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SUMMARY  

The European Commission’s Flood Directive was adopted in 2007 after a decade where 
several severe flood events occurred in Europe. One of the implementation steps in the 
Flood Directive’s first cycle was a requirement on the Member States to produce flood 
inundation maps for areas identified as having significant flood risk. One of these areas 
in Sweden was Edsbyn, having the river Voxnan flowing through the city. 

Flood extent boundaries are often presented as crisp lines in flood inundation maps. 
However, there are many uncertainties underlying the process of creating these maps. 
It has therefore been argued that these crisp boundaries can be misleading. Due to this, 
the idea of probabilistic flood maps has been introduced. The probabilistic maps pre-
sent the flood hazard as a probability rather than a crisp line, based on some type of 
uncertainty assessment. 

The overarching aim of this thesis has been to investigate how different input and pa-
rameter uncertainties affect flood inundation models. These numerous uncertainties 
have been given an account for, as well as suitable assessment method for different 
types of uncertainties. A case study in form of an uncertainty assessment on the river 
Voxnan was also performed, in order to show how results from uncertainty analysis can 
be quantified and communicated visually in probabilistic flood inundation maps. 

A one-dimensional MIKE 11 hydraulic model of a 62 km long part of Voxnan was used 
in the study, made available by MSB. The input uncertainty included in the case study 
was the magnitude of a 100-year flood in present climate as well as future climate con-
ditions. The included parameter uncertainty was the spatially varying roughness coeffi-
cient, which implicitly describes momentum loss from various sources and thus affects 
the simulated water levels. 

By combining a scenario analysis, GLUE calibration and Monte Carlo analysis, the dif-
ferent uncertainties with different natures could be assessed. As expected, significant 
uncertainties regarding the magnitude of a 100-year flood from frequency analysis was 
found. The largest contribution to the overall uncertainty is given by the variance be-
tween the nine included global climate models, emphasizing the importance of taking 
ensemble of projections into account in climate change studies.  

The choice of greenhouse gas concentration scenario plays a significant role for how 
some of the individual global climate models projects the streamflow in Voxnan at the 
end of the century. Seen on the entire ensemble of global climate models, the im-
portance of choice of greenhouse gas concentration scenario was marginal since the 
models compensate for each other’s differences. 

The spatially varying roughness coefficient in the hydraulic model gives a smaller con-
tribution to the overall uncertainty, compared to the discharge uncertainty. The GLUE 
calibration method gave several roughness coefficient parameter sets that can all be 
argued to represent the system in an acceptable manner. These parameter sets yield 
water level variations of over three times the acceptance criterion of residual errors in 
the calibration points. 

Furthermore, this study gives an example on how to present uncertainties visually in 
probabilistic flood inundation maps, working with the softwares MIKE 11, MATLAB 
and ArcMap. The conducted method of how to handle climate change scenario and 
model uncertainties in frequency analysis is also suggested to be a relevant result of the 
study. 

Presenting flood inundation maps as probabilistic rather than deterministic is judged to 
be a more representative way, due to the many inherent uncertainties prevailing the 
maps. Important is however that the assumptions and potentially subjective decisions 
behind the uncertainty assessment are stated explicitly, for preventing further uncer-
tainty contributions to an already uncertain-filled process. 
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SAMMANFATTNING  

EU antog år 2007 ett direktiv för översvämningsrisker, efter ett decennium av flera svåra 
översvämningshändelser runtom Europa. En av faserna i direktivets första implemen-
teringscykel var ett krav på medlemsländerna att upprätta översvämningskarteringar för 
identifierade områden med särskild översvämningsrisk idag eller i framtida förhållan-
den. Ett av dessa områden i Sverige var Edsbyn, med älven Voxnan flytande genom 
staden. 

Gränsen för översvämningsplanet är ofta presenterad som en skarp linje i översväm-
ningskarteringar. Det finns dock många underliggande osäkerheter i framtagningspro-
cessen av dessa kartor. Det har således hävdats att dessa skarpa linjer kan vara missvi-
sande. Till följd av detta har idén om probabilistiska översvämningskartor blivit 
introducerad. De probabilistiska kartorna visar sannolikhet för översvämningshot istäl-
let för en skarp linje, baserat på någon form av osäkerhetsbedömning. 

Det övergripande målet med detta examensarbete har varit att undersöka hur olika typer 
av indata- och parameterosäkerheter inverkar på översvämningsmodeller. Åtskilliga av 
dessa osäkerheter har redogjorts för, samt vilka olika osäkerhetsbedömningsmetoder 
som är lämpliga för olika typer av osäkerheter. Även en fallstudie i form av osäkerhets-
analys på älven Voxnan har genomförts, för att påvisa hur resultat från en osäkerhetsa-
nalys kan kvantifieras och kommuniceras visuellt i probabilistiska översämningskartor. 

En endimensionell hydraulisk modell i programvaran MIKE 11 användes i fallstudien. 
Modellen gjordes tillgänglig av MSB och studien inkluderade en 62 kilometer lång 
sträcka av Voxnan. Indataosäkerheten inkluderad i studien var storleken på ett hundra-
årsflöde, i dagens klimat såväl som ett framtida klimat. Den inkluderade parameterosä-
kerheten var den rumsligt varierande skrovlighetsparametern, vilken implicit beskriver 
rörelsemängdsförluster från olika källor och därmed påverkar den simulerade vattenni-
vån. Det är ofta denna parameter som varieras då endimensionella hydrauliska modeller 
kalibreras mot historiska översvämningshändelser.  

De olika osäkerheterna av skilda natur kunde utvärderas genom att kombinera en 
scenarioanalys, GLUE-kalibrering och Monte Carlo-analys. Som väntat, signifikanta 
osäkerheter gällande storleken på ett hundraårsflöde från frekvensanalys kunde faststäl-
las. Det största bidraget till den övergripande osäkerheten visades komma från varian-
sen mellan de nio inkluderade globala klimatmodellerna. Detta understryker vikten av 
att inkludera projektioner från ett flertal modeller i klimatförändringsstudier.  

Valet av scenario för en framtida växthusgaskoncentration spelar en viktig roll för hur 
vissa av de individuella klimatmodellerna projicerar vattenföringen i Voxnan i slutet av 
århundrandet. Sett över hela ensemblen av klimatmodeller spelade valet av scenarioval 
mindre roll, eftersom vissa av klimatmodellerna kompenserade för varandras olikheter. 

Osäkerheten i den rumsligt varierande skrovlighetsparametern gav i fallstudien en 
mindre inverkan på den övergripande osäkerheten än flödesosäkerheten. GLUE-
kalibreringen resulterade i flera parameteruppsättningar som alla kan argumenteras re-
presentera systemet på ett acceptabelt sätt. Dessa parameteruppsättningar ger vattenni-
våskillnader på över tre gånger acceptanskriteriet för residualfel i kalibreringspunkterna. 

Denna studie ger utöver detta ett metodologiskt exempel för hur osäkerheter kan pre-
senteras visuellt i probabilistiska översämningskartor, med hjälp av programvarorna 
MIKE 11, MATLAB och ArcMap. Den genomförda metoden för hur klimatföränd-
ringsosäkerheterna, scenarion och modeller, hanterades i frekvensanalysen föreslås 
också vara ett relevant resultat av studien. 

Att presentera översvämningshot i form av sannolikheter bedöms vara ett mer repre-
sentativt sätt för detta presentera detta osäkra subjekt. Viktigt är dock att alla antaganden 
och eventuellt subjektiva val bakom osäkerhetsbedömningen anges explicit då resulta-
ten presenters, eftersom resultaten som bäst är villkorliga på dessa. Detta för att för-
hindra ytterligare osäkerhetsbidrag till en redan osäkerhetsfylld process.  
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ABSTRACT  

This master thesis gives an account for the numerous uncertainties that prevail one-
dimensional hydraulic models and flood inundation maps, as well as suitable assessment 
methods for different types of uncertainties. A conducted uncertainty assessment on 
the river Voxnan in Sweden has been performed. The case study included the calibra-
tion uncertainty in the spatially varying roughness coefficient and the boundary condi-
tion uncertainty in the magnitude of a 100-year flood, in present and future climate 
conditions.  

By combining a scenario analysis, GLUE calibration method and Monte Carlo analysis, 
the included uncertainties with different natures could be assessed. Significant uncer-
tainties regarding the magnitude of a 100-year flood from frequency analysis was found. 
The largest contribution to the overall uncertainty was given by the variance between 
the nine global climate models, emphasizing the importance of including projections 
from an ensemble of models in climate change studies.  

Furthermore, the study gives a methodological example on how to present uncertainty 
estimates visually in probabilistic flood inundation maps. The conducted method of 
how the climate change uncertainties, scenarios and models, were handled in frequency 
analysis is also suggested to be a relevant result of the study. 

Key words: Hydraulic modelling; Flood inundation map; Uncertainty assess-
ment; Climate change; Frequency analysis; Calibration; MIKE 11; Voxnan 

1. INTRODUCTION 

This initial chapter calls the need of the study through a background de-
scription, followed by outlining the aim and objectives of the study. 

1.1. Background 
Floods are part of the natural variation in the hydrologic system. Floods 
bring benefits like sediment transport, refill of groundwater storage and 
ecological services, but the risks of damage from floods are also substan-
tial. Today, this is the natural disaster type that causes the largest economic 
damage. The vulnerability of floods have increased with socio-economic 
factors like increased population, urbanisation in areas susceptible to 
floods, deforestation, loss of wetlands and natural floodplain storage. Cli-
mate change is also projected to increase the intensity and frequency of 
floods in many areas. (EEA, 2010a; EEA, 2010b)   

The European Commission’s Flood Directive was adopted in 2007 after 
a decade where several severe flood events occurred in Europe. Between 
1998 and 2009, the European floods resulted in more than 1100 fatalities, 
affecting over 3 million people and brought direct economic losses of over 
EUR 60 billion. Floods can also pose environmental risks, for example if 
the flood inundation reaches a developed area (EEA, 2010b; EC, 2015). 

One of the implementation steps in the Flood Directive’s first cycle was a 
requirement on the Member States to produce flood hazard maps for areas 
identified for having significant flood risk, toady or in the future 
(EC, 2007). The city of Edsbyn in Sweden was one of these identified 
areas, having the river Voxnan flowing through it (MSB, 2011).  

Flood hazard maps, also known as flood inundation maps, define the area 
covered by water from a certain flood event. Even though the flood extent 
boundaries are often presented as crisp lines in flood hazard maps, there 
are many uncertainties underlying the process of creating these maps. 
Choice of hydraulic model, geometric description, estimation of design 
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flow magnitude and non-stationarity due to catchment change, climate 
change and variability are only a few of these. (Beven et al., 2011) 

The idea of probabilistic flood maps has been introduced, see for example 
Smemoe et al. (2007), Merwade et al. (2008), Di Baldassarre et al. (2010) 
and Beven et al. (2011). It has been suggested that presenting the flood 
hazard as a probability, based on some type of uncertainty assessment, 
gives the subject a more correct representation due to the many underlying 
uncertainties. Furthermore, a need for clear methodologies and examples 
for this purpose has been expressed. 

1.2. Aim and objectives of the study 
The overarching aim of this thesis is to investigate how different input and 
parameter uncertainties affect flood inundation models. This will be made 
through an uncertainty analysis on a one-dimensional hydraulic model of 
the river Voxnan in Sweden, built in the software MIKE 11.  

The input uncertainty included in the analysis is the magnitude of a 100-
year flood in present climate as well as future climate conditions. The in-
cluded parameter uncertainty is the spatially varying roughness coefficient, 
which implicitly describes momentum loss from various sources and thus 
affects the simulated water levels. 

The aim of the thesis is to demonstrate how different types of uncertain-
ties can be included in an uncertainty analysis. Furthermore, the study aims 
to show how the results from uncertainty analysis can be quantified and 
communicated visually in probabilistic flood inundation maps. Specific 
sub-objectives are: 

- To quantify uncertainty estimates of the 100-year flood magnitudes in 
three scenarios; present climate and according to two greenhouse gas 
concentration scenarios in 2098; RCP 4.5 and RCP 8.5.  

- To quantify an uncertainty estimate of the spatially varying roughness 
coefficient through a GLUE calibration of the model. 

- To compile the numeric results of the uncertainty analysis and create 
probabilistic flood inundation maps in ArcMap. 

2. FLOOD INUNDATION MAPS AND UNCERTAINTIES  

This chapter aims at providing a theoretical overview and give an account 
for the state-of-the-art regarding the subjects handled in the thesis. 

