SAMMANFATTNING

Nyckelord: Arkitektur, massivträ, burspråk.
ABSTRACT

Stockholm is one of the regions with the fastest growth, therefore the region requires to be expended. Climate and environmental issues are important today and influences the construction of buildings among other things. Solid wood is a structure material which is on the rampage thanks to its climate- and environmental advantages. Berg | C.F. Møller will on behalf of HSB Stockholm project a dwelling area in Årsta, southern Stockholm. The projected area consists of a number of different house types. For this thesis an apartment building in eight flats has been chosen. The house will be projected with solid wood, therefore a deep study has been made in the subject of construction made of solid wood. This in order to produce drawings and construction details. Analyses of the area have inspired the design of the final result. A great importance in the project has been drawing space-efficient apartments with respect to the Swedish Standard, Building Design – Housing – Interior dimensions, and to criteria which has been chosen for the project. The result is made up of concept drawings for the apartment building, which was given a unique look with a bay window in mirror glass. To create a variation in the facade. The apartment building is built with a wood facade to indicate the selected structure material and is projected for 15 threes and 14 twos with a commercial local at ground floor to create movements in the surroundings.

Keywords: Architecture, solid wood, bay window.
FÖRORD

Det här examensarbetet på 15 hp har utförts inom utbildningen Byggteknik och design på skolan för arkitektur och samhällsbyggnad, Kungliga Tekniska Högskolan. Arbetet har utförts under 10 veckors heltidsstudier och behandlar gestaltning och konstruktionslösningar av ett flerbostadshus i massivträ.

Slutligen vill vi tacka HSB Stockholm som är beställare av bostadsområdet och på så sätt gjort detta examensarbete möjligt.

Marie Sandgren
Linnéa Yngvesson

Haninge, juni 2015
INNEHÅLL

1. Inledning ...1
 1.1 Bakgrund ...1
 1.2 Syfte ...1
 1.3 Frågeställning ...2
 1.4 Avgränsningar ...2
 1.5 Metoder ...2
 1.5.1 Litteraturstudie ...2
 1.5.2 Inspirationssökande ..2
 1.5.3 Platsanalys och studiebesök ...2
 1.5.4 Digitala verktyg ..3
 1.5.5 Kontakter ...3
 2. Referensram ...4

3. Fördjupning inom massivträkonstruktion ..5
 3.1 Klimatpåverkan ...5
 3.2 Arbetsmiljö ...5
 3.3 Boendemiljö ...5
 3.4 Konstruktion ..6
 3.4.1 Plattbjälklag ..6
 3.4.2 Kassettbjälklag ...6
 3.4.3 Undertak ...7
 3.4.4 Övergolv och golvbeläggningar ..7
 3.4.5 Massivväggar ..7
 3.4.6 Balkonger och loftgångar ..7
 3.4.7 Påbyggnader ...8
 3.5 Knutpunkter ..8
 3.5.1 Vägg mot grund ..8
 3.5.2 Vägg mot vägg ..8
 3.5.3 Plattbjälklag och kassettbjälklag bostäder ...8
 3.5.4 Takstol på massivträvägg ...9
 3.6 Installationer ...9
 3.7 Brand ...9
 3.8 Akustik ...10
 3.9 Ytskikt och beklädnad ...11

4. Genomförande ...12
 4.1 Analyser ..12
 4.1.1 Områdets läge ..12
1. INLEDNING

1.1 Bakgrund

I Sverige pågår i dagsläget en extrem urbanisering till storstäderna. Stockholms län växer snabbt och är i stort behov av att byggas ut på grund av den rådande bostadsbristen. Bostadsbristen är en betydande fråga samtidigt har en strävan mot ett hållbart samhälle och byggande blivit allt mer betydande.

Idag har klimat- och miljöfrågor större tyngd än för några år sedan vilket kommer påverka stadsutvecklingen, med nya tekniska lösningar kan man nu åstadkomma miljöbostäder och miljöstadsdelar. I ”Vision 2030” betonas att Stockholm ska vara ekonomiskt, socialt och ekologiskt hållbart i framtidn.1 ”Vision 2030” har uppkommit från den utarbetade rapporten ”Framtidsutredningen” av Elisabet Bremberg och Helen Slättman på Stadsledningskontoret i Stockholms stad. Här nämns att 140 000 nya bostäder kommer att byggas fram till 2030. Samma år förväntas även en fjärdedel av Sveriges befolkning bo i Stockholms län. För att säkerställa bostadsbyggandet måste planer tas fram omgående som rättar sig efter den nya vision som Stockholms stad strävar efter.2

Ett stommaterial som används allt mer är trä, både i form av regel- och i massivträstomme. Trä är ett miljövänligare material än betong när det gäller påverkan på miljön både vid framställning och återvinning. Stommen blir lätt och det underlättar vid byggande på mark med sämre förhållanden eller vid påbyggnation av befintliga byggnader. I dagsläget byggs de flesta stommar till större hus med betong, men en tydlig trendvändning syns där allt fler nu byggs i trä.

Berg | C.F. Møller har de senaste åren fokuserat på att rita och projektera byggnader med trästomme i flera av sina projekt. Därför kommer detta examensarbete att omfatta ett förslag på ett arkitektoniskt utformat flerbostadshus i massivträ och en fördjupning inom massivträteknik. I samarbete med Berg | C.F. Møller och på uppdrag av HSB Stockholm kommer flerbostadshuset ritas i en del av ett nyplanerat kvarter beläget i Årsta.

1.2 Syfte

Syftet med examensarbetet är att rita förslagshandlingar till ett flerbostadshus i massivträ till ett av Berg | C.F. Møllers pågående projekt ”Bolidentriangeln”. Ritningar kommer att tas fram på en arkitektoniskt utförd byggnad både exteriört och interiört med fokus på konstruktionsdetaljer.

1.3 Frågeställning
- Hur kan fungerande detaljer med stommaterialet massivträ projekteras för att kunna uppföra byggnaden?

