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Abstract

This master’s thesis addresses scaling of content distribution sites. In a case study, the
thesis investigates issues encountered on ftp.acc.umu.se, a content distribution site run
by the Academic Computer Club (ACC) of Ume̊a University. This site is characterized
by the unusual situation of the external network connectivity having higher bandwidth
than the components of the system, which differs from the norm of the external con-
nectivity being the limiting factor. To address this imbalance, a caching approach is
proposed to architect a system that is able to fully utilize the available network capac-
ity, while still providing a homogeneous resource to the end user. A set of modifications
are made to standard open source solutions to make caching perform as required, and
results from production deployment of the system are evaluated. In addition, time se-
ries analysis and forecasting techniques are introduced as tools to improve the system
further, resulting in the implementation of a method to automatically detect bursts and
handle load distribution of unusually popular files.
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Chapter 1

Introduction

The Academic Computer Club1 (ACC) is a student organization at Ume̊a University
hosting a public file archive2, most often called an FTP mirror, that distributes files
for various open source projects such as Linux distributions. This category of site is
commonly bandwidth-limited. Being located at a Swedish university, ACC has always
had the privilege of being connected to the Swedish University Network (SUNET)3,
internationally acknowledged as a powerful and reliable research network [13]. With the
announcement of the tentative plans for the next-generation SUNET network, with 100
gigabit connectivity in the near future [17], the ftp.acc.umu.se archive is yet again to
face an interesting challenge in scaling.

The ACC network situation is different from the common ones, where external band-
width is the limiting factor. In those cases solutions such as load balancers are viable.
This is not possible in the ftp.acc.umu.se system, where any single component is unable
to handle the bandwidth required. In order to overcome this issue caching is leveraged,
and modifications of existing solutions are required to meet the system’s bandwidth
demands.

The first part of this work provides an overview of the ftp.acc.umu.se system, and mod-
ifications proposed to scale the system to meet demand. The benefits and drawbacks of
this solution are summarized, highlighting the need to be able to automatically identify
burst situations in order to dynamically redistribute the load when needed.

In the second part time series analysis and forecasting techniques are introduced, with
the intention of showing how they can be applied to the problem of burst detection. An
automated method of handling of files causing bursts is implemented and deployed in
production on the ftp.acc.umu.se system. We present promising results from experiences
gained during the latest Debian Linux operating system release.

1http://www.acc.umu.se/
2http://ftp.acc.umu.se/
3http://www.sunet.se/
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The main contributions of this work are:
– Design and implementation of a cache subsystem optimized for large-file delivery,

cooperating among multiple services while minimizing data duplication.
– Design and implementation of a cache-aware redirection subsystem, minimizing

site-wide cache inflation by large files.
– Analysis and evaluation of results from multiple years of using the cache- and

redirection subsystems in production.
– Formulation of a strategy to preprocess file transfer logs to obtain more accurate

statistics.
– A survey of time series analysis and forecasting techniques, suitable for beginners

coming from the computing science field.
– Design and implementation of an automated file burst detection and load redis-

tribution system.
– A first analysis of results from the automated burst detection system when used

in production during a large burst, caused by the latest Debian Linux release.

Information on open source tools used, both in the ftp.acc.umu.se system and during
the work on this report, are listed in the Appendix.

Throughout this work the reader is provided footnotes with links to Internet sites with
more information on a topic or term used. Note however that many references are Open
access4 as well, including links to the Internet resources.

4http://en.wikipedia.org/wiki/Open_access

http://en.wikipedia.org/wiki/Open_access


Chapter 2

Background

ACC has been running ftp.acc.umu.se, a public file archive, since the computer club
was founded in 19971 but it was not until the site became the official Swedish Debian2

Linux operating system mirror in May 2000 that it started to get any noticeable amount
of traffic. The mirror grew in popularity and soon ACC could not expand the server
machine, a SUN 690MP with 2x60 MHz CPU’s and 80 GiB of storage, to meet the
demands in storage capacity and bandwidth. In 2001 the archive had to be scaled to
more than one server to overcome this limitation.

The solution chosen at the time was based on a classic model with a cluster of servers
interconnected by a high-speed network, using a high-performance distributed file sys-
tem. The main reason for this decision was the availability of hardware, as ACC got
hold of a couple of nodes from a decommissioned IBM SP cluster located at the Center
for High Performance Computing (PDC) at the Royal Institute of Technology (KTH).
At the time the university had a 155 Mbps link to SUNET, which was later upgraded to
622 Mbps to meet demands before GigaSUNET with 2.5 Gbps came online in 2002 [35].

When it became obvious that there would not be any easy upgrades to this solution
(there were no newer IBM SP systems in Sweden at the time) work began on designing
a replacement. The goal was an architecture that would leverage the kind of hardware
being donated to the computer club while meeting the ever increasing bandwidth de-
mands. At the time the plans for OptoSUNET with 10 Gbps connectivity to universities
were known, and the file archive architecture would ideally scale to those bandwidths.

The choice fell on using separate servers for storing the content and doing the actual
distribution of data, and to leverage caching in the publicly visible servers to work
around the inevitable bandwidth bottlenecks of such a solution. The top caching layer
would be a RAM file system cache implemented in the operating system of each server,
but given the size of the content working set there was no chance enough data would
fit into the comparatively small amount of RAM of those servers. To alleviate this,
a disk-based caching layer in each server was needed. It turned out that the open
source cache solutions available at the time, with Squid3 and the caching subsystem of

1The predecessor, Teknologsektionens Datorförening (TSDF) dates back to 1994
2http://www.debian.org/
3http://www.squid-cache.org/
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the Apache HTTP Server Project4 (Apache httpd) being the most prominent, were all
heavily geared towards small-file many-request workloads and were thus not well suited
for the large-file oriented workload of the ftp.acc.umu.se site.

To overcome these limitations it was decided to adapt the caching subsystem of Apache
httpd. The main factors leading to that decision were performance and architectural
simplicity. Apache httpd was able to deliver the performance needed, while the code
base for the caching subsystem by itself was rather small and easy to understand. This
was a prerequisite to have a chance at realizing the vision of utilizing the disk cache
layer not only for the HTTP protocol [12], but also for the FTP protocol [28] and the
rsync application [33].

This work implements the components needed, which were taken into production dur-
ing 2006-2008. This enables drawing definitive conclusions on the performance of the
components over time.

The workload pattern of today is surprisingly similar to the one identified 10 years ago.
The HTTP protocol still accounts for the majority of usage with 94% of the delivered
data, the rsync application is still being used to synchronize file sets between mirror
sites, and the FTP protocol is mostly used as a last resort. Large files are still the
limiting factor when it comes to bandwidth, with files larger than 1 MiB accounting for
more than 97% of the sent data.

As newer and more capable server hardware has been donated to ACC during the
years, fewer servers are now required to meet demands. While it is likely that the next
generation donated hardware will be able to meet demands posed by the current 10
Gbps connection to SUNET, clustering with efficient caching will still be required to
serve the upcoming 100 Gbps SUNET connection.

4http://httpd.apache.org/

http://httpd.apache.org/


Chapter 3

Architecture analysis

In this chapter an overview of the ftp.acc.umu.se system is provided, along with an in-
depth discussion on the motivation and design of the adapted components. A summary
discusses benefits and drawbacks of the system, where a scaling limitation is identified
and addressed further in Chapter 4.

3.1 Overview

The current incarnation of the file archive at ftp.acc.umu.se is comprised of the following
classes of server machines, described using the vocabulary established at ACC:

– Backend - the file server where all data is stored. After having initially experi-
mented with multiple Backend servers it was concluded to have only one, due to
the administrative complexity of balancing the use of multiple servers. The file
system is exported using the Network File System (NFS) version 4 protocol [31]
and mounted on all other servers.

– Frontends - publicly accessible, these are the servers reached when users contact
them by the ftp.acc.umu.se name. They serve requests directly, with larger files
being redirected to Offloaders using HTTP redirects when possible.

– Offloaders - servers delivering larger files as redirected from the Frontends.

Figure 3.1 shows the ftp.acc.umu.se system. The logic diagram in Figure 3.1b gives
an overview of the system function from the user perspective, when contacting the
system to retrieve files. As server and client software interact the system functions as
a homogeneous unit, making the fact that the system consists of multiple components
opaque to the end user. Looking closer at the network diagram in Figure 3.1a it is clear
that all components, including the Backend system, is limited by a 1 Gbps network
connection compared to the 10 Gbps uplink connecting to the Internet. Without a good
caching solution this would severely limit the system performance.

5



3.1. Overview 6

(a) Network diagram illustrating the exter-
nal network connectivity providing higher
bandwidth than the components of the sys-
tem.

User A

Frontends
A1. Small

request

User B

B1. Large
request

Offloaders

B3. Retry
using

offload
location

A2. Data
B2. Offload

redirect
B4.
Data

Backend

(b) Logic diagram depicting the two common
use cases. User A requests a small file
while User B requests a large file. Dashed
arrows represents signalling while bold ar-
rows shows data flow to end users.

Figure 3.1: Overview of the ftp.acc.umu.se system.

Incoming requests from end users are handled by the Frontends. If the request is to be
handled locally, as determined by protocol, file size and special considerations regarding
client support, the request is handled as a normal request by the server subsystem in
accordance to Figures 3.2a and 3.2b. The cache subsystem components mod_cache_-
disk_largefile (for HTTP) or libhttpcacheopen (for FTP and rsync) are involved
as required.

The HTTP protocol can send a reply to a client, redirecting it to another resource.
This is used to implement true offload handling by having the client reissue the request
to the server providing the resource, enabling use of the aggregated bandwidth of the
Offloaders. The Apache httpd mod_rewrite1 subsystem is used to drive the offload
handling. If the request is a candidate to be handled by an Offloader, a look-up is
made into a key/value database to see whether a request for this file has already been
evaluated by the redirection subsystem. If found, redirection is handled as illustrated in
Figure 3.2c. If not, the request is passed on to the redirection subsystem redirprg.pl
for evaluation, with the decision stored into the key/value database to avoid doing the
evaluation more often than necessary.

1http://httpd.apache.org/docs/current/mod/mod_rewrite.html

http://httpd.apache.org/docs/current/mod/mod_rewrite.html


3.2. Components 7

User Frontend1. request
3.2. data

Cache2. lookup
3.1. data

(a) Cached file. A lookup is made to
the local cache and the data found
is sent to the user.

User Frontend1. request
5.3. data

Cache

2. lookup

4. init. caching
3. not cached

5.2. data

Backend5.0. lookup
5.1. data

(b) Uncached file. Data is fetched from the Backend
in order to populate the cache and send to user.

User

Frontend
1. request

Offloader

5. request

4. redirect
Key/Value Database

(DBM)
2. lookup

6. data

3. offloader

(c) Large files. The assigned Offloader is retrieved from
a key/value store and a reply is sent to the client, in-
structing it to contact the Offloader in order to access
the data.