2.1. Floods and flood hazard maps 
A ‘flood’ means that land that normally is not covered by water temporar-
ily becomes so. How floods are categorized varies, but a general charac-
terization is river and lake (fluvial) floods, overland (pluvial) floods in ur-
ban impervious areas due to heavy rain, coastal floods, groundwater floods 
and floods due to failure of artificial water systems. (EC, 2007; MSB, 2011; 
Jha et al., 2012) 

Fluvial river floods occur when surface water runoff exceeds the capacity 
of the channel, causing river bank overflow and over-spill to nearby low-
lying areas. Contributing factors to fluvial floods, except weather and hy-
drologic factors, are hence topography, land use, soil type, geomorphol-
ogy, size of the catchment and the portion of lakes in the catchment. In 
Sweden, fluvial floods are typically occurring in spring due to snow melt, 
or during autumn due to heavy rain in combination with high soil mois-
ture. (Bergström, 1994; MSB, 2011; Jha et al., 2012) 

As mentioned in Chapter 1.1, one of the European Flood Directive’s im-
plementation steps is that it requires that the Member States produce flood 
hazard maps for areas identified as having potential significant flood risk, 
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either today or if it is considered likely to occur in the future. The Directive 
requires that the flood extent, water depth and, if appropriate, flow veloc-
ities are included on these maps. The required flood events are extreme 
event scenarios, medium probability scenarios (return interval of at least 
100 years) and, if appropriate, high probability scenarios. (EC, 2007) 

The flood hazard maps are then used for the subsequent steps in the Flood 
Directive implementation, in the process of producing flood risk maps 
and flood risk management plans. ‘Flood risk’ is defined as the combina-
tion of the probability of a flood event and its possible hostile conse-
quences for human health, cultural heritage, economy and the environ-
ment. (EC, 2007) 

In Sweden, the Swedish Civil Contingencies Agency (MSB) is responsible 
for identifying the areas with significant flood risk and for producing the 
flood hazard maps. It is only fluvial floods that have been taken into ac-
count in this first cycle. These maps underpins the flood risk maps and 
management plans in the subsequent implementation steps of the Di-
rective, which are to be produced by the County Administrative Boards. 
Flood hazard maps are also used in municipal physical planning and for 
emergency services. (SFS, 2009; MSB, 2011; MSB, 2014a)  

The computationally easiest way of producing a flood hazard map is by 
using a one-dimensional hydraulic model, from which simulated water lev-
els and velocities are acquired. The process of setting up this type of model 
and producing flood hazard maps is summarized by Merwade et al. (2008) 
as: 

1. Estimation of design flow, based on a hydrologic model or statistical 
frequency analysis. 

2. Developing channel cross-sections, based on field surveys and/or digi-
tal terrain models (DTMs). 

3. Running a hydraulic model with the design flow from Step 1 and cross-
sections from Step 2. Other parameters in the model can be set through 
calibration of the model. 

4. Interpolation of the cross-section’s water levels to a georeferenced wa-
ter surface. The interpolation method is often with a triangular irregular 
network (TIN). 

5. The water depth is calculated by subtracting the DTM from the water 
surface. Hence, all positive water depth values give the flood inundation 
extent. 

2.2. Uncertainties from a general point of view 
A fundamental distinction of different natures of uncertainties can be 
drawn between aleatory versus epistemic uncertainties. Aleatory uncer-
tainties are those that cannot be reduced since they are coming from the 
“natural variability” in the system behaviour. An example is the chaotic 
behaviour of the climate system. Therefore are the aleatory uncertainties 
treated as random uncertainties and are often represented as probabilities. 
(Beven et al., 2011; Capela Lourenço et al., 2014) 

Epistemic uncertainties are on the contrary coming from a lack of 
knowledge and might therefore be possible to reduce through more re-
search, better models or more knowledge. An example of an epistemic 
uncertainty is a model structure error. Even though epistemic uncertain-
ties are reducible in theory, a model is by definition a simplification of 
reality and will therefore always bring epistemic uncertainty to some de-
gree. (Beven et al., 2011)  
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It is generally unsuitable to represent an uncertainty with an epistemic na-
ture as a quantified probability, since it can give an overconfident uncer-
tainty estimate. Partly because the nature of the mechanisms behind the 
uncertainty is unknown and partly because these type of uncertainties are 
often non-stationary in time or space. The preferred representation meth-
ods can instead be based on possibilities, like using scenarios or giving 
weights to different possible outcomes, based on the so-called possibilistic 
Fuzzy Set theory. (Beven et al., 2011; Capela Lourenço et al., 2014)  

Uncertainty can in many circumstances be a mixture of both aleatory and 
epistemic nature, making the distinction not always easily drawn. For ex-
ample, there can exist epistemic uncertainties around the properties of an 
aleatory uncertainty. This might lead to confusion and it becomes im-
portant to express the assumptions behind a model uncertainty assessment 
to a decision maker. (Beven et al., 2011; Capela Lourenço et al., 2014) 

2.3. Frequency analysis 
The magnitude of an extreme hydrologic event is inversely related to its 
frequency of occurrence. Frequency analysis has a main objective of relat-
ing the magnitude of an extreme event to its frequency of occurrence, and 
vice versa. This is conducted by using hydrologic data to select a proba-
bility distribution function and fit the parameters to suit the available data. 
(Chow, 1988) 

A probability distribution function represents the probability of occur-
rence of a random variable. Often, they are represented as Cumulative 
Distribution Functions (CDF) or Probability Density Functions (PDF). A 
CDF is a graph showing the probability that an outcome will be smaller 
than or equal a certain value. (Chow, 1988; Bedient, 2008) 

 Underlying assumptions 

Key assumptions in frequency analysis are that the hydrologic data is in-
dependent, identically distributed and that it originates from a stochastic 
and stationary (time-independent) hydrologic system. This would mean 
that the magnitude of one event does not depend on the magnitude of 
adjacent events, and that all data observations share the same statistical 
properties. (Bedient, 2008)  

To comply with the independence assumption, a series of annual maxi-
mum discharge (AMS) is often chosen in flood frequency analysis - since 
the observation from one year to another can be expected to be independ-
ent (Chow, 1988). An alternate method is to use a Peaks-over-threshold 
(POT) series, including all discharge values over a set threshold limit. This 
can be useful when the series are not long enough, but introduces the dif-
ficulty of choosing the threshold value and assuring the independence of 
the data (Bezak et al., 2013). The homogeneity of the hydrologic data 
should be evaluated through time-series analysis prior to the frequency 
analysis, in order to detect eventual periodicities or non-stationary patterns 
(Bedient, 2008). 

 Concept of return period 

The most common way of indicating the probability of a flood of a given 
magnitude is to assign it a return period, which equals the inverse of its 
probability of occurrence. For example, a 100-year flood has an annual 
exceedance probability (AEP) of 0.01. This means that it is equalled or 
exceeded once, on average, every 100 years. Note that the term ‘return 
period’ can be misleading, since it can be interpreted of saying something 
about the actual time sequence of an event. (Maidment, 1993; Bedient, 
2008; Beven et al., 2011) 
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Table 1. Probability that a flood with a certain return period will 
occur at least one during a certain period of years. 

Return period 
[years] 

Probability [%] 

10 year period 50 year period 100 year period 

10 65 99 100 

100 9.6 39 63 

1000 1 4.9 9.5 

10 000 0.1 0.5 1 

 

A 100-year flood does not mean that it will only happen once every 100 
years, but rather that there is a 1 % risk of it to occur every year. An alter-
native way of addressing a 100-year flood is therefore to call it a 0.01 AEP 
flood. (Bedient, 2008; Beven et al., 2011) 

Eq. 1 gives the probability of a flood with a return period of T years to 
occur at least once during a period of N years (Chow, 1988). Hence, a 100-
year flood has a 63 % probability of occurring during a 100 year period of 
time (Table 1). 

1
(  at least once in N years) 1 1

N

T
P X x

T
   

 
 
 

  Eq. 1 

 Choice of probability distribution function 

There are a number of different theoretical distribution functions that can 
be chosen from to fit the observations to. There are at least ten different 
distribution functions that have been applied to flood frequency analyses 
(Table 2). The normal distribution is typically not used in flood frequency 
analysis, since it is non-skewed and unbound while extreme values like 
observations in an AMS tends to be skewed and are nonnegative. (Bedient, 
2008) 

The most common probability distribution functions in flood estimation 
applications are according to Harlin (1992) the Gumbel, Log-Pear-
son Type III and lognormal distributions. The two-parameter distribu-
tions Gumbel, lognormal or Gamma are typically used for Swedish con-
ditions (Svensk Energi et al., 2007). The standard distribution for 
frequency analysis of annual maximum floods in the United States is the 
three parameter Log-Pearson Type III distribution (Chow, 1988). Ex-
treme value distributions form the basis of the standardized method for 
flood frequency analysis in Great Britain (Chow, 1988). 

 Uncertainties in flood frequency analysis 

There are several sources of uncertainty connected to the frequency anal-
ysis. Merz and Thieken (2005) summarized these in seven source catego-
ries (Table 3). The choice of time period for the data is one, where a 
shorter series is increasing the uncertainty since the tales of the distribu-
tion (for finding the magnitude of floods with high return intervals) needs 
to be extrapolated. Bergström (1994) recommends to use a time series of 
at least half the length of the return interval that is to be calculated.  

However, a longer time series increases the risk of it being non-stationary 
and inhomogeneous (Dahmen and Hall, 1990). Examples of potential 
changes in the system are urbanization, deforestation and climate change 
(Merz and Thieken, 2005). Furthermore, the stationarity assumption be-
hind the frequency analysis might be invalid if the river is strongly affected 
by regulations (Svensk Energi et al., 2007). 
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Table 2. A selection of the most common probability distribution 
functions used in hydrology. x =mean of sample data, 
sx = standard deviation of sample data, Cs = coefficient of skew-
ness. (Chow, 1988) 
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Table 3. Summary of uncertainty sources in flood frequency anal-
ysis (Merz and Thieken, 2005). 

Uncertainty source Examples 

Measurement errors Water level measurement errors, rating curve error 

Plotting position formula Weibull, Hazen, Gringorten 

Assumptions Independence, stationarity, randomness, homogeneity 

Sample selection Representativeness of the observation period, using 
AMS or POT series. 

Choice of distribution 
function 

Lognormal, Log-Pearson Type III, Gumbel 

Parameter estimation 
method 

Method of moments, method of maximum likelihood 

Sampling uncertainty Time series length 

 

Rating curves are used for relating a measured water level with a discharge 
value, based on relationships set up from previous measurements. The 
rating curve errors are generally the largest for extreme floods, which is 
unfortunate since these floods that are typically the ones used in flood 
frequency analysis. (Merz and Thieken, 2005) 

The question of which theoretical probability distribution function to 
choose can be challenging since individual rivers vary in their optimal dis-
tribution (Bedient, 2008). It is therefore suitable to test more than one 
distribution when performing a frequency analysis (Svensk En-
ergi et al., 2007). The different fits can be tested with quantitative 
measures, for example with the so called Kolmogorov-Smirnov test or by 
graphically comparing the fitted CDF with plotted measured observations 
by using a selected probability paper and plotting position (Bedient, 2008). 

However, the measured values will often fit all distributions quite well, 
while the largest differences between the distributions show in the extreme 
values. Hence, the choice of distribution function is a large source of un-
certainty when it comes to events with high return periods. (Merz and 
Thieken, 2005) 

Another method for dealing with this distribution choice uncertainty is to 
fit the observations to a handful of selected distribution functions. A Max-
imum Likelihood measure can then be used to assign weights to the indi-
vidual distribution functions, based on how well they represent the data 
set. From this, a composite distribution function can be constructed. It is 
then possible to observe which of the individual distribution functions 
that the composite probability distribution function is most similar to. For 
examples of this methodology, see Apel et al. (2004), (2006) or (2008). 

The frequency analysis can be complemented with a confidence analysis 
to get a picture of the sample uncertainty in the calculations (Svensk En-
ergi et al., 2007). For example, Beven et al. (2011) used a 95 % confidence 
interval of the 100-year flood magnitude from a General Extreme Value 
distribution to quantify the uncertainty in the design flood event. The 
computation method of confidence limits varies for different probability 
distribution functions (Bedient, 2008). 
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Table 4. The radiative forcing levels take into account the net ef-
fect of all anthropogenic greenhouse gas emissions and other 
forcing agents. The levels are defined as ± 5% of the stated level, 
relative to the pre-industrial levels. (van Vuuren et al., 2011) 

GHG con-
centra-

tion sce-
nario 

Description Radiative 
forcing level 

[W/m2] 

CO2 equiva-
lents [ppm] 

RCP8.5 Rising radiative forcing pathway. 8.5 ~ 1370 

RCP6 Stabilization without overshoot path-
way, stabilizing by 2100. 

6 ~ 850 

RCP4.5 Stabilization without overshoot path-
way, stabilizing by 2100. 

4.5 ~ 650 

RCP2.6 Declining pathway after peak before 
2100. 

2.6 (peak at 3) ~ 490 

 

2.4. Climate change and hydrologic projections 
This section gives a theoretic introduction to climate change projections 
and how scenarios and models are turned into input data for flood inun-
dation models. 

