This is the published version of a paper published in *Chemistry of Materials*.

Citation for the original published paper (version of record):

Chemistry of Materials, 27(15): 5332-5339
https://doi.org/10.1021/acs.chemmater.5b01711

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-120686
Series of Highly Stable Isoreticular Lanthanide Metal–Organic Frameworks with Expanding Pore Size and Tunable Luminescent Properties

Qingxia Yao,†‡§∥ Antonio Bermejo Gómez,†‡§∥ Jie Su,†‡∥ Vlad Pascu,†∥ Yifeng Yun,†‡ and Xiaodong Zou*†‡∥

†Berzelii Center EXSELENT on Porous Materials, Arrhenius Laboratory, Stockholm University, Stockholm, SE-106 91, Sweden
‡Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden
§Department of Organic Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden
∥Antonio Bermejo González, Department of Chemistry, University of Valladolid, Campus de Zabadal, 47011 Valladolid, Spain

ABSTRACT: A series of highly porous isoreticular lanthanide-based metal–organic frameworks (LnMOFs) denoted as SUMOF-7I to SUMOF-7IV (SU = Stockholm University; Ln = La, Ce, Pr, Nd, Sm, Eu, and Gd) have been synthesized using tritopic carboxylates as the organic linkers. The SUMOF-7 materials display one-dimensional pseudohexagonal channels with the pore diameter gradually enlarged from 8.4 to 23.9 Å, as a result of increasing sizes of the organic linkers. The structures have been solved by single crystal X-ray diffraction or rotation electron diffraction (RED) combined with powder X-ray diffraction (PXRD). The SUMOF-7 materials exhibit robust architectures with permanent porosity. More importantly, they exhibit exceptionally high thermal and chemical stability. We show that, by inclusion of organic dye molecules, the luminescence properties of the MOFs can be elaborated and modulated, leading to promising applications in sensing and optics.

INTRODUCTION

Systematic design and control of pore size, shape, and functionality in porous crystalline framework materials, without changing the underlying topology, have attracted large attention. This isoreticular principle has been successfully demonstrated in metal–organic frameworks (MOFs) by choosing constituent building blocks with desired functionality. Consequently, the design and synthesis of isoreticular MOFs have been an attractive area of research during the recent years. It represents a rational approach toward applications that require size or shape selectivity, such as sorption, separation, and heterogeneous catalysis. The most common approach to synthesize isoreticular MOFs with different pore sizes is to combine metal clusters and organic linkers of various sizes. This has been demonstrated by combining metal clusters with ditopic linkers such as in the IRMOF-n series with tetrameric Zn clusters, the MIL-88 and MIL-101 series with trinuclear metal clusters, and the UiO-66 series with hexameric Zr clusters. Isoreticular MOFs have also been synthesized by combining metal clusters with tritopic linkers, such as in the HKUST-1 series with dimeric metal paddle-wheel clusters and the MIL-100 series with trimeric metal clusters. Tetrapodal porphyrines have also been used with hexameric Zr clusters to form a series of isoreticular porphyrinic MOFs. Another approach of designing MOFs with expanding pores is to use inorganic chain building units. The advantage of using inorganic chains is that a wide range of metals, from alkaline-earth metal, aluminum, and transition metals to rare-earth metals, can form inorganic chains. Interpenetration may be avoided so that pores can be extended. Isoreticular MOFs built from inorganic chains and ditopic linkers have been synthesized, such as in the series of IRMOF-74 with Mg, Zn, or Al chains, and in the series of STA-12 and STA-16 with Co phosphonate spiral chains and in the MIL-140 series with Zr chains. Although MOFs built from inorganic chains and tritopic linkers have been reported, to the best of our knowledge, there is no report on isoreticular MOFs with expanding pore sizes based on tritopic linkers.