Figure 3.2: Cache subsystem, data flow in the common cases. Graphs originally by
Mattias Wadenstein for http://ftp.acc.umu.se/about/

To avoid overflowing the cache of the Offloaders each file is served by a specific Offloader.
The inode number (the index node number uniquely identifying a file in a file system) of
the Backend file is used as the base for selecting the Offloader to assign the request. This
avoids aliasing effects by multiple site names, file/directory names etc, which can cause
requests for the same backing file to be sent to multiple Offloaders. The requests are
split evenly among the Offloaders based on the file inode number. This has the potential
of causing hot spots if multiple popular files happen to be assigned the same Offloader,
a fact addressed further in Chapter 4. As assignments are deterministic there is no need
for communication between the redirprg.pl instances on the different servers.

In a similar manner, the mod_cache_disk_largefile and libhttpcacheopen cache
subsystem components also use the inode of the backing file to avoid storing multiple
copies of the same file. In the case of the mod_cache_disk_largefile Apache HTTP
module, the cache has two levels. A cached header entity is keyed on the URL/URI of
the request, and the header entity then contains a reference to the local cached file of
the request. The preload wrapper library libhttpcacheopen only operates on the file
system level and caches/redirects accesses for files on the Backend file system into files
residing in the local cache.

3.2 Components

This is a more detailed analysis of the custom components in the ftp.acc.umu.se system,
responsible for realizing the logic shown in Figure 3.2. Identified major issues and
considerations leading up to the current design are listed, together with results of using
the system in production for a long period of time. A summarizing discussion wraps up
the section. For more information on standard components used, see Appendix A.

http://ftp.acc.umu.se/about/


3.2. Components 8

3.2.1 mod cache disk largefile - Apache httpd disk cache

The mod_cache_disk_largefile module for Apache httpd is a major adaption and
re-engineering of the Apache httpd mod_disk_cache2 module, which was later renamed
mod_cache_disk3 in the 2.4-release of Apache httpd. These modules all use the infra-
structure provided by the Apache httpd mod_cache4 module to handle the logic of
caching, leaving them to handle backing media storage/retrieval.

The original mod_disk_cache module is heavily geared towards a workload comprised
of many requests for small files. When exposed to what can be seen as the opposite, a
workload of few requests for large files, some of the design decisions made proves to be
detrimental to the performance and behaviour under such workloads.

The original design of mod_disk_cache stores a file to the cache before starting to reply
to the client. During retrieval of large files, most users, and client software, gives up
and retries before the caching operation is complete. Each request of an uncached file
triggers a caching operation, regardless of whether that file was already in the process of
being cached or not. This causes a huge inflation of the space used on the cache backing
store, and makes caching very slow due to multiple processes fighting for bandwidth.

Considering future plans, the backing store layout not being suitable to handle sharing
of already cached content with other access methods is also identified as an issue. This
is due to the fact that the data stored is keyed on the URL of the file, a fact also
responsible for causing duplicates of the same backing files to be stored in the cache.

To address these issues the logic of the storage and retrieval of cached files is re-
engineered with the following design key points:

– The first access to an uncached file triggers caching.
– Data is transferred to clients as files are cached.
– Multiple requests for files are served from cache as files are being cached.
– No explicit locking using separate lock files. Rely on the POSIX [15] O EXCL flag

to open a file exclusively for writing.
– The cache backing store should allow for cooperation with other services.

Apache httpd has an internal API based on APR-util [3] that allows a representation
of content in any format. Simplified, the API allows for representing a piece of data, a
bucket5, with all pieces combined into a complete data stream in a bucket brigade6. To
solve the problem of being able to send data to the client while a file is being cached
a bucket type used to represent a cached file is implemented. In order to leverage
optimizations in Apache httpd for delivering regular files, the most common use case,
the buckets morph into regular file buckets as file data becomes available. While this
allows delivering data with virtually no performance impact during caching, the process
of determining whether new data is available is performed for each concurrent request
to files being cached, which can waste server resources.

2http://httpd.apache.org/docs/2.2/mod/mod_disk_cache.html
3http://httpd.apache.org/docs/2.4/mod/mod_cache_disk.html
4http://httpd.apache.org/docs/2.4/mod/mod_cache.html
5http://apr.apache.org/docs/apr-util/1.5/structapr__bucket.html
6http://apr.apache.org/docs/apr-util/1.5/structapr__bucket__brigade.html

http://httpd.apache.org/docs/2.2/mod/mod_disk_cache.html
http://httpd.apache.org/docs/2.4/mod/mod_cache_disk.html
http://httpd.apache.org/docs/2.4/mod/mod_cache.html
http://apr.apache.org/docs/apr-util/1.5/structapr__bucket.html
http://apr.apache.org/docs/apr-util/1.5/structapr__bucket__brigade.html
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The underlying POSIX API [15] used on Unix/Linux ensures that content written to an
unbuffered file is visible atomically as it is written, so care has been taken to write files
in consistent chunks using writev() or similar functions. Timeouts are used for certain
operations to achieve a robust system. As an example, a request determines that another
process is currently performing a caching operation, and it waits for valid content to show
up in the appropriate header file. If that caching process fails, for example because the
Backend server was restarted, that file will never have valid content. For cases like this,
a processing timeout ensures that the offending file is removed so the cache operation
can be retried. As this processing is abstracted from the request, the only noticeable
effect to an end user is the response being slightly delayed.

In order to have a cache backing store layout that allows cooperation with other services,
separate indexes are used for storing the header and the matching file, called body in
HTTP [12, section 4.3] and other protocols. An early approach of using the backing
file name as index for the body reduced the data duplication somewhat, but it was
concluded that there was still a considerable amount of data duplication in the cache.
Experiments with indexing files based on content were abandoned due to not performing
as required. Finally it was found that indexing the body based on the inode numbers of
the files on the Backend file system solves the issue with minimum performance impact.

While there have been numerous other small improvements and fixes in the mod_-
cache_disk_largefile module to obtain the best possible cache efficiency and per-
formance, the items detailed here are the key ones for the cache to be useful in a
bandwidth-constrained environment handling mostly large files such as the ftp.acc.umu-
.se file archive.

3.2.2 libhttpcacheopen - using the httpd disk cache for other
services

In order to be able to leverage the same cache backing store for other services, namely
FTP and rsync, a wrapper library is implemented that detects accesses to the Backend
file system and redirects those to the cache backing store.

The subsystem is comprised of two components, libhttpcacheopen and copyd. lib-
httpcacheopen is the actual wrapper library that injects itself between the application
and the operating system using the LD PRELOAD mechanism of the Executable and
Linkable Format (ELF) dynamic linker/loader ld.so [20] [21] used in Unix-like operating
systems. copyd is a background process, daemon, that handles background caching of
larger files in order for the service wrapped to be able to send data while a file is being
cached.

The design and implementation of libhttpcacheopen is rather straight-forward. All
library routines such as open() and read() that access files are identified and required
functionality to utilize the cache is implemented. This includes redirecting accesses to
files, initializing caching if not already cached, etc. While the general algorithms are the
same as the ones developed for the mod_cache_disk_largefile Apache httpd module,
the code has to be ported from the APR API [3] to the standard POSIX API [15] in
order to reduce the number of library dependencies and interactions that preloading
libraries can induce.
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The copyd daemon simply runs in the background, listening to a Unix domain socket
for cache-requests to handle. It uses the same code base as libhttpcacheopen for
copying/caching files, keeping the copyd-specific code base to a minimum.

Even though the overall design is rather simple, there are a number of small details that
have to be taken care of for the implementation to work properly. As an example, Linux
uses inlined wrapper functions for the stat-family library calls. In order to catch those
the __xstat-family must be wrapped instead.

3.2.3 redirprg.pl - redirection subsystem

The ftp.acc.umu.se system started out with a number of servers all providing access
to clients using FTP, HTTP and rsync. Load distribution was achieved by having the
DNS [24] name ftp.acc.umu.se point to all target servers. This is called DNS Load
Balancing [5], or more commonly Round-robin DNS7. The HTTP protocol accounts
for most of the accesses, with close to 95% of the delivered data8. As using Round-
robin DNS for HTTP load distribution proved inadequate due to large site-wide cache
inflation, a way of doing cache-aware load distribution was called for.

The HTTP protocol provides a mechanism that uses the Location response-header to
inform a client where the requested content can be found [12, section 14.30]. This
operation is often called a HTTP redirect based on the Apache httpd configuration
directive Redirect9. The concept is also known by many other names, for example URL
redirection or URL forwarding10. This mechanism can be used to implement a load
distribution scheme where the client software accesses the server providing the resource
directly, avoiding congestion, while the user only have to access the site with a known
address.

To provide a degree of load distribution, and alleviate the issues of Round-robin DNS
and cache inflation, manually assigned HTTP redirects were used. This quickly proves
impractical on a large scale, and a method of automatically doing cache-friendly HTTP
load distribution is needed.

The Apache httpd mod_rewrite subsystem provides mechanisms to do table look-ups
called RewriteMap11. These maps can be based on static data, such as text files, dbm
files (standalone key/value databases) or SQL databases; or dynamic such as random
values from a list or driven by external programs. Using these building blocks a proof
of concept redirection subsystem is designed and implemented using the Perl [32] script
language. The proof of concept turns out to have good enough performance to be able
to handle loads multiple orders of magnitude higher than seen on the ftp.acc.umu.se
system.

The main goal of the ftp.acc.umu.se redirection subsystem is to increase system efficiency
and capacity by doing cache-aware load distribution. The same scheme of using the
backing file inode numbers, as used in the mod_cache_disk_largefile Apache httpd
module, is used to define mappings between resources requested by users and offload

7http://en.wikipedia.org/wiki/Round-robin_DNS
8http://www.acc.umu.se/technical/statistics/ftp/index.html.en#user
9http://httpd.apache.org/docs/2.4/mod/mod_alias.html#redirect

10http://en.wikipedia.org/wiki/URL_redirection
11http://httpd.apache.org/docs/2.4/rewrite/rewritemap.html

http://en.wikipedia.org/wiki/Round-robin_DNS
http://www.acc.umu.se/technical/statistics/ftp/index.html.en#user
http://httpd.apache.org/docs/2.4/mod/mod_alias.html#redirect
http://en.wikipedia.org/wiki/URL_redirection
http://httpd.apache.org/docs/2.4/rewrite/rewritemap.html


3.2. Components 11

targets providing those resources. Using this scheme a mapping function that produces
the same mappings on all instances of redirprg.pl is implemented. This is made
possible by the fact that the inode numbers of the backing files are identical on all
servers.

redirprg.pl implements a handler for a prg12 RewriteMap. This is an external program
that given a key (a file name in our case) returns a value (an offload target host in this
setting). Static map look-ups in the Apache httpd mod_rewrite subsystem are heavily
optimized by using in-memory caches and other methods. Writing the request/reply
pair to a dbm file as well enables taking advantage of those optimizations. An optimized
redirection subsystem is implemented by using Apache httpd mod_rewrite directives to
first check if the resource has been previously requested, and use a cached reply if that is
the case. If not, a look-up is made to the redirprg.pl subsystem which is subsequently
cached and used to reply to the user with a suitable redirection to the target server
providing the resource.