 The Representative Concentration Pathways 

The development of the future climate is correlated with the development 
of the world, in terms of socio-economic change, technical change, emis-
sions of greenhouse gases, air pollutants, etc. This is a clear epistemic un-
certainty and it is impossible to foresee this development today. Due to 
this, the climate modelling community is using a range of climate out-
comes as inputs to the global climate models. (van Vuuren et al., 2011) 

A set of four Representative Concentration Pathways (RCPs) (Table 4) 
was developed for the Fifth Assessment Report by the Intergovernmental 
Panel on Climate Change (IPCC, 2013). The RCPs are greenhouse gas 
concentration trajectories, named after their radiative forcing levels by the 
year 2100 relative to the pre-industrial level: 2.6, 4.5, 6 and 8.5 W/m2. 
(van Vuuren et al., 2011) 

Each RCP is representing a large number of future scenarios, since each 
concentration level can be reached by a variety of combinations of eco-
nomic, political, technological and demographic future developments. No 
RCP is meant to be appraised as more likely than the other, rather are they 
developed to describe the uncertainty that exists with regards to future 
climate outcomes. (Persson et al., 2015) 

 From a global scale to a local hydrologic scale 

The RCPs are forming an important basis for inputs to Global Circulation 
Models (GCM), often called Global Climate Models (Fig. 1). These mod-
els simulate the climate on a global scale, which makes the computation 
grid of these models to be relatively coarse. A typical grid box size is 200-
300 km in width, with varying heights. (Persson et al., 2015) 

 

Fig. 1. Schematic overview of the process of turning global cli-
mate change projections to a local hydrologic scale. 
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It is necessary to downscale the results from a GCM with a Regional Cli-
mate Model (RCM) if they are needed on a local or regional scale. The 
RCM typically used for Sweden comes from the Rossby Centre, SMHI’s 
climate modelling research unit. This process is called dynamical 
downscaling, and can for example result in a 50 km wide computation 
grid. (Persson et al., 2015)  

Further statistical downscaling, through a Distribution-based scaling 
(DBS) method, enables the results from an RCM to be used as inputs in a 
hydrological model. The results from an RCM often includes systematic 
errors that needs to be corrected before using the results in a hydrological 
climate change assessment. The DBS fit simulated values with observed 
values to perform this bias correction. The DBS also scales the results to 
a higher resolution, typically 4 km wide. (Sjökvist, 2015)  

The statistically downscaled and corrected projections can be used as input 
in hydrological models for hydrologic climate change studies. The two 
models HBV and HYPE are typical hydrological models used in Sweden. 
This can for example result in simulated streamflow time series, possible 
to use in climate change flood forecasting studies. (Sjökvist, 2015) 

 Uncertainties in climate change projections and ensemble analysis 

The major uncertainty sources related to climate change impacts on hy-
drologic variables have here been summarized in four categories (Table 5), 
based on e.g. van der Linden and Mitchell (2009), Persson et al. (2015) and 
Shrestha et al. (2015). 

The inherent natural variability within the climate system is a factor that 
needs to be taken into account when interpreting climate change projec-
tion results. The shorter the time horizon, the harder it can be to differen-
tiate the internal variability from the long-term climate change patterns. 
Furthermore, the climate models are programmed to reflect this natural 
variability, but cannot be expected to be in synchronisation with the ob-
servations. The results from a climate model should be evaluated from a 
long-term statistical point of view (change in average amplitude, variabil-
ity) rather than predicting how hot a certain year will be. (Persson et al., 
2015) 

There have been studies showing that the relative importance of uncer-
tainties regarding downscaling methods and hydrologic parameters are 
small compared to the uncertainties regarding climate models and GHG 
concentration scenarios. The relative importance of the GHG concentra-
tion scenario is also depending on the time horizon of the study, the 
spread between different scenarios increases with a longer time span. 
(Shrestha et al., 2015) 

Table 5. Summary of the major uncertainties in climate change 
projections on hydrologic variables. 

Uncertainty category Description/Examples 

Natural variability The inherent annual and decadal variability of the cli-
mate, e.g. due to NAO, El Niño, etc. 

Model uncertainties Choice of GCM, RCM and impact hydrological model, 
model structure errors, model parameters, initial model 
state 

GHG concentration sce-
nario 

Feedback mechanisms, translating GHG emissions to 
radiative forcing, socio-economic development 

Downscaling method From GCM to RCM, from RCM to impact model 
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The chosen time horizon of the study also matters for the relative im-
portance of variance represented by GCM versus RCM. Generally, a 
stronger climate signal increases the importance of the spread from differ-
ent GCMs. This means that it becomes important to take the variability 
between different GCMs into account for an end-of-the-century study, 
while the choice of RCM becomes more relevant for studies closer to the 
present. (van der Linden and Mitchell, 2009) 

The relative contribution to the overall uncertainty also differs between 
regions, simulation seasons and model variables. In Scandinavia it has 
been shown that the relative contribution to the variability in temperature 
and precipitation is somewhat stronger by the GCMs during winter 
months and by the RCMs during the summer months. (van der Linden 
and Mitchell, 2009) 

Capela Lourenço et al. (2014) investigated how uncertainty generally is ad-
dressed in national climate change adaption planning and found that most 
countries included in the study consider different GHG concentration 
scenarios and different GCMs. Statistics are generally calculated across all 
GCM and RCM combinations for one GHG concentration scenario at a 
time. 

This multi-model and multi-scenario approach is a common method for 
dealing with the most important uncertainties connected to climate change 
projections. The variability between model structures is sampled by using 
an ensemble of models, producing more reliable results. It is not possible 
to point out one GCM that best captures the entire climate system, but 
response trends observed in an ensemble of climate models are valued to 
be more likely since the same result have been achieved from different 
conditions. (van der Linden and Mitchell, 2009; Persson et al., 2015; 
Shrestha et al., 2015) 

2.5. One-dimensional hydraulic models 
The theory of one-dimensional hydraulic models will here be presented 
through a description of the used software MIKE 11. For an overview of 
other types of hydraulic models (zero-, two- or three-dimension hydraulic 
models), and other available software programs see for example Bedient 
(2008) or Asselman (2009). 

 MIKE 11, Saint-Venant equations and solution scheme 

MIKE 11 is a one-dimensional modelling system developed by DHI. It 
can be used to simulate water flows, water quality and sediment transport 
in rivers, channels, estuaries and other water bodies. Its one-dimensional-
ity implies that it is suitable for situations where there is one clearly dom-
inating flow direction. (DHI, 2014a) 

MIKE 11 is based on the partial differential equations Saint-Venant equa-
tions for one-dimensional flow, which allow the flow rate and water level 
to be computed as a function of time and space. By making the following 
assumptions, the Saint-Venant equations used in MIKE 11 can be derived 
from the conservation of mass and conservation of momentum equations 
(see e.g. Chow (1988) for a detailed presentation of that derivation). 

- The simulated flow is one-dimensional, which means that the water 
level and velocity only vary in the longitudinal channel direction. Hence, 
the velocity is constant and water level is horizontal along any perpen-
dicular axis (cross-section) to the longitudinal river channel. 

- The water is incompressible and homogeneous, meaning that its density 
can be assumed constant. 
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- The slope of the river bottom is small, meaning that the cosine of its 
angle with the vertical can be assumed to equal the value one.  

- The wave length is large compared to the water depth, meaning that the 
flow is assumed to be parallel with the bottom. This in turn enables the 
vertical acceleration to be assumed zero and a vertical hydrostatic pres-
sure can be assumed valid. 

- The flow is within the subcritical flow regime (often described as tran-
quil or streaming), meaning that there is a possibility for a gravity wave 
to propagate upstream. 

- Resistance coefficients for steady uniform turbulent flow can be used, 
so that for example Manning’s equation is applicable for describing the 
resistance effects. 

(Chow, 1959; Chow, 1988; DHI, 2014a) 

 

Applying these assumptions for flow between two cross-sections with the 
distance dx, the equations of mass and momentum conservation yields the 
one-dimensional Saint Venant equations as: 

 

Conservation of mass 

0
Q A

q
x t

 
  

 
   Eq. 2 

 

Conservation of momentum 

2
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acceleration        acceleration                force     

                             0
gQ QQ Q h

gA
t x A x M AR

   
    

   

         force

  Eq. 3 

 

where 

Q = discharge [L3T-1] 

A = flow area [L2] 

q = lateral inflow per unit length [L2T-1] 

α = momentum distribution coefficient [-] 

g = gravitational acceleration constant [LT-2] 

h = water surface elevation [L] 

M = Manning’s coefficient [L1/3T-1] 

R = hydraulic radius or resistance radius [L] 

 

Eq. (3) is a dynamic wave description, meaning that the flow is unsteady 
and non-uniform. Eq. (2) and Eq. (3) do not have an exact analytical so-
lution, MIKE 11 solves them numerically by using an implicit finite dif-
ference scheme called the Centred 6-point Abbott scheme. An implicit 
method means that it solves for the unknowns at all points for the current 
time step simultaneously. This means that it is more numerically stable and 
hence allows longer time-steps than an explicit solution scheme would. 
The results are water depth and average velocity at every cross-section. 
(Chow, 1988; Bedient, 2008; DHI, 2014a) 
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 Cross-sections 

MIKE 11 is discretising the river reach into a number of irregularly spaced 
cross-sections, placed perpendicular to the river flow direction for which 
the water level and main velocity are assumed to be constant. The topo-
graphical description of the area is hence made through the specified 
cross-sections. (DHI, 2014a) 

The number of required cross-sections is therefore depending on the area, 
where a meandering channel or a varied topography in the channel and/or 
floodplain requires more cross-sections to capture these variations. Fur-
thermore, the cross-sections need to be wide enough to cover the entire 
flood-plain that might become flooded. It is also important that the cross-
sections cover possible new flow paths that the water can take in the par-
ticular flood event. (DHI, 2014a; MSB, 2014b) 

 Boundary conditions and initial conditions 

All external model boundaries need a defined boundary condition. This 
can either be a constant or a specified time series of discharge or water 
level values. Discharge (constant or time-varying) is typically used for the 
upstream boundary conditions, while water level (constant, time-varying 
or rating curve, which is the known relationship between discharge and 
water level) is typically used for the downstream boundary conditions.  

Initial conditions for all computation points in form of discharge or water 
level must also be specified. A global estimate is applied throughout the 
model, unless the user has defined local values. (DHI, 2014a) 

 Bed resistance description 

The friction force term in Eq. (3) is showing the Manning description, 
which needs the user to specify a value of the roughness coefficient Man-
ning’s number M. This parameter is also known as the Strickler coefficient, 
and equals the inverse of the more conventionally used Manning’s num-
ber n. Surface roughness, channel vegetation and channel irregularities are 
only a few of the factors that affect the roughness coefficient, which in 
turn affects the flow velocity. It is therefore a model parameter that can 
vary both spatially and temporally (e.g. through seasonal variations in veg-
etation). In MIKE 11, a global value of the roughness coefficient is applied 
for the entire model unless the user has defined local values. (DHI, 2014a) 

Where possible, the roughness coefficient values should be decided from 
a calibration of the model. Otherwise, typical values of Manning coeffi-
cient for different types of channels can for example be found in Chow 
(1959). The values of M goes between 10 and 100 in SI base units, where 
a lower value indicates a rougher surface. (Chow, 1959, DHI, 2014a)  

To a certain extent, the simplifications of flow physics and additional en-
ergy losses can be compensated through a calibration of the roughness 
coefficient. Hence, the shape of the river channel also affects the value of 
the roughness parameter. (Asselman, 2009) 

 MIKE and the user interface 

The user interface in MIKE 11 is built around different editors, for which 
the Simulation editor integrate the others (Fig. 2). The Network editor 
allows editing of the river network and physical structures in the river (e.g. 
culverts and bridges), while also giving an overview of the model infor-
mation. The information on all cross-sections are stored in the Cross-sec-
tion editor. Boundary conditions are specified in the Boundary editor, as 
constant values or connected to time-series. The Parameter editor controls 
other supplementary information used in the simulation, like initial condi-
tion values and roughness coefficient values. (DHI, 2014b) 
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The settings in the Boundary editor are saved as a text file with the exten-
sion .bnd11. The parameter settings in the Parameter editor are in a corre-
sponding manner saved as a text file with the extension .hd11. The inte-
gration to the Simulation editor is configured by specifying these files with 
the specified settings. The set-up in the Simulation editor is saved as a file 
with the extension .sim11. (DHI, 2014b) 

Within the MIKE user interface there is also a Batch Simulation editor 
(Fig. 3). This allows the user to define a number of simulations that will 
be performed automatically on a base simulation file. The user can in the 
Batch Simulation editor define what parameters that should be varied in 
the batch simulation, and define the inputs for each simulation. For exam-
ple, if five simulations with different roughness parameter values are to be 
made – five different .hd11 files with the different parameter values are 
specified in the Batch Simulation editor. (DHI, 2014b) 

 Uncertainties in one-dimensional hydraulic models 

When it comes to one-dimensional hydraulic models, they suffer from the 
disadvantages of not being able to capture the lateral spreading of the 
flood wave and the topography is not continuously defined but instead 
through a number of subjectively located cross-sections. (Asselman, 2009)  

Besides the choice of model, the geometric description and the channel 
roughness parameter also have significant impacts on the overall uncer-
tainty (Table 6). The geometric description is the most important aspect 
in the contribution of the hydraulic model to the overall uncertainty, which  

Fig. 2. Overview of the different editors connected to MIKE 11 
and how they are integrated through the Simulation editor. 

