution continues. In order to cilk_sync to be

in progress, the call of cilk_spawn in the function must be executed. In other words, we

placed cilk_sync after all spawned function in order to get the results. The use of

cilk_sync alone is useless; it should be used with cilk_spawn in order to get its

advantage.

4

Syntax

The syntax of cilk_sync is as follow:

spawning-expression:

cilk_spawn function-or-functor (expression-list_opt)

sync-statement:

cilk_sync;

The cilk_sync does not affect children of other functions. It only synchronises the children

spawned by function where it is used [3, 27].

cilk_for

The Intel Cilk Plus keyword cilk_for replace traditional iterative for loop into a parallel

for loop [5]. In other word, cilk_for allows us to execute iteration of the loops body in

parallel.

Syntax:

Here is the syntax of cilk_for loop:

parallel-loop

 cilk_for (init-clause; condition; increment-expr)

 statement;

In the code above, clik_for looks like a normal C++ for loop. The only difference is that

in Intel Cilk Plus we are using cilk_for instead of for, used in C++.[3, 27]

2.2 UML

Unified Modelling Language (UML) is a standard modelling language. One of the main

characteristics of UML is, its process independence, thus, it can be used in different

processes. UML was initially created and developed by Grady Booch, Ivar Jacobson, and

James Rumbaugh at Rational Software in 1994-1995, and adopted as a standard by Object

Management Group (OMG) in 1997. Later on in 2002, it was accepted by International

Organization for Standardization (ISO). Since then, it has been constantly updated and

developed. In this thesis, UML 2.4 released in March 2011 by OMG will be used. [4]

 The scope of UML is very broad. UML deals with a large set of application domains.

It provides tools for analysis, design, and implementation of software based systems. It is

also capable of modelling business and business related.

 UML consists of different kinds of diagrams that provide two types of view - static

and dynamic. Static view shows the static structure of the system using objects, attributes,

operations and relationships. Static consists of Class diagrams, Object diagrams, Package

diagrams, Component diagrams etc. Dynamic view shows the dynamic structure of the

system by showing the series of changes to the system over time. Dynamic view consists

of Use Case diagrams, Activity diagrams, State Machine diagrams, Interaction diagrams.

[4]

5

2.2.1 UML Activity Diagram
Unified Modelling Language, Activity diagram is an important diagram in UML. It

helps the user to understand the flow of control of the system from activity to activity.

UML Activity diagram is similar to flow charts. In UML Activity diagram, focus is on

sequence and condition for coordinating lower-level behaviors [5, 6].

 Activity diagrams have different levels. The following classes of UML Activities

might be distinguished: Fundamental activities, Basic activities, Complete activities,

Structured activities, Complete Structured activities and Extra Structured activities. [6]

Graphic nodes included in activity diagrams

In this section, graphical nodes, paths and graphic elements for containment are listed and

activity diagrams describing some of them will be provided later on.

AcceptEventAction

This is an action that waits for the occurrence of an event meeting specified condition. [24]

Action

For details about action please see Action.

ControlNode

It is an abstract activity node; it includes Decision node, Fork node, join node, Initial node, activity

final, Flow final and Merge node [37]

DataStore

It is a central buffer node; it is use for non-transient information. [38]

DecisionNode

For details about DecisionNode please see Decision Node

FinalNode

For details about FinalNode please see Activity Final Node

FlowFinal

For details about FlowFinal please see Activity Final Node

ForkNode

For details about ForkNode please see Fork Node

InitialNode

For details about InitialNode please see Initial Node

JoinNode

For details about JoinNode please see Join NodeInitial Node

MergeNode

It has multiple incoming and single outgoing edges.[39]

SendSignalAction

It creates a signal from its input and sends it to a particular target.[40]

Graphic paths included in activity diagrams

In this section, graphical paths of activity diagrams are listed below.

6

ActivityEdge

For details about ActivityEdge please see Activity Edge.

ControlFlow

For details about ControlFlow please see Control Flow.

ObjectFlow

For details about ObjectFlow please see Object flow.

Graphic elements for containment in activity diagrams

In this section, graphical elements for containment in activity diagrams are listed.

Activity

For details about action please see Activity

ActivityPartition

It is an activity that identifying actions that have some common character. [43]

InterruptibleActivityRegion

It is an activity group that supports termination of tokens. [41]

ExceptionHandler

 It’s an element that specifies a body to execute in case if the specified exception occurs [42].

ExpansionRegion

For details about ExpansionRegion please see Expansion Region.

Below is an explanation of activity classes used in this research.

Activity

An activity is a parameterized sequence of behaviours. It is introduced to flow the models

that coordinate other behaviours. An activity can be shown as (see Figure 2.1) a rounded-

corner rectangle that includes;

 An object flow for sequencing the data produced by one node that is used by

another node.

 A control flow that shows the sequence of the activities/node.

 A control node that includes decision nodes.

 Merge nodes.

 Final nodes.

 Fork nodes and join nodes. [7]

7

Figure 2.1 UML Representation of Activity

Action

Action is a single step inside an activity. That is, a step that has no further decomposition.

An activity consists of different actions and those actions can have incoming and outgoing

edges. In order for an action to be executed, it must satisfy its input condition. The

notation used for action is in the form of a rounded cornered rectangle. We can describe

the local pre- and post-conditions of an action by keywords «localPrecondition» and

«localPostcondition», as shown in Figure 2.2. [8]

Figure 2.2. UML representation of Action

Activity Edge

ActivityEdge is a directed connection between two activity nodes, e.g. between source

and target. If a guard evaluates true for a token then that token is allowed to pass through

the edge. ActivityEdge covers both control and dataflow edges. The notation used for

activity edge is an open arrowhead line connecting two activity nodes. It is also possible

to give the name to the ActivityEdge near the arrow as shown in Figure 2.3.[9]

8

Figure 2.3. UML representation of Activity Edge.

Object flow

It is a generalization of “ActivityEdge” that starts a new activity when the previous

activity is done. Through object flow we can pass objects and data. The notation of an

Object flow is a simple arrowed line, as shown in Figure 2.4.[10]

Figure 2.4. UML representation of Object flow.

Control Flow

It is a generalization of “ActivityEdge” that starts a new activity when the previous

activity is done. Through control flow we can only pass control tokens. The notation of

control flow is an arrowed line that connects two activities as shown in Figure 2.5. [11]

Figure 2.5. UML representation of Control flow.

Activity Final Node

A node that stops all flows in an activity is called Activity Final Node. It is possible to

have more than one Activity Final Node in an activity. However, when we reach the first

Activity Final Node all flows in the activity will be stopped. In other words, it stops all

the executing actions in the activity. The notation for Activity Final Nodes is a filled circle

with a hollow circle as shown in Figure 2.6. [12]

Figure 2.6. UML representation of Activity final

9

Initial Node

An Initial Node is a control node. It is a starting point for execution of an activity. It is

possible to have more than one initial node in an activity. Notation for initial activity is a

filled circle, as indicate in Figure 2.7. In example below, the initial node passes control to

do Work action at the beginning of the activity. [13]

Figure 2.7. UML representation of Initial Node

Decision Node

Decision node is a control node. Decision node receives tokens from incoming edge and

presents them to outgoing edges. Decision node has one or two incoming edges and at

least one outgoing edge. These incoming and outgoing edges must be either all object

flows or all control flows. Every token that arrives at an incoming edge is offered to an

outgoing edge.