Having solved the major implementation hurdles by leveraging mod_rewrite we list the
major requirements of the redirection subsystem:

– Cache-aware mapping, assign all instances of a file to the same offload server.
– Consistent mapping, to avoid the need for communication between the redirprg.pl

instances running on different Frontend servers.
– Detect if Offload servers are offline/overloaded.
– Minimize impact of missing servers, if mappings change too much this causes

caching storms which effectively can bring the Backend file server to a standstill.
– Allowing manual/static mappings, to single and multiple targets.
– Detect if files change inode number, this happens when files are updated.

The major challenge is having a mapping scheme that is robust in the face of server
outage. The mapping scheme used in this work is named the Pie-Chart Algorithm.
It stems from discussions with fellow ACC system administrators on how to solve this
problem in a way that is easy to understand and straight-forward to implement and
debug. The basic idea is to assign each offload server a slice in a pie-chart, and in the
event of an outage splitting that slice in half and assigning those slices to the closest
neighbors. This provides a method that changes as little as possible of the mapping
should a server go missing while redistributing the load in a predictable manner. The
files are mapped to static positions in the pie-chart by having a fixed number of very
small slices for this purpose. Although similar to Consistent Hashing [18] [19], the
Pie-Chart Algorithm is not based on that work.

To illustrate, Figure 3.3a illustrates four offload target servers and Figure 3.3c the pos-
sible file placement positions. Should the upper-right target go missing the neighbor
targets will grow in that direction to share the load as shown in Figure 3.3b, which will
cause caching activity on those targets. When the missing target returns it will usually
have most files already cached, and can resume its duties without having to re-cache all
data. In an overload situation this sequence can repeat itself multiple times as popular
content becomes cached.

12http://httpd.apache.org/docs/2.4/rewrite/rewritemap.html#prg

http://httpd.apache.org/docs/2.4/rewrite/rewritemap.html#prg
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(a) A pie-chart with four
slices, illustrating four
servers.

(b) A pie-chart with the
upper-right slice miss-
ing, the neighboring
slices growing to fill up
the gap, demonstrating
rebalancing should a
server go missing.

(c) A pie-chart with many
slices, depicting the
placement of files in the
pie chart.

Figure 3.3: Pie-charts for illustrating the redirection subsystem mapping scheme.

Static mappings with a single file mapping to multiple targets proved to be a challenge
due to the fact that a key/value lookup can only provide a single offload target (value)
per file (key). This is handled by periodically rotating the target returned for those
lookups. For the ftp.acc.umu.se workload with large files and large transfer times a
decent load distribution is achieved when rotating the targets a few times per minute.

Detecting targets missing or overloaded is done as a sub process to redirprg.pl in
order not to interfere with responding to incoming queries. The current method is to
send HTTP HEAD requests [12, section 9.4] for a known file on each target and flag the
server as down if the response takes too long or fails, requiring a much quicker successful
response before flagging the server as up again to avoid unnecessary flapping.

As all mappings are stored in a dbm file it is easy to update the mappings in response
to events such as servers going offline/online, updated files causing new inode numbers,
changing targets for static mappings etc. This comes with a small performance impact
as mod_rewrite needs to read the updated entries into memory. That impact is however
small compared to having to feed the requests into redirprg.pl, which has to be done
in a atomic manner as mod_rewrite prg RewriteMaps can only process a single request
at a time.

3.3 Results

Experience from multiple years of service indicates that the basic design of the system
is sound. Table 3.1 shows bytes sent compared to bytes transferred from the Backend
system. As can be seen the solution performs as required, with the caching subsystem
reducing the load on the Backend system be nearly an order of magnitude. There are
fluctuations over the years, due to accounting errors (corrupted RRDs caused by server



3.3. Results 13

crashes), changes in workload, software bugs and software enhancements. The long term
trend is a ten-fold difference in the amount of data transferred to end users compared
to the amount of data transferred from the Backend system.

Year data sent (TiB) Backend transfer (TiB)
2007 1424 367
2008 3198 371
2009 4022 270
2010 4586 310
2011 5900 425
2012 5199 568
2013 4804 527
2014 5127 717
2015-01-01 - 2015-05-15 2105 191

Table 3.1: Data sent to end users from the ftp.acc.umu.se system com-
pared to data transferred from Backend, gathered from
http://www.acc.umu.se/technical/statistics/ftp/monitordata/

Translating this to network bandwidth, the system is capable of transforming the 1 Gbps
bandwidth provided by the Backend server to close to 10 Gbps in outgoing bandwidth,
as displayed in Figure 3.4. We expect this system-wide cache efficiency ratio to apply
for the future as well, as the workload pattern has proven to be quite stable over the
years.

Sat Sun Mon Tue Wed Thu Fri Sat
  0.0 M 0.0  

100.0 M 0.1 G

200.0 M 0.2 G

300.0 M 0.3 G

400.0 M 0.4 G

500.0 M 0.5 G

600.0 M 0.6 G

700.0 M 0.7 G

800.0 M 0.8 G

900.0 M 0.9 G

1000.0 M 1.0 G

1100.0 M 1.1 G

1200.0 M 1.2 G

By
te

s/
s

ftp.acc.umu.se file archive data sent during 2015-04-25 00:00 - 2015-05-03 00:00

  Frontends     Sent:   59868 GiB Avg:   88.5 MiB/s (  743 Mbit/s) Max:  575.5 MiB/s ( 4827 Mbit/s) at 2015-04-26 06:40
  Offloaders    Sent:  194150 GiB Avg:  287.1 MiB/s ( 2409 Mbit/s) Max:  750.5 MiB/s ( 6296 Mbit/s) at 2015-04-26 12:20
  Torrent       Sent:    4105 GiB Avg:    6.1 MiB/s (   51 Mbit/s) Max:   78.7 MiB/s (  660 Mbit/s) at 2015-04-26 05:20
  Total         Sent:  258122 GiB Avg:  381.7 MiB/s ( 3202 Mbit/s) Max: 1128.4 MiB/s ( 9465 Mbit/s) at 2015-04-26 12:20
  Backend       Sent:   16596 GiB Avg:   24.5 MiB/s (  206 Mbit/s) Max:  116.7 MiB/s (  979 Mbit/s) at 2015-04-26 03:00

Figure 3.4: Transfer summary during the Debian 8 release, showing the system capabil-
ity of saturating the available network bandwidth.

http://www.acc.umu.se/technical/statistics/ftp/monitordata/
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3.4 Summary and Discussion

Caching is essential in order to build a cost-effective infrastructure for content distri-
bution. We have shown that by designing and implementing a few select components
providing large-file oriented cache functionality, and combining them with standard
server software components such as Apache httpd [2], vsftpd [11] and rsync [33], we can
adapt off-the-shelf components into a solution highly optimized for open source content
delivery with caching adapted to the needs of the ftp.acc.umu.se site.

3.4.1 Limitations

While meeting the intended system goals, our proposed solution has some limitations.
For example, there is no offload support for FTP and rsync. These protocols do not
provide support for telling the client to contact another server to retrieve the requested
content, which means that the logic outlined in Figure 3.1b can not be realized. This
results in traffic always having to pass through the server the client initially made contact
with, even if a load balancing scheme is used behind the scenes to split the load over
multiple servers. While this is unfortunate, there is not much we can do about it and
we do not believe that this situation will change for the following reasons:

– The FTP protocol has the notion of third party transfers13 which is used in, for
example, GridFTP14.

– Third party FTP transfers are disabled in general as it is considered a security
risk in conjunction with unauthenticated FTP access15.

– The rsync application has no notion of offload support. This is understandable due
to the common bottleneck usually being file tree traversals when rsync sessions
obtain lists of files, and this is observed to not scale well with distributed file
systems.

For ftp.acc.umu.se, this means that the FTP and rsync traffic is served by the Frontend
servers. As listed in Table 3.2 the amount of data for FTP is nearly negligible, and
while rsync accounts for a greater share of transferred data it is still manageable. Rsync
is mainly used for synchronizing file sets between mirror sites so the number of users
is relatively constant, with the amount of data sent being coupled to the archive size
and update rate. If the number of end users increase they will mostly access the archive
using the HTTP protocol, for which our offload strategy applies.

Application protocol bytes sent (% of total)
HTTP 94%
rsync 5%
FTP 1%

Table 3.2: Statistics of bytes sent using different application protocols
for the time period 2015-03-01 - 2015-03-30, gathered from
http://www.acc.umu.se/technical/statistics/ftp/index.html.en

13http://en.wikipedia.org/wiki/File_eXchange_Protocol
14http://en.wikipedia.org/wiki/GridFTP
15http://en.wikipedia.org/wiki/FTP_bounce_attack

http://www.acc.umu.se/technical/statistics/ftp/index.html.en
http://en.wikipedia.org/wiki/File_eXchange_Protocol
http://en.wikipedia.org/wiki/GridFTP
http://en.wikipedia.org/wiki/FTP_bounce_attack
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System administrators do need to monitor the system for changes, as a small increase in
system usage might cause passing a threshold making the cache infrastructure perform
sub-optimally. Such an example was uncovered during the latest Debian Linux release,
where a slight increase in the data set caused the cache on one of the Frontend servers
to be overflowed by the daily rsync sessions to update other mirror sites. This in turn
caused Frontend servers to continuously contact the Backend server to handle requests,
a behavior that is not good for overall system cache efficiency.

Looking into the adapted components, mod_cache_disk_largefile is resource-hungry
during caching. This is an implementation-specific artifact due to the historic processing
model of Apache httpd. This can today be solved by leveraging the inotify API [16]
and use event notifications for file changes instead of polling.

The redirection component redirprg.pl is responsible for offloading requests to the
Offload servers. There are two known limitations in this area. One limitation is the fact
that mod_rewrite sends requests one by one to the redirprg.pl program RewriteMap.
While this limitation exists we do not see this affecting the workload of ftp.acc.umu.se
in the foreseeable future. The other limitation is the fact that redirprg.pl assigns a
single target for each file. While there is a mechanism to do manual assignments this is
only used in extreme circumstances today due to the effort required. This limitation will
be addressed in more detail in the following chapter, where we outline and implement a
method of automated detection and load distribution for such files.

The stable mapping scheme of our Pie-Chart Algorithm is comparable to Consistent
Hashing [18]. Although the schemes are similar in design, we believe Karger et al. [19] to
be more refined with faster algorithms. To scale the system beyond tens of Offloaders, an
unlikely scenario for the ftp.acc.umu.se system, the redirection component redirprg.pl
might perform better by using an optimized library for Consistent Hashing such as
Hash::ConsistentHash16 or Set::ConsistentHash17. An alternative is to use a distributed
key/value store such as Redis18, which allows implementing a redirection subsystem
with a coherent system view. This would enable using more advanced schemes of load
distribution.