1.4 Avgränsningar

1.5 Metoder
1.5.1 LITTERATURSTUDIE
Genom användning av artiklar, rapporter och via kontakt med sakkunniga inom området har en fördjupning inom massivträkonstruktion gjorts. Detta har varit nödvändigt för att få kunskap om hur man projekterar ett massivträhus på bästa vis. I litteraturförteckningen framgår det vilka källor som använts.

1.5.2 INSPIRATIONSSÖKANDE
Tidigt i processen gjordes inspirationssökande. Sökan det gav inspiration till utformningen exterier och interiör.

1.5.3 PLATSANALYS OCH STUDIEBESÖK
För att skapa en bra bild över området som ska bebyggas har studiebesök gjorts på den aktuella platsen. Besöken har resulterat i analyser som redovisas i projektet. Studiebesök har även gjorts till två referensprojekt, Skagershuset i Årsta och Strandparken i Sundbyberg. Dessa referensprojekt har gett inspiration till utformning och utförande av flerbostadshuset. Under Skogsnäringssveckan i Stockholm besöktes två seminarier, där vi fick ta del av mer information om träbyggnation.
1.5.4 DIGITALA VERKTYG
Följande program har använts för att få fram det slutgiltiga resultatet:

- Autodesk Revit
- Adobe Photoshop
- Autodesk AutoCAD
- SketchUp
- Vray

1.5.5 KONTAKTER
För att tillgodogöra viktig information till examensarbetet har kontakt tagit med olika företag och personer med erfarenhet och kompetens inom området. Ola Jonsson och Bengt Smideman har bidragit med handledning framförallt i frågor vad gäller arkitektoniska moment. För konstruktionslösningar av massivträ har Martinsons kontaktats, likaså har Sven-Henrik Vidhall, universitetsadjunkt KTH ByggtTeknik och design, och David Wettergren, universitetsadjunkt KTH Arkitekturskolan, kontaktats.
2. REFERENSRAM

Examensarbetet har utförts av två studenter som studerar tredje året på programmet Byggtteknik och design med inriktning mot arkitektur på Kungliga Tekniska Högskolan. Examensarbetet omfattar 15 hp och de fördjupande kunskaper som legat till grund för genomförandet är följande:

Marie Sandgren

- BIM, AF1730, 7.5 hp
- Konstruktion och design, HS1001, 7.5 hp
- Arkitektur, byggnadstekniken, AF1716, 7.5 hp
- Arkitektur, skissprocessen, AF1715, 7.5 hp

Linnéa Yngvesson

- BIM, AF1730, 7.5 hp
- Konstruktion och design, HS1001, 7.5 hp
- Arkitektur, byggnadstekniken, AF1716, 7.5 hp
- Arkitektur, skissprocessen, AF1715, 7.5 hp

De fördjupande kunskaperna hos de båda studenterna är densamma. Detta gör att studenterna har god kunskap inom alla delar som examensarbetet kommer grunda sig på.
3. FÖRDJUPNING INOM MASSIVTRÄKONSTRUKTION

3.1 Klimatpåverkan

All koldioxid som genom åren lagrats i ett träd kommer finnas kvar även då en produkt skapats av trädet. Det är därför fördelaktigt att nyttja materialet till stora och hållbara projekt, men även ur klimatsynpunkt är det gynnsamt att nytta skogen till bebyggelse istället för att låta den stå orörd. Vid produktion av träprodukter är energibehovet lågt och de resterande delarna av träet används som biobränsle i sågverket. Trä är ett förnyelserbart material och genom att öka antalet byggnader som utgörs av materialet kan användningen av andra material som inte är förnyelsebara minskas, vilket bidrar till koldioxidutsläppen minskas. En annan viktig klimatfördel är att redan använda träprodukter kan nytjas som biobränsle. Koldioxiden som frigörs under förbrännning av trä tas upp av växande och nyplanterade träd genom fotosyntesen.

3.2 Arbetsmiljö

3.3 Boendemiljö

Trä är ett material som har en fukt utjämnande kapacitet vilket innebär att träet under fuktiga årstider lagrar fukten för att senare under torra årstider återge fukten. Detta bidrar till att

7 Martinsons, Handbok KL-trä (s.5)

3.4 Konstruktion

3.4.1 PLATTBJÄLKLAG

3.4.2 KASSETTBJÄLKLAG
Kassettbjälklageselementen är uppbygda med en massivträskiva ihopsatt med ett liv och fläns av limträ. Likt plattbjälg tillverkas kassettbjälklaget i längder upp till tolv meter och med bredder upp till 2,4 meter. Konstruktionshöjden på den bärande kassetten är 0,3-0,65 meter. Hålrummen i kassetten kan användas till att förlägga ventilationsrör samt avloppsledningar i, vilket redan görs i fabrik. Övriga hålrum fylls igen med mineralull i fabriken. Undersidan av kassetterna utgörs normalt av ett fjädrande eller fribärande undertak av gipsskivor fästa på en glespanel. Undersidan av bjälklaget bestämmer vilket brandkrav som kommer uppfyllas (3.7 Brand).