 The direction of an edge depends on the guards decision. In other words, an incoming

edge will continue to a specific outgoing edge depending on a guards order. In addition,

the order of evaluation (Decision nodes) is not usually defined.

 The notation of Decision node is a diamond-shape symbol. The decision condition is

described by the keyword <<decisionInput>>, and is attached to the appropriate decision

node symbol. An example of diagram of Decision node is provided below. However, The

determination of the edge that should be traversed is done by the guards of outgoing

edges. The tokens that are not accepted by all other outgoing edges will be operated in a

predefined “else” guard for one outgoing edge, like the process of an "else" condition in

C++. [14]

10

Figure 2.8. UML representation of Decision node

Fork Node

Fork node is a control node that divides the flow into multiple flows. Fork node is a

generalization of “Control node”. Fork node has one incoming edge and multiple

outgoing edges. All these edges are either object flow (Object flow edge: edges from

Action node to Action node) or control flow (Control flow edge: edges from Object node

to Action node or other way around).

 Simple line segment is used as a notation for Fork node. Fork node consists of a

single activity edge entering it, and two or more edges leaving it as shown in Figure

2.9.[15]

Figure 2.9. UML representation of Fork node

Join Node

Join node is a control node that synchronizes multiple flows. Join node is a generalization

of Control node. Join node is used to synchronize the incoming edges and give the control

to the next action node using one outgoing edge.

 If all tokens at incoming edges are control tokens, then we will get one control

token at outgoing edge. If the tokens at incoming edges are control tokens and data

tokens, then we will only get data tokens at outgoing edge. Join node consists of one or

more activity edges entering it and only one edge leaving from it. The notation of Join

node is provided in Figure 2.10. [16]

11

Figure 2.10. UML representation of Join node.

Note

A note provide the ability to attach different remarks/comments about an elements, it used

to give more understanding of element as shown in Figure 2.11.[5]

Figure 2.11. UML representation of Note

Pin

Pin is an Object node for inputs and outputs to actions. In other words, pins are further

decomposed into two types - input pins and output pins. Both input and output pins are

Object nodes that receive from and deliver to other action through object flows

respectively.

 The notation of input or output pin is a small rectangle attached to the action. Name

of Pins can be shown beside the pins as shown in Figure 2.12.[17]

Figure 2.12. UML representation of Pin

Expansion Region

Expansion region is a structured activity region that executes multiple times. Expansion

region is a nested region of an activity that has explicit input and output. Here we have

one or more inputs, each input is a collection of values and each collection must be of the

same type.

12

 Expansion region has three models: parallel, iterative and stream. In parallel mode all

executions happens independently and parallel. Expansion region is drawn as a dashed

rounded box, on the upper left corner we mention the keywords parallel, iterative and

stream. Inside the dashed boundary, expansion node symbol is placed. This dashed

boundary also includes input and output Expansion nodes that are drawn as small

rectangles. A sketch of Expansion region is shown in Figure 2.13. [18]

Figure 2.13. UML representation of Expansion Region

CallBehaviorAction

CallBehaviorAction is an activity that calls the behavior directly. We indicate call

CallBehaviorAction by placing a rake-style symbol inside our action. The rake symbol

indicates that this invocation starts another activity as shown in Figure 2.14. [19]

Figure 2.14. UML representation of Call Behavior Action.

13

3 Tools
This section provides a general introduction and an overview of different tools used in

this thesis. These tools includes: modelling tools, integrated development environment

(IDE) and used operating system.

3.1 Modelling tools

This section provides a general introduction and an overview of different modelling tools

used in this thesis. These modelling tools include Microsoft Visio, eclipse papyrus and

visual paradigm.

3.1.1 Microsoft Visio

Microsoft Visio is a powerful diagramming application of Microsoft with a rich set of

built-in stencils.

 Microsoft Visio was first introduced by Shapeware corporation in 1992, and was

acquired by Microsoft in 2000. As of April 2014, Visio 2014 is the most up-to-date

version of the Visio application. This software is available in two edition: Visio 2014

Standard and Visio 2014 Professional. Even though, it is a commercial software, the free

versions are available for students under certain conditions. Also, the most common file

format supported by Microsoft Visio to read and write drawing is VSDX.

 Microsoft Visio helps to create object oriented models for complex software system.

Specifically, it provides stencils for:

 Process Diagrams

 Engineering Drawings and Diagrams

 Architectural Drawings

 Work Flow Diagrams

 Timelines

 Software modeling

 Database Models

 Networks Models

 Business Modeling

 Scheduling

 Maps

 Microsoft Visio helps to create and customize professional diagrams in few clicks. In

Microsoft Visio, it is easy to find the required stencil with a built-in search. Also,

Microsoft Visio’s feature of a new print preview provides customers with a better view

of the diagram final look. Like many other UML tools, Microsoft Visio also provides

reverse engeneering for C++ and C#.[20,22]

14

Figure 3.1. Working environment of Microsoft Visio.

 Figure 3.1 depicts modeling environment of Microsoft Visio. On the left hand side

are modeling elements. On the top are tools and menus. In middle right we have

drawing space.

3.1.2 Visual Paradigm

Visual Paradigm for UML is a cross platform UML tool that supports UML 2.0 for the

Object Management Group (OMG). In the latest UML 2.1 notation it supports 13 different

UML diagrams including: [23, 24]

 Class Diagram

 Use Case Diagram

 Sequence Diagram

 Communication Diagram

 State Machine Diagram

 Activity Diagram

 Visual Paradigm for UML is a modelling platform for UML Standard Edition (VP-

UML SE) that is designed to support developers, system architecture, and UML designers

to accelerate the analysis and design processes for different applications. It also supports

requirement modelling, database modelling, business process modelling, object-

relational mapping, team collaboration and documentation generation.[23]

 In additions to modelling, Visual Paradigm for UML supports code engineering

capability for Java, C++, PHP and VB. Furthermore, Visual Paradigm supports reverse

engineer diagrams. Visual Paradigm is a commercial software. However, the free version

is available for students under certain conditions. [23]

15

Figure 3.2. Working environment of visual paradigm.

 Figure 3.2 depicts modeling environment of visual paradigm. On the left hand side are

visual paradigm projects, right after this we have modeling elements. In the right had side

we have drawing space. On the top are tools and menus.

3.1.3 Eclipse papyrus

Papyrus is another graphical editing tool for Eclipse-based modelling languages amongst

them UML 2 and related Modelling Languages such as MARTE and SysML. Papyrus

provides a very advanced support of UML profiles and also supports reverse engineering

from Java codes to UML diagrams. It has merged with eclipse and become a new Eclipse

project. Now Papyrus is an open source Eclipse Model Development Tools, and we can

use it as an eclipse plug-in. Since 2008, the eclipse Papyrus team is working on this tool.