Fig. 3. Example of a set-up with the Batch Simulation editor 
where parameter values and boundary conditions are varied for 
three simulations. 
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Table 6. Summary of the major uncertainty categories from hy-
draulic models. 

Uncertainty category Examples 

Model dimension Simplification of the hydrodynamic processes 

Geometric description Underlying terrain data 

Configuration of cross-sections (how many, 
where they are located) 

Hydraulic structure representation (bridges, cul-
verts, embankments) 

Channel roughness parameter Manning’s number M 

Spatial and temporal variation 

 

depends upon the quality on the underlying topographic data as well as 
how the modeller configures the cross-sections. (Merwade et al., 2008) 

There have been studies showing one-dimensional models performing 
equally well as two-dimensional when it comes to simulating flood inun-
dation extents, given uncertainties in inflow, topography and validation 
data (Asselman, 2009). But again, the suitability of the one-dimensional 
assumption is depending on the area of study. 

2.6. Flood extent delineation through geospatial analysis 
As mentioned in Chapter 2.5.2, cross-sections for the hydraulic model are 
extracted from a terrain data set. Terrain data is thereafter used again in 
the flood inundation map creation process when the one-dimensional wa-
ter level simulations are turned into horizontal flood inundation extents. 
The quality of the terrain data used for the mapping step plays a significant 
role in the overall process. (Merwade et al., 2008) 

All conversions and interpolation methods will introduce uncertainty to a 
varying degree. One example is the interpolation of the raw terrain data to 
a surface, which can be done with various techniques and give various 
results. The overall variations might be small, but can be significant for 
the hydraulic modelling result if the terrain is very heterogeneous. How-
ever, a flat terrain means larger uncertainties in the horizontal flood delin-
eation extent, since a small height error can lead to a large horizontal ex-
tent variation. (Merwade et al., 2008; Brandt, 2009) 

The cross-section water levels are often first interpolated to a TIN surface 
and then to a raster water surface, in order to perform raster operations 
and delineate the flood extent. These interpolations are however not very 
significant, since the water surface is assumed to be linear. But naturally, a 
coarser raster introduce a higher uncertainty since each pixel is only given 
one height value. (Merwade et al., 2008)  

Depending on the purpose of the flood inundation mapping, a digital ter-
rain resolution of three to four meters is suggested to be sufficient for 
most cases. If the terrain is very flat or if there are high demands on the 
maps reliability, a resolution of less than one meter should be used. 
(Brandt, 2009) 

2.7. Uncertainty estimation methods in modelling 
There exists a wide range of techniques for uncertainty estimation in en-
vironmental modelling. Long, there have been a lack of a “code of prac-
tice” as a guide in uncertainty analysis in hydraulic modelling (Merwade et 
al., 2008). However, there have been contributions to this in recent years. 
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Beven et al. (2011) provided a framework for assessing uncertainty in flu-
vial flood risk mapping and Hall and Solomatine (2008) provided a frame-
work for uncertainty analysis in flood risk management decisions. 

The uncertainty estimation methods and related topics judged to be rele-
vant for this project are described below. See e.g. Beven (2008) or 
Hall (2008) for more complete overviews. 

 Forward uncertainty analysis and sensitivity analysis 

So called forward uncertainty analysis is performed on models that are 
required to make predictions without available data for calibration. Rea-
sons for this can for example be lack of historical data or that predictions 
on an uncertain future are to be made. In these cases, the model results 
and the uncertainty estimates are completely depending on the assump-
tions made by the modeller. (Beven, 2008) 

Sensitivity analysis is connected to forward uncertainty analysis in the 
sense that both explore the model space. In order for the modeller to con-
centrate the effort on the assumptions of the most significant parameters, 
a sensitivity analysis is particularly useful for models without historical 
data. Sensitivity analysis is an assessment how sensitive the results are to 
individual parameters and/or parameter combinations. (Beven, 2008) 

Monte Carlo 

Monte Carlo analysis is a method for sampling the parameter space 
through a repetitive model evaluation. By assigning posterior distributions 
for selected model parameters, the model can be run for each random 
parameter sample set and a correlating distributions of the model results 
can be found (Fig. 4). Hence, this method is typically performed on un-
certainties that can be expressed as probabilities. (Juston, 2012) 

When sampling the variables, co-variation of parameters should be in-
cluded if possible. Choices around the parameter ranges and distributions 
can be subjective and should be made explicit. If no information on the 
distribution is known, a uniform distribution within the assumed range is 
often used. For high dimensional parameter spaces, the number of re-
quired iterations can become very high, which can be computationally de-
manding. (Hall, 2008) 

Scenario analysis 

One way of dealing with uncertainties that cannot be expressed as chance, 
odds or probabilities is to perform scenario modelling. Use of scenarios 
of these types of boundary conditions is a common feature of both for-
ward uncertainty analysis and sensitivity analysis. The modelling results are 

Fig. 4. Sketch of a typical 
Monte Carlo set-up. The 
probability density func-
tions for three parameters 
are used to draw samples 
from, the model is run 
many times and a proba-
bility density function of 
the output is obtained. 
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in these cases entirely conditional on the choice of scenarios, so again it 
becomes crucial to state the assumptions when presenting the results. 
(Beven, 2008) 

 Inverse uncertainty analysis and calibration 

Inverse uncertainty estimation techniques are possible to perform when 
historical data is available. Model calibration through historic observations 
can be used to add faith to the model predictions while also constrain the 
uncertainty estimates. In hydraulic model calibrations, it is often the 
roughness coefficient parameter that is adjusted to historic water level and 
discharge measurements. (Beven, 2008; Asselman, 2009) 

Residual errors and likelihood functions 

A residual error (Eq. 4) is the net difference between an observed and 
simulated model response, deviating from observation error and/or sim-
ulation error (Juston, 2012). 

 ,i i iO M I       Eq. 4 

where 

  = set of residuals for i observations 

Oi = data observations 

Mi = model output with model parameters  and input data I 

 

It can be difficult, if not impossible, to find the relative contributions from 
different model errors, uncertainties, inadequacies of data to this lone er-
ror indicator. A likelihood function in environmental modelling use the 
information in a residual error series in guiding model parameter estima-
tions. (Juston, 2012) 

Likelihood functions can be characterised as formal or informal, with the 
difference that a formal function is based on an assumed statistical error 
model whereas informal functions are not. A statistical error model might 
for example assume the residuals to be independent and normally distrib-
uted. These type of assumptions of the nature of the errors have however 
been suggested to not typically be justifiable in hydrologic modelling. Root 
Mean Square Error (RMSE) is an example of a simple informal function 
that is often used for evaluating models in calibration. (Liu et al., 2009; 
Juston, 2012) 

2

1

( )
n

i

iRMSE
n





   Eq. 5 

 

where 

n = total number of observations i 

(Juston, 2012) 

 

Limits of acceptability 

Informal likelihood functions have been criticised in some modelling ap-
plications of being too subjective, in the sense of using some informal 
likelihood measure and subjectively choosing a threshold for when the 
model is considered to be acceptable or not. A Limits of Acceptability 
(LOA) approach have been proposed with the aim to mitigate this. 
(Juston, 2012) 
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The LOA approach suggests that the acceptable range for residuals should 
be set by analysing uncertainties in observation and input data. It then 
becomes clear if the model output is at least within the observational ac-
curacy range, which is suggested to be a good starting point for evaluating 
whether or not a model is behavioural or not. The LOA approach was 
introduced by Beven (2006) in the equifinality thesis manifesto. (Beven, 
2006; Liu et al., 2009) 

Overparametrisation 

When trying to calibrate parameter values on more parameters than can 
be supported by the available calibration data, the problem of overpara-
metrisation occurs. As the models have become more complex, this is a 
common issue since the models have a high degree of freedom, and alt-
hough it is possible to find one good fit to the observations after a cali-
bration, the overparametrisation means that it is not certain that this is the 
only model that would give a good fit. When dealing with this, the aim is 
often to try to decrease the dimensionality of the model space, while at the 
same time capture the local characteristics of the system. (Beven, 2008) 

Equifinality and GLUE 

The equifinality thesis acknowledges the possibility that there may exist 
multiple models (model structures and/or parameter sets) that all are able 
to represent the modelled system in an acceptable manner, as opposed to 
the optimality approach when one optimal model is searched. Equifinality 
is the base of the Generalized Likelihood Uncertainty Estimation (GLUE) 
method, an extension from the Monte Carlo calibration method that inte-
grates uncertainty estimation. The method was first suggested by Beven 
and Binley (1992) and aims providing a more reasonable and robust rep-
resentation of the system by keeping all models judged to be behavioural 
for consideration. (Beven, 2006) 

Based on how the different models performs during the calibration, they 
will be given a likelihood score based on a chosen likelihood measure. The 
models considered to be non-behavioural are hence given a likelihood of 
zero. The set of models can then represent the uncertainty through poste-
rior parameter densities and output prediction bounds. More or less sub-
jective decisions regarding  

- likelihood measure choice 

- acceptance criteria 

- choice of parameter and/or input data to be considered as uncertain 

- sampling ranges 

need to be taken and should be made explicit. (Beven and Binley, 1992; 
Beven, 2006) 

2.8. Towards a probabilistic flood map approach 
As mentioned in Chapter 1.1, the idea of probabilistic flood inundation 
maps have been introduced (e.g. Pappenberger et al. (2005), Smemoe et 
al. (2007), Merwade et al. (2008), Di Baldassarre et al. (2010), Beven et al. 
(2011)). The basic idea is that the probabilistic maps present the flood 
hazard as a probability of inundation instead of one crisp inundation line. 
This enables visualisation of how the assessed uncertainties propagate to 
the flood inundation extent. One-dimensional hydraulic models are typi-
cally used in the process of creating probabilistic flood inundation maps, 
since the simulation running time needs to be relatively short. 

It has been argued that the presentation of flood hazards as probabilities 
are a more suitable representation for the subject than deterministic maps, 
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since a crisp line can give a misleading impression of certainty. As Di Bal-
dassarre et al. (2010) concludes, for deterministic maps to be scientifically 
justified, they should be based on the most physically-realistic models 
available. However, these types of complex models (e.g. two-dimensional 
or even three-dimensional hydraulic models) require more calibration data 
than is often available. And in those cases where data is available, uncer-
tainties like the magnitude of a 100-year flood will still prevail. Hence is 
has been concluded that probabilistic flood inundation maps would be 
more appropriate, and there is a need for formation and development of 
clear methodologies and applications. (Di Baldassarre et al., 2010) 

3. STUDY AREA ,  DATA,  MODELS AND TOOLS  

The following chapter describes the area under study, available models 
and data. 

3.1. Area description 
Voxnan is a 190 km long river in central Sweden. Belonging to the catch-
ment Ljusnan, it starts from the lake Siksjön in Härjedalen and falls into 
the lake Varpen in Hälsingland. Being the largest tributary flow to the river 
Ljusnan, Voxnan has an average discharge of 39 m3/s at its outlet point. 
The drainage area of Voxnan is about 3710 km2 and its main land use and 
soil type is forest and glacial till respectively. With 85 dams registered it 
has a degree of regulation of 14 %, with the largest hydro power plant 
Alfta KRV (32.4 MW, 110 GWh/year). (Vattenregleringsföretagen, 2003; 
SMHI, 2015) 

A 120 km long meandering part of upper Voxnan is a nature reserve, hold-
ing important nature values including a species-rich biota and recreational 
values connected to outdoor activities. This part of the river is almost 
completely unaffected by river regulations, making it the longest unregu-
lated river reach in the county of Gävleborg. (Länsstyrelsen Gävleborg, 
1990) 

The upper study boundary is the part of Voxnan where the nature reserve 
ends, near Voxnabruk at the stream discharge gauge station Nybro (Fig. 5). 
The river turns east downstream of Nybro and flows through the cities of 
Edsbyn and Alfta. The lower study boundary was set to be the dam in 
Runemo, downstream of Alfta and the lake Norrsjön. Hence, a 62 km long 
part of Voxnan is included in this study. 

Voxnan is relatively narrow and shallow, and in combination with being 
relatively un-regulated in its upstream part, it is easily flooded in periods 

Fig. 5. Location of the study area in Sweden. The thick blue line 
represents the reach of Voxnan included in the study; from Ny-
bro, past Edsbyn and Alfta, ending at Runemo dam. 
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of high precipitation and/or snowmelt. Historically there has occurred ap-
proximately one flood event every fifth year. The most severe flood event 
in modern times occurred in September 1985, when water bearing reached 
a value of ten times the annual average and the water level at the island in 
Edsbyn was three meters higher than normal. (Bergström, 1994; 
Ovanåkers kommun, 2014) 

Edsbyn is one of the 18 geographical areas in Sweden that in 2011 was 
identified by MSB as having significant flood risk, during the first imple-
mentation step of the European Commission’s Flood Directive. It was 
reported that 435 habitants and 487 employees were situated within the 
area for a 100-year flood. It was also concluded that a flood could poten-
tially reach areas of environmentally hazardous nature and a Natura 2000 
nature protection area (MSB, 2011). 