9 Martinsons, Handbok KL-trä (s. 6)
11 Martinsons, Handbok KL-trä (s. 5)
13 Martinsons, Massivträ. Handboken 2006 (kapitel 2 s.41)
3.4.3 UNDERTAK

3.4.4 ÖVERGOLV OCH GOLVBELÄGGNINGAR
Massivskivan kan för både plattbjälklag och kassettbjälklag utgöra det färdiga golvet.15 Fördelen med detta är att man utan beläggning kan erhålla den färdiga golvyltan till en låg kostnad, endast genom slipning och ytbehandling av skivan. Träets estetik har då möjligheten att bevaras. Parkett eller matta kan även beläggas på den befintliga träytan, med en beläggning förbättras ljudisoleringen. I badrum kan en sänkt golvyta levereras som sedan spacklas upp till rätt nivå och rätt golvlutning. En tunn gipsskiva, cirka 6 millimeter, bör placeras mot träytan innan spackling.16

3.4.5 MASSIVVÄGGER

3.4.6 BALKONGER OCH LOFTGÅNGAR
Plattor av massivträ ger många fördelar jämfört med byggande av betongplattor eller vanliga träregelverk vid bebyggelse av balkonger och loftgångar. Plattor av massivträ har betydligt mycket lägre egenvikt än betongplattor vilket medför lägre krav på infästningar. Den låga vikten medför också fler möjligheter vid lyft och transport under byggtiden jämfört mot de tunga betongelementen som är svåra att hantera. Skydd mot nederbörd för balkonger och loftgångar utförs med ett tätskikt som tillåter rörelser utan att sprickbildning sker. Om tätskikt används bör det placeras på både elementets under och översida för att minimera risken för att elementen ska deformeras på grund av skillnaden i uttorkningen mellan de två olika sidorna.18

14 Martinsons, Massivtrå. Handboken 2006 (kapitel 2 s. 19)
15 Svenskt Trä, Generell beskrivning av massivtrå
16 Martinsons, Massivtrå. Handboken 2006 (kapitel 2 s. 21)
17 Martinsons, Massivtrå. Handboken 2006 (kapitel 2 s. 22)
18 Martinsons, Massivtrå. Handboken 2006 (kapitel 1 s. 21)
3.4.7 PÅBYGGNADER
Vid påbyggnad på en befintlig byggnad är massivträ det bättre alternativet jämfört med betong. Träet har i förhållande till övriga system en betydligt lägre vikt därför kan man många gånger undvika en förstärkning av den befintliga stommen eller konstruktionen. Andra positiva saker med påbyggnader av massivträ är att det ger ett snabbt, säkert och kvalitetsmässigt bygande. Det är även enkelt att utföra hålltagningar och infästningar av installationer på plats.\(^\text{19}\)

3.5 Knutpunkter
Knutpunkter är anslutningarna mellan de olika bygdelarna, så som vägg möter grund, vägg möter tak och så vidare.

3.5.1 VÄGG MOT GRUND
Mötet mellan en yttervägg och en betongplatta sker genom montering av en styrlistan på sylregeln som fästs på betongplattan och att man i nedre delen av träelementet har gjort en urfräsning för att matcha styrlisten. Efter placeringsövning kan väggen fästas i regeln med träskruv, expanderbult eller plugg. Kraven på lufttäthet samt att förhindra fukten från plattan att tränga upp i väggen klaras av genom att placera en kapillärbrytande tätning mellan plattan och sylregeln, och mellan plattan och väggen. Det är i denna anslutning som de högsta tvär- och lyftkrafterna äger rum. Viktigt är även att grunden utförs med måtttoleranser, vilket effektivisar montagearbetet med massivträkomponenten. Anslutningen sker på samma vis för lägenhetsskiljande väggar.\(^\text{20}\)

3.5.2 VÄGG MOT VÄGG
Väggelementen kommer i block till byggarbetsplatsen och kan vid montage redan vara kompletta med isolering och fasadmaterial. Dessa fogas sedan samman till enhetliga element, vilket görs genom raka elementfogar eller i hörnförband.

Vid montering av raka elementfogar med plywoodremesa läggs denna i frästa spår och skruvas sedan åt inifrån. Därefter täcks plywooden med ytterligare en trälist som limmas fast. En tätremsa placeras i fogen för att uppnå lufttäthet vilket görs innanför plywooden.

Vid montering av utgående hörn sker infästningen med skruv genom en trälist som är infäst i en av väggarna. Det rekommenderas att man förborrar eller använder skruvar med borrspets för att undvika sprickbildning i träet.

För inåtgående hörn placeras en tätningslist där massivträväggarna möter varandra, även här görs skruvningen från insidan.\(^\text{21}\)

3.5.3 PLATTBJÄLKLAG OCH KASSETTBJÄLKLAG BOSTÄDER
Vid montering av väggar på plattbjälklag och kassettbjälklag monteras först den undre väggen. Denna fästs i bjälklaget genom skruvning rakt uppifrån. Den övre väggen monteras likt monteringen av en vägg mot grundplattan. Man använder en styrlist för att få väggen på plats sedan skruvas den genom skråskruvning fast i bjälklaget. Styrlisten har två funktioner,

\(^{19}\) Martinsons, Massivträ. Handboken 2006 (kapitel 1 s. 20)
\(^{20}\) Martinsons, Massivträ. Handboken 2006 (kapitel 2 s.37)
\(^{21}\) Martinsons, Massivträ. Handboken 2006 (kapitel 2 s.38)
den ska ta upp tvärkrafter som uppstår då skruven vill böja sig sedan ska den även fungera som ett stöd och styrning vid montering. För att försäkra sig om att det blir tätt vid anslutningen bör en tätremsa fästas på väggens undersida. Rensan bör vara 30 millimeter bred och placeras mitt över väggens tjocklekscentrum, detta gör att väggen belastas centriskt men renan är även bra för bärformågan och ljudisoleringen.22

3.5.4 TAKSTOL PÅ MASSIVTRÄVÄGG
Takstolen fästs med antingen ett vinkelbeslag, gaffelankare eller skråskruvning i massivträväggen. Genom att massivträväggen har en relativt liten tjocklek och att takstolens underarm är gjorda vanligen med endast 45 millimeter reglar blir upplagstrycket stort mellan takstolen och väggen. Upplagstrycket kan minskas genom att bygga på ytterligare reglar på takstolen.23