Like many other UML tools Papyrus provides support for diagram export as images. The

latest version 1.0.X of Papyrus was released in June 2014, which can be installed on

Eclipse Luna 4.4. [25, 26]

UML 2

It supports full graphical editors for UML Structure Diagrams UML, Behaviour Diagrams

and UML profiles defined by OMG. It targets to implements 100% OMG specification.

[25, 26]

SysML

It provides complete support to SysML diagrams identified in the OMG SysML

specification. It includes specific graphical editors required for SysML. [25, 26]

3.2 Integrated development environment

In this section we will give an introduction of integrated development environment

(IDE) that is used for compilation of Intel Cilk Plus programs.

16

3.2.1 Microsoft Visual Studio

The tool that is used for compilation of Intel Cilk Plus programs is Intel® C++ Studio

XE for Windows, and is integrated into Microsoft Visual Studio.[32]

Figure 3.3. Working environment of Microsoft Visual Studio.

 Figure 3.3 depicts programing environment of Microsoft Visual Studio. On the left

hand side is a side menu bar of projects. On the top are tools and menus. In middle right

we have code editor.

3.3 System

64 bit system is used in the experiments with following specification:

1. Processor: Intel(R) Core(TM) i5-2435M CPU @ 2.4GHz 2.40 GHz

2. Installed memory: 8.00 GM

3. Windows edition: Window 7 home Premium Service Pack 1

3.4 Survey tool

In this section we will give an introduction of survey tool that will be used for collecting

feedback for our work.

 The tool that is used for creating survey was a web based application provided by

Freeonlinesurveys.com. It is commercial software that has different types of

subscriptions. It can be used for creating survey, polls and quizzes.

17

Figure 3.4. Working environment of freeOnlineSurvey tool.

 Figure 3.4 depicts online survey tool of freeOnlineSurvey. On the left hand side are

different question types. On the top are tools and menus. In right hand side we have

place for adding survey questions.

18

4 Results

In this section I will evaluate Intel Cilk Plus keywords and UML diagrams tools. In

evaluation process I will model selected Intel Cilk Plus programs using different UML

modeling tools, a survey will be condect to see the appropriateness of these models. For

evaluation I select six different Intel Cilk Plus programs, three for cilk_sync, cilk_spawn

and three for cilk_for. I also select three different UML modeling tools. I will try to model

each Intel Cilk Plus program by three different selected UML tools to see which tool is

good of creating UML activity models for Intel Cilk Plus programs.

4.1 Test programs

Here is a description of all programs that are used in this program.

1. Fibonacci method is used to calculate fibonacci number recursively. In order

calculate a fibonacci N we need previous two fibonacci numbers (i.e. fibonacci of

N-1 and fibonacci of N-2), The key idea here is that the calculation of

Fibonacci(n-1) will be executed in parallel with the calculation of Fibonacci(n-2)

without interference. The parallelism can be express using Intel Cilk Plus

keywords [27].

2. PascalTriangleRow is a program that calculate and return nth row of a

pascalTriangle, in order to get each member of this row we need to calculate

factorial of three different values. By using cilk_spawn and cilk_sync we can

calculate these three values in parralel. It is a triangle of numbers, where every

row is generated from its previous row. In the pascal triangle every number of nth

row is an addition above two numbers (expect first and last). here is an example

of pascal triangle;[28].

Figure 4.1. An example of Pascal triangle

3. Karatsuba parallel function is using a fast multiplication algorithm that reduces

multiplication time of two n-digit numbers. It uses divide and conquer approach

[29].

4. Bubble Sort method is used to sort input list of random numbers using bubble sort

algorithm.

19

5. Int Sum method is used to calculate sum of N positive numbers, in order to

observe the efferct of parallel program there is a delay of 500 ms in every

ineration.

6. isPrime method is used to calculate all the prime numbers between 0 to N, in order

to observe the efferct of parallel program there is a delay of 500 ms in every

ineration.

These programs were run on Microsoft visual studio. Each program was executed atleast

3 times on different inputs (e.g. N, 2N, 4N) and on different threads (e.g. 1, 2, 4), we

chose the middel value as a result value for our data collection. In appendix C you can

see the table provides the execution time of these programs used in this thesis.

4.2 Modeling Intel Cilk Plus keywords

In this section we will model Intel Cilk Plus keyword using UML Activity diagams, we

model three different C codes example with Intel Cilk Plus keywords and model three

different UML drawing tools.

4.2.1 cilk_spawn and cilk_sync

In this section we will use three different examples to model Intel Cilk Plus keywords

cilk_spawn and cilk_sync, In order to model cilk_spawn and cilk_sync we will use

following C recursive Fibonacci method.

Fibonacci method

Following is a C Fibonacci method. [27]

double fib(int n)

{

 if (n < 2)

 {

 return n;

 }

 double x = cilk_spawn fib(n - 1);

 double y = fib(n - 2);

 cilk_sync;

 double z = x + y;

 return z;

}

 In the given piece of code we are using cilk_spawn to make it runs in parallel. As

shown in the code cilk_spawn keyword makes sure fib(n-1) is executing in parallel with

fib(n-2) and cilk_sync indicates that this function will not continue until all cilk_spawn

calls in same function have been completed. In other words, cilk_sync indicates that all

spawned children must be completed before proceeding. [3, 27]

20

Activity Models

Since fork node and join node support the parallel flows in UML so we can model this

parallel function using Fork node & Join Node in UML Activity. Activity diagram by

Microsoft Visio

In this section we will provide Activity diagram for Fibonacci method drawn by Microsoft

Visio.

Figure 4.2. UML Activity diagram for Fibonacci method by Microsoft Visio.

 Figure 4.2 depict diagram is an activity model of fib. The activity start and call fib

function, this model consist of fork and Join nodes that shows how we are execution two

fib function in parallel to calculate fib values for two different inputs. Fork node will

spawn all function calls and Join node will make sure that flow will not continue until all

two parallel function calls are executed. After join node we will combine the results and

print them.

21

Activity diagram by Visual Paradigm

In this section we will provide Activity diagram for Fibonacci method drawn by Visual

Paradigm.

Figure 4.3. UML Activity diagram for Fibonacci method by Visual Paradigm

 Figure 4.3 depict diagram is an activity model of fib. The activity start and call fib

function, this model consist of fork and Join nodes that shows how we are execution

two fib function in parallel to calculate fib values for two different inputs. Fork node

will spawn all function calls and Join node will make sure that flow will not continue

until all two parallel function calls are executed. After join node we will combine the

results and print them.

22

Activity diagram by Papyrus

In this section we will provide Activity diagram for Fibonacci method drawn by Papyrus.

Figure 4.4. UML Activity diagram for Fibonacci method by Papyrus

 Figure 4.4 depict diagram is an activity model of fib. The activity start and call fib

function, this model consist of fork and Join nodes that shows how we are execution

two fib function in parallel to calculate fib values for two different inputs. Fork node

will spawn all function calls and Join node will make sure that flow will not continue

until all two parallel function calls are executed. After join node we will combine the

results and print them.