We have been interested in synthesizing isoreticular MOFs using tritopic linkers and prepared a novel SUMOF-5 built from dicopper paddle-wheel clusters and pyridine-2,4,6-tribenzolate (PTB) which is isoreticular to HKUST-1. However, similar to most isoreticular MOFs, SUMOF-5 was not thermally and chemically stable. In the search for more stable isoreticular MOFs using tritopic linkers, we identified...
lanthanide-based MOFs (LnMOFs) as our candidates. This is because LnMOFs show high stability and unique luminescent,27–32 magnetic,33,34 catalytic,26,25 and chemical sensing properties.36 Furthermore, the organic linkers may serve as antennae to sensitize lanthanide emissions. However, the number of LnMOFs that show permanent porosity is still limited.37–53 and those with large pores are even scarcer.21,23,28,38,40,45,51 Furthermore, due to the lack of directionality of the Ln–O bond,24 it is rather difficult to synthesize LnMOFs with predictable structures. Thus, it remains a significant challenge to synthesize isoreticular porous lanthanide-based MOFs with controllable and predictable pore sizes.

Here we present a new series of highly stable porous isoreticular LnMOFs with one-dimensional (1D) pseudohexagonal channels (denoted SUMOF-7I, -7II, -7III, and -7IV; SU = Stockholm University; Ln = La, Ce, Pr, Nd, Sm, Eu, and Gd) by combining Ln-carboxylate inorganic chains and tritopic organic linkers of variable sizes. SUMOF-7I, -7II, and -7III show extraordinary thermal stability and remarkable tolerance toward hot water, organic solvents (i.e., N,N-dimethylformamide DMF), and aqueous media with pH values ranging from 2 to 11. These materials exhibit permanent porosity and interesting luminescence properties. As an example, we show that the emission of these materials can be tuned by doping with different ratios of lanthanide ions as well as by incorporating guest dye molecules in the pores.

EXPERIMENTAL SECTION

Details of the synthetic routes for the tritopic linkers H3L1−H4L4 (Figure 1a–d) used in this work are given in the Supporting Information S1-1. All other chemicals were purchased commercially and used without further purification. MIL-103(La) was synthesized according to the reported procedure.25,26 The synthesis of the isoreticular SUMOF-7s was derived from that of MIL-103,25 by adding DMF as a solvent to replace sodium hydroxide.

Preparation of SUMOF-7I (Ln = La and Ce).

Ln(NO3)3·xH2O or LnCl3·xH2O (0.100 mmol) and H2L1 (0.100 mmol) were dissolved in a mixture of DMF (5 mL), cyclohexanol (2.5 mL), H2O (1.25 mL), and HCl (0.1 M, 1 mL) in a 20 mL glass vial and heated at 85 °C for 24 h. The colorless needle-like SUMOF-7I crystals were filtered and washed with DMF and ethanol and dried at room temperature.

Preparation of SUMOF-7II (Ln = La, Ce, Pr, Nd, Sm, Eu, and Gd).

Ln(NO3)3·xH2O or LnCl3·xH2O (0.011 mmol) and H2L2 (0.011 mmol) were dissolved in a mixture of DMF (0.1 mL), cyclohexanol (0.5 mL), H2O (0.1 mL), and HCl (0.1 M, 0.1 mL) in a 20 mL glass vial and heated at 85 °C for 16 h. The colorless needle-like SUMOF-7II crystals were filtered and washed with DMF and ethanol and dried at room temperature.

Preparation of SUMOF-7III (Ln = La, Ce, Pr, Nd, and Eu).

Ln(NO3)3·xH2O or LnCl3·xH2O (0.025 mmol) and H2L3 (0.025 mmol) were dissolved in a mixture of DMF (1.25 mL), cyclohexanol (0.7 mL), H2O (0.25 mL), and HCl (0.1 M, 0.25 mL) in a 20 mL glass vial and heated at 85 °C for 12 h prior to the measurements. The white crystalline powder was filtered, washed with DMF and ethanol, and dried at room temperature.

Preparation of SUMOF-7IV (Ln = La and Eu).

Ln(NO3)3·xH2O or LnCl3·xH2O (0.072 mmol) and H2L4 (0.034 mmol) were dissolved in a mixture of DMF (5 mL), cyclohexanol (2.5 mL), H2O (0.5 mL), and HCl (0.1 M, 0.48 mL). The solution was sealed in a 20 mL glass vial and heated at 85 °C for 24 h. SUMOF-7IV was not stable in air, and thus the crystalline powder was kept in the mother liquid.