16http://search.cpan.org/perldoc?Hash::ConsistentHash
17http://search.cpan.org/perldoc?Set::ConsistentHash
18http://redis.io/

http://search.cpan.org/perldoc?Hash::ConsistentHash
http://search.cpan.org/perldoc?Set::ConsistentHash
http://redis.io/


Chapter 4

Improving load balancing with
time series analysis and burst
detection

This chapter takes a closer look at the problem of bottlenecks caused by popular files,
as identified earlier in Section 3.4.1. The available data sources in the system are in-
vestigated, along with anomalies in the data and suggestions on how to handle that
issue. Time series analysis and forecasting techniques are surveyed with the intention
of investigating how they can be applied to the problem. Given a usable data source,
and techniques to apply to the problem at hand, a design of a burst detection and load
redistribution subsystem in the context of the ftp.acc.umu.se system is detailed. This is
followed by results from using the system in production, concluded with a summarizing
discussion.

4.1 Problem Statement

Today the ftp.acc.umu.se file archive is dependent on manual detection and handling of
bursts and bottlenecks caused by excessive popularity of single large files, the most com-
mon example being install images downloaded by users in conjunction with the release
of a new version of a Linux distribution. This manual detection requires administrators
to be very alert and constantly monitor the system if they are to have a chance to react
in time. In practice this only happens when alerted of big events beforehand, leading to
bursts caused by unannounced releases to be missed. In order to solve this an automated
solution is needed.

As a first step in order to devise an automated solution we study the possibility of de-
tecting load bursts. While the problem might seem trivial at first, daily/weekly/seasonal
variations in the workload makes reliable detection challenging. To tackle this we inves-
tigate Time Series Analysis, a branch of mathematical statistics where there are tools
to handle these kinds of issues.

16
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There is also the question on whether the cause of the bursts can be detected in enough
detail to provide an automated response, or if obtaining such a detailed answer would
require too much computing/analysis power to be feasible on a production system. As
the automated response would happen in the redirection subsystem this is quite essential
for the solution to be practically useful.

The first challenge is modeling the current system to establish a baseline for normal
system load. This is preferably done using log data detailed enough to make it possible
to later answer the question of what file(s) are causing the peak, as this will be needed
to formulate an automated response.

Even though there are a lot of logs available, both current and historical data, those
logs might not be appropriate for this task. As the system is bandwidth limited, the
logs are geared towards this fact, with only the essential transfer statistics logged. A
complicating factor is that most subsystems tend to write log entries when transfers are
complete. This makes real-time detection of bursts hard considering the transfer times
of large files. It has also been shown that the distribution of file transfer times across the
Internet is heavy-tailed [25, pp. 35-36], which gives a high probability for large transfer
times. If the current logs proves inadequate the system needs to be augmented with
additional logging to solve the task. Related to this there are also a few known usage
patterns caused by a group of client software called Download Managers that can cause
log inflation and severely skew analysis.

Having a baseline enables burst detection, the process of detecting load peaks due to
sudden increased popularity. Depending on how the solution for this problem performs
this can be verified on the production system, on a scaled down test system or on a
simulation system.

4.2 Data sources

Systems usually have a logging facility that logs individual transfers, and the most
common is for log entries to be written upon completion of the request. This is true for
all components of the ftp.acc.umu.se system.

Logs are written locally on each server and collected daily to a central server to be able
to generate statistics1. These logs have been saved from 2002 onward, and for historical
reasons the logs collected from Apache httpd are in the xferlog2 format. This log
format details transfers made, including transfer times and actual amount transferred.

The fact that log entries are written upon completion were early on in this work sus-
pected to be an issue, as a burst detection system needs to have a reasonably quick
reaction time. There is also the fact that while the logs are written on the Offloaders,
the incoming requests are handled by the Frontends where actions needs to be taken
upon detecting a burst condition.

To get more details on offload operations, the ftp.acc.umu.se system was augmented with
a dedicated offload-log that logs each request resulting in an offload operation. Added
benefits for this work are the facts that the logs are stored on the Frontends where the

1http://www.acc.umu.se/technical/statistics/ftp/
2http://manpages.ubuntu.com/manpages/trusty/en/man5/xferlog.5.html

http://www.acc.umu.se/technical/statistics/ftp/
http://manpages.ubuntu.com/manpages/trusty/en/man5/xferlog.5.html
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offload operations happen, and that log entries are written when the offload/redirect
reply is sent to the client. This enables implementing automated processing and reaction
to events without the need to transfer log files between components of the system.

In addition to this there are also network bandwidth logs from all servers involved.
These are stored as Round Robin Databases (RRDs) using RRDtool3 and shown on the
statistics web page4. RRDs has the benefit of being able to store statistics for long time
periods in comparatively small files. This is done by aggregating data points for older
data in larger time steps as configured upon setup of the RRD.

4.3 Simulating server network bandwidth using trans-
fer log files

In order to construct a model for server bandwidth using log files, a simple simulator
was implemented that, given log records in xferlog format, emits a time series with
simulated network transfer rates. Statistics such as average transfer rate and maximum
transfer time are also generated. The simulator falls into the category of a discrete-event
simulation (DES) [4] in a reduced form, as only the processing of the transfers need to
be simulated.

The xferlog records has information on transfer start time, duration and file size.
However, they are logged at the completion of the request which means that records
have to be read and then ordered by start time during processing. The time step
resolution chosen is one second, based on the xferlog format time stamp resolution.
The granularity of the time series output defaults to 60 seconds to keep the resulting
files in a manageable size.

To test the simulator, logs from a day when a burst occurred was chosen. Figure 4.1
displays a comparison of the simulated network transfer rate and the measured transfer
rate. As has been mentioned earlier the network transfer rates are logged in RRDs,
and are configured to store data with high resolution, small time steps, for the last 12
hours only. The data are extracted from the system more than a month later, yielding
a much lower resolution hiding most details. The spikes only shown in the simulation
data during the initial burst period are attributed to the fact that the offload target
server became overwhelmed by the number of concurrent requests to an uncached file,
causing the redirection subsystem to flag the server as down. This issue was investigated
further to reveal other configuration errors as well, leading to a revised configuration
of the RRDs used for logging network traffic. Due to these configuration errors, the
measured network transfer rates logged before the reconfiguration can not be trusted to
reveal short bursts.

3http://oss.oetiker.ch/rrdtool/
4http://www.acc.umu.se/technical/statistics/ftp/monitordata/

http://oss.oetiker.ch/rrdtool/
http://www.acc.umu.se/technical/statistics/ftp/monitordata/


4.3. Simulating server network bandwidth using transfer log files 19

 0

 50

 100

 150

 200

 250

 300

 350

 400

00:00:00

02:00:00

04:00:00

06:00:00

08:00:00

10:00:00

12:00:00

14:00:00

16:00:00

18:00:00

20:00:00

22:00:00

Tr
an

sf
er

 ra
te

 (M
iB

/s
)

Time

Simulated
Measured

Figure 4.1: Simulated and measured network transfer rate of gensho.acc.umu.se on 2015-
01-21.

Statistics output by the simulator can also be used to strengthen the argument that
the transfer logs are an unsuitable base for building a burst detection system, due to
the fact that log entries are written upon transfer completion. The run illustrated in
Figure 4.1 yields an average transfer rate of approximately 84 kiB/s5, with a median
transfer rate of approximately 22 kiB/s. In addition to showing that the transfer rates
during these conditions are not normally distributed, it indicates that most transfers
are long running. This causes a long delay between transfer initiation and writing the
corresponding log entries. As an example a 3.7 GiB DVD image takes 13 hours to
transfer at 84 kiB/s and 48 hours at 22 kiB/s, potentially causing a large delay before
the log records are written.

Early detection of bursts are important when dealing with long running processes where
load balancing happens upon process initiation, at the start of transfer in this use case.
As an example, a DVD image containing a freely distributable movie is released. The
movie is long-awaited by its fans, who starts to download it immediately within the first
four hours of release causing a huge burst taxing the capacity of a single Offload server.
The transfer logs incur an average 13 hour delay between start of transfer and writing
the corresponding log record. In this case, an automated burst detection based on the
transfer logs would react far too late to have any effect.

The transfer logs incur unavoidable delays that severely impacts the usefulness of an
automated burst detection scheme. This prompts investigating whether other logs are
better suited as data sources for burst detection.

5http://en.wikipedia.org/wiki/Data_rate_units

http://en.wikipedia.org/wiki/Data_rate_units
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4.4 Using the offload-log as a base for burst detection

The offload-log entries are written when the offload reply has been sent to the client,
which means that the information is available for a burst detection system at the same
time as the client receives the reply directing it to an Offloader. The big drawback
however is the fact that at this stage nothing is known of the size of the transfer, and
this needs to be taken into consideration as the system is bandwidth limited. As an
example, a transfer a 4 MiB MP3 file has less long-term impact than a transfer of a 4
GiB DVD image.

Well behaved clients will normally transfer the whole file in one request but some client
software, commonly Download Managers, can issue massive amounts of requests in order
to transfer a file in multiple small chunks. While the HTTP protocol allows for partial
transfers, previous experience shows that some Download Managers neglect to specify
the accurate length of the transfer beforehand and just closes the connection when
the appropriate amount has been received. This means that headers indicating partial
transfers can not be seen as a reliable indicator of the actual amount of data to be
transferred. The unfiltered data in Figure 4.2 illustrates a typical 100-fold inflation in
offload traffic caused by this category of clients. For these graphs the offload transfer
rate is estimated as a moving average over 30 minutes (1800 seconds).

For the purpose of burst detection, processing only the first request seen for a file from
a specific IP address is proposed. While this would hide requests for the same file from
multiple people sitting behind NAT or proxy connections, it would prevent a single client
causing a 100-fold inflation of requests. Keeping a table of IP address and file pairs in
memory will require a manageable amount of space, in the order of 200k entries to keep
a table for the last 24 hours according to past logs.

The size of the requested file is assumed to be the amount of data to be transferred.
Partial transfers to a single client occur, as some Download Managers are able to down-
load single files from multiple sites simultaneously. However, previous investigations on
the ftp.acc.umu.se production systems indicate those transfers to represent a negligible
fraction of transfers made. The xferlog log format currently used prohibits doing this
analysis on historical data.

The results of applying such a filter is shown in Figure 4.2. It can be seen that offloaded
traffic is slightly inflated compared to the measured transfer rate, but roughly follows the
same daily cycle. Had the traffic been underinflated, a significant presence of NAT/proxy
transfers of identical files could have been suspected. This shows that the correct decision
in this use case is to filter duplicates as shown.
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Figure 4.2: Traffic offloaded to saimei.acc.umu.se on 2015-04-01 (normal day) showing
the inflation primarily caused by Download Managers (unfiltered) compared
to filtered by first-seen ip/file pair and measured network transfer rate.