3.2. Digital Terrain Model 
The elevation data used is the GSD-Elevation data, Grid 2+ from 
Lantmäteriet (Fig. 6). The elevation grid is based on the elevation points 
from aerial laser scanning that has been classified as ground and water. 
The grid has a resolution of 2 meters and is reported to have an average 
absolute elevation accuracy of 0.05 meters for open, hard and level sur-
faces. For steeply sloping terrain, the elevation accuracy is generally lower. 
Overall, the average elevation error is reported to be smaller than 0.5 me-
ters. (Lantmäteriet, 2015) 

The terrain grid was based on and delivered in the official national coor-
dinate systems SWEREF99 TM in plane and RH2000 in height 
(Lantmäteriet, 2015). These coordinate systems are used throughout this 
project as well. 

3.3. Tools and maps 
The used software versions with references are listed in below. 

- ArcMap 10.1 (ESRI, 2012) with license from KTH Royal Institute of 
Technology. 

- MATLAB R2014b (The MathWorks, 2014) with license from KTH 
Royal Institute of Technology. 

- MIKE Zero 2014, for running MIKE 11 (DHI, 2014c) with license 
from DHI Sverige AB. 

Lantmäteriet has copyright of all the background maps used in this report. 

Fig. 6. Digital terrain model Grid2+ of the study area. The meas-
uring stations Nybro and Alfta KRV for the streamflow data are 
marked. (Lantmäteriet, 2009) 

Nybro 

Alfta KRV 

440 m 

77 m 
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3.4.  Hydraulic model 
A one-dimensional MIKE 11 hydraulic model of the chosen part of 
Voxnan was made available from MSB. The delivered model from 2013 
originally covers a 97 km long part of Voxnan and was an update of a 
previous hydraulic model from 1999 to the new National Elevation 
Model. The update was performed by DHI Sverige AB upon request from 
MSB. (MSB, 2013) 

The 62 km long part of the hydraulic model included in this study consists 
of 208 cross-sections (Fig. 7). The geometric description of the cross-sec-
tions have been based on the National Elevation Model with 2 meters 
resolution described in Chapter 3.2. The bathymetry for the river is based 
on the estimations made for the 1999 hydraulic model. The estimations 
are reported to have been based on the average water surface profile from 
a national waterfall record. Some bottom profile information was also 
given by bridge blue prints and a municipal measurements around Edsbyn 
in 2013. A number of physical structures in form of dams, culverts, bridges 
and weirs are also included in the model. (Räddningsverket, 1999; MSB, 
2013) 

Fig. 8. The most upstream cross-section in the model. The black 
line is showing the geometric description, plotted against the left 
y-axis. The blue line is showing the resistance distribution, plot-
ted against the right y-axis. 

Fig. 7. Cross-section configuration of the hydraulic model. 

Nybro 

Alfta KRV 

Edsbyn 
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Table 7. Metadata on the historic daily streamflow records. MHW 
means the mean of the yearly maximum values. 

  Nybro Alfta KRV 

SMHI station number 740 1890 

Coordinates in SWEREF 99 X 528142, 
Y 6803319 

X 553514, 
Y 6801703 

Catchment area 2250.9 km2 3130.4 km2 

Sample mean 25.6 m3/s 32.4 m3/s 

Sample max 305 m3/s 361 m3/s 

Type Regulated discharge Regulated discharge 

Measured regulated 
MHQ/Calculated natural MHQ 

93/106 120/133 

 

The resistance description is according to Manning’s formula. A factor of 
1.7 had been set to describe the relative resistance between the river bed 
and flood plain (Fig. 8) in every cross-section, manually marked at every 
cross-section. This means that the resistance in the flood plain is con-
stantly 70 % higher than the defined roughness coefficient M for the river 
bed. 

The hydraulic calculations are based on a fully dynamic wave approxima-
tion. Important assumptions are that no dam or bridge failures occur, the 
water is clean and no discharge goes to the power turbines at the hydroe-
lectric power plants. No consideration of the effect of wind or waves have 
been taken into account. (MSB, 2013) 

3.5. Historic streamflow data 
Measured daily streamflow data for Nybro and Alfta KRV (Table 7) from 
1 January 1960 to 31 December 2013 was used, provided by SMHI (2015). 
The measuring station in Nybro is a water level gauge and Alfta is a hy-
dropower dam station. Discharge is estimated from water level measure-
ments through a rating curve, giving the relation between discharge and 
water level. (Chow, 1988; SMHI, 2015) 

Both stations are measuring a regulated streamflow, which can affect the 
magnitude of the streamflow in the event of high discharge. Based on cal-
culations by SMHI, the highest flows are estimated to be 14 % higher for 
Nybro and 11 % higher for Alfta in natural state compared to the regulated 
measurements (Table 7). 

3.6. Climate change projections of streamflow 
Climate change projections for annual maximum streamflow at Nybro and 
Alfta KRV was provided by SMHI (Table 8, Fig. 9). The used data was 
projections from 2059 to 2098. The climate data consists of projections 
from nine GCMs and the two GHG concentration scenarios RCP 4.5 and 
RCP 8.5. All projections are based on the RCM RCA4, the DBS method 
and the hydrological model HBV-Sverige. (Sjökvist, 2015) 

Projections have shown a warmer climate in Gävleborg County is ex-
pected to lead to earlier and smaller spring floods, due to less snow cover. 
The discharge is expected to increase during winter and stay approximately 
the same during summer and autumn. Due to this, the magnitude of 100-
year flood is expected to stay the same or even decrease. (SGI, 2010; 
Sjökvist, 2015) 
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Table 8. Statistics on the annual maximum series from the his-
toric streamflow records (1960-2013) and the climate projections 
for two GHG concentration scenarios (2059-2098). 

  Nybro Alfta KRV 

His-
toric 

RCP 
4.5 

RCP 
8.5 

His-
toric 

RCP 
4.5 

RCP 
8.5 

Minimum [m3/s] 29 28 36 41 35 46 

Maximum [m3/s] 305 227 215 361 296 318 

Mean [m3/s] 94 90 90 118 118 117 

Standard deviation [m3/s] 55 32 30 68 43 40 

 
  

Fig. 9. Climate change 
projected annual maxi-
mum streamflow series 
for Nybro and Alfta KRV, 
showing the time period 
of 2019 to 2098. The col-
oured thin lines are for 
the nine different GCMs, 
the thick black graphs 
show the average be-
tween the ensembles of 
GCMs. 
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Table 9. Measured water levels from the flood event September 
1985 (Ovanåkers kommun, 2015, DHI Sverige AB, 2015). The lo-
cations of the different calibration points can be seen in Fig. 10. 

Calibration 
point number, i 

Location description Measured water level [m] 

1 Lake Viksjön 155.85 

2 Ovanåker 156.45 

3 Ovanåker 156.55 

4 Ullungen (Edsbyn) 157.55 

5 Bridge over stream Lillån (Edsbyn) 157.59 

6 Gårdstjärn (Edsbyn)  166.99 

7 Nybro 195 

 

3.7. Calibration data 
Calibration data was given by Ovanåker municipality and DHI Sverige AB 
for the flood event September 1985. Water level measurements at seven 
locations (Table 9, Fig. 10) were given, covering different locations be-
tween Nybro and the lake Viksjön. An aerial photography over the lake 
Norrsjön, downstream of Alfta, was also used (Fig. 11).  

Streamflow data for the flood event was available from the historic stream-
flow records described in Chapter 3.5; 305 m3/s at Nybro (1985-09-10) 
and 360 m3/s at Alfta KRV (1985-09-11). (Ovanåkers kommun, 2014; 
DHI Sverige AB, 2015; Ovanåkers kommun, 2015; SMHI, 2015) 

 

Cal.pt. 1 

Cal.pt. 2 

Cal.pt. 3 

Cal.pt. 4 

Cal.pt. 5 

Cal.pt. 6 

Cal.pt. 7 

Fig. 10. An overview of the 
river network in the hydraulic 
model and the locations from 
which calibration data in 
form of water levels from Sep-
tember 1985 were available, 
here called calibration points. 
The dashed lines and the M-
coefficients show how the 
roughness coefficient was di-
vided spatially in the model, 
described in Chapter 4.3.3. 
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4. METHODOLOGY  

This chapter aims at giving an account for the methodologies used for the 
different steps throughout the project. 

4.1. Choice of uncertainties and uncertainty assessment methods 
The first chosen variable to include in this uncertainty assessment was the 
magnitude of a 100-year flood in present climate and future climate. The 
reason for this choice was that uncertainty from frequency analysis has 
shown to play a large part for the overall uncertainty (Apel et al., 2008; 
Beven et al., 2011). This choice also allowed for taking the climate change 
aspect in consideration. The choice of return period 100 years was made 
on the fact that this is a common return period in flood inundation maps 
and in physical planning. It was also judged to be appropriate with con-
sideration of the length of available time series for the frequency analysis.  

The quite extensive available calibration data provided the right circum-
stances for also including calibration uncertainty estimation method in the 
analysis. This lead to the choice of also including the uncertainty of the 
spatially varying roughness coefficient Manning’s number M. This choice 
was based on that it is most often this parameter that is calibrated when a 
hydraulic model is to be set up before a flood inundation mapping. It is 
also consistent with how the hydraulic model had been calibrated by MSB 
(2013). 

The choices of uncertainty assessment methods were based on a decision 
tree (Fig. 12) given by Beven (2008). Quantitative calibration data of meas-
ured water levels was available for model evaluation, which lead to a choice 
of GLUE method calibration for the estimation of the roughness coeffi-
cient uncertainty.  

Data for model evaluation was however not available for the 100-year 
flood uncertainty. The uncertainty from frequency analysis could be de-
fined statistically, which lead to a choice of Monte Carlo method. This also 
gave the opportunity to combine the accepted models (parameter sets) 
from the GLUE calibration. Furthermore, this would give an opportunity 
to perform Monte Carlo analysis with MIKE 11 as well as producing prob-
abilistic flood inundation maps with ArcMap.  

 

 

Fig. 11. Aerial photography over Norrsjön Runemo from the flood 
event September 1985 (Ovanåkers kommun, 2014). The arrows in-
dicate the area from comparison with the digital terrain model 
could give an estimate of the water level. 



Mapping Uncertainties – A case study on a hydraulic model of the river Voxnan 

 

 25 

The uncertainty regarding the different scenarios and GCMs could not be 
defined statistically, leading to a Scenario analysis method. The common 
multi-model (ensemble of projections from different GCMs) and multi-
scenario (different GHG concentration scenarios) approach for represent-
ing climate change uncertainty was therefore judged to be applicable also 
in this case. 

4.2. Methodological overview 
The uncertainty assessment was decided to, with Monte Carlo analysis, 
result in probability distributions of water levels at all cross-sections as 
well as a probabilistic flood inundation map (Fig. 13). This was to be com-
bined with a scenario analysis, by performing the Monte Carlo analysis for 
five different scenarios (Table 10).  

Scenario A, Scenario B and Scenario C include uncertainty of discharge 
and roughness coefficient for different discharge conditions: in present 
climate, future RCP 4.5 climate and future RCP 8.5 climate respectively. 
Scenario I only includes the discharge uncertainty and Scenario II only 
includes the roughness coefficient uncertainty. 

 

 

Fig. 12. Decision tree for choosing uncertainty estimation method 
provided by Beven (2008). Only the parts of the decision tree for 
this project are included. 
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Table 10. Overview of the five scenarios used in the Monte Carlo 
analyses after estimations of uncertainty quantifications had been 
conducted. 

  Discharge Roughness coefficient 

Varied/ 
constant 

Description Varied/ 

constant 

Description 

Scenario A Varied.  Samples from 
present climate 
frequency analy-
sis. 

Varied.  Sampled models 
from GLUE calibra-
tion 

Scenario B Varied. 

 

Samples from fu-
ture climate fre-
quency analysis, 
RCP 4.5. 

Varied. Sampled models 
from GLUE calibra-
tion 

Scenario C Varied. 

 

Samples from fu-
ture climate fre-
quency analysis, 
RCP 8.5. 

Varied.  Sampled models 
from GLUE calibra-
tion 

Scenario I Varied.  Samples from 
present climate 
frequency analy-
sis. 

Constant Manually calibrated 
model  

Scenario II Constant Q100 in 2098 ac-
cording to MSB 
(2013). 

Varied. Sampled models 
from GLUE calibra-
tion 

Fig. 13. Overview of the uncertainty estimation process con-
ducted for each scenario. 
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4.3. Hydraulic model adjustments 
The adjustments made on the hydraulic model provided by MSB is de-
scribed in this section. 

 Boundary conditions 

Seven boundary conditions were specified for the hydraulic model 
(Fig. 14, Table 11). The upper boundary condition was the 100-year flood 
sample for Nybro. The four joining tributary flows between Nybro and 
Alfta KRV were area-scaled so that the simulated hydrologic load at Alfta 
KRV would equal the sampled magnitude of the 100-year flood at Alfta 
KRV (Eq. 6).  