Loading of 2-aminoanthracene into SUMOF-7III(La0.90Eu0.10).

A saturated solution of 2-aminoanthracene (2-AA) was prepared by dissolving 2-AA (19 mg) in ethanol (10 mL). As-synthesized SUMOF-7III(La0.90Eu0.10) (5 mg) was immersed in the saturated 2-AA solution (2 mL) for 12 h to afford yellow brown solid, which was filtered and washed carefully with ethanol. The final product is denoted as SUMOF-7III(La0.90Eu0.10)-2-AA.

Powder X-ray Diffraction (PXRD) and Structure Refinement.

PXRD patterns were collected on a PANalytical X’Pert PRO diffractometer in Bragg–Brentano geometry equipped with a Pixel detector using Cu Kα (λ = 1.5406 Å) radiation. SUMOF-7II, -7III, and -7IV were ground and dispersed on zero-background Si plates, while SUMOF-7IV was mixed with DMF prior to the data collection to avoid the decomposition of the structure. High quality PXRD patterns for Rietveld refinements were collected on the beamline I11 at Diamond Light Source, U.K. (λ = 0.8271 Å), for SUMOF-7II(La) and on a PANalytical X’Pert PRO MPD diffractometer in transmission geometry using Cu Kα radiation for SUMOF-7III(Eu). Samples were sealed in 0.5 mm borosilicate capillaries. The Rietveld refinement of SUMOF-7II(La) and SUMOF-7III(Eu) and the Pawley profile fitting of SUMOF-7IV(La) were performed using Topas Academic V4.1.

Single Crystal X-ray Diffraction (SXRD) and Structural Analysis.

Single crystal X-ray diffraction data of SUMOF-7II(La) and SUMOF-7II(Ce) and in situ single crystal X-ray diffraction data of SUMOF-7II(La) were collected at room temperature on an Oxford Diffraction Xcalibur 3 diffractometer equipped with a CCD camera using Mo Kα radiation (λ = 0.71073 Å). The crystal for in situ measurement was heated under N2 flow from 100 to 500 °C and cooled down to room temperature with a heating/cooling rate of 2 K/min using Oxford Cryostream 600. The temperature was equilibrated for 1 h prior to each measurement. Single crystal X-ray diffraction data were first recorded at room temperature and then at 100 K, 323 K, 373 K, 423 K, 473 K, 500 K, and finally at room temperature. Data reduction was performed using the CrysAlisPro program, and multiscan absorption correction was applied. The structures were solved by direct methods.

Transmission Electron Microscopy.

3D rotation electron diffraction (RED) data of MIL-103(La), SUMOF-7II(La), -7II(Ce), and -7III(La) were collected on a JEOL JEM-2100 microscope operated at 200 kV using a single-tilt tomography sample holder. The data collection was controlled using the RED data collection software.55,56 High resolution transmission electron microscopy (HRTEM) images of SUMOF-7II(La) were taken on a JEOL JEM-2100F microscope operated at 200 kV. 3D reciprocal lattices were reconstructed using the RED data processing software,55 from which the unit cell parameters were determined.

Other Characterizations.

Scanning electron microscopy (SEM) was carried out on a JEOL JSM-7000F and JEOL JSM-7401F. Thermovgravimetric analysis (TGA) was performed in air from 30 °C to 600 or 700 °C with a heating rate of 5 °C/min using a high resolution thermogravimetric analyzer (PerkinElmer TGA 7). Fluorescence spectroscopy data was recorded on a Varian Cary Eclipse Fluorescence spectrophotometer. Nitrogen sorption isotherms were measured at 77 K on a Micromeritics ASAP 2020 system. The samples were degassed at 200 °C for 12 h prior to the measurements. CHN elemental analysis was performed on a Carlo Erba Flash 1112 elemental analyzer. Inductively coupled plasma–optical emission spectrometry (ICP-OES) was used for the measurement of the La/Eu ratio with a Varian Vista MPX ICP-OES instrument. Medac Ltd. in the U.K. carried out the elemental analyses.