In order to determine whether this method also works during a burst period the xferlog
used in Figure 4.1 was processed into an offload-log and the same filter and plots were
applied. The result can be seen in Figure 4.3. Note that the actual burst starts around
18:00. The large discrepancy between the measured transfer rate and the filtered offload
rate can be attributed mostly to demand being higher than the offload target can handle
and the fact that at this point many slow transfers are being initiated. However, if this
behaviour is consistent for all bursts it will make detecting them straight-forward.
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Figure 4.3: Traffic offloaded to gensho.acc.umu.se on 2015-01-21 (burst day) showing the
inflation primarily caused by Download Managers (unfiltered) compared to
filtered by first-seen ip/file pair and measured network transfer rate.

In light of the impact of filtering transfers by first-seen ip/file pairs, a similar processing
was made to investigate whether the transfer rate statistics were skewed as well. For this
purpose the average transfer rate for each ip/file pair occurrence are calculated. This
causes no change for whole-file transfers but emits a single record instead of multiple
records for multiple partial transfers of the same file from a single client. The transfers
from gensho.acc.umu.se on 2015-01-21, when a burst occurred, now average at 175 kiB/s
with a median of 65 kiB/s, a significant difference from the unfiltered results previously
shown in Section 4.3. As comparison, on a normal day (2015-04-01) the transfers from
saimei.acc.umu.se averages at 2.6 MiB/s with a median of 441 kiB/s.

Figure 4.4 indicates that the transfer time distribution is heavy-tailed as suspected
earlier. It should be noted that the plots have been truncated to be able to show some
detail and that there are occurrences of transfer rates up to the single-session physical
maximum of 120 MiB/s. These data sets can be fitted reasonably well to a log-normal
distribution6, this coincides with other observations of log-normal distributions in the
scope of internet traffic [1] [10].

6http://en.wikipedia.org/wiki/Log-normal_distribution

http://en.wikipedia.org/wiki/Log-normal_distribution
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(a) saimei.acc.umu.se on 2015-04-01 (nor-
mal day).

(b) gensho.acc.umu.se on 2015-01-21
(burst day).

Figure 4.4: Transfer rates averaged by first-seen ip/file pair.

Using a log-normal distribution to assign random transfer rates to the transfers logged
in the offload-log enables the possibility to simulate the server network bandwidth. A
typical simulation run is shown in Figure 4.5. As can be seen the raw data is very
noisy, making it hard to draw conclusions, so a smoothed representation is included as
well. The smoothing algorithm chosen is cubic splines [14, chapter 5.6]. The simulation
captures the changes in transfer rates, but as can be seen in Figure 4.5b the simulated
transfer rate is inflated compared to the measured transfer rate. In fact, the simple mov-
ing average estimation of the offload requests made are closer to the simulated transfer
rate than the simulated transfer rates are to the measured transfer rate. One of the rea-
sons for this can be a larger occurrence of partial transfers than anticipated. Another
potential factor contributing to the error can be the random distribution of transfer
rates not being a close enough match to the measured transfer rates. Determining the
exact cause is beyond the scope of this work due to time constraints.
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(b) Data smoothed using cubic splines.

Figure 4.5: Transfer rates from gensho.acc.umu.se on 2015-04-01, simulated from
offload-log filtered by first-seen ip/file pair.
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As it stands, this is the data available being logged close to real time. The estimate
obtained of the server network bandwidth is rather inaccurate. However, based on
historical data the bursts of interest seem to be large enough to be easily detectable
despite the discrepancy.

4.5 Logs and time series

Time series analysis is a large area involving many disciplines and it can be hard to
identify suitable literature to begin with. We find Hyndman and Athanasopoulos [14]
to be a good introduction and primer on how to work with time series using the R
software [29] and Cryer and Chan [9] to be a good resource for the theoretical aspects.

A common task is to use time series to predict/forecast a property at a future time.
Methods range from näıve ones, such as using the last seen value as a prediction of the
future (known as the persistence method in weather forecasting7), to highly complex
models evaluating multiple time series using high performance compute clusters, com-
monly used in modern weather forecasting8. It is worth to note that simple methods can
be quite useful and should not be discarded before having been evaluated. An example
is long-range weather forecasts, where using the average seasonal data is more accurate
than current weather models9.

Time series are data sets where a property is logged sequentially in time. However,
most methods and literature constrain themselves to time series with properties logged
at regular intervals, also known as equidistant sampling. The network transfer rates
logged in the ftp.acc.umu.se system are examples of such time series.

The other various logs in the ftp.acc.umu.se system have to be preprocessed before using
established methods of analysis, modeling and forecasting/prediction. This is commonly
done via various forms of interpolation, such as averaging or summing properties over a
selected time interval, and unless otherwise noted this is the method used in this work.
The process of changing the data interval is sometimes referred to as subsampling,
extending the data interval by aggregating data points, or supersampling, reducing the
data interval by calculating artificial intermediate data points.

For readers unfamiliar with time series analysis, we now provide a brief introduction to
commonly used terms and methods.

4.6 Initial time series analysis

Analyzing time series starts with plotting the data to identify properties of the data set.
A time plot is the most common way to represent time series data. Figures 4.6 and 4.7
illustrates typical time plots for the outgoing network bandwidth from the ftp.acc.umu-
.se Offloaders, produced by RRDtool [26] and R [29] respectively. As can be seen the
data rate is not constant, contains spikes, outages and what appears to be a repetitive
pattern.

7http://en.wikipedia.org/wiki/Weather_forecasting#Persistence
8http://www.smhi.se/kunskapsbanken/meteorologi/meteorologiska-modeller-1.5932
9http://www.forecastadvisor.com/blog/2009/03/06/week-out-weather-forecasts/

http://en.wikipedia.org/wiki/Weather_forecasting#Persistence
http://www.smhi.se/kunskapsbanken/meteorologi/meteorologiska-modeller-1.5932
http://www.forecastadvisor.com/blog/2009/03/06/week-out-weather-forecasts/
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ftp.acc.umu.se offloader data sent during 2015-01-05 00:00 - 2015-03-23 00:00

  caesar Sent:  263889 GiB Avg:   40.7 MiB/s (  341 Mbit/s) Max:  154.6 MiB/s ( 1297 Mbit/s) at 2015-01-22 03:40
  gemmei Sent:  129684 GiB Avg:   20.1 MiB/s (  169 Mbit/s) Max:  158.8 MiB/s ( 1332 Mbit/s) at 2015-03-04 03:40
  gensho Sent:  240662 GiB Avg:   37.1 MiB/s (  311 Mbit/s) Max:  303.7 MiB/s ( 2548 Mbit/s) at 2015-01-22 01:00
  saimei Sent:  263933 GiB Avg:   40.7 MiB/s (  341 Mbit/s) Max:  149.2 MiB/s ( 1252 Mbit/s) at 2015-03-06 17:00
  Total Sent:  898168 GiB Avg:  138.4 MiB/s ( 1161 Mbit/s) Max:  454.9 MiB/s ( 3816 Mbit/s) at 2015-01-21 22:20

Figure 4.6: Transfer rates from ftp.acc.umu.se Offloaders 2015-01-05 - 2015-03-23, pro-
duced by RRDtool.
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Figure 4.7: Example individual transfer rates from ftp.acc.umu.se Offloaders 2015-01-05
- 2015-03-23, produced by R.

Depending on the resolution of the plot different patterns can be identified. Outliers
are values that stand out for some reason. These can be outages, peaks due to changed
usage patterns, measurement errors etc. Level shifts are events that shifts the entire level
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of the time series, for example a new Linux distribution becoming extremely popular,
dominating the number of downloads from the ftp.acc.umu.se system. These events are
sometimes referred to as structure changes [34].

Knowledge of the occurrence of outliers and level shifts can be beneficial as they com-
monly cause issues when choosing and using forecast methods [34] [7]. While many
methods of automated detection exists, such as Chen and Liu [6] implemented in the R
tsoutliers package10, the handling of these events are tightly coupled to the data set
at hand as shown earlier in Section 4.4. If the outliers and level shifts are known this
knowledge can be used to assess their impact, but also as a benchmark for automated
methods of detection. In any case it should be noted that outliers caused by measure-
ment and data entry errors are normally discarded from the data set [14, chapter 4.4].
A trend is a long-term change, increase or decrease, in the data. This is usually easiest
to spot in a plot with a low resolution, for example a multi-year plot with quarterly
results. An example of too high resolution making trends hard to see is the data shown
earlier in Figure 4.5.

Seasonal patterns are coupled to the time of the observations. Examples of these are
hourly, daily, monthly or yearly fluctuations. It should be noted that seasonal patterns
have fixed lengths that are known. To see the seasonality the resolution of the plot
must be high enough, for example hourly values to identify a daily seasonal pattern.
Cycles are not to be confused with seasonal patterns, as they are disconnected from the
time of the observations and are due to external factors, such as the global economy.
They are commonly longer than the seasonality, and have larger impact than seasonal
changes [14, chapter 2.1].

If a seasonal pattern is identified a seasonal plot can help reveal further details. Fig-
ure 4.8 demonstrates typical seasonal plots for the ftp.acc.umu.se Offloaders. Here the
data is plotted with a weekly season, meaning that all weeks are plotted on top of each
other. A few outliers such as down times and bursts can be seen, but in general there
are compelling evidence for a weekly seasonal pattern.

10http://cran.r-project.org/web/packages/tsoutliers/index.html

http://cran.r-project.org/web/packages/tsoutliers/index.html
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Figure 4.8: Seasonal plot of transfer rates from ftp.acc.umu.se Offloaders 2015-01-05 -
2015-03-23, showing a strong likelihood of a weekly seasonal pattern.

There is also descriptive statistics that can be leveraged to identify features of time
series. Common measures include the mean(average) value, min/max values, median
values, percentiles/quantiles and standard deviations. It should be noted that outliers
can have a large impact on average values, using the median value or other quantiles is
usually preferred when data is prone to contain outliers [22].

Using time series data to plan/predict peak capacity needed has a few pitfalls that re-
quires attention. Commonly, loads are bursty and graphical representations are smoothed
to make it easier to identify trends and patterns, or purely for visualization reasons.
However, these kinds of plots can be deceiving if there are needs to cater for the peaks.
As an example, the logged network bandwidth shown in Figure 4.1 is not close to the
server physical maximum of approximately 400 MiB/s, but the peaks turned out to be



4.7. Forecasting method overview 28

hidden due to low resolution (big time steps) of the logged data. Another pitfall is
to only look at average or median values. While helpful to understand the workload
patterns, they commonly hide peaks and other interesting phenomena.

In many situations it is more useful to consider the percentile11, also called quantile12

in a more generic definition. A percentile is the value below which a given percentage
of the data falls. For example, the 98th percentile for a network bandwidth time series
tells that 98% of the time the bandwidth is below the given value. Conversely, 2% of the
time the bandwidth is above the given value. When using percentiles as a base for sizing
it is again important to consider system behavior when going above the given percentile.
A system slow-down might be accepted, but a complete system crash is probably not.