3.6 Installationer
Installationer placeras huvudsakligen i vertikala schakt som dimensioneras för rådande ljud- och brandkrav. I en massivträkonstruktion behöver inga särskilda anpassningar för installationerna göras. Vid användning av plattbjälklag förläggs installationerna i ett undertakssystem medan de vid användning av kassettbjälklag förläggs inuti bjälklagets hälrum. Andra fördelar för installationer i en massivträkonstruktion är bland annat att infästningar av installationer och undertak kan göras lättare än i en betongkonstruktion, vilket leder till en förbättrad arbetsmiljö och ökade kostnadsbesparingar. Håltagningar och slitsar görs även enkelt med såg eller borr i massivträkonstruktioner. Håltagningarna kan även göras direkt på platsen vilket underlättar placeringen av hålen så att de hamnar på rätt plats. På en massivträbyggnad ställs högre ljudkrav vilket kräver att installationerna placeras och förläggs på rätt sätt för att inte bygga in ljudbryggor i systemet.24

3.7 Brand
Trä har god värmeisoleringsförmåga vilket gör att den ej brandutsatta sidan bevarar sin temperatur.25 En massivträstomme är solid och har därför en större bärformåga vid brand vilket bidrar till att risken för kollaps är mindre, till skillnad från en vanlig träregelstomme. Ett problem som beror på träets egenskaper är att träytorna i ett tidigt brandförlopp kan bidra till övertändningsrisk i rummet. Vid konstruktioner av massivträ måste man även ta i beaktan att konstruktionen kan bidra till att större mängder brandagaser kan bildas samt att den kan medverka till brandens varaktighet. Detta kan öka risken för brandspreiding mellan olika brandceller.26 En konstruktion gjord i massivträ har en långsam inbrandningstid. Detta ger en konstruktion med högt brandmotstånd i både bärande och avskiljande konstruktioner.27

22 Martinsons, Massivträ. Handboken 2006 (kapitel 2 s.39-41)
23 Martinsons, Massivträ. Handboken 2006 (kapitel 2 s. 43)
24 Martinsons, Massivträ. Handboken 2006 (kapitel 4 s. 5-6)
25 Svenskt Trä, Generell beskrivning av massivträ
26 Martinsons, Massivträ. Handboken 2006 (kapitel 3 s. 3)
27 Martinsons, Handbok KL-trä (s. 16)
Det är relativt lätt att uppnå rätt klass på både täthet, E, och integritet, I, för en massivträkonstruktion, svårare är det att uppnå god bårformåga, R.

Nedan ges förslag på avskiljande väggkonstruktioner för att klara rätt EI-klass:

EI 15 – massivträ 21 mm, korslagda hellimmade 3x7 mm
EI 30 – massivträ 36 mm, korslagda hellimmade 3x12 mm
EI 60 – massivträ 66 mm, korslagda hellimmade 3x22 mm
EI 90 – massivträ 110 mm, korslagda hellimmade 5x22 mm

Nedan ges förslag på bärande väggkonstruktioner för att klara rätt REI-klass:

REI 30 – massivträ 120 mm, korslagda hellimmade flerskiktsskivor 5x24 mm
REI 60 – massivträ 175 mm, korslagda hellimmade flerskiktsskivor 5x35 mm
REI 60 – massivträ 110 mm, korslagda hellimmade flerskiktsskivor 5x22 mm
 + gipsskiva GF 15 mm
REI 60 – massivträ 120 mm, korslagda hellimmade flerskiktsskivor 5x24 mm
 + gipsskiva GF 15 mm

Nedan ges förslag på bjälklagskonstruktioner för att klara rätt REI-klass:

REI 30 – massivträ 110 mm korslagda hellimmade flerskiktsskivor 5x24 mm
REI 60 – massivträ 133 mm korslagda hellimmade flerskiktsskivor 7x19 mm
REI 60 – massivträ 133 mm korslagda hellimmade flerskiktsskivor 7x19 mm
 + gipsskivor GA 13 mm samt GF 15 mm
REI 60 – kassettbjälklag 349 mm, kompletterad med undertak av friliggande reglar glespanel och två lager gips.

3.8 Akustik

För ett flerbostadshus med en massivträstomme är kraven på ljudisolering viktig jämfört med för andra typer av stommar. Vid tester utförda i provhus där man inte använt sig av några ljudisolerandeåtgärder har det visat sig att ljudisoleringen är så låg i en massivträkonstruktion att byggnaden blir oanvändbar för personer att leva och bo i. Däremot när det gäller rumsakustik och trafikbuller medför inte en massivträstomme några problem.

Flanktransmissionen kan i byggnader av massivträstomme vara ett problem då ljud mellan våningsplan kan förekomma. För att undvika detta används flanktransmissionsspärrar som kan vara av bland annat ett stegljudsdämpande mellanlägg eller rullager och placeras i knutpunkten mellan vägg och bjälklag. Det finns olika typer av lister som hindrar ljudöverföringen från under eller överliggande bjälklag och väggar och en av dem är ”sylomerlist” som vanligen placeras i överkant på väggelementen.

28 Martinsons, *Massivträ. Handboken 2006* (kapitel 3 s. 10)
29 Martinsons, *Massivträ. Handboken 2006* (kapitel 3 s. 11-14)
30 Martinsons, *Massivträ. Handboken 2006* (kapitel 3 s. 20)
31 Svenskt Trä, *Generell beskrivning av massivträ*
3.9 Ytskikt och beklädnad

Massivträ kräver inte någon torktid. Detta medför att materialet direkt kan förses med ett ytskikt efter montage. Vilket leder till ett bra flöde på arbetsplatsen som gör att andra enheter i processen kommer igång i ett tidigare skede.32 På väggar och tak i utrymningsvägar ska inte obehandlat trä användas för en Br1-byggnad. Kraven på ytskikten i en Br1-byggnad kan uppnås med brandskyddat trä i ytskiktclass 1 samt i euroklass B. I trapplan och trappor kan trä användas som golvbeklädnad i utrymningsvägar, då de uppfyller class G. I lägenheter kan både vägg och takytor i Br2- och Br3-byggnader vara i trä. För en Br1-byggnad får endast små ytor vara i trä.33

32 Martinsons, Handbok KL-trä (s. 16)
33 Martinsons, Massivträ. Handboken 2006 (kapitel 3 s. 15)
4. GENOMFÖRANDE

I samtal med Berg | C.F. Möller och HSB Stockholm har beslut tagits om att rita ett förslag på ett flerbostadshus i massivträ. Flerbostadshuset är en del av kvarteret Bolidentriangeln, beläget i Årsta.