RESULTS AND DISCUSSION

Design and Synthesis of SUMOF-7 Series.

Among the two reported LnMOFs built from inorganic chains and tritopic linkers, Tb(BTC)(H3O)(C6H4O)2 (MIL-103, BTB = 1,3,5-benzenetrisbenzoate)25 and Ln(BTC)(H2O) (BTC = 1,3,5-benzenetricarboxylate),26 only the tritopic linker in MIL-103 is connected to three Ln–O chains, which is necessary for isoreticular expansion. MIL-103(Tb) consists of pseudohexagonal nanochannels (ca. 10.0 Å in diameter). It shows permanent porosity and has provided a unique platform for diverse applications.57–60 Considering the lack of preference in
directionality of the Ln–O bonds, we propose that the pore shape in MIL-103(Tb) depends mainly on the geometry of the linker. In other words, the direction of the Ln–O bond can be imposed by the geometry of the linker and thus the framework structure can be directed. On the basis of this consideration, we envisaged that Ln-carboxylate inorganic chains could connect other tritopic linkers of various sizes to form pseudohexagonal channels with various aperture sizes.

According to this idea, we synthesized four different tritopic linkers based on tricarboxylic acids (H3\textit{L1}–H3\textit{L4}) (Figure 1a–d, Supporting Information SI-1), among which two of them, H3\textit{L2} and H3\textit{L4}, are reported herein for the first time. The synthesis of SUMOF-7 series (SUMOF-7I to -7IV) was carried out by using Ln3+ salts and the corresponding carboxylic acid (H3\textit{L1}–H3\textit{L4}) under solvothermal conditions, with minor variations in the experimental procedure for each compound (see Experimental Section and Supporting Information SI-2). Sixteen SUMOF-7s were synthesized under these conditions: SUMOF-7I (H3\textit{L1} and Ln = La and Ce), SUMOF-7II (H3\textit{L2} and Ln = La, Ce, Pr, Nd, Sm, Eu, and Gd), SUMOF-7III (H3\textit{L3} and Ln = La, Ce, Pr, Nd, and Eu), and SUMOF-7IV (H3\textit{L4} and Ln = La and Eu). For characterization purposes, structural models of SUMOF-7I to -7IV were built with the tritopic linkers in the space group \textit{R}3\textit{m} (Figure 1a–d, Supporting Information SI-1). Sixteen SUMOF-7 series almost unchanged, while the expansion of Ln-carboxylate inorganic chains keeps the pseudohexagonal channels along the \textit{c}-axis. The rigidity of the Ln-carboxylate inorganic chains keeps the pseudohexagonal channels along the \textit{c}-axis of the crystals strongly depend on the nature of the lanthanide ions.

Structural Analysis of the SUMOF-7 Series. Structural analysis of the SUMOF-7 series was carried out by combining single crystal X-ray diffraction, powder X-ray diffraction, and rotation electron diffraction techniques. Suitable crystals for single crystal X-ray diffraction could only be obtained for SUMOF-7I(La) and SUMOF-7I(Ce). Single crystal X-ray diffraction showed that the structure of SUMOF-7I(La) was in a good agreement with our structural model. It crystallizes in the space group \textit{R}3\textit{m}. The La3+ ions are nine-coordinated by eight carboxylate oxygen atoms from six carboxylate groups of \textit{L1} and one water molecule. The [LaO9] polyhedrons are connected by edge-sharing to form inorganic La-carboxylate inorganic chains. The inorganic chains are connected by the tritopic \textit{L1} linkers to afford 1D pseudohexagonal channels along the \textit{c}-axis.
with the aperture of ca. 8.4 Å (by subtracting the van der Waals diameter of the oxygen or carbon atoms, Figure 1e).