23

PascalTriangleRow

Following is another C function of pascalTriangleRow.

void pascalTriangleRow(double num, double i){
 if (i < 0){
 return;
 }
 else if (i>=0){
 double fact1 = cilk_spawn factorial(num);
 double fact2 = cilk_spawn factorial(num - i);
 double fact3 = factorial(i);
 cilk_sync;
 double result1 = fact1/(fact2*fact3);
 printf("%f ", result1);
 i = i - 1;
 return pascalTriangleRow(num, i);
 }
}

 In the above piece of code, cilk_spawn is used twice. cilk_sync, cilk_spawn

instructions will make it run in parallel. As shown in the code cilk_sync keyword forces

all the previous spawned tasks to wait for each other in order to be completed before the

program continues. So results will be printed after all factorials will be calculated.

Activity Model

Since fork node and join node support the parallel flows in UML so we can model this

parallel function using Fork node and Join Node in UML Activity.

24

Activity diagram by Microsoft Visio

In this section we will provide Activity diagram for “pascalTriangleRow” drawn by

Microsoft Visio.

Figure 4.5. UML Activity diagram for pascalTriangleRow program by Microsoft Visio

 Figure 4.5 depict diagram is an activity model of pascalTriangleRow. The activity

start and call pascalTriangleRow function, this model consist of fork and Join nodes

that shows how we are executing factorial functions for calculating three different

factorial values fact1, fact2 and fact3 in parallel. Fork node will spawn all function calls

and Join node will make sure that flow will not continue until all three parallel function

calls are executed. After join node these factorial values are used to calculate ith value

of pascalTriangleRow and print the result, after printing the results we will decrements

the value of i by one and make a call to the pascalTriangleRow function again.

25

Activity diagram by Papyrus

In this section we will provide Activity diagram for “pascalTriangleRow” drawn by

Papyrus.

Figure 4.6. UML Activity diagram for pascalTriangleRow program by Papyrus

 Figure 4.6 depict diagram is an activity model of pascalTriangleRow. The activity

start and call pascalTriangleRow function, this model consist of fork and Join nodes

that shows how we are executing factorial functions for calculating three different

factorial values fact1, fact2 and fact3 in parallel. Fork node will spawn all function calls

and Join node will make sure that flow will not continue until all three parallel function

calls are executed. After join node these factorial values are used to calculate ith value

of pascalTriangleRow and print the result, after printing the results we will decrements

the value of i by one and make a call to the pascalTriangleRow function again.

26

Activity diagram by Visual Paradigm

In this section we will provide Activity diagram for “pascalTriangleRow” drawn by

Visual Paradigm.

Figure 4.7. UML Activity diagram for pascalTriangleRow program by Visual paradigm

 Figure 4.7 depict diagram is an activity model of pascalTriangleRow. The activity

start and call pascalTriangleRow function, this model consist of fork and Join nodes

that shows how we are executing factorial functions for calculating three different

factorial values fact1, fact2 and fact3 in parallel. Fork node will spawn all function calls

and Join node will make sure that flow will not continue until all three parallel function

calls are executed. After join node these factorial values are used to calculate ith value

of pascalTriangleRow and print the result, after printing the results we will decrements

the value of i by one and make a call to the pascalTriangleRow function again.

27

Karatsuba multiplication program

Following is a C function to calculate multiplication of two numbers using Karatsuba

algorithm. [29]

void karatsuba_parallel(int c[], const int a[], const int b[], size_t n)

{

 if (n <= CutOff)

 {

 simple_mul(c, a, b, n);

 return;

 }

 size_t m = n / 2;

 // Set c[0:n-1] = t_0

 cilk_spawn karatsuba_parallel(c, a, b, m);

 // Set c[2*m:n-1] = t_2

 cilk_spawn karatsuba_parallel(c + 2*m , a + m, b + m, n - m);

 temp_space<int> s(4 * (n - m));

 int *a_ = s.data(), *b_ = a_ + (n - m), *t = b_ + (n - m);

// initialize1(*a_, *b_, *c_, m,n);

 for (size_t j = 0; j<m; ++j)

 {

 a_[j] = a[j] + a[m + j];

 b_[j] = b[j] + b[m + j];

 }

 if (n/2==1){

 a_[m] = a[2 * m];

 b_[m] = b[2 * m];

 }

 // Set t = t_1

 karatsuba_parallel(t, a_, b_, n - m);

 cilk_sync;

 // Set t = t_1 - t_0 - t_2

 for (size_t j = 0; j<2 * m - 1; ++j)

 t[j] -= c[j] + c[2 * m + j];

 // Add (t_1 - t_0 - t_2) into final product.

 c[2 * m - 1] = 0;

 for (size_t j = 0; j<2 * m - 1; ++j)

 c[m + j] += t[j];

 if (n/2==1){

 for (size_t j = 0; j < 2; ++j)

 c[3 * m - 1 + j] += t[2 * m - 1 + j] - c[4 * m - 1 + j];

 }

}

 In the piece of code, cilk_spawn is used twice. cilk_sync, cilk_spawn instructions

will make it run in parallel. Figure 4.8 is an activity diagram of above Intel Cilk Plus

code that provides you a better understanding of this code.

28

Activity diagram by Microsoft Visio

In this section we will provide Activity diagram for Karatsuba multiplication program

drawn by Microsoft Visio.

Figure 4.8. UML Activity diagram for Karatsuba multiplication program by Microsoft Visio

29

 Figure 4.8 depict diagram is an activity model of karatsubaParallel. The activity start

and call karatsubaParallel function, this model consist of fork and Join nodes that shows

how we are execution three karatsubaParallel function in parallel. Fork node will spawn

all function calls and Join node will make sure that flow will not continue until all three

parallel function calls are executed.

30

Activity diagram by Visual Paradigm

In this section we will provide Activity diagram for matrix multiplication program

drawn by Visual Paradigm.

Figure 4.9. UML Activity diagram for Karatsuba multiplication program by Visual paradigm

31

 Figure 4.9 depict diagram is an activity model of karatsubaParallel. The activity start

and call karatsubaParallel function, this model consist of fork and Join nodes that shows

how we are execution three karatsubaParallel function in parallel. Fork node will spawn

all function calls and Join node will make sure that flow will not continue until all three

parallel function calls are executed..

32

Activity diagram by Papyrus

In this section we will provide Activity diagram for matrix multiplication program drawn

by Papyrus.

Figure 4.10. UML Activity diagram for Karatsuba multiplication program by Papyrus

33

 Figure 4.10 depict diagram is an activity model of karatsubaParallel. The activity

start and call karatsubaParallel function, this model consist of fork and Join nodes that

shows how we are execution three karatsubaParallel function in parallel. Fork node will

spawn all function calls and Join node will make sure that flow will not continue until

all three parallel function calls are executed.