4.1 Analyser

Under processens gång har analyser gjorts i området. Hänsyn har då tagits till plats, modernitet och det valda stommaterialet massivträ för gestaltningen av flerbostadhuset.

4.1.1 OMRÅDETS LÄGE

Bild 1 Karta över området © Lantmäteriet [I2014/00591]
4.1.2 OMGIVNINGENS ANVÄNDNINGSOMRÅDEN

Bild 2 Kartan visar bebyggelsen runt kvarteret och de potentiella byggnaderna (ej skalenlig).
4.1.3 Trafik i omgivningen

Bild 3 Lokaltrafik i omgivningen (ej skalenlig).
4.1.4 GRÖNSTRÅK OCH PLATSER I OMGIVNINGEN
Det finns gott om grönstråk och grönområden i omgivningen, bland annat Lindeparken som är belägen på andra sidan tvärbanespåret. Lindeparken erbjuder promenadstråk och plats för fritidsaktiviteter och lek. När kvarteret är färdigbyggt kan man genom en nybyggd viadukt kunna ta sig enkelt under spåret och vidare till parken. Årsta skogen ligger cirka 1 kilometer norr ut och erbjuder promenadstråk, idrottsplats, ute gym, skogsmark, koloniområden samt en småbåtshamn (bild 4).

Bild 4 Grönstråk och grönområden i omgivningen (ej skalenlig)
4.2 Tankar bakom huset och de valda kriterierna

4.2.1 VALT HUS I KVARTERET

Ett parkeringsgarage är planerat att byggas under husen i den östra delen av kvarteret. Detta innebär att vi inte behöver ta hänsyn till parkeringsplatser för det planerade flerbostadshuset. Även cykelparkeringar kommer att finnas i det blivande kvarteret, trots detta har flera cykelparkeringar gjorts i entréplan och källarplan i det föreslagna huset (bild 5).

![Valt hus](image)

Bild 5 Planerat kvarter och valt hus.
4.2.2 TRAPPHUS

Trapphuset har valts att placeras i den mittre delen av huset, vilket skapar ett mörkt trapphus. Storleken på trapphuset har gjorts så litet som möjligt för att möjliggöra större lägenheter. En trappa har projekterats med stegbredden 0,9 meter vilket ger en total bredd på två meter. Bredden på två meter ger möjligheten till att öppna och stänga dörrarna utan att de förhindrar varandra. Hänsyn har tagits vid placering av entrédörrarna in i lägenheterna vad gäller SIS-måtten både i trapphus och i entrén inne i lägenheterna. Handledaren till trappen ska fortsätta 300 millimeter efter trappens slut, vilket också påverkat placeringen av dörrarna. Hissen är projekterad för att möjliggöra bårtransporter, hisschaktets storlek är 2,4x1,8 meter. De totala måtten för trapphuset är 9,5x2 meter och har en area på 19 m² (bild 6).

Dörrarna som är placerade närmst trappan har möjligheten att omplaceras (bild 7). Eftersom man i brandsynpunkt kan tycka att dörrblad som öppnas med ryggen mot trappan kan vara störande vid utrymning. Omplaceringen av dörrarna kommer inte medföra någon skillnad i entréerna i lägenheterna. Förutom en liten förflyttning av dörren mot hissen, vilket gör att SIS-måtten klaras i både entré och trapphus med hänsyn till nedåtgående trapp.

För beräkning av trappans stegdjup, b, och steghöjd, h, har formeln 2h+b=60-65 centimeter använts. Stegdjupet är 280 och steghöjden är 185 vilket blev 65 centimeter. Trappan har gjorts med så litet stegdjup och så hög steghöjd som möjligt. Detta för att få trappan så liten som möjligt.

Bild 6 Trapphus 1 (ej skalenlig)

Bild 7 Trapphus 2 (ej skalenlig)
4.2.3 AXIALITET
Tidigt i processen togs beslut att följa en huvudprincip genom lägenhetsförslagen. Principen var att skapa axlar i entréerna in till varje lägenhet. Axlarna skapar möjlighet till ett bra dagsljus in i den mörka hallen som är placerad i husets kärna. Detta åstadkommmer man genom att inte stänga igen en av de två axlarna. Antingen sätts ett fönster rakt fram i förhållande till entrén eller så placeras fönstret 90° i förhållande till entrédörren (bild 8).

I de första idéskisserna placerades fönstret i några av lägenheterna med 90° vinkel och i andra med fönstret rakt fram. Men ett av förslagen gjordes utan att uppnå axialiteten, där hallen blev mörk. För att skapa en enhetlig planlösning i de fyra olika lägenheterna valdes en av axlarna att användas. Den axeln som valt att fokuseras på är den som bringar ljus rakt framifrån i förhållande till entrédörren. Ett mål har även varit att försöka uppnå den andra axeln genom en sovrumsdörr.