Attempts to produce sufficiently large crystals of SUMOF-7I, SUMOF-7II, and SUMOF-7IV for single crystal X-ray diffraction were unsuccessful. Instead, the newly developed rotation electron diffraction (RED) method, which enables the collection of almost complete three-dimensional electron diffraction data on micro- or nanosized single crystals, was employed to investigate the crystal structures of the SUMOF-7s. RED data was collected on SUMOF-7I(La), SUMOF-7II(La), SUMOF-7III(La), and SUMOF-7IV(La). Because SUMOF-7IV(La) collapses during solvent evacuation, no RED data could be collected. The three-dimensional reciprocal lattices of the SUMOF-7I(La) to SUMOF-7III(La) were reconstructed from the RED data (Figure 3, from which the unit cell parameters and space group were determined (see Table 1 and Supporting Information SI-8). SUMOF-7I(La) to -7III(La) crystallize in a trigonal system. The unit cell parameters a and b matched well with the isoreticular structural models. While the c parameter of SUMOF-7I(La) is similar to that obtained by single crystal X-ray diffraction, those of both SUMOF-7II(La) and -7III(La) were only about one-third of that for SUMOF-7I(La) (c/3). This is probably due to the removal of the guest water molecules under vacuum and/or by the electron beam radiation. In order to confirm this, RED data was collected on MIL-103(La), which also gave 1/3 of the c parameter determined by SXRD. Devic et al. also reported that the c parameter of the fully dehydrated MIL-103(Eu) became 1/3 of the as-synthesized one. The structural rearrangement upon dehydration led to the change of the periodicity along c to 1/3c, which seems to be dependent on the length or flexibility of the linkers. HRTEM image of SUMOF-7I(La) shows the presence of well-ordered straight channels along the c-axis (see Supporting Information Figure S8.2).

Finally, the unit cell parameters of the as-synthesized SUMOF-7II to -7IV were refined against the PXRD data, which confirmed the c parameters. In addition, the structural models of SUMOF-7II(La) and SUMOF-7III(Eu) were refined against the high quality PXRD data by Rietveld refinement using Topas Academic version 4.1, with soft distance restraints for the Ln–O bond distances (2.5 Å) and rigid body for the ligands. The guest species in the channel could not be located owing to their partial occupancies and low symmetry. Instead, several oxygen atoms were added at random positions inside the pores to compensate for the contributions of the guest species and refined subsequently. For SUMOF-7IV(La), the large fractional pore volume leads to broad Bragg peaks, relatively poor intensity, and low resolution of the diffraction data. Furthermore, the possibility of less ordering of the linkers within the pore walls cannot be ruled out. Although the quality of the PXRD pattern for SUMOF-7IV(La) does not allow us to perform a structural refinement, Pawley profile fitting of the PXRD data was applied to confirm the unit cell parameters. On the basis of the analyses described above, it can be confirmed that SUMOF-7II(La), SUMOF-7III(Eu), and SUMOF-7IV(La) have 1D pseudohexagonal channels with the pore aperture of 11.3, 16.3, and 23.9 Å, respectively.

Table 1. Unit Cell Parameters of SUMOF-7I(La) to -7IV(La) and MIL-103(La)

<table>
<thead>
<tr>
<th>material</th>
<th>a (Å)</th>
<th>c (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMOF-7Ia</td>
<td>24.1843(5)</td>
<td>13.0217(5)</td>
</tr>
<tr>
<td>SUMOF-7Ib</td>
<td>23.80</td>
<td>12.72</td>
</tr>
<tr>
<td>SUMOF-7IIb</td>
<td>27.82</td>
<td>3.85</td>
</tr>
<tr>
<td>SUMOF-7IIIb</td>
<td>31.40</td>
<td>3.92</td>
</tr>
<tr>
<td>MIL-103c</td>
<td>28.736(3)</td>
<td>12.47(1)</td>
</tr>
</tbody>
</table>

aDetermined from single crystal X-ray diffraction. bDetermined from rotation electron diffraction.

Stability and Porosity. SUMOF-7I, -7II, and -7III show excellent thermal stability. Thermogravimetric analyses of as-synthesized solids show that most coordinated water and guest molecules were released at 275, 250, and 150 °C for SUMOF-7I, -7II, and -7III, respectively, to afford guest-free phases (see Supporting Information Figure S9.1). Subsequently, a long plateau is reached, and SUMOF-7I, -7II, and -7III are thermally stable up to 400, 500, and 370 °C, respectively (see Supporting Information SI-9). For comparison, TGA was also performed for MIL-103(La) under the same condition. We found that MIL-103(La) was even more stable in air than the SUMOF-7 series (Supporting Information Figure S9.1). SUMOF-7II(La) and MIL-103(La), built from linkers with similar size but different chemical compositions, are both stable up to at least 500 °C. This indicates that the high stability is mainly associated with the structure type. In situ PXRD shows that SUMOF-7II is stable to at least 475 °C in air, which is one of the most stable LnMOFs (Supporting Information SI-10).