4.2.2 cilk_for

By using cilk_for, we convert simple for loop into a parallel for loop [5]. In other word,

we can execute iterations of loop bodies in parallel. In order to model this, we use

expansion region class with stereotype <<parallel>> from UML activity classes. This

class executes cilk_for loop in parallel.

intSum

Here is a small piece of code that calculate sum of N numbers it includes cilk_for

keyword. [27]

int sum(int number){
 int sum = 0;
 cilk_for(int i = 0; i <= number; i++){
 Sleep(500);
 sum += i;
 }
 return sum;
}

 We can model this using UML Activity diagram as shown in Figure 4.11.

Activity model by Microsoft Visio

Microsoft did not provide any support for expansion region in UML activity diagrams,

and this implies that the system cannot be used when problem needs this type of

functionality.

Activity model by Visual paradigm

In this section we will provide Activity diagram for intSum function, drawn by Visual

Paradigm.

Figure 4.11. UML Activity diagram for intSum function by Visual Paradigm

34

 Figure 4.11 depict diagram is an activity model of intSum. This activity model

consists of expansion region that shows how we are calculating sum of N numbers in

parallel. Here we get an input as a collection of value, and we return the sum of those

values.

Activity model by Papyrus- eclipse

In this section we will provide Activity diagram for intSum function, drawn by papyrus.

Figure 4.12. UML Activity diagram for intSum function by Papyrus

 Figure 4.12 depict diagram is an activity model of intSum. This activity model

consists of expansion region that shows how we are calculating sum of N numbers in

parallel. Here we get an input as a collection of value, and we return the sum of those

values.

Bubble Sort

Here is another C program that sort an array of elements using bubble sort algorithm, it

includes cilk_for keyword.[30]

void bubble_sort(int iarr[], int num) {
 int k, temp;
 cilk_for (int i = 1; i < num; i++) {
 cilk_for (int j = 0; j < num - 1; j++) {
 if (iarr[j] > iarr[j + 1]) {
 temp = iarr[j];
 iarr[j] = iarr[j + 1];
 iarr[j + 1] = temp;
 }
 }
 }
}

 The above piece of code consist of two nested cilk_for loops. In order to model this,

we use callBe-haviourAction inside an expansion region class with stereotype

<<parallel>>. This callBehaviourAc-tion indicates that this invocation starts another

activity class. This callBehaviour-Action is having another expansion region class. The

inside expansion region class will also execute in parallel.

35

Activity model by Microsoft Visio

Microsoft did not provide any support for expansion region in UML activity diagrams,

and this implies that the system cannot be used when problem needs this type of

functionality.

Activity model by Visual paradigm

In this section we will provide Activity diagram for bubble sort function, drawn by

Visual Paradigm.

Figure 4.13. UML Activity diagram for bubble sort function by visual paradigm

 Figure 4.13 depict diagram is an activity model of bubbleSort. This activity model

consists of two nested expansion regions that show how we are sorting an array using

bubbleSort algorith. Outer expansion region go through input array in parallel, and inner

expansion region compare every adjacent pair, swap their position if they are not in

right order. Here we get an input as a collection of array values, and we return the sorted

array.

36

Activity model by Papyrus- eclipse

In this section we will provide Activity diagram for bubble sort function, drawn by

papyrus.

Figure 4.14. UML Activity diagram for bubble sort function by Papyrus

 Figure 4.14 depict diagram is an activity model of bubbleSort. This activity model

consists of two nested expansion regions that show how we are sorting an array using

bubbleSort algorith. Outer expansion region go through input array in parallel, and inner

expansion region compare every adjacent pair, swap their position if they are not in

right order. Here we get an input as a collection of array values, and we return the sorted

array

37

Prime numbers

Here is another piece of code that includes cilk_for keyword. This function count prime

numbers between 1 to n.[31]

int isPrime(int n){

 int limit = sqrt(n);

 for(int i = 2; i <= limit; i++){

 if (n%i == 0)

 return 0;

 }

 return 1;

}

int primeNumber(int n){

 n = n;

 int gs = n/400; //grainsize

 int numPrimes = 0; int i;

 struct timeval start, end;

 cilk_for(i = 0; i <n/gs; i++){

 cilk_for (int j = i*gs+1; j<(i + 1)*gs; j+= 2){

 if (isPrime(j))

 numPrimes++;

 }

 }

 return numPrimes;

}

 The above piece of code is consisting three nested loops. Two of those loops are cilk_for.The

outer expansion region is having another expansion region class. The inside expansion region

class will also execute in parallel. A while loop is running inside the nested expansion region that

calculates number of prime numbers between 1 to N.

Activity model by Microsoft Visio

Microsoft did not provide any support for expansion region in UML activity diagrams,

and this implies that the system cannot be used when problem needs this type of

functionality.

38

Activity model by Visual paradigm

In this section we will provide an activity diagram for primeNumber function, drawn by

Visual Paradigm.

Figure 4.15. UML Activity diagram for primeNumber function by Visual Paradigm.

 Figure 4.15 depict diagram is an activity model of primeNumber. This activity model

consist of two nested expansion regions that shows how we are counting number of

prime numbers between 1 to N.

39

Activity model by Papyrus- eclipse

In this section we will provide Activity diagram for primeNumber function, drawn by

papyrus.

Figure 4.16. UML Activity diagram for primeNumber function by Papyrus.

 Figure 4.16 depict diagram is an activity model of primeNumber. This activity model

consist of two nested expansion regions that shows how we are counting number of

prime numbers between 1 to N.

4.3 Survey

In this section survey results will be presented. A survey was conducted to evaluate the

appropriateness of UML activity models drawn for Intel Cilk Plus keywords.

4.3.1 Participants

A survey was conducted among 15 students and researchers of computer sciences;

 3 researchers of software architecture from Linnaeus University.

 9 students of computer science and software engineering at Master level from

different universities.

 3 Students of final semester of software technology at Bachelor level from

Linnaeus University.

You can get full information about the participants statistic in Appendix A.

40

4.3.2 Questions

This survey consists of four questions, different UML activity models were selected for

those questions. These questions were design to collect the feedback of participants, so

that we can evaluate our models. These questions were design to keep in mind the target

participants, and the target participants were those who had good understanding of

UML activity models programing languages (e.g. C/C++/Java). Follow is an example of

question used in the survey:

Figure 4.17. An example question used in the survey.

 Figure 4.17 depict the survey question. On the left hand side is an Intel Cilk Plus code,

on the right hand side is the UML activity model of Intel Cilk Plus codes. The answer for

the question above the figure will be done in term of rating where one gets the rating scale

right under the figure and by clicking one of the starts one submits a rating grade from 1

to 10.

 The participants were asked to read the code and UML activity diagrams, and try to

understand Intel Cilk Plus codes with the help of UML activity diagrams. In the end

they should rate how much the provided model is helpful to understand Intel Cilk Plus

codes. Full information about the survey can be found in Appendix B.