The Pearson product-moment correlation coefficient13, usually called just the correla-
tion coefficient, is commonly used to assess the linear relationship between variables
in cross-sectional data. For time series data this concept can be extended to measure
the relationship between values in a time series, and is then called autocorrelation [14,
chapter 2.2].

The term lag is used in conjunction with autocorrelation to describe the relationship be-
tween time steps. For example, lag 1 describes the relationship between yt and yt−1; lag
4 describes the relationship between yt and yt−4. The autocorrelation is usually plotted
as the autocorrelation function (ACF) also known as a correlogram [14, chapter 2.2] [9,
p. 46].

The ACF plot is commonly used to help select an appropriate method for forecasting,
and to evaluate the suitability of a chosen forecasting method by using residual, forecast
error, diagnostics. In all cases, significant spikes in lags are of interest.

4.7 Forecasting method overview

Having established basic knowledge of the time series of interest a suitable method for
the intended forecast can now be selected. For doing burst detection in the ftp.acc-
.umu.se redirection subsystem, a short-term forecast is needed detailing the expected
network bandwidth usage of the offload target servers. This will then serve as the base
for selecting a threshold level used to decide if a burst has occurred. When selecting a
method it is wise to adhere to the principle of parsimony. For computer scientists it is
best explained as the KISS principle for statistics: when faced with multiple methods
with similar performance choose the simplest one [14, chapter 2.3] [23].

Another concept to be aware of is over-fitting. This commonly happens when too much,
or too fine-grained, data is used to select/train/fit a model resulting in a more complex
system than necessary. The result is a forecasting system for noise instead of the property
of interest. Before discussing the selection of a method for this specific use case a
summary is provided of a selection of methods that computer scientists and system
administrators might encounter, together with a small discussion on situations where to
apply them.

11http://www.mathsisfun.com/data/percentiles.html
12http://en.wikipedia.org/wiki/Quantile
13http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient

http://www.mathsisfun.com/data/percentiles.html
http://en.wikipedia.org/wiki/Quantile
http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
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4.7.1 Simple methods

The average method predicts the future to be the average of all past observations.

The näıve method sets future predictions to be the value of the last observation. A
variant is the seasonal näıve method that uses the last observed value from the previous
season, for example predicting the temperature at 08:00 today to be the same as 08:00
yesterday. A variation is the drift method that allows the näıve prediction to change
based on the average change seen in the historical data.

These methods are very simple to implement and often provide good enough predictions
for the problem at hand [14, chapter 2.3].

Applications leveraging RRDtool [26] for time series storage can use the PREDICT14

operand to implement a variant of seasonal näıve forecasting that can also use values
from multiple seasons. This is illustrated by Figure 4.9 showing a forecast a week into
the future using the average of the eight previous weekly seasons.
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ftp.acc.umu.se file archive data sent during 2015-05-02 00:00 - 2015-05-16 00:00

  abdulaziz  Sent:     763 GiB Avg:    1.3 MiB/s (   11 Mbit/s) Max:   21.3 MiB/s (  179 Mbit/s) at 2015-05-05 17:20
  caesar     Sent:   11287 GiB Avg:   19.4 MiB/s (  163 Mbit/s) Max:   90.6 MiB/s (  760 Mbit/s) at 2015-05-05 23:20
  gemmei     Sent:   17965 GiB Avg:   30.9 MiB/s (  259 Mbit/s) Max:  106.9 MiB/s (  897 Mbit/s) at 2015-05-05 16:40
  gensho     Sent:   36598 GiB Avg:   63.0 MiB/s (  528 Mbit/s) Max:  184.0 MiB/s ( 1544 Mbit/s) at 2015-05-04 20:40
  hammurabi  Sent:   10786 GiB Avg:   18.6 MiB/s (  156 Mbit/s) Max:  182.3 MiB/s ( 1529 Mbit/s) at 2015-05-06 06:40
  napoleon   Sent:   11304 GiB Avg:   19.4 MiB/s (  163 Mbit/s) Max:  156.1 MiB/s ( 1309 Mbit/s) at 2015-05-06 07:20
  saimei     Sent:   36106 GiB Avg:   62.1 MiB/s (  521 Mbit/s) Max:  169.4 MiB/s ( 1421 Mbit/s) at 2015-05-04 16:40
  tutankhamon Sent:      28 GiB Avg:    0.1 MiB/s (    1 Mbit/s) Max:   15.0 MiB/s (  126 Mbit/s) at 2015-05-02 18:00
  Total      Sent:  124836 GiB Avg:  214.8 MiB/s ( 1802 Mbit/s) Max:  351.4 MiB/s ( 2948 Mbit/s) at 2015-05-04 15:20
Dashed lines are predicted future values based on the average of the 8 previous weekly seasons

Figure 4.9: Example seasonal näıve forecast of the ftp.acc.umu.se system using the PRE-
DICT operator of RRDtool.

14https://oss.oetiker.ch/rrdtool/doc/rrdgraph_rpn.en.html#ISet_Operations

https://oss.oetiker.ch/rrdtool/doc/rrdgraph_rpn.en.html#ISet_Operations
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4.7.2 Linear regression

Linear regression, or fitting a straight line as an approximation of a time series using
least squares estimation, is often the simplest way of predicting the future development
of a trend in a time series. It is also possible to obtain prediction intervals which gives
an indication on the accuracy of the predictions [14, chapter 4.8].

RRDtool users can easily implement these predictions using the built-in functions for
least square line approximation15. Figure 4.10 demonstrates a linear trend prediction of
the network bandwidth for the ftp.acc.umu.se system for the coming 3 years, based on
data from the 3 previous years.
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ftp.acc.umu.se file archive data sent during 2012-05-08 00:00 - 2018-05-08 00:00

  abdulaziz  Sent:  147470 GiB Avg:    2.4 MiB/s (   20 Mbit/s) Max:  111.2 MiB/s (  933 Mbit/s) at 2015-04-27 04:00
  brezhnev   Sent:   54459 GiB Avg:    1.4 MiB/s (   12 Mbit/s) Max:   22.4 MiB/s (  188 Mbit/s) at 2013-03-06 11:00
  caesar     Sent: 3312623 GiB Avg:   36.1 MiB/s (  303 Mbit/s) Max:  266.2 MiB/s ( 2233 Mbit/s) at 2014-09-20 10:00
  gemmei     Sent: 2207487 GiB Avg:   26.5 MiB/s (  222 Mbit/s) Max:  277.2 MiB/s ( 2325 Mbit/s) at 2012-09-18 08:00
  gensho     Sent: 2354956 GiB Avg:   37.1 MiB/s (  311 Mbit/s) Max:  365.3 MiB/s ( 3064 Mbit/s) at 2015-04-27 04:00
  hammurabi  Sent: 2094089 GiB Avg:   23.6 MiB/s (  198 Mbit/s) Max:  251.4 MiB/s ( 2109 Mbit/s) at 2015-01-15 01:00
  napoleon   Sent: 1927325 GiB Avg:   22.6 MiB/s (  189 Mbit/s) Max:  257.8 MiB/s ( 2163 Mbit/s) at 2015-04-27 04:00
  saimei     Sent: 2175430 GiB Avg:   27.3 MiB/s (  229 Mbit/s) Max:  303.9 MiB/s ( 2550 Mbit/s) at 2015-04-30 02:00
  tutankhamon Sent: 1319141 GiB Avg:   14.8 MiB/s (  124 Mbit/s) Max:  238.8 MiB/s ( 2004 Mbit/s) at 2015-04-27 04:00
  Total      Sent:15592981 GiB Avg:  168.5 MiB/s ( 1414 Mbit/s) Max:  459.2 MiB/s ( 3852 Mbit/s) at 2015-04-30 02:00
  Linear trend estimate

Figure 4.10: Example linear trend prediction of the ftp.acc.umu.se system using the least
square line operators of RRDtool.

4.7.3 Decomposition

Decomposition aims to isolate patterns such as trends, seasonality and cycles in time
series data. This is commonly done to get better understanding of a time series data
which can then be used to improve forecasts.

Moving average smoothing is a classic method used mainly during the 1920s to the 1950s
that exposes trends and cycles by averaging data centered around each observation [14,
chapter 6.2]. This eliminates noise in the data making it easy to spot longer trends. An

15https://oss.oetiker.ch/rrdtool/doc/rrdgraph_rpn.en.html#ILSLSLOPE__LSLINT__LSLCORREL

https://oss.oetiker.ch/rrdtool/doc/rrdgraph_rpn.en.html#ILSLSLOPE__LSLINT__LSLCORREL
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m-MA uses m values and is also called a moving average of order m. For example, a
3-MA provides a smoothed time series by estimating each data point by the average of
the neighboring data points and the data point itself.

Mostly used as an analysis tool, employing a statistical software package such as R is
recommended. Seasonal and Trend decomposition using Loess (STL) [8] is one of the
preferred automated methods [14, chapter 6.5] to use for decomposition in R.

Figure 4.11 shows an example decomposition of network transfer rates from the offload
server caesar.acc.umu.se using STL. The topmost data panel shows a regular time plot
of the raw data. Here a weekly pattern can be observed with more traffic on work
days, less traffic during weekends, and nights being less busy than days. There are also
some bursts and outages. The seasonal panel displays the identified seasonal pattern.
While a daily pattern has been identified the weekly aspect has been missed by the
decomposition. As expected from the data panel the trend panel depicts a weak trend,
essentially a flat line if the scales are considered. Finally, the remainder panel shows
what can not be explained by the seasonal and trend components. Here it can be seen
that there are indeed indications of a weekly pattern remaining, as well as the same
bursts and outages observed in the data panel.

caesar STL decomposition, 4 week trend window
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Figure 4.11: Decomposition of network transfer rates from caesar.acc.umu.se during
2015-01-05 - 2015-03-23 using the stl() R function with a periodic sea-
son window and a four week trend window.
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Decomposition can also be leveraged to do forecasts. Since the patterns of the time
series are identified as components it is possible to predict future values by forecasting
the components separately, for example by using the seasonal näıve method for the
seasonal component and linear regression for the remaining component.

4.7.4 Exponential smoothing

Exponential smoothing methods can be seen as more sophisticated versions of the av-
erage method. While all past observations have equal impact in the average method,
exponential smoothing methods introduce weights that decays exponentially given the
age of the observation, called smoothing equations. This gives the effect of observations
close in time having larger impact on the prediction of future values than older obser-
vations, and enables to describe a time series with more accuracy [14, chapters 7, 7.1].

The Holt-Winters seasonal method is an example. This method has smoothing equa-
tions for the level, trend and seasonal components with the corresponding parameters
α (alpha), β∗ (beta-star) and γ (gamma). The nature of the seasonal component is a
deciding factor whether the additive or multiplicative variant of this method is to be
chosen. The additive method is preferred if the amplitude of the seasonal component is
relatively constant while the multiplicative method is preferred if the amplitude of the
seasonal component varies with the amplitude of the time series [14, chapter 7.5].