100
i i i

Q
Q qA A

A

 
   

 
   Eq. 6 

where 

Qi = area-scaled tributary flow [L3T-1] 

q = specific discharge [LT-1] 

Ai = area of sub-catchment of tributary flow [L2] 

∆Q100 = difference between samples of 100-year flood in Nybro and 
Alfta KRV [L3T-1] 

∆A = area difference between catchment at Nybro and catchment at 
Alfta KRV [L2] 

 

Hence, it was assumed that the specific discharge was the same for all sub-
catchments. The locations of the four tributary flow boundary conditions 
were kept as it was in the delivered hydraulic model by MSB (2013). The 
areas for the different sub-catchments were provided by SMHI (2015).  

Table 11. Boundary conditions of the hydraulic model. The flow 
boundary conditions were all scaled according to the sampled 
values for Nybro and Alfta KRV. The water level was kept con-
stant for all runs. 

Location Type Value 

Nybro Upper boundary condition, 
open 

Q100Nybro 

Between Nybro and Vallhaga Distributed source 10.7 % of ∆Q100 

Älmån Point source 7.5 % of ∆Q100 

Ullungsån Point source 22.5 % of ∆Q100 

Fröstebån Point source 59.3 % of ∆Q100 

Norrsjön Point source 10 % of Q100Nybro 

Downstream of Runemo dam Lower boundary condition, 
open 

+ 89.4 m  

Fig. 14. Locations of the boundary conditions in the hydraulic 
model. 

Nybro 

Betw. Nybro and Vallhaga 

Älmån 

Ullungsån 

Frösteboån 

Norrsjön 

Runemo 
dam 
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The tributary flow in Norrsjön was scaled with relation to the magnitude 
of the sampled value at Alfta KRV. For finding a suitable scaling factor, a 
simulation was performed with the same hydrologic load as was measured 
from calibration flood event 1985. The simulated water level for Norrsjön 
was then compared with the estimated calibration water level from com-
paring the aerial photography (Fig. 11) with the digital terrain model. The 
scaling factor of 10 % could be estimated from this type of “pre-calibra-
tion”. This value also agreed with the relative catchment sizes between 
Alfta KRV and Runemo dam. 

The river reach right downstream of Runemo dam was chosen to be the 
downstream boundary of the model. This enabled the downstream 
boundary condition of the model to be described as a constant water level, 
with the dam decreasing the risk of affecting the water level upstream. The 
water level boundary condition was estimated from the digital terrain 
model and chosen so that it did not affect the upstream water levels. 

The discharge boundary conditions were all set to be constant, in contrast 
to using time varying hydrographs. This was chosen since it was not the 
temporal variation of the flood wave that was of interest here, but rather 
the steady state solutions from many different runs. The use of hydro-
graphs versus constant values is an uncertainty in itself, beyond the scope 
of this project. See e.g. Thurin (2011) for a comparison between these two 
types of boundary conditions. 

 Simulation period and initial conditions 

The simulation period was set to six days and the simulation time step to 
30 seconds. This was sufficient for guaranteeing a steady state solution of 
the water levels as well as numerical stability. The computation time was 
approximately ten seconds per simulation, which was judged to be ac-
ceptable for the Monte Carlo runs.  

The initial conditions of the water levels at all computation points were 
set to be based on a so-called hot start-file, which is a result file containing 
water levels from a previous simulation. A steady state solution is typically 
reached faster if the initial conditions are lower water levels than the steady 
state levels, why a simulation with a hydrologic load just below the lowest 
Monte Carlo samples was performed to acquire a suitable hot start-file. 

 Spatial variation of the roughness coefficient parameter 

The roughness coefficient Manning’s number M was varied spatially by 
specifying eight different parameter values (Table 12). The set-up was 
mainly based on the availability of calibration data of measured water lev-
els (Fig. 10). The aim was to only vary the parameter values between the 
points where calibration data was available, keeping the degree of freedom 
low. The nature of the river reach was also taken into consideration. 

The parameter M0 was not included in the Monte Carlo runs, since the 
dams at Alfta KRV prevents it from having any effect the water levels at 
any of the calibration points. M1 was set to apply for the entire lake 
Viksjön and M5 was applied for the entire blocky part between Öster-
forsen dam and lake Ullungen.  

The rest of the parameter values (M2, M3, M4, M6 and M7) was specified 
pointwise at calibration points. MIKE 11 linearly interpolates the rough-
ness coefficient values between the user-specified values. 
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Table 12. The spatial variation of Manning’s number M. The lo-
cation of the different calibration points can be seen in Fig. 10. 

  Description 

M0 The entire part of the hydraulic model downstream of Alfta KRV. Does not af-
fect any of the calibration points and are excluded from the Monte Carlo anal-
yses. Value kept to be 20, which was the same as was given by MSB (2013). 

M1 Entire Viksjön, for calibration of cal.pt. 1. 

M2 Located at cal.pt 2, for calibration of cal.pt 2. 

M3 Located at cal.pt 3, for calibration of cal.pt.3.  

M4 Located at cal.pt.4, for calibration of cal.pt.4. Also affects cal.pt. 5. The entire 
channel running from the energy plant is also given the value M4. 

M5 Blocky part downstream of Österforsen dam and upstream of lake Ullungen. 
Has a small influence on cal.pt. 5 and cal.pt.4. 

 

4.4. Performing Monte Carlo analysis with MIKE 11 
The Monte Carlo analyses with MIKE 11 could be conducted by using 
MATLAB’s ability to read, write and save text files (Fig. 15). Based on a 
template from Ola Nordblom at DHI Sverige AB, a MATLAB script file 
was constructed that could save boundary condition files and parameter 
files for every Monte Carlo sample. The script in MATLAB also con-
nected all these boundary condition files and parameter files to a batch 
file.  

The batch file was thereafter run within the Batch Simulation editor in 
MIKE 11, carrying out the specified number of iterations of hydraulic 
simulations. The steady state solution from every iteration was then ex-
ported from the binary result files. A MS-DOS program res11read.exe was 
provided by DHI for converting all binary result files to text files. The text 
files were finally imported to one table for each scenario, with one row for 
each cross-section and one column for each iteration.  

4.5. Frequency analysis 

 Data screening 

The daily streamflow records for Alfta and Nybro1 from 1960 to 2013 
were turned into Annual Maximum Series with 54 records. The AMSs 
were screened according to the basic procedure by Dahmen and Hall 
(1990), in order to verify their stationarity, consistency and homogeneity 
prior to the frequency analysis. This includes: 

- Plot the data for a visual inspection, so that obvious trends or disconti-
nuities can be detected (Fig. 16). 

- Test the absence of trend with Spearman’s rank-correlation method. 

- Test the stability of variance with the F-test. 

- Test the stability of mean with the t-test. 

                                                      
1 From Nybro there are measured streamflow data available for 1913-1925 and 
1940-2013, but an AMS including all these years did not hold the stability of var-
iance test. Furthermore, it was decided that an equally long time series as the one 
from Alfta KRV would result in more similar confidence intervals for the two 
stations (since the standard error of estimate does depend on the number of ob-
servations, meaning that a shorter time series leads to a wider confidence interval). 
Using the whole time series for Nybro would lead to a confidence interval of 
roughly half the size of Alfta, which could be problematic since the matching of 
the sampled values are through the cumulative distribution probability from the 
confidence interval. 
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Fig. 15. Overview of how the Monte Carlo runs were conducted, 
with the input of samples of selected parameters and boundary 
conditions. The output table could then be imported to ArcMap 
for geospatial analysis. 

Fig. 16. Hydrographs and histograms of the two annual maxi-
mum series for Nybro and Alfta KRV 1960 – 2013. No evident 
signs of linear trend, periodic trend, change in variance or change 
in average can be detected visually from the hydrograph. The his-
tograms show that the data is positively skewed. 
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Table 13. Statistics on the 54-year Annual Maximum Series for 
Nybro and Alfta KRV between the years 1960 to 2013, from SMHI 
(2015). The confidence interval used for the Student’s t-distribu-
tion and Fisher’s F-distribution is the customary value of 95 % 
(Dahmen and Hall, 1990). 

  Nybro Alfta KRV 

Minimum [m3/s] 29.0 40.6 

Maximum [m3/s] 305 361 

Mean [m3/s] 93.5 117.6 

Standard deviation [m3/s] 54.5 67.6 

Skewness 1.82 2.02 

Absence of trend test statistic, tt (-2.0 < tt < 2.0) -0.51 0.10 

Stability of variance test statistic, Ft (0.441 < Ft < 2.27) 2.15 1.61 

Stability of mean test statistic, tt (-2.0 < tt < 2.0) 0.67 0.75 

 

The AMSs were judged to pass the tests since the test statistics were lo-
cated within their corresponding confidence intervals, with the customary 
significance level of two-tailed 5 % (Table 13). The time series were there-
fore judged to be valid to use in the frequency analysis. For more details 
on these data screening procedures, see Dahmen and Hall (1990).  

 Calculation of 100-year flood with confidence intervals 

The AMSs for Nybro and Alfta KRV was fitted to the three probability 
distribution functions Gumbel, lognormal and Log-Pearson Type III. 
Methods of fit were with help of frequency factors for Gumbel and Log-
Pearson Type III, while methods of moments was used for the lognormal 
distribution.  

The magnitude of the 100-year flood was calculated for the three distribu-
tions, with corresponding 95 % confidence intervals (Table 14). The 
standard error of estimate was used for finding the confidence intervals 
for Gumbel and Log-Pearson Type III and the calculation for lognormal 
distribution followed a standard routine suggested by U.S. Water Re-
sources Council Method. These methodology choices was based on equa-
tions and recommendations given by Chow (1988). The equations for 
Gumbel calculations are given below. 

 

Magnitude of 100-year flood: 

6
0.5772 ln ln

1
T

T
K

T

   
        

  Eq. 7 

T Tx x K s     Eq. 8 

where 

xT = magnitude of event with return period T 

KT = frequency factor for return period T 

s = standard deviation of the AMS 

x  = arithmetic mean of the AMS 
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Table 14. Overview of how the 100-year flood magnitudes and 
their respective confidence intervals were calculated. The 
method choices are based on recommendations by Chow (1988). 

Probability distribution 
function 

Method of fit Method of finding confi-
dence interval 

Gumbel Frequency factors Standard error of estimate  

Lognormal Method of moments According to Bulletin 17B, 
Appendix 9  

Log-Pearson Type III Frequency factors According to Bulletin 17B, 
Appendix 9 

 

Confidence interval: 

1/2

21
(1 1.1396 1.1000 )e T Ts K K s

n

 
   
 

  Eq. 9 

Interval T e ax s z     Eq. 10 

where 

se = standard error of estimate 

n = size of series 

zα = standard normal variable for significance level α (1.96 for a 95 % 
confidence interval)  

 

The magnitude of the 100-year flood with its 95 % confidence interval 
from the Gumbel distribution was chosen to be used in the rest of the 
uncertainty assessment. Partly because it gave a similar magnitude of the 
100-year flood as that MSB had used, and partly because it is also the type 
that SMHI use. 

The observations in the AMSs were also probability plotted according to 
an empirical plotting position first proposed by Gringorten. This was done 
to compare the observations with the fitted cumulative probability distri-
butions. The magnitude of each observation was plotted against their re-
turn period as: 

1 2n a
T

m a

 



   Eq. 11 

where 

n = size of series 

m = descending rank of the observation in the series 

α = distribution dependant parameter 

(Bedient, 2008) 

 

The value for the distribution dependant parameter was given the sug-
gested value of 0.4 for when the exact distribution is not known (whereas 
0.375 is for lognormal and 0.44 is for Gumbel) (Bedient, 2008).  
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 Generating discharge samples for the scenarios 

Present climate (Scenario A and Scenario I) 

A normal probability distribution was fitted to the 95 % confidence inter-
val (Fig. 17) of the Gumbel type 100-year flood. The confidence interval 
was divided by four to get the standard deviation parameter, since about 
95 % of the values drawn from a normal distribution lies within the inter-
val of the average plus minus two standard deviations. The magnitude of 
the 100-year flood gave the mean parameter for the normal distribution. 

This normal probability distribution was hence the distribution from 
which random samples were to be drawn for the Monte Carlo analysis. 
1000 samples were considered sufficient and reasonable for the computa-
tion time of running the hydraulic model.  

The sampling was performed in MATLAB. Prior to the random sampling, 
the normal distribution were truncated at the 95 % confidence interval, 
guaranteeing that the samples would stay within these limits (as suggested 
by e.g. Beven (2008)). In order to simulate plausible situations, the samples 
for Alfta KRV were chosen to match the same cumulative probability 
value as the corresponding Nybro value had. 