In addition, SUMOF-7I, -7II, and -7III show exceptionally high chemical stability in water and DMF. All the activated SUMOF-7I, -7II, and -7III remained remarkably stable during treatment with hot solvents (DMF at 120 °C, H2O at 100 °C for 1–30 days), as indicated by PXRD (see Figure 4 and Supporting Information SI-11). These MOFs are also stable in acidic or basic aqueous solutions with pH values ranging from 2 to 11 at room temperature (see Supporting Information SI-12). This exceptional resistance of the SUMOF-7 to -7III to hydrolysis is outstanding among the reported metal–organic frameworks.

![Figure 3. 3D reciprocal lattices obtained from reconstructed 3D RED data for (a) SUMOF-7I(La), (b) SUMOF-7II(La), (c) SUMOF-7III(La), and (d) MIL-103(La).](image-url)
In order to evaluate the porosity of all compounds, their nitrogen sorption isotherms at 77 K were measured. SUMOF-7I, -7II, and -7III exhibit Type I isotherms (Supporting Information Figure S13.1), with Langmuir surface areas of 1131, 1319, and 1814 m2 g$^{-1}$ and BET surface areas of 780, 1002, and 1489 m2 g$^{-1}$, respectively. The pore volumes of SUMOF-7I, -7II, and -7III are 0.386, 0.453, and 0.653 cm3 and g$^{-1}$, respectively (see Supporting Information Table S13.1). To the best of our knowledge, these compounds are among the most porous LnMOFs reported to date.25,26,38,45

Reversible Change of Coordination Environments. In situ SXRD study revealed that the symmetry and the framework structure of SUMOF-7I(La) were kept unchanged from 100 to 500 K. It is interesting to investigate the behavior of the water molecule coordinated to the La$^{3+}$ ion. With the increase of temperature, the bond length between the La$^{3+}$ and the coordinated water molecule became longer, as shown in Figure 5. The water molecule was completely removed at 500 K. This indicates that the unsaturated metal centers are accessible. This reversible dehydration phenomenon was also observed for MIL-103 by IR spectroscopy.45

Luminescence Properties. LnMOFs are excellent candidates for light-emitting devices because their color emission can be readily tuned both chemically (lanthanide ion types and concentration, ligand structure, coordination environment, guest species) and physically (excitation wavelength and temperature).30,61

The luminescence properties of SUMOF-7I to -7III were thoroughly investigated (see Supporting Information SI-14). Figure 6a shows the solid-state emission and excitation spectra of SUMOF-7III(La) and SUMOF-7III(Eu) at room temperature. When excited at 365 nm, SUMOF-7III(La) shows a broad blue emission centered at 410 nm which can be ascribed to the $\pi^* \rightarrow \pi$ transition of the organic L3 linker, while SUMOF-7III(Eu) shows characteristic emission spectral features of Eu$^{3+}$ ions at 593, 615, 653, and 698 nm, which can be ascribed to the $^5D_0 \rightarrow ^7F_j$ ($j = 1, 2, 3, 4$) transitions, respectively. It is worth noting that no emission from the L3 linker was observed in the SUMOF-7III(Eu). This indicates that the excitation energy harvested by the L3 linker is efficiently transferred to the Eu$^{3+}$ ions. Because SUMOF-7III(La) and SUMOF-7III(Eu) are isostructural, it was anticipated that their emissions could be easily tuned by doping other lanthanide ions. Taking SUMOF-7III-(La$_{0.90}$Eu$_{0.10}$) and -7III(La$_{0.90}$Eu$_{0.10}$) as the examples, besides the characteristic $f-f$ emission of Eu$^{3+}$ ions, a broad emission band ascribed to the organic linkers can be detected, indicating the partial energy transfer from the L3 linker to the Eu$^{3+}$ atom (Figure 6a). Meanwhile, the relative luminescence intensity between the lanthanide ions and ligands is strongly dependent on the excitation wavelength, thus allowing fine-tuning of the emission color (see Supporting Information Figure S14.4 and S14.5).