Holt-Winters is also implemented in RRDtool16, which enables more complex forecasts
to be done directly from such time series. However, due to the relative complexity
of setting up RRDtool for such forecasts, evaluating the benefit first using statistics
software such as R is recommended. R is also helpful by estimating the smoothing
parameters if these are not known.

The underlying statistical models for the exponential smoothing methods are labeled
ETS(Error, T rend, Seasonal), with the components being labeled N for none, A for
additive and M for multiplicative with a few special cases and sub notations for a total
of 30 models [14, chapters 7.6, 7.7]. Being true models the statistical framework exists
to enable automated model selection, as has been implemented in the R ets() function.

4.7.5 ARIMA models

AutoRegressive Integrated Moving Average (ARIMA) models are a different approach
to time series modeling and forecasting. These models intend to describe autocorrela-
tions in the data to be able to do predictions. Together with exponential smoothing
models they are the most commonly used tools in forecasting [14, chapter 8]. The
nomenclature can be rather confusing, as multiple naming schemes have evolved and
merged.

Stationarity is an important concept when dealing with ARIMA models. Hyndman and
Athanasopoulos [14, chapter 8.1] explains this as ”a stationary time series is one whose
properties do not depend on the time at which the series is observed”. A more formal
definition can be found in Cryer and Chan [9, pp. 16-19]. In addition to a common time

16http://oss.oetiker.ch/rrdtool/doc/rrdtool.en.html#IAberrant_Behavior_Detection

http://oss.oetiker.ch/rrdtool/doc/rrdtool.en.html#IAberrant_Behavior_Detection
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plot, an ACF plot or formal unit root tests such as Augmented Dickey-Fuller (ADF ,
R function adf.test()) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS, R function
kpss.test()) can be used to assess whether a time series is stationary.

An autoregressive, AR(p), model predicts future values based on p linear combinations
of past, lagged, values. For example, an AR(1) model uses one lagged value while an
AR(3) model uses three lagged values. AR(p) models are usually restricted to stationary
time series [14, chapter 8.3] [9, p. 71].

A moving average, MA(q), model uses the q past prediction errors to predict future
values. For example, an MA(1) model uses the last error and an MA(3) model uses
the past three errors. It should be noted that an MA(q) forecast model should not be
confused with moving average smoothing, m-MA, used to estimate trends and cycles [14,
chapter 8.4]. A more in-depth discussion on MA(q) models can be found in Cryer and
Chan [9, pp. 57-65].

Combining these two models yields the autoregressive moving average, ARMA(p, q),
model [9, p. 77]. An AR(2) model can also be described as ARMA(2, 0), MA(1) as
ARMA(0, 1) and so on.

Autoregressive integrated moving average, ARIMA(p, d, q), models are the next step
with an addition of an integration, degree of differencing, term d. This term corresponds
to the degree of differencing required to obtain a stationary time series. In practice,
d = 1 (first difference) or at most d = 2 (second difference) [9, p. 92]. Analogous to the
previous examples, an ARMA(3, 4) model can be described as ARIMA(3, 0, 4) and so
on [14, chapter 8.5].

Seasonal models are written as ARIMA(p, d, q)(P,D,Q)m, where p, d, q are the non-
seasonal components; P , D, Q are the seasonal components andm denotes the number of
periods per season [14, chapter 8.9]. The seasonal components adds seasonal awareness
by operating on lagged values of the corresponding season.

The ARIMA models also allows for building a framework of automated model estima-
tion based on a set of data. However, the results needs to be verified before the model
suggested can be trusted. Hyndman and Athanasopoulos [14, chapter 8.7] provides a
detailed workflow on how to do ARIMA modelling in R.

The choice between ARIMA and ETS depends on the problem and data at hand.
When using automated functions for model suggestion it is relatively easy to compare
the models suggested and select the simplest model that is best suited for the task.

4.8 Evaluating a forecasting method

An evaluation of a forecasting method is comparing results from a forecast with the
actual outcome. It is important to note that the data used for such a comparison should
not have been used during the selection/fitting process.

For this purpose it is common to divide the available data into a training set used
for selection/fitting, and a test set, also called out-of-sample data or hold-out data,
to evaluate forecasting performance. Hyndman and Athanasopoulos [14, chapter 2.5]
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recommends the test set to be about 20% of the total data, or at least as long the
forecast spans. There are also recommendations to have test sets as large as 50% if
there is a lot of data available17.

There are a number of metrics that can be computed to assess the accuracy of a forecast
with the Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) being
frequently used to provide scale-dependent metrics. These metrics can not be used to
compare forecast performance between data sets, for this purpose the Mean Absolute
Percentage Error (MAPE) is available. It should however be noted that percentage
errors are unsuitable if fractions make no sense in the current context. In those cases
the Mean Absolute Scaled Error (MASE) or Mean Squared Scaled Error (MSSE) might
be applicable. A common method is to calculate multiple metrics when evaluating and
favor methods that all metrics agree on [14, chapter 2.5]. A more elaborate method is
to choose metrics based on their properties18.

In all cases, it is useful to plot the forecast together with the test set to assess the
behavior of the forecast. There are cases where metrics can be misleading compared to
the properties needed for a forecast in a specific application.

A residual is the difference between a predicted value and an observed value. The
residuals should ideally be just noise, meaning that the forecast is using all information
available [14, chapter 2.6]. The ACF plot is used to analyze the residual properties,
where significant spikes on an ACF plot suggests that the residuals contain information
that a better forecasting model can use to produce more accurate results.

The need for forecast accuracy should also be considered, as well as stability in the face of
outliers, missing values, trend/level changes etc. In environments where the forecasting
method is likely to stay fixed once implemented, tests should also encompass data with
multiple possible scenarios to expose any unwanted behavior that might endanger the
system in the future. The behavior of simpler methods and models are likely more
predictable when subjected to changing conditions.

4.9 Forecast accuracy

It is often of interest to be able to assess beforehand whether a forecast is likely to be
correct or not. Most forecasting methods provides a tool for this, a prediction interval.
While the forecast produces a future prediction of a property of interest, the prediction
interval is used to assess the uncertainty of that prediction. A common example is a
95% prediction interval, which means that there is a 95% probability that the actual
value will be within a given range.

Prediction intervals, also called forecast intervals, are commonly based on an estimate
of the standard deviation σ̂ (sigma-hat) of the forecast distribution. For parameterless
methods such as the näıve method this is identical to the standard deviation of the
forecast errors, the residuals. For other methods there is a slight difference, but this is
often ignored in practice [14, chapter 2.7]. When faced with multiple methods which
produces similar forecasts it can be of interest to study whether the methods differ in
their prediction intervals.

17http://people.duke.edu/~rnau/three.htm
18http://people.duke.edu/~rnau/compare.htm

http://people.duke.edu/~rnau/three.htm
http://people.duke.edu/~rnau/compare.htm
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To illustrate, Figure 4.12 demonstrates a forecast based on linear regression with 50%,
80% and 95% forecast intervals shown in dark to light shade respectively. As can be
seen, the higher the probability the larger the range of the forecast needs to be.

Forecasts from Linear regression model
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Figure 4.12: Example demonstrating 50%, 80% and 95% forecast intervals, data from
Hyndman and Athanasopoulos [14, Figure 4.12].

4.10 Forecasting method selection

Having provided an overview of forecasting methods, including the topics of selection,
evaluation and accuracy, the process of choosing a forecasting method for the problem
at hand can now proceed. Aiming to detect significant bursts that warrants adding
additional offload servers to serve popular files, the forecast is needed to provide a
baseline for a burst detection scheme. For this, only a short-term forecast is needed.
The forecasting implementation will be fixed once implemented, and as such must be
very robust in the face of changing conditions. Accuracy is not of high priority as the
bandwidth estimations used are rather imprecise.
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Reviewing data from the ftp.acc.umu.se offload servers, for example Figures 4.6, 4.7 and
4.8, the following properties of the network transfer rates of the ftp.acc.umu.se offload
servers can be established:

– A highly seasonal weekly pattern. This indicates that a significant amount of the
downloads are initiated manually by users located in European time zones.

– Level changes occur. New Linux OS releases commonly cause a different mapping
between popular files and offload servers, and the impact on network bandwidth
is hard to predict.

– Outages occur. The most common causes are routine system maintenance and
hardware failure.

– Trends are detectable over longer time periods. Larger projects such as Debian
tend to release biannually, so multiple years of data needs to be analyzed to isolate
the effect of individual releases in order to see conclusive proofs of trends.

– Bursts occur. Mainly caused by popular files, the goal is to automatically detect
these.

– As shown in Section 4.4 on page 23 estimating the server bandwidth from the
offload-log yields a low accuracy compared to the measured bandwidth.

For this application using a seasonal näıve method is proposed. Leveraging the median
of multiple seasons of data provides a robust method of detecting level shifts, while not
being sensitive to outliers such as outages and bursts. The seasonal plot demonstrated
in Figure 4.8 indicates that the predictions will be accurate enough for this purpose.

One of the key motivations for a seasonal näıve method is that it is straightforward to
understand and easy to implement. This is important should the system need to be
changed by someone without advanced forecasting knowledge.

A downside of a seasonal näıve method is that it relies on saved historical data. Loss of
this data, for example due to a server re-install, would mean that forecasts are impossible
until enough data is again available. This can be worked around by having a bootstrap
data set used in such cases.

As a compromise between robustness and sensitivity to level changes and outliers, three
valid observations are used as a base for the forecast. Attempts are first made to find
three observations from the past five weekly seasons. If this fails, a new attempt is
made using daily seasons. Should this also fail, näıve prediction using only the previous
observations is used as a last resort. This strategy ensures that multiple values are
always used when producing a forecast, while setting a limit on how old observations
can be in order to contribute to the result.

4.11 Burst detection

To be able to detect a burst there must first be a definition of what a burst is. For an
Offloader in the ftp.acc.umu.se system, a burst is defined as an access pattern causing
significantly more network traffic than normal. In the context of providing an response,
this can be amended with enough accesses to a single file to warrant more Offloaders
to handle the load. While these definitions are good enough for a human doing manual
burst detection, which has previously been the case, an automated system needs a more
precise definition which we will now address.
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As illustrated earlier in Figure 4.4b bursts are likely to be very pronounced. This
motivates choosing a simple threshold based method for burst detection, comparing the
current network bandwidth with a threshold set to comply with the above definition.

The threshold should not be higher than the maximum bandwidth physically possible
for a server. However, allowances need to be made for the low accuracy of the bandwidth
estimations used, and the fact that each redirprg.pl instance running on a Frontend
server will only see a part of the total amount of traffic handled by a single offload server.
As these numbers more or less cancel each other out in the current setup, the maximum
bandwidth is used as is when determining a maximum possible threshold to avoid the
need of a configuration parameter having little impact.