41

4.3.3 Survey results

In this survey different participants were asked to analyze the UML activity models

with respect to Intel Cilk Plus codes, and rate the models. If a survey question is chosen

multiple times with high rating it means it is more reliable, and if it get low rating multiple

times, it means it has less reliability. According to survey results, the majority of

participants said that question 3 and question 4 provides an excellent understanding of

Intel Cilk Plus keywords cilk_sync and cilk_spawn. On the other hand for question 1

and 2 there opinion was quite divided, but according to most of them these models

provide good understanding of Intel Cilk Plus key word cilk_for. The detailed results of

the survey are in the following

Figure 4.18. Results of our survey in bar chart

 Figure 4.18 depicts our survey results. Here horizontal line shows how many times each

question is selected and vertical line shows which question get what rating, user can provide

rating between 1 to 10, 1 stand for minimum and 10 stands for maximum. Here blue line bar

represent question 1, red line bar represent question 2, green line bar represent question 3 and

purple line bar represent question 4.

42

5 Discussion

This section describes observations, advantages and disadvantages of each of the used

tools. In the table below you will see advantages and disadvantages of each of the used

tools.

5.1 Pros and Cons

Based on our UML activity models we made a comparison of different used tools in the

form for advantages and disadvantages. In table 5.1 advantages and disadvantages of

each of the used tools are shown.

Table 5.1. Advantages & disadvantages of tools

 Advantages Disadvantages

M
ic

ro
so

ft

V
is

io

Free for students Limited support for UML

Activity diagrams

Easy to install & operate.

Easy to find the feature we need.

Good for beginner user.

V

is
u

a
l

P
a
ra

d
ig

m

Free for Academic use under certain

condition.

Difficult to use for

inexperienced / beginner users

Also available on monthly

subscription with low price.

Provides full support for UML

Activity diagrams.

E
cl

ip
se

P
a
p

y
ru

s

Is open source easy to install. Difficult to use for

inexperienced / beginner users

Provides full support to UML

Activity.

Some versions did not provide

full support of UML Activity

diagrams.

43

5.2 Comparison of feature

Based on our UML activity models we made a comparison of different features of the

used tools, this comparison of different feature of the used tools is give in the table 5.2.

Table 5.2 Summary of features.

 Feature Microsoft

Visio

Visual Paradigm Eclipse Papyrus

*

1 Software

License

Commercial Commercial, Free

Community

Edition

Eclipse Public

License

2 Student Edition Yes Yes (under some

conditions)

Yes

3 Support for

expansion

region

No Yes Yes

4 Guards of

outgoing edge

No Yes Yes

5 CallBehaviorAc

tion

No Yes Yes

6 Pin No Yes Yes

7 Activity edge Yes Yes Yes

8 Object Flow No Yes Yes

9 Control Flow No Yes Yes

* | Papyrus 1.0.X / Eclipse Luna:

44

6 Conclusions

This section discusses the key observation and concludes some facts regarding the

subject. Conclusion is made in two different directions separately: appropriateness of

UML for graphical modelling of Intel Cilk Plus programs and comparison of different

UML tools.

6.1 Intel Cilk Plus with UML activity

As we know today is the age of multi-core, and to take advantage of today’s multi-core

hardware we can parallelize our code to distribute our work across this hardware. Intel

Cilk Plus is a C/C++ language extension that helps us to write parallel programs. In this

thesis activity diagrams are used for graphical modeling of Intel Cilk Plus. Different

Intel Cilk Plus programs are used in order to evaluate different activity classes in our

activity models. In chapter 4 we conclude with different good UML activity models,

and those graphical models helps reader to have a better understanding of parallel

programs in general and Intel Cilk Plus specifically. Our activity models provide

modeling behavior of Intel Cilk Plus programs, and describe the actual work flow of the

used programs. As it is clear in this thesis, modeling parallel programming languages

like Intel Cilk Plus with UML activities is a good approach in order to have a good

understanding of parallel programing.

6.2 UML tools

In this thesis, we used our activity models created from Intel Cilk Plus codes to evaluate

different UML drawing tools and we observed that among all three used tools; eclipse

papyrus and visual paradigm for UML are best tools. They provide full support for UML

activity diagrams. Here, eclipse papyrus has an advantage because it is free for all users

and visual paradigm for UML is commercial. So we conclude that, with all pro and corns

eclipse papyrus is the best tool for UML activity diagrams modeling.

45

7 Future work

In this section provides a discussion and suggestions for future work that can be done in

this field in two directions in Intel Cilk Plus and in UML tools.

7.1 UML tools

The suggested future work for UML tools is that,

 In future one can select some different UML tools and evaluate them using Intel

Cilk Plus

 In future someone can also evaluate UML tools by modeling Intel Cilk Plus with

some other UML diagrams for example State diagram, Sequence diagram and

Component diagram.

7.2 Intel Cilk Plus

In this thesis we modeled Intel Cilk Plus keywords using UML Activity diagrams. Now,

the suggested future work for modeling Intel Cilk Plus is that,

 In future one can model Intel Cilk Plus keywords using some other UML diagrams

 In future one can extend this work by modeling reducers using some UML tools.

46

Reference
[1] S. Pllana and T. Fahringer. On Customizing the UML for Modeling Performance-

Oriented Applications. In proceedings of <<UML>> 2002, "Model Engineering,

Concepts and Tools", LNCS 2460, Dresden, Germany. Springer-Verlag 2002.

[2] Intel® Cilk™ Plus, Cilk Plus Tutorial, [Online last visited 01/20/2015]. Available:

https://www.cilkplus.org/cilk-plus- tutorial.

[3] Intel® Cilk™ Plus, Introducing Intel® Cilk™ Plus, [Online last visited 01/20/2015].

Available: https://www.cilkplus. org/cilk-plus-tutorial.

[4] wikipedia, (2014, 09, 06), "Unified Modeling Language", [Online last visited

01/20/2015]. Available: http://en.wikipe dia.org /wiki/Unified_Modeling_Language.

[5] Visual Paradigm, Activity diagram, [Online last visited 12/01/2014]. Available:

http://www.visual-paradigm.com/ VPGallery/diagrams/Activity.html

[6] Object Management Group, (2010, 11, 14,), "OMG Unified Modeling Language

(OMG UML), Superstructure", version 2.4, pp 303~304,[Online last visited

12/01/2014]. Available: http://www.omg.org/spec/UML/2.4/ Superstructure

[7] Object Management Group, (2010, 11, 14,), "OMG Unified Modeling Language

(OMG UML), Superstructure", version 2.4, pp 324~334,[Online last visited

12/01/2014]. Available: http://www.omg.org/spec/UML/2.4/ Superstructure

[8] Object Management Group, (2010, 11, 14,), "OMG Unified Modeling Language

(OMG UML), Superstructure", version 2.4, pp 319~324,[Online last visited

11/01/2014]. Available: http://www.omg.org/spec/UML/2.4/ Superstructure

[9] Object Management Group, (2010, 11, 14,), "OMG Unified Modeling Language

(OMG UML), Superstructure", version 2.4, pp 334~339,[Online last visited

12/01/2014]. Available: http://www.omg.org/spec/UML/2.4/ Superstructure

[10] Object Management Group, (2010, 11, 14,), "OMG Unified Modeling Language

(OMG UML), Superstructure", version 2.4, pp 400~405,[Online last visited

02/01/2015]. Available: http://www.omg.org/spec/UML/2.4/ Superstructure

[11] Object Management Group, (2010, 11, 14,), "OMG Unified Modeling Language

(OMG UML), Superstructure", version 2.4, pp 366~367,[Online last visited

02/01/2015]. Available: http://www.omg.org/spec/UML/2.4/ Superstructure.