Bild 8 Axialiteten i entrén (ej skalenlig)
4.2.4 ÖPPEN PLANLÖSNING, MÖJLIGHET TILL AVSKILJNING

4.2.5 BURSPRÅK

En tanke under processens gång var att nyttja burspråkens tak som balkonger. Om detta skulle genomföras var burspråken tvungna att vara minst 1,8 meter djupa och minst 3 meter breda. Dessa mått gjorde att burspråken blev för stora för att inte nyttjas som ett rum, vilket senare under processen arbetades bort (4.3.1).
4.3 Bearbetning av förslag

4.3.1 EXTERIÖR GESTALTNINGSPROCESS

4.3.1.1 Modell 1

4.3.1.2 Modell 2
För att skapa ytterligare liv i fasaden beslutades det tidigt om att öka antalet burspråk till tre stycken på varje sida av fasaderna, dock var fortfarande den nordvästra fasaden utan burspråk. Detta för att skapa mer variation. De indragna balkongerna och den indragna våningen bevarades i denna modell (bild 10).
4.3.1.3 Modell 3

4.3.1.4 Modell 4
Planerna bearbetades mycket mellan modell 3 och 4. Detta skulle komma till att resultera i att den slumpmässiga placeringen av burspråken skulle försvinna för att få fungerande planlösningar. De indragna balkongerna plockades bort, på grund av att de tog upp för mycket yta i lägenheterna och att de ihop med burspråken gav flera svåra hörn att arbeta med i planlösningarna. För att skapa möjligheter till balkonger till varje lägenhet placerades ett burspråk i varje lägenhet, vilket resulterade i att antalet burspråk på fasaden ökade. En balkong bör vara minst 1,8x3 meter och därför var nu burspråken tvungna att ha dessa mått då tanken nu var att placera en balkong uppe på varje burspråk. Det fanns två till tre möjliga placeringar av burspråken i varje lägenhet. Detta skapade en struktur i burspråken som tidigare försökt undvikas (bild 12).
4.3.1.5 Modell 5
Vi ansåg dels att strukturen blev för enkel och strikt i modell 4 och dels skapades bättre rumslighet i lägenheten genom att placera burspråken i hörnen av lägenheterna. Burspråken gav nu en effekt av att hörnen liknade en knutkedja likt ett timmerhus. Den indragna etagevåningen plockades bort och taket valdes att göras platt (bild 13).

4.3.1.6 Modell 6

4.3.2 INTERIÖR GESTALTNINGSPROCESS
Under hela skissprocessen har planlösningarna ändrats och möblerats om för att åstadkomma så yteeffektiva lägenheter. De ska också uppfylla de kriterier vi ställt (4.2 Tankar bakomhuset). Kriterierna är att uppnå axialitet, möjlighet till avskiljning med öppen planlösning och att möjliggöra placering av burspråk i planerna. Efter många förslag på olika typlägenheter kom vi på ett tidigt stadium fram till följande tre planer som sedan kom att arbetas vidare på.
4.3.2.1 Typlägenhet, 4 ROK. Förslag 1

I lägenhetsplanerna (bild 15 och bild 16) ovan som tillhör Modell 4 (4.3.1.4 Modell 4) kunde axialiteten uppnås åt båda håll, dock sämre åt 90°. Dels på grund av placeringen av garderoberna inne i det stora sovrummet dels på grund av kapphyllan i hallen. Rundgången som skapats gör det möjligt att snabbt kunna läsa av hur lägenheten är uppbyggd samt att den skapar en privat del och en offentlig del i bostaden. Idén med rundgången fanns från början med som ett möjligt kriterium till alla lägenheter, men efter bearbetning kom det till slut att väljas bort från planlösningarna då rundgången tar upp för stor bostadsyta. Andra problem med denna planlösning är att de mindre sovrummen är något smala och att vardagsrummet inte är större än 3 meter, vilket inte uppfyller kravet i detta projekt då minsta mått är satt till 3,6 meter. Problemet skulle kunna lösas genom att flytta dörren till det stora sovrummet till väggen där det lilla badrummet är placerat. Detta skulle medföra att badrummet måste flyttas. Om dörren till sovrummet flyttas kommer axialiteten i 90° att förloras.

För att skapa en bättre axialitet vid entrén och samtidigt skapa en garderobsvägg längs den lägenhetsskiljandeväggen behöver entrédörren förskjutas 600 millimeter mot sovrummen.

När burspråket är placerat vid vardagsrummet (bild 15) ger det en betydligt bättre yta till vardagsrummet jämfört då burspråket placeras i köket (bild 16) då vardagsrummet upplevs trångt och en outnyttjad yta bildas vid köket.
4.3.2.2 Typlägenhet, 4 ROK. Förslag 2

Enda lösningen för att lyckas förstora vardagsrummet var att bredda huset. Detta kunde inte göras då huset nu var ritat i de maximala måtten 19,5x19,5 meter. Hade huset breddats, hade antingen sovrummen fått samma placering som nu, men ett större vardagsrum hade åstadkommits. Om breddningen skett åt andra hållet hade dörren till det stora sovrummet kunnat placeras nedåt i rummet, dock hade då axialiteten försvunnit, men de små sovrummen hade kunnat skjutas nedåt och skapat ett större vardagsrum.
4.3.2.2 Typlägenhet, 3 ROK. Förslag 1

I dessa lägenhetsplaner (bild 21 och bild 22) uppnås axialiteten rakt fram från entrén. Likt trean och fyran behöver entrédörren flyttas för att binda samman garderober och köket till en enhet. Hallen i dessa planlösningar tar upp alldeles för mycket yta av lägenheterna.

5. RESULTAT
5.1 Planer

5.1.1 KÄLLARPLAN

Bild 23 Källarplan

5.1.2 ENTRÉPLAN

Bild 24 Entréplan

5.1.3 TYPPLAN

För att skapa så yteffektiva lägenheter som möjligt var rundgången i fyran slutligen tvungen att plockas bort, då den skapade stora korridorsytor och det inte gick att utnyttja alla sidor av rundgången för olika ändamål. För att uppnå samtliga uppsatta kriterier och att vardagsrummen måste uppnå kravet på minst 3,6 meter har beslut tagits att fortsätta arbetet med enbart treor och tvåor i flerbostadshuset. Detta har gett ett yttermått på 18,5x18,5 meter.