The ideal threshold is low enough to enable an early detection, yet high enough to have
as few false positives as possible. An automated way of approximating this is suggested
by Rezaie [30], who uses the standard deviation of the residuals to calculate thresholds
for outliers, the equivalent to bursts in this use case. For detecting a burst situation on
an offload target server the same parameters are used, four standard deviations above
the predicted network bandwidth (the 99.997% quantile of the residual distribution).

In order to detect which file is causing the burst, there are two simple iterative methods
that can be used:

– Remove a file from the bandwidth calculation and see if the burst condition van-
ishes.

– Calculate the bandwidth of a single file and see if the accesses to that file triggers
a burst condition.

As bursts tend to be rather pronounced the second method is chosen, as it has a lower
possibility of false positives. The threshold is set to to three standard deviations above
the predicted network bandwidth, the 99.9% quantile, when determining the file causing
the burst. Tests with historical logged data indicates this to be a reasonable compromise
between early detection and avoiding false positives.

To detect when the burst state ends comparison is made against the threshold used
when the detection occurred. Previous experiences indicate the system state before a
burst being more deterministic than the state during a burst.

The expected behaviour during a large release, for example the Debian Linux operating
system, is for all servers in the ftp.acc.umu.se system to see a higher load than normal.
The impact of this on the burst detection system is a high probability of detecting a
burst situation on an offload target server, while not detecting a single file responsible
for the burst situation. With this in mind it can be argued that the target server burst
detection is excessive, and that only doing file-level burst detection would suffice. Future
experiences from using the system in production will show whether this is the case, or
if the target server burst detection proves useful.

Files determined to cause a burst are excluded from network transfer rate summaries
and saved data used for future forecasts, as these files can have a very large impact on
the total transfer rate and do not represent the normal state the forecasts should reflect.
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Upon system (re)start the entire log file of the current day is processed. Using the
available historical logs allows the system to be able to start doing burst detection
virtually immediately after start-up, compared to only using near-live log data. As the
methods chosen are computationally simple this incurs only a few seconds increase in
start-up time.

4.12 Burst file handling and the redirection subsys-
tem redirprg.pl

As indicated earlier in Section 3.2.3, the offload target servers only accept requests for
files that they have been assigned to serve using the Pie-Chart Algorithm. Since there
is no communication between the redirprg.pl instances, there is no method for a
Frontend to signal an Offloader that a burst is occurring for a specific file and that it
should start accepting requests for that file.

To work around this problem the assignment on the Offloaders are relaxed, allowing
them to serve files that has neighboring servers as primary targets. As an example,
consider Figure 3.3a and a file positioned in the upper-right position in the pie-chart.
A request for that file sent to a server assigned to either the upper-left or lower-right
positions will now also be accepted.

This solution allows assigning up to two extra offload target servers to handle a popular
file, while not requiring communication between the redirprg.pl instances.

4.13 Results

The burst file handling implementation has been running in production on the ftp.acc-
.umu.se system since 2015-04-18. In order to bootstrap the forecast engine three weeks of
logs from the corresponding ftp.acc.umu.se Frontend servers were used. Here we analyze
data from the period 2015-04-18 - 2015-05-11. The first 9 days can be categorized as
normal service, while the following days saw the release of Debian 819 with an initial
burst that slowly declines.

Investigating the performance of the forecast engine, we randomly choose to focus on
the Offloader saimei.acc.umu.se as seen on the Frontend hammurabi.acc.umu.se. Other
combinations of Frontends and Offloaders shows similar characteristics. The forecasts
for the first 9 days seems reasonably accurate, as depicted in Figure 4.13.

19https://www.debian.org/News/2015/20150426

https://www.debian.org/News/2015/20150426
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Figure 4.13: Offloader saimei.acc.umu.se network rate as seen on Frontend hammurabi-
.acc.umu.se, day 0-9, normal traffic.

Figure 4.14 shows the burst happening, with the elevated transfer rate being ignored
by the forecast engine during the first 14 days. This is as expected when doing a näıve
forecast based on the median of the values from the last three weekly seasons. After
14 days there are clear indications of the forecasting engine starting to adapt to the
post-burst data rates.
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Figure 4.14: Offloader saimei.acc.umu.se network rate as seen on Frontend hammurabi-
.acc.umu.se, day 9-25, burst traffic due to the release of Debian 8.

Having determined that the forecasting engine performs as expected, the accuracy of
the Offloader network rates as estimated on the Frontend servers needs to be assessed.
The results are expected to be sub-par but tolerable, given the experience gained in
Section 4.4. There is also a scaling error, due to the simplistic implementation detailed
earlier in Section 4.11, to be anticipated. Figure 4.15 compares the estimated Offloader
network rates as seen on the Frontend hammurabi.acc.umu.se to the network rates mea-
sured on the actual Offloaders. The behavior is as expected, except for the Offloader
gensho.acc.umu.se. This Offloader experiences the largest measured transfer rate, but
the estimation seems unperturbed by this.
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Figure 4.15: Offloader network rates as seen on Frontend hammurabi.acc.umu.se versus
measured network rates, day 0-25.

The explanation can be found in the burst detection engine, where files detected as
being in burst state are disregarded when calculating the forecast-related transfer rates
(as explained earlier in Section 4.11). The most popular file20 was assigned gensho.acc-
.umu.se as an Offloader. A burst was early on detected, leading to the assignment of
gemmei.acc.umu.se as an additional Offloader. However, reviewing the logs uncovers
an unwanted behavior causing the file to be erroneously signaled as reverted to normal
state, canceling the additional Offloader assignment. Internally, the file was still being
treated as in burst mode, and consequently being disregarded from the forecast rate
calculations.

This file was the only one detected as a burst during the Debian 8 release, and reviewing
the logs available supports this decision. Overall system performance is dependent upon
keeping as many files as possible in the cache, and assigning additional Offloaders to
files should only be done when absolutely necessary.

4.14 Summary and Discussion

Time Series Analysis comes with a powerful toolbox, methods range from simple to
very complex. System administrators frequently use RRDtool to log time series, a tool
which is capable of doing much more than just logging and displaying historic events.
Basic knowledge of time series analysis and forecasting techniques enables utilizing the
full potential of RRDtool, enabling automated forecasts to be shown together with the
historical data.

20http://cdimage.debian.org/debian-cd/8.0.0/amd64/iso-dvd/debian-8.0.0-amd64-DVD-1.iso

http://cdimage.debian.org/debian-cd/8.0.0/amd64/iso-dvd/debian-8.0.0-amd64-DVD-1.iso
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For this work we have leveraged our new knowledge to design and implement an auto-
mated burst file detection and handling scheme for the ftp.acc.umu.se file archive. We
have shown that by choosing simple methods suited for the task an effective system can
be implemented that not only fulfills the requirements of automated burst detection and
handling, but also keeps the possibility of understanding, maintaining and debugging
the system without deep knowledge of time series analysis and forecasting techniques.

The script language Perl [32] is used in the redirprg.pl implementation, and conse-
quently for the additions made during this work. Perl proves to be a quite effective tool
to use in many situations that a system administrator comes across. Regardless of the
programming language used, good support for flexible data types is a must to enable
quick and efficient problem solving.
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Appendix A

Tools

Here a short description of tools used in the ftp.acc.umu.se system, and during the work
on this Master’s thesis, is provided.

Apache httpd [2]

http://httpd.apache.org/

The Apache HTTP Server Project is an open-source HTTP server. Apache httpd is
highly modular and extensible, a fact that has been leveraged in the ftp.acc.umu.se
system.

rsync [33]

http://rsync.samba.org/

rsync is a utility providing fast incremental file transfers. It is the de-facto standard for
syncing file sets.

vsftpd [11]

http://security.appspot.com/vsftpd.html

The Very Secure FTP Daemon (vsftpd) is a fast and easily configurable implementation
of a server for the FTP protocol [28].
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http://security.appspot.com/vsftpd.html
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APR [3]

http://apr.apache.org/

The Apache Portable Runtime (APR) is used in Apache httpd to provide a consistent
API regardless of the underlying operating system. Any development on Apache httpd
requires to get familiar with APR and the related APR-util.

RRDtool [26]

http://oss.oetiker.ch/rrdtool/

RRDtool has become the de-facto standard for data logging and graphing of time series
data in open source applications and stand alone systems. RRDtool is used in the
ftp.acc.umu.se system to log network bandwidth on the different servers.

Perl [32]

http://www.perl.org/

Perl is a general-purpose programming language that is commonly found wherever there
was a need for a quick hack to do text manipulation and has become especially popular
among system administrators. While ideally suited for smaller hacks due to its compact
C/shell-like syntax, a disciplined programmer can write very large projects in Perl in
the same manner as Python or Java (which are notoriously long-winded for quick hacks
in our opinion). There are numerous modules that extend the functionality of perl.

PDL

http://pdl.perl.org/

The Perl Data Language (PDL) is a Perl extension that gives Perl the ability to efficiently
store and process N-dimensional data arrays. Despite being largely unknown in the
scientific community, PDL provides similar capabilities as numpy/scipy (Python), IDL
and MatLab.

http://apr.apache.org/
http://oss.oetiker.ch/rrdtool/
http://www.perl.org/
http://pdl.perl.org/
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Gnuplot [36]

http://www.gnuplot.info/

Gnuplot is a command-line driven utility for creating graphs and plots. There are very
few things you can not do with Gnuplot, the problem is usually to figure out how to do
it.

R [29]

http://www.R-project.org/

R is a program aimed at statistics, both computing and graphs/plots. It enjoys a vivid
community and an excellent set of plugin libraries.

vim

http://www.vim.org/

A text editor that builds upon the venerable vi editor found on most Unix systems.
Vim provides more capabilities making it more suitable for programming etc. Basic
knowledge of classic vi usage should be considered mandatory if you consider doing
systems administration. It is commonly the only usable editor available on bare installs
of classic Unix operating systems such as Solaris and AIX, and once you are used to vi
style editing vim is the logical choice in environments where you can install an editor of
your choice.

Graphviz

http://www.graphviz.org/

A tool to visualize graphs described in a text file. The ideal tool to create an elegant
graph, especially for us coders and system administrators without much graphical skills.
Just enter the graph in the text-based language and let the Graphviz utilities worry
about the layout.

LATEX

http://www.latex-project.org/

The de-facto standard for scientific reports. It allows you to concentrate on writing
content, the result just looks good by default.

http://www.gnuplot.info/
http://www.R-project.org/
http://www.vim.org/
http://www.graphviz.org/
http://www.latex-project.org/
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Wikibooks LaTeX

http://en.wikibooks.org/wiki/LaTeX

A good go-to resource for solving common LATEX issues.

The not so Short Introduction to LATEX2ε [27]

http://www.ctan.org/tex-archive/info/lshort/english/lshort.pdf

A rather comprehensive introduction to writing documents in LATEX, a bit too compre-
hensive perhaps but a good reference on how to do most everything you will need in a
document.

http://en.wikibooks.org/wiki/LaTeX
http://www.ctan.org/tex-archive/info/lshort/english/lshort.pdf
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