Future climate (Scenario B and Scenario C) 

The sampling procedure for the future climate projections followed the 
same procedure as for the present climate. Each GHG concentration sce-
nario had nine time series of projections from nine GCM models, which 
were kept separated in this process. In other words, for each GHG con-
centration scenario and location, there were nine AMSs for which nine 
different 100-year floods with confidence intervals were calculated. 100 
samples were then drawn from each normal distribution corresponding to 
these confidence intervals. 

The samples for Nybro and Alfta KRV were also matched in a corre-
sponding way as described above. This resulted in, for each GHG con-
centration scenario, 900 random samples for both Nybro and Alfta KRV, 
representing the ensemble of GCMs. By performing the sampling proce-
dure for one GCM series at a time, the differences between the GCMs 
could be identified. 

  

Fig. 17. Sketch 
of how the con-
fidence limits 
for the 100-year 
flood was used 
to find a normal 
distribution 
from which the 
Monte Carlo 
samples were 
drawn. 
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4.6. Calibration 
Initially, a manual calibration using a simple “trial and error” method was 
performed. An optimal model was searched by adjusting M1 to M7 with 
the aim of minimising the absolute residual errors. By adjusting one pa-
rameter value at a time, starting furthest downstream with M1 and then 
going gradually upstream, was the risk of influencing already adjusted val-
ues decreased.  

The manual calibration was performed for both the range 10-50 and the 
range 15-35 for the Manning’s number M. The narrower interval of Man-
ning is more representable to the values often used in flood inundation 
models (Chow, 1959), and is decreasing the risk of over- and underesti-
mating water levels on the locations where there are long distances to cal-
ibration points. 

After the manual calibration, a Monte Carlo calibration following the 
GLUE methodology was performed. 4000 parameter sets (combinations 
of M1 to M7) were sampled from a uniform distribution of the chosen 
parameter range 10 to 50. The samples were used in 4000 simulations of 
the hydraulic model. The acceptable models (combinations of M1 to M7) 
were chosen according to defined acceptance criteria’s. The GLUE cali-
bration procedure was thereafter repeated with the narrower parameter 
range 15 to 35. 

 Generating roughness parameter samples for the scenarios 

The roughness coefficient values were not to be varied in Scenario I, for 
which the manually calibrated model with the narrower range of 15 to 35 
of the Manning’s number was used.  

For the other scenarios, the accepted models from the GLUE calibration 
with the narrower range (15 to 35) was used, fulfilling the acceptance cri-
teria of all residual errors being less than 0.4 meters. The choice of ac-
ceptance criteria is subjective. This particular acceptance criteria was cho-
sen, for the sake of comparison, as it was the same as MSB used in their 
flood inundation mapping (MSB, 2013).  

The residual errors for this acceptance criteria was also within the accuracy 
of the least precise water level measurement, which was the value for Ny-
bro of having no decimal places. The acceptance criterion was hence 
within the observational accuracy to some extent, like suggested by the 
LOA approach. 

4.7. Geospatial analysis 
The flood inundation extent maps were produced with a series of geo-
processing steps in ArcMap. The shape of the cross-sections could be ex-
ported as a shape file from the Cross-section editor in MIKE 11. One 
shape file per scenario was created. The tables holding the water levels 
from all simulations was joined to their corresponding shape file, georef-
erenced by unique cross-section IDs.  

The geo-processing steps for producing the maps were set up in Model-
Builder in order to automatize the process, using the “for”-iterator 
(Fig. 18). For each simulation, the water levels of the cross-sections were 
interpolated to a TIN and then linearly interpolated to a water surface ras-
ter with the same resolution as the DEM. The flood extent could then be 
found with the raster calculator, by choosing all pixels with a water level 
higher than the DEM level. River connectivity was then assured by con-
version of the flood extent raster to polygons. The polygons intersecting 
with the river network was selected and converted back to a raster flood 
inundation map. 
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Prior to the model runs for the different scenarios, a first flood inundation 
map was created to compare with the flood inundation maps produced by 
MSB (2013), in order to detect eventual mapping flaws. As is often needed 
when flood inundation maps are produced, modifications of a few cross-
sections were required. The reach of theses cross-sections were extended, 
so that they covered the whole inundated area (Fig. 19).  

The cross-section modifications was performed at lake Vägnan in 
Ovanåker and at Alfta and lake Norrsjön. Other than this, the produced 
flood inundation map was estimated to be reasonable, so no further mod-
ifications (e.g. adding dikes or modifying the DEM) were judged to be 
necessary for the scope of this project. 

After the model in ModelBuilder had been run, for each scenario sepa-
rately, the resulting flood inundation maps were used for creating the 
probabilistic flood inundation maps according to: 

1

n

i

i

f

P
n




   Eq. 12 

where 

P = probability that the pixel will be flooded according to the simulations 

1 if flooded

0 if not flooded
i

f 




 

n = total number of simulations in the scenario 

Fig. 18. The geo-processing steps taken in ArcMap to produce 
the flood inundation maps. The iterative process is performed in 
ModelBuilder. The model was run for one scenario at a time. 
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5. RESULTS  

This chapter presents the results of the study, divided into four sub-chap-
ters. The probabilistic flood inundation maps of Scenario A, Scenario B 
and Scenario C can be found in Appendix II. 

5.1. Frequency analysis, present and future climate 
The three probability distribution functions Gumbel, lognormal and Log-
Pearson Type III are plotted with the probability plots of the records in 
the AMSs (Fig. 20). Differences between the three distribution functions 
are increasing with return period, especially for Log-Pearson Type III 
compared to the other two. The probability plotted observed records are 
within the 95 % confidence interval for the Gumbel distribution, although 
the form of the plotting position does not match any of the distribution 
functions entirely. 

Fig. 19. The cross-sections imported from MIKE 11 at the lake 
Vägnan in Ovanåker needed to be extended to prevent an incor-
rect cut in the simulated flood inundation extent. 
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The magnitude for 100-year flood with corresponding 95 % confidence 
interval was calculated for Nybro (Table 15) and Alfta KRV (Table 16) 
with frequency analysis based on historic measurements (Scenario A) as 
well as future climate change projections (Scenario B and Scenario C). For 
Scenario A, this has been calculated for Gumbel, lognormal and Log-Pear-
son III. Gumbel and lognormal give quite similar magnitudes of the 100-
year flood, lognormal giving a bit wider confidence interval. Log-Pear-
son Type III is significantly larger, both in magnitude and width of confi-
dence interval. 

The variance between the different GCMs projections is clearly showing 
when comparing the magnitude of 100-year floods and the confidence in-
tervals (Fig. 21, Fig. 22). The GCMs have different biases and also respond 
to GHG concentration in various ways. For example, the model GCM 
MOHC-HadGEM2-ES goes from giving the largest magnitudes relative to 
the other GCMs in RCP 4.5 to a much lower position in RCP 8.5. The 
opposite applies for the model MIROC-MIROC5. It is also evident that no 
confidence interval for a single GCM would cover the whole ensemble 
span of calculated 100-year floods for all scenarios. 
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Fig. 20. Loglog plots of the CDFs of Gumbel, lognormal and 
Log-Pearson Type III. The dots are measured values according 
to the plotting position. The dashed lines are the 95 percent con-
fidence interval from the Gumbel distribution. The blue arrows 
indicate the confidence interval of the 100-year flood for which 
the normal distributions were fitted. 
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Table 15. Magnitudes of the 100-year flood for Nybro, with corre-
sponding confidence intervals. 

From historic measurements from 1960-2013 

Probability distri-
bution function 

Q100 [m3/s] 
95 % confidence interval of 

Q100 

Gumbel (used in 
Scenario A) 

264 [207, 321] 

Lognormal 262 [209, 357] 

Log-Pear-
son Type III 

314 [245, 444] 

From climate change projections for 2059-2098 

Global Climate 
Model 

Scenario B, RCP 4.5  

(all Gumbel) 

Scenario C, RCP 8.5  

(all Gumbel) 

Q100 
[m3/s] 

95 % confi-
dence interval 

of Q100 

Q100  

[m3/s] 

95 % confi-
dence interval 

of Q100 

CCCma-
CanESM2  

236 [185, 286] 206 [166, 246] 

CNRM-
CERFACS-
CNRM-CM5 

155 [128, 183] 155 [128, 182] 

ICHEC-EC-
EARTH 

184 [145, 223] 173 [139, 208] 

IPSL-IPSL-CM5A-
MR 

166 [135, 197] 154 [129, 179] 

MIROC-MIROC5 169 [138, 200] 221 [172, 270] 

MPI-M-MPI-ESM-
LR 

207 [164, 249] 199 [159, 239] 

NCC-NorESM1-M 174 [140, 208] 181 [143, 219] 

NOAA-GFDL-
GFDL-ESM2M 

155 [128, 182] 143 [119, 166] 

MOHC-
HadGEM2-ES 

224 [174, 274] 184 [148, 220] 

 

5.2. Calibration 
The manual calibration attempts with the “trial and error” method give a 
large span of effective roughness coefficient values (Table 17). M3 give no 
sign of having an upper limit when trying to reduce the residual error in 
Calibration Point 3. The calibrated values of M2 and M4 also had to be 
decreased when decreasing the parameter range, resulting in a higher 
RMSE value for this calibration attempt (Table 18). 

The calibrations following the GLUE method with 4000 simulations for 
each parameter range give slightly higher RMSE values than the manual 
calibration attempts (Table 19). The acceptance limit for the acceptance 
criteria (all absolute residual errors being smaller than a certain limit) was 
adjusted, finding that the number of accepted models decreased accord-
ingly. The ten accepted parameter sets from the GLUE calibration with a 
narrower parameter range acceptance criteria of all residual errors being 
smaller than 0.4 meter was chosen to be used for the scenario Monte Carlo 
analyses. 
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Table 16. Magnitudes of the 100-year flood for Alfta KRV, with 
corresponding confidence intervals. 

From historic measurements from 1960-2013 

Probability dis-
tribution func-

tion 
Q100 [m3/s] 

95 % confidence interval of 
Q100 

Gumbel (used in 
Scenario A) 

330 [259, 400] 

Lognormal 311 [252, 416] 

Log-Pearson 
Type III 

397 [311, 559] 

From climate change projections for 2059-2098 

Global Climate 
Model 

Scenario B, RCP 4.5  

(all Gumbel) 

Scenario C, RCP 8.5  

(all Gumbel) 

Q100 
[m3/s] 

95 % confi-
dence interval 

of Q100 

Q100 
[m3/s] 

95 % confi-
dence interval 

of Q100 

CCCma-
CanESM2  

300 [236, 364] 269 [215, 322] 

CNRM-
CERFACS-
CNRM-CM5 

206 [168, 245] 210 [173, 248] 

ICHEC-EC-
EARTH 

252 [197, 306] 237 [189, 286] 

IPSL-IPSL-
CM5A-MR 

213 [174, 252] 209 [174, 244] 

MIROC-MIROC5 240 [194, 287] 311 [240, 382] 

MPI-M-MPI-ESM-
LR 

280 [220, 340] 253 [202, 305] 

NCC-NorESM1-M 242 [193, 292] 219 [175, 264] 

NOAA-GFDL-
GFDL-ESM2M 

209 [173, 245] 192 [160, 224] 

MOHC-
HadGEM2-ES 

300 [231, 369] 235 [189, 281] 

 

During the manual calibrations, M1 was adjusted to decrease the residual 
error in Calibration Point 1, then M2 was adjusted to decrease the residual 
error in Calibration Point 2, etc. Dotty plots (Fig. 23, Fig. 24) from the 
GLUE calibrations show how these residual errors depend on the individ-
ual calibration points. The form of the dotty plots give indication of how 
strong each M value affects its calibration point. Accepted versus rejected 
models indicate if there seems to be “one optimum” value of M or not for 
calibration in this set-up. It is also visualized how e.g. M3 seems to have 
its optimum beyond the parameter range, as indicated from the manual 
calibration. 

Dotty plots from the GLUE calibrations of the individual M values against 
the total RMSE values (Fig. 25, Fig. 26) show how strongly each M value 
affects the RMSE of the entire model. M7 has the strongest individual 
effect of the overall RMSE, showing that outside the “optimum” low 
point, the RMSE increases linearly with the value of M7. 
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Fig. 21. Calculated 100-year flows for Nybro with corresponding 
95 % confidence intervals, for the individual global climate mod-
els. 
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Fig. 22. Calculated 100-year flows for Alfta KRV with correspond-
ing 95 % confidence intervals, for the individual global climate 
models. 
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Table 17. Roughness coefficient values from the manual “trial 
and error” calibrations, keeping within two different parameter 
ranges. 

  Description 

Calibration 
with parame-

ter range 

10-50 

Calibration 
with parame-

ter range 

15-35 

M1 
Entire Viksjön (from Kalvnäs upstream of 
Viksjön to Alfta KRV), for calibration of 
cal.pt. 1. 

20.7 20.7 

M2 
Located at cal.pt 2, for calibration of cal.pt 
2. 

38.7 35 

M3 
Located at cal.pt 3, for calibration of 
cal.pt.3.  

50 35 

M4 

Located at cal.pt.4, for calibration of 
cal.pt.4. Also affects cal.pt. 5. The entire 
channel running from the energy plant is 
also given the value M4. 