[12] Object Management Group, (2010, 11, 14,), "OMG Unified Modeling Language

(OMG UML), Superstructure", version 2.4, pp 339~342,[Online last visited

02/01/2015]. Available: http://www.omg.org/spec/UML/2.4/ Superstructure.

https://www.cilkplus.org/cilk-plus-%20tutorial
http://en.wikipe/
http://www.visual-paradigm.com/
http://www.omg.org/spec/UML/2.4/
http://www.omg.org/spec/UML/2.4/
http://www.omg.org/spec/UML/2.4/
http://www.omg.org/spec/UML/2.4/
http://www.omg.org/spec/UML/2.4/
http://www.omg.org/spec/UML/2.4/
http://www.omg.org/spec/UML/2.4/

47

[13] Object Management Group, (2010, 11, 14,), "OMG Unified Modeling Language

(OMG UML), Superstructure", version 2.4, pp 389~390,[Online last visited

02/01/2015]. Available: http://www.omg.org/spec/UML/2.4/ Superstructure.

[14] Object Management Group, (2010, 11, 14,), "OMG Unified Modeling Language

(OMG UML), Superstructure", version 2.4, pp 370~373,[Online last visited

02/01/2015]. Available: http://www.omg.org/spec/UML/2.4/ Superstructure.

[15] Object Management Group, (2010, 11, 14,), "OMG Unified Modeling Language

(OMG UML), Superstructure", version 2.4, pp 387~389,[Online last visited

02/01/2015]. Available: http://www.omg.org/spec/UML/2.4/ Superstructure.

[16] Object Management Group, (2010, 11, 14,), "OMG Unified Modeling Language

(OMG UML), Superstructure", version 2.4, pp 393~396,[Online last visited

02/01/2015]. Available: http://www.omg.org/spec/UML/2.4/ Superstructure.

[17] Object Management Group, (2010, 11, 14,), "OMG Unified Modeling Language

(OMG UML), Superstructure", version 2.4, pp 413~420,[Online last visited

02/01/2015]. Available: http://www.omg.org/spec/UML/2.4/ Superstructure.

[18] Object Management Group, (2010, 11, 14,), "OMG Unified Modeling Language

(OMG UML), Superstructure", version 2.4, pp 378~384,[Online last visited

02/01/2015]. Available: http://www.omg.org/spec/UML/2.4/ Superstructure.

[19] Object Management Group, (2010, 11, 14,), "OMG Unified Modeling Language

(OMG UML), Superstructure", version 2.4, pp 358~360,[Online last visited

01/01/2015]. Available: http://www.omg.org/spec/UML/2.4/ Superstructure.

[20] Microsoft, (2014), Visio top features, version 2013, [Online last visited

01/03/2015]. Available: http://office.microsoft. com/en-us/visio/microsoft-visio-2013-

top-features-create-professional-diagrams-FX103796044.aspx

[21] Esomar, ETHICAL ISSUES, [Online last visited 05/05/2015]. Available: online

https://www.esomar.org/knowledge-and-standards/codes-and-guidelines/guideline-for-

online-research/ethical-issues.php

[22] Microsoft, (2014), About reverse engineering code to the UML, version 2013,

[Online last visited 01/03/2015]. Available: http://office.microsoft.com/ en-us/visio-

help/about-reverse-engineering-code-to- the-uml-HP081550745.aspx

[23] soft112, (2014, 02,15), Visual Paradigm for UML, [Online last visited 11/03/2014].

Available: http://visual-paradigm-for-uml-standard.soft112.com/.

http://www.omg.org/spec/UML/2.4/
http://www.omg.org/spec/UML/2.4/
http://www.omg.org/spec/UML/2.4/
http://www.omg.org/spec/UML/2.4/
http://www.omg.org/spec/UML/2.4/
http://www.omg.org/spec/UML/2.4/
http://www.omg.org/spec/UML/2.4/
http://office.microsoft/
https://www.esomar.org/knowledge-and-standards/codes-and-guidelines/guideline-for-online-research/ethical-issues.php
https://www.esomar.org/knowledge-and-standards/codes-and-guidelines/guideline-for-online-research/ethical-issues.php

48

[24] Object Management Group, (2010, 11, 14,), "OMG Unified Modeling Language

(OMG UML), Superstructure", version 2.4, pp 241~241,[Online last visited

04/01/2015]. Available: http://www.omg.org/spec/UML/2.4/ Superstructure.

[25]Eclipse, (2014), About Papyrus, [Online last visited 11/03/2014]. Available:

http://www. eclipse.org/papyrus/

[26]Wkipedia, (2014, 08, 30), Papyrus_(software), [Online last visited 11/03/2014].

Available: http://en.wikipedia.org/ wiki/Papyrus_(software).

[27] Intel® Cilk™ Plus, Tutorial: Cilk Plus Keywords, [Online last visited 11/03/2014].

Available: online https://www.cilkplus.org/tutorial-cilk- plus-keywords.

[28] Mathis fun, Pascals Triangle, [Online last visited 11/03/2014]. Available:

http://www.mathsisfun.com/definitions/ pascals-triangle.html

[29] Intel® Cilk™ Plus, Code Samples: Karatsuba V1.0, [Online last visited

11/03/2014]. Available: online https://www.cilkplus.org/download#block-views-code-

samples-block-1

[30] Navdeep Singh(2014, 01, 31), Kriblog, [Online last visited 11/03/2014]. Available

online: http://www.kriblog.com/j2se/util/various-bubble-sort-example-in-java-using-

string-array-arraylist-linked-list-recursive.html

[31] Michael Graf. Andrei Papancea, Cilk Tutorial, [Online last visited 11/03/2014].

Available online: http://faculty.knox .edu/dbunde/teaching/cilk/#cilk_for

[32] Wkipedia, (2015, 01, 01), Microsoft Visual Studio, [Online last visited

11/03/2014]. Available : http://en.wikipedia.org/ wiki/Microsoft_Visual_Studio

[33] Kessler, Christoph W., Dastgeer, Usman, Thibault, Samuel, Namyst, Raymond,

Richards, Andrew, Dolinsky, Uwe, Benkner, Siegfried, Träff, Jesper Larsson and

Pllana, Sabri. "Programmability and performance portability aspects of heterogeneous

multi-/manycore systems.." Paper presented at the meeting of the DATE, 2012.

[34] Pllana, Sabri, Benkner, Siegfried, Mehofer, Eduard, Natvig, Lasse and Xhafa,

Fatos. “Towards an Intelligent Environment for Programming Multi-core Computing

Systems” Paper presented at the meeting of the Euro-Par Workshops, 2008.