Trean som valts har likheter med den tidigare planerade trean (4.3.2.2 Typlägenhet, 3 ROK. Förslag 1). Förändringar som gjort är följande:

- För att skapa axialitet i hallen har nu entrédörren likt fyran (bild 17 och 18) förskjutits för att skapa möjlighet till placering av garderober och kök längs den lägenhetsskiljande väggen. Detta skapar en enhetlighet genom hall och kök.
- Den bärande lägenhetsskiljande väggen i det mindre sovrummet har förskjutits ned. Då skapas en större yta för det mindre sovrummet, som i sin tur skapat axialitet i 90°, när dörren förskjutits mot den bärande väggen. Detta har även lett till möjligheten att placera en skjutdörr mellan sovrummen, vilket återskapat rundgången.
- Förskjutningen av den lägenhetsskiljande väggen skapade en passage på 1,4 meter till det mindre sovrummet.
- Till följd av att huset blev 18,5x18,5 meter blev passagen i hallen 1,4 meter.
- Badrummet har valt att ritas i normalnivå utifrån SIS-mått. För att minska ytan på badrummet. Detta resulterade i att dörren öppnas mot hall/kök, men dörrbladet har placerats mot köket för att avskilja kök och badrum. En schaktvägg har gjorts vid toalett och handfat, då det projicerats för en vägghängd toalett.
- Det stora sovrummet har ett stort skjutgarderobsparti, som kan tas bort för SIS-möblering (bild 25).
- Lägenheten har möjlighet att lägga till ytterligare en vägg som skapar ett mindre sovrum med en bredd på 2,5 meter. Detta skulle leda till att lägenheten blir en fyra, dock utan alla möjligheter till SIS-möblering för vardagsrum och kök.

Tvåan som valts har likheter med den tidigare planerade trean (4.3.2.2 Typlägenhet, 3 ROK. Förslag 1). Förändringar som gjorts är följande:

- För att skapa axialitet i hallen har nu entrédörren förskjutits för att skapa möjlighet till placering av garderober och kök längs den lägenhetsskiljandeväggen. Detta skapar en enhetlighet genom hall och kök. Trapphuset har även valt att göras enhetligt så att alla dörrar till lägenheterna placeras lika på de båda sidorna, trots att lägenheterna är olika stora (treor/tvåor).

- Hallen har blivit mindre 1,4 meter, till följd av att huset har minskat och för att entrédörren har förskjutits.
- Badrumsdörren har lagts åt motsatt håll från tidigare planlösning för tvåan, vilket skiljer badrumet och köket ifrån varandra.
- Schakt i kök och badrum har placerats om och projekteras till större dimensioner. I badrummet har en schaktvägg placerats vid toalett och handfat, då det projekterats för en vägghängd toalett.
- Den lägenhetsskiljande väggen har förflyttats uppåt vilket har lett till en annan planering av det stora sovrummet. Det finns plats för ett stort skjutgarderobsparti, som kan tas bort och ersättas mot SIS-möblering.
- Genom att den lägenhetsskiljande väggen förskjutits har vardagsrummet blivit större.
- Ett extra sovrum med en bredd på 2,5 meter kan likt trean göras i samvarorummet om ytterligare en vägg läggs till. Vilket skulle leda till att lägenheten blir en trea, dock utan samtliga möjligheter till SIS-möblering för vardagsrum och kök.

Bild 25 Typplan
5.1.4 PLAN MED BURSPRÅK

5.1.5 TAKPLAN

Bild 27 Takplan
5.2 Fördelning av ytor

<table>
<thead>
<tr>
<th>TYP</th>
<th>STORLEK (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BYA*</td>
<td>342,5 m²</td>
</tr>
<tr>
<td>BTA**</td>
<td>2852 m²</td>
</tr>
<tr>
<td>LOA***</td>
<td>82,5 m²</td>
</tr>
<tr>
<td>BOA****</td>
<td>2066 m²</td>
</tr>
<tr>
<td>BIA*****</td>
<td>717 m²</td>
</tr>
</tbody>
</table>

Relationstalet=0,75, självbarya.

<table>
<thead>
<tr>
<th>TYP</th>
<th>STORLEK (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTA** tyoplan</td>
<td>342,5 m²</td>
</tr>
<tr>
<td>BOA**** tyoplan</td>
<td>279 m²</td>
</tr>
</tbody>
</table>

Relationstal tyoplan=0,82

<table>
<thead>
<tr>
<th>TYP</th>
<th>ANTAL (st)</th>
<th>BOA (m²)</th>
<th>ANDEL (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:or</td>
<td>15 st</td>
<td>78-81,5 m²</td>
<td>58%</td>
</tr>
<tr>
<td>2:or</td>
<td>14 st</td>
<td>61,5-64,5 m²</td>
<td>42%</td>
</tr>
<tr>
<td>TOTALT</td>
<td>29 st</td>
<td>2066 m²</td>
<td>100%</td>
</tr>
</tbody>
</table>

* BYA – Byggnadsarea, består av den totala ytan byggnaden upptar på marken och även de byggnadsdelar som påverkar användbarheten av underliggande mark.

** BTA – Bruttoarea, består av den total byggnadsarea.

*** LOA – Lokalarea, består av den totala ytan som används till olika typer av verksamheter.

**** BOA – Boarea, består av den användbara ytan för de boende.

***** BIA – Biarea, utrymmen inrättade för sidofunktioner till de boende samt för utrymmen helt eller delvis under mark inrättade för boende.37

5.3 Teknisk beskrivning

5.3.1 GRUND
Platsgjuten betonggrund med dränerande makadam. Ett dräneringsrör är placerat med en lutning på 1:2 från grunden.

\[U \text{-värde: } 0.15 \text{ W/m}^2\text{K} \]

5.3.2 STOMME
Platsgjutet källarplan i betong. Övriga plan ovan mark har en massivträkonstruktion med bärande ytterväggar och lägenhetsskiljande väggar. Bjälklagsplattorna har ett mått å 1200 millimeter.
5.3.3 YTTERVÄGGR
Två ytterväggar har behövt göras. En yttervägg, YV1 (bild 30), som används på större delen av byggnaden och en yttervägg, VY2 (bild 31), som används på burspråken. Ytterväggarna är diffusionsöppna vilket innebär att ingen plastfolie behövs.

\[U\text{-värde YV1: } 0,15 \text{ W/m}^2\text{K} \quad \text{Brandklass YV1: REI 60} \]
\[U\text{-värde YV2: } 0,19 \text{ W/m}^2\text{K} \quad \text{Brandklass YV2: REI 30} \]

5.3.4 LÄGENHETSKILJANDEVÄGG
Den lägenhetsskiljande väggen är uppbyggd med två massivträskivor med mellanliggande mineralull. Gipsskivor på massivträskivan ger en ökad brandklass.

\[\text{Brandklass: REI 60} \]
\[\text{Ljudklass: B} \]
5.3.5 INNERVÄGGRAR
Innerväggarna i lägenheterna består av en massivträskiva. Detta gör att stommaterialet syns, vilket vill åstadkommas. Badrumsväggen är uppbyggd med en massivträskiva och våtrumsgips.