Importantly, the combination of large pore aperture and the stability in water makes SUMOF-7III a promising host matrix for accommodation of large functional organic molecules. Encapsulation of organic fluorescent molecules into the channels of the MOFs might generate interesting functions in applications as artificial photonic antennae, solid-state lasers, and light-emitting diodes.$^{32-66}$ Such an approach to luminescence tuning or white light emission has not been previously realized in LnMOFs due to their usually narrow pores. We chose 2-aminoanthracene (2-AA) as the guest molecule due to its green color emission when excited using 300–450 nm and its molecular size that fits the pore of SUMOF-7III-(La$_{0.90}$Eu$_{0.10}$). The resulting host–guest complex was denoted as SUMOF-7III(La$_{0.90}$Eu$_{0.10}$)-2AA.
As expected, this host–guest complex is able to create a nearly white emission, with CIE coordinates of (0.20, 0.24) (Figure 6b), which falls on the border of the white region of the 1931 CIE diagram (for “pure” white \(x = 0.33, y = 0.33 \)). This indicates that a “pure” white emission could be possibly achieved by elaborate modulation of Eu\(^{3+} \) concentrations and the type and amount of guest molecules.

These interesting luminescence properties coupled with the outstanding structural robustness make the SUMOF-7s the promising candidates for applications as sensors, light-emitting devices, and multimodal imaging systems and also for biomedical use.\(^{30-32} \)

CONCLUSIONS

We present the first series of isoreticular MOFs with expanding pore sizes built from inorganic chains and tritopic linkers, the SUMOF-7I to -7IV. SUMOF-7I, 7II, and -7III exhibit permanent porosity and exceptionally high thermal and chemical stability. The luminescence properties of the MOFs can be tuned by doping and/or inclusion of guest dye molecules in the channels. We strongly believe that the combination of tunable pore apertures, accessible metal sites, high thermal and chemical stability, and tunable luminescence properties makes the SUMOF-7 series a very promising platform for applications in optical sensing, heterogeneous catalysis, and photocatalysis.

SUPPORTING INFORMATION

Detailed synthetic procedures for the linkers and the SUMOF-7 series, PXRD patterns, SEM images, structural analysis by SXRD and PXRD, TEM studies, TG analyses, thermal and chemical stability tests, \(\text{N}_2 \) sorption isotherms, luminescence spectra, \(^1\)H and \(^{13}\)C NMR spectra, crystallographic information files (CIFs). The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.chemmater.5b01711.

AUTHOR INFORMATION

Corresponding Authors
*(X.Z.) E-mail: xzou@mmk.su.se.
*(B.M.-M.) E-mail: belen@organ.su.se.

Present Addresses
\(^{1}\)(Q.Y.) Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China.
\(^{2}\)(A.B.G.) AstraZeneca Translational Science Center at Karolinska Institute, Stockholm, SE-171 65, Sweden.

Author Contributions
\(^{3}\)(Q.Y., A.B.G., and J.S.) These authors contributed to the work equally.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work is supported by the Swedish Research Council (VR) and the Swedish Governmental Agency for Innovation Systems (VINNOVA) through the Berzelii Center EXSELENT on Porous Materials and Röntgen-Ångström Cluster through VR. The structural characterization by TEM was supported by the Knut & Alice Wallenberg Foundation through a grant for purchasing the TEM and the project grant 3DEM-NATUR. We acknowledge Diamond Light Source, U.K. (beamline I11), for the synchrotron powder X-ray diffraction beam time. B.M.-M. was supported by VINNOVA through a VINNMER grant. J.S. thanks the Wenner-Gren Foundations for a postdoctoral fellowship. Y.F.Y. and H.C. thank the China Scholarship Council (CSC).

REFERENCES