[35] Fahringer, Thomas, Pllana, Sabri and Testori, Johannes. "Teuta: Tool Support for

Performance Modeling of Distributed and Parallel Applications” Paper presented at the

meeting of the International Conference on Computational Science, 2004.

http://www.omg.org/spec/UML/2.4/
http://en.wikipedia.org/
https://www.cilkplus.org/
http://www.mathsisfun.com/definitions/
https://www.cilkplus.org/download#block-views-code-samples-block-1
https://www.cilkplus.org/download#block-views-code-samples-block-1
http://www.kriblog.com/profiles/navdeep-singh.html
http://www.krib/
http://faculty.knox/
http://en.wikipedia.org/

49

[36] Pllana, Sabri, Benkner, Siegfried, Xhafa, Fatos and Barolli, Leonard. "Hybrid

Performance Modeling and Prediction of Large-Scale Computing Systems.." Paper

presented at the meeting of the CISIS, 2008.

[37] Object Management Group, (2010, 11, 14,), "OMG Unified Modeling Language

(OMG UML), Superstructure", version 2.4, pp 368~368,[Online last visited 04/01/2015].

Available: http://www.omg.org/spec/UML/2.4/ Superstructure.

[38] Object Management Group, (2010, 11, 14,), "OMG Unified Modeling Language

(OMG UML), Superstructure", version 2.4, pp 369~369,[Online last visited

04/01/2015]. Available: http://www.omg.org/spec/UML/2.4/ Superstructure.

[39] Object Management Group, (2010, 11, 14,), "OMG Unified Modeling Language

(OMG UML), Superstructure", version 2.4, pp 399~399,[Online last visited

04/01/2015]. Available: http://www.omg.org/spec/UML/2.4/ Superstructure.

 [40] Object Management Group, (2010, 11, 14,), "OMG Unified Modeling Language

(OMG UML), Superstructure", version 2.4, pp 290~290,[Online last visited

04/01/2015]. Available: http://www.omg.org/spec/UML/2.4/ Superstructure.

 [41] Object Management Group, (2010, 11, 14,), "OMG Unified Modeling Language

(OMG UML), Superstructure", version 2.4, pp 391,[Online last visited 04/01/2015].

Available: http://www.omg.org/spec/UML/2.4/ Superstructure.

 [42] Object Management Group, (2010, 11, 14,), "OMG Unified Modeling Language

(OMG UML), Superstructure", version 2.4, pp 374,[Online last visited 04/01/2015].

Available: http://www.omg.org/spec/UML/2.4/Superstructure.

[43] Object Management Group, (2010, 11, 14,), "OMG Unified Modeling Language

(OMG UML), Superstructure", version 2.4, pp 350,[Online last visited 04/01/2015].

Available: http://www.omg.org/spec/UML/2.4/Superstructure.

http://www.omg.org/spec/UML/2.4/
http://www.omg.org/spec/UML/2.4/
http://www.omg.org/spec/UML/2.4/
http://www.omg.org/spec/UML/2.4/
http://www.omg.org/spec/UML/2.4/
http://www.omg.org/spec/UML/2.4/
http://www.omg.org/spec/UML/2.4/Superstructure

a

Appendix

Appendix A: Survey participants

No Major Study Educational Level Note

1 Software

Architecture

Master of Software engineering from

Linnaeus University (Sweden)

PhD student at Linnaeus

University

2 Software

Architecture

Master of Software engineering from

Linnaeus University (Sweden)

PhD student at Linnaeus

University

3 Software

Architecture

Master of Software engineering from

Linnaeus University (Sweden)

Was researcher at Linnaeus

University

4 Software

Engineering

Masters in Distributed Software

Engineering from KTH | Royal Institute

of Technology (Sweden)

Working as Software Architecture

5 Systems

Engineering

Master of Science in Embedded

Systems Engineering from University of

Freiburg (Germany)

Working as a software engineer

6 Software

Engineering

Master of Software engineering from

Linnaeus University (Sweden)

Working as a software engineer

7 Software

Engineering

Master of Software engineering from

Linnaeus University (Sweden)

Working as a Software Engineer

8 Software

Engineering

Bachelor's Degree, Software

Engineering from University of

Sargodha (Pakistan)

Studying Master of Software

engineering from Linnaeus

University (Sweden)

9 Software

Engineering

Bachelor's Degree, Software

Engineering from KNURE (Ukraine)

Studying Master of Software

engineering from Linnaeus

University (Sweden)

10 Software

Engineering

Bachelor's Degree, Software

Engineering From KhAI (Ukraine)

Studying Master of Software

engineering from Linnaeus

University (Sweden)

11 Software

Engineering

Bachelor of Software Technology from

LNU (Sweden)

Studying Master of Software

engineering from Linnaeus

University (Sweden)

12 Software

Technology

Bachelor of Software Technology from

LNU (Sweden)

Studying Master of Software

engineering from Linnaeus

University (Sweden)

b

13 Software

Technology

Some higher secondary education from

hi/her home country

In final year of Bachelor of

Software Technology Linnaeus

University (Sweden)

14 Software

Technology

Some higher secondary education from

hi/her home country

In final year of Bachelor of

Software Technology from

Linnaeus University (Sweden)

15 Software

Technology

Some higher secondary education from

hi/her home country

In final year of Bachelor of

Software Technology from

Linnaeus University (Sweden)

c

Appendix B: Survey

d

e

Appendix C: Execution time of programs that use cilk_sync, cilk_spawn and

cilk_for.

Following programs have been tested:

 Fibonacci sequence

 Passcal Triangle Row

 Karatsuba Parallel

 Bubble Sort

 Int Sum

 primeNumber

All experiments have been done using following system:

1. Processor: Intel(R) Core(TM) i5-2435M CPU @ 2.4GHz 2.40 GHz

2. Installed memory: 8.00 GM

3. Windows edition: Window 7 home Premium Service Pack 1

 With Intel Cilk Plus cilk_spawn, cilk_sync

N Threads 1 Threads 2 Threads 4

N*10 Fibonacci sequence

1 0.000151 0.000189 0.000359

2 0.000835 0.000707 0.000690

4 11.834355 7.071505 4.659080

N*10 Passcal Triangle Row

1 0.144040 0.092941 0.230556

2 0.202894 0. 244396 0.240675

4 0.651525 0.615127 36.88200

9e+n*250 Karatsuba Parallel

1 0.044765 0.016429 0.051163

2 0.107773 0.078559 0.068551

4 0.124433 0.140060 0.307940

 With Intel Cilk Plus cilk_for

f

N Threads 1 Threads 2 Threads 4

N*10000 Bubble Sort

1 0.285429 0.160017 0.150720

2 1.048748 0.632682 0.505801

4 4.873793 1.651309 1.674779

N*10 Int Sum

1 5.499681 3.002173 1.519392

2 10.500256 5.500153 3.000451

4 20.500327 10.504384 5.502325

N*1000000 Count Prime Numbers

1 0.353255 0.243053 0.177508

2 0.919402 0.601560 0.468334

4 2.463847 1.618277 1.252269

g

1

 351 95 Växjö / 391 82 Kalmar

 Tel 0772-28 80 00

 dfm@lnu.se

 Lnu.se