*Brandklass: EI 60
Ljudklass: C

5.3.6 BJÄLKLAG
Entrébjälklaget är platsgjutet och har en sockel på 300 millimeter, innan betongen möter ytterväggen som består av massivträ. Detta utifall det skulle bli översvämningar, då ska inte träet stå i kontakt med vattnet.

*Brandklass: REI 60
Ljudklass: B
Det lägenhetsskiljande bjälklaget består av ett kassetbjäklag med fribärande undertak. Detta ger en högljudklass och en bra brandklass.

Brandklass: REI 60
Ljudklass: A

Vindsbjälklaget är, som det lägenhetsskiljande bjälklaget, ett kassetbjäklag med fribärande undertak. Då det är ett kallt tak har 400 millimeter mineralull behövt placeras ovan bjälklaget.

Brandklass: REI 60
Ljudklass: B
Bjälklaget i burspråket är uppbyggt med en massivträskiva med 500 millimeter homatherm HDP-Q11 Standard, träfiberisolering.

\[U\text{-värde: } 0,16 \text{ W/m}^2\text{K} \]

5.3.7 TAK
Yttertaket är ett kallt tak med sedum placerat på takdelen mot nordost, med en lutning på 20°, och solceller på takdelen mot sydväst, med en lutning på 36°.
Yttertaket i burspråken är ett varmt tak med falsad plåt och en lutning på 6°.

5.3.8 BALKONGER
Balkongen är uppbyggd av en massivträskiva med ovanpåliggande trall och har en lutning på 1:100.
5.3.9 VENTILATION
Huset är dimensionerat för ett FTX-system, med tilluftsaggregatet på vinden för bästa möjliga effekt.

5.3.10 HISSAR
Hissen som projekterats för huset är en KONE MonoSpace 500, med korgmått på 1100x2100 millimeter. Den är dimensionerad för 13 personer och en maximal vikt på 1000 kilogram. Hisschaktet är i massivträ, förutom i källarplanet där det är i betong.
6. DISKUSSION OCH FÖRSLAG PÅ FORTSATTA ARBETEN

Syftet med examensarbetet har varit att rita förslagshandlingar till ett flerbostadshus i massivträ. Byggnaden ska vara en del av ett nyplanerat kvarter som följer den vision Stockholms stad strävar efter och är en del av de miljövänliga byggandet. Efter examensarbetet anser vi att goda möjligheter finns att bygga fler hus i massivträ tack vare de positiva effekterna som materialet åstadkommer.

Fortsatta arbeten med projektet hade varit att utveckla konstruktionslösningar utifrån beräkningar, dimensionera exakta storlekar för schakt, teknik- och fläktur, utföra geotekniska undersökningar, beräkna energibehovet för byggnaden och projektera alla kvarvarande tekniska detaljer.
7. REFERENSER

7.1 Skriftliga källor

*Arkitekten*ns handbok 2014
Stockholm
Utgivare: Byggenskap Förlag, 2014
ISBN: 978-91-87079-03-0

Svensk Standard, SS 91 42 21:2006 Byggnadsutformning – Bostäder – Invändiga mått,
Utgåva 5, fastställd 2006-05-05, publicerad Juli 2006
Utgivare: Swedish Standards Institute
ICS: 91.040.30

7.2 Elektroniska källor

Eliasson, Mikael. Förbättrad arbetsmiljö och boendemiljö,
http://www.svenskttra.se/byggande/varfor-tra/arbetsmiljo_boendemiljö
Uppdaterad: 2013-05-03
Hämtad: 2015-03-25

Eliasson, Mikael. Bygg klimatsmart,
http://www.svenskttra.se/byggande/varfor-tra/bygg_klimatsmart
Uppdaterad: 2013-05-03
Hämtad: 2015-03-25

KLH Sverige AB, Produktion,
http://klhsverige.se/index.php?option=com_content&view=article&id=30&Itemid=34&lang=sv
Hämtad: 2015-03-24

Martinsons, *Handbok i KL-trä*,
http://www.martinsons.se/default.aspx?id=9642
Hämtad: 2015-03-23

Martinsons, Massivträ. *Handboken 2006*,
http://www.martinsons.se/default.aspx?id=9090
Hämtad: 2015-03-23

Stockholms stad, Hållbar framtid i Stockholm,
http://www.stockholm.se/OmStockholm/Stadens-klimatarbete/Klimatsmarta-stockholm---goda-exempel/Hallbar-framtid-i-Stockholm/?kontakt
Uppdaterad: 2014-04-01
Hämtad: 2015-04-01

Stockholms stad, Vår vision,
http://www.stockholm.se/OmStockholm/Vision-2030/
Uppdaterad: 2015-04-01
Hämtad: 2015-04-01

Svenskt Trä, *Generell beskrivning av massivträ*,
http://www.traguiden.se/Templates/popup1spalt.aspx?id=1332
Publicerad: 2014-09-16
Hämtad 2015-03-23
Svenskt Trä, *Mellanbjälklag, icke lägenhetsskiljande – massiv, kassettbjälklag*,
Hämtad: 2015-03-25
8. BILAGOR

- Bilaga 1. Förslagshandlingar – Utveckling av ett flerbostadshus i massivträ