46 35 

M5 

Blocky part downstream of Österforsen 
dam and upstream of lake Ullungen. 
Showed to have a small influence on 
cal.pt. 5 (and 4). 

25 25 

M6 
Located at Österforsen dam, for calibration 
of cal.pt.6. 

20 20 

M7 Located at Nybro, for calibration of cal.pt. 7 20 20 

    

 
 

 

Table 18. Observed and simulated water levels from the manual 
calibration attempts. 

i 
Location calibration 

point 

Measured 
water 

level [m] 

Parameter range 
[10, 50] 

Parameter range 
[15, 35] 

Simu-
lated 
water 
level 
[m] 

i  

[m] 

Simu-
lated 
water 
level 
[m] 

i  

[m] 

1 Lake Viksjön 155.85 155.851 0.001 155.851 0.001 

2 Ovanåker 156.45 156.451 0.001 156.451 0.001 

3 Ovanåker 156.55 156.722 0.172 156.782 0.232 

4 Ullungen (Edsbyn) 157.553 157.553 0.000 157.788 0.235 

5 Bridge over stream 
Lillån (Edsbyn) 

157.59 157.584 0.006 157.809 0.219 

6 Gårdstjärn (Edsbyn)  166.993 166.994 0.001 166.994 0.001 

7 Nybro 195 194.884 0.116 194.84 0.116 

RMSE [m] 0.078 0.156 
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Table 19. Calibration attempts with GLUE calibration method, 
using the informal likelihood function RMSE. 

Parameter 
range 

Samples 
of parame-
ter sets [#] 

Acceptance crite-
ria 

Accepted 
parameter 

sets [#] 

RMSE range 
for accepted 

parameter sets 

[10, 50] 4000 

1...7
0.5i i




  214 [0.12, 0.38] 

1...7
0.4i i




  87 [0.12, 0.31] 

1...7
0.3i i




  19 [0.12, 0.24] 

1...7
0.2i i




  0 - 

[15, 35] 4000 

1...7
0.5i i




  116 [0.24, 0.38] 

1...7
0.4i i




  10 [0.24, 0.29] 

1...7
0.3i i




  0 - 

 

5.3. Monte Carlo samples for the scenarios 
The number of simulations for each scenario was a result based on the 
frequency analysis and GLUE calibration (Table 20). Scenario A was run 
1000 times with 1000 different discharge samples and ten different sets of 
roughness parameter values. Scenario B and Scenario C was run 900 times 
each, with the same roughness parameter sets as Scenario A and with 100 
discharge samples from each of the nine GCMs.  

Scenario I was run 1000 times for the same discharge samples as Scenario 
A, but keeping the roughness coefficient constant, according to the man-
ually calibrated parameter set. Scenario II was run ten times for the ac-
cepted roughness parameter sets, keeping the discharge boundary condi-
tions constant. 

For Scenario A, 1000 random samples were drawn from the normal dis-
tributions (which had been fitted to the 95 % confidence intervals shown 
as blue arrows in Fig. 20). Histograms of the 1000 samples for Nybro and 
Alfta KRV respectively follows the shape of the sampling distributions 
well, staying within the 95 % confidence intervals (Fig. 27). 

Discharge samples for Scenario B and Scenario C are 900 samples that 
come from the ensemble of GCMs (100 samples per GCM), resulting in 
positively skewed histograms (Fig. 28). The difference between the two 
GHG concentration scenarios is not particularly big, given the samples 
from the entire ensemble of GCMs. 

The ten accepted parameter sets (Fig. 29) from the GLUE calibration was 
used an equal number of times in the Monte Carlo analysis. It can be seen 
again that M1, M5 and M6 have wide ranges of accepted M values, in some 
ways compensating for each other. A high value in M5 and a low value in 
M6 is an accepted combination in the same way that a low value in M5 
and a high value in M6 is an accepted combination. 
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Table 20. Overview of the five scenarios used in the Monte Carlo 
analyses after estimations of uncertainty quantifications had been 
conducted. 

 Discharge Roughness coefficient 

Scenario A  

(present cli-
mate) 

Varied. 1000 samples. 
Varied. 10 samples from 
GLUE cal. with M 15-35. 

Scenario B  

(RCP 4.5) 

Varied. 

900 samples (100 per GCM). 

Varied. 10 samples from 
GLUE cal. with M 15-35. 

Scenario C 

(RCP 8.5) 

Varied. 

900 samples (100 per GCM). 

Varied. 10 samples from 
GLUE cal. with M 15-35. 

Scenario I 
Varied. 1000 samples (same as Sce-
nario A) 

Constant. From manual 
cal. with M 15-35. 

Scenario II 
Constant. 261 m3/s for Nybro and 323 
m3/s for Alfta KRV, which were the 
Q100 values according to MSB (2013). 

Varied. 10 samples from 
GLUE cal. with M 15-35. 

 

5.4. Simulated water levels and probabilistic maps 
The histograms for simulated water levels varies in shape between differ-
ent cross-sections and scenarios (Fig. 30, Fig. 31). For Scenario A are the 
simulated water levels colour coded according to the roughness coefficient 
parameter set used in the simulation, and for Scenario B and Scenario C 
are the GCMs colour coded. The bias of the different GCMs can be seen 
in the tendency to result in high or low water levels. The difference be-
tween the roughness parameter sets, seen in the graphs for Scenario A, 
give a smaller variation of simulated water levels than the different GCMs. 

Large parts of the probabilistic flood inundation maps for Scenario A, 
Scenario B and Scenario C can be found in Appendix II. Scenario A and 
Scenario I give quite similar water levels and flood maps, since the varia-
tion of the roughness coefficient was found to be small in comparison to 
the relative contribution from the discharge uncertainty (Fig. 32). Hence, 
the uncertainty zone for Scenario II is small.  

The resulting water level histograms and probability maps from Scenario B 
and Scenario C are fairly alike, since it is the results from the whole en-
semble of GCMs (Fig. 32). The sizes of their horizontal flood extents are 
approximately the same as for the other scenarios, but with wider uncer-
tainty zones due to greater ranges of simulated water levels. 

Overall, Scenario C gives the largest water level variance between its sim-
ulations, closely followed by Scenario B (Table 21). Scenario II gives the 
least variance between its ten simulations. The variability in Scenario A 
almost corresponds to the individual variances in Scenario I and Sce-
nario II. 

Table 21. Differences between maximum and minimum water 
level for the cross-sections. 

 Mean difference between each 
cross-section’s max. and min. 
water level for all simulations 

[m] 

Maximum difference be-
tween each cross-section’s 

max. and min. water level for 
all simulations [m] 

Scenario A 1.25 2.03 

Scenario B 1.81 2.59 

Scenario C 1.88 2.76 

Scenario I 0.92 1.34 

Scenario II 0.48  1.35 
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Fig. 27. Streamflow discharge inputs to Scenario A based on fre-
quency analysis of historic measurements. 

Fig. 28. Streamflow discharge inputs to future climate Scenario B 
(RCP 4.5) and Scenario C (RCP 8.5). 

Fig. 29. Roughness coefficient values for the ten accepted models 
(parameter sets) used in all scenarios except Scenario I. 
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Fig. 30. Simulated water levels for Edsbyn at lake Ullungen. The 
water levels in Scenario A are colour coded according to the 
roughness coefficient parameter sets whereas Scenario B and 
Scenario C are colour coded according to the GCMs. 
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Fig. 31. Simulated water levels for Alfta KRV, upstream of the 
power plant. The water levels in Scenario A are colour coded ac-
cording to the roughness coefficient parameter sets whereas Sce-
nario B and Scenario C are colour coded according to the GCMs. 
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Fig. 32. Probabilistic flood inundation maps of Häxmyrtjärn in Ovanåker. 
The histograms show the distribution of the simulated water levels, be-
tween the maximum and minimum simulated water level. 
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6. DISCUSSION  

The following chapter discusses selected aspects of the methodology and 
results. The discussion is divided into six main parts. 

6.1. Frequency analysis 
As the literature review had given a hint of, the results show that the sta-
tistical uncertainties related to the frequency analysis are significant. The 
choice of probability distribution function alone showed to give a large 
contribution to the overall uncertainty, where the Log-Pearson Type III 
function differed from the Gumbel and lognormal types (e.g. compare 
314 m3/s with 264 m3/s for the 100-year flood in Nybro). This uncertainty 
seemed especially challenging to handle since different literature sources 
give different recommendations and methods. Furthermore, the confi-
dence interval calculations are performed in various ways for different dis-
tribution functions.  

Nonetheless, performing a frequency analysis where observations are ad-
justed to an ensemble of distribution functions can be a means of its own, 
even if the choice of distribution function is always more or less subjective. 
Then it has at least been made explicit that there exists large uncertainties 
around the magnitude of a 100-year flood, which otherwise commonly is 
represented by one specific number in deterministic flood mappings. 

The conducted method of performing frequency analysis and sampling 
random values from an ensemble of climate projections from different 
GCMs is suggested to be a central result of this study. The choice of this 
method came from the aim of performing the frequency analysis as strin-
gent as possible between the present climate and future climate scenarios. 
The method also allowed for keeping the GHG concentration scenarios 
and the relative contributions from the different GCMs separate through-
out the entire process. The results could thus be presented both as ensem-
bles (like the probabilistic maps and histograms in Fig. 32) as well as kept 
separate (like the colour coded plots in Fig. 30 and Fig. 31). 

6.2. Calibration results 
The calibration showed that a manual calibration according to “trial and 
error” gave a lower RSME than any of the runs from the GLUE method 
gave (Table 18, Table 19). This indicates that the GLUE calibration could 
have benefited from additional runs. Nonetheless, the 4000 GLUE cali-
bration runs gave several parameter sets that can be argued to all represent 
the system in an acceptable manner and is therefore valued to make up a 
valid uncertainty estimate of the roughness coefficient parameter.  

The dotty plots (Fig. 23, Fig. 24) from the GLUE calibrations proved to 
be a clear visualisation of how the water levels in the calibration points 
varied with changing the corresponding M value. The plots showed that 
for some points it can be valuable to spend time on searching for an opti-
mum value, as manual “trial and error” calibration often do, while this 
seemed to be impractical for other calibration points.  

Model set-up and local conditions seem to determine whether or not there 
seems to be an “optimum” M value for the individual points. The model 
structure and local conditions also determine how the individual M values 
affect the overall RMSE, also clearly visualised in dotty plots (Fig. 25, 
Fig. 26). The GLUE calibration is, once set up, automatized and can save 
manual work time.  

It should be stressed that the choice of acceptance criterion of all absolute 
residual errors being smaller than 0.4 meters was subjective, as the litera-
ture review suggested it often is. The choice was mainly based on wanting 
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to use the same acceptance criterion as MSB had done for the model pre-
viously, to visualize how large uncertainties that particular choice would 
yield. However, a choice according to a LOA approach could be argued 
to be more “objective”. A LOA approach would perhaps lead to using 
different acceptance criteria for different calibration points, based on the 
estimated accuracy of the calibration data. Inclusion of the uncertainty of 
the calibration discharge magnitude could also be included when choosing 
suitable acceptance criteria. 

6.3. Simulation results 

 Discharge uncertainty and roughness coefficient uncertainty 

The scenarios that include the discharge uncertainty all give significantly 
larger water level variability than Scenario II where only the roughness 
coefficient uncertainty is included (Table 21). This was expected, based on 
the different methods of estimating the two different uncertainties. The 
accepted roughness coefficient values were selected by choosing the pa-
rameter sets giving accepted water levels, why it can be considered likely 
that this estimate would yield a smaller variation of simulated water levels 
than the discharge uncertainty. The discharge uncertainty estimate was 
based on statistical analysis in the frequency analysis, independent from 
the simulated water levels.  

The acceptance criterion, all residual errors being smaller than 0.4 meters 
for the calibration points, still resulted in a maximum variability of 1.35 
meters for one of the cross-sections (Table 21). This is found to be an 
interesting reminder of the fact that intermediate water levels will still be 
in the risk of being over- or underestimated, even though the water levels 
in the calibration points give a considerably smaller variation. This would 
not have been possible to show with the manual calibration alone, and 
could be important to point out when presenting the expected accuracy 
of a performed calibration.  

Furthermore, the simulations show that the relative contributions between 
the discharge variable (shown in Scenario I) and the roughness coefficient 
variable (shown in Scenario II) are almost additive when combined in Sce-
nario A (Table 21), in contrast to compensating for each other. This 
method of comparing the individual uncertainty of different variables with 
their combined uncertainty could especially be rewarding in a study where 
additional uncertainties were included in the Monte Carlo analysis, whose 
interaction with each other was not well understood beforehand. 

 Climate change uncertainty 

The simulation results visualize (Fig. 30, Fig. 31) what the frequency anal-
ysis also show (Fig. 21, Fig. 22), regarding the relative importance for the 
overall uncertainty of the GHG concentration scenario and the GCM 
choice. The GHG concentration scenario shows to play a crucial role for 
how some of the individual GCMs projected the 100-year flood at the end 
of the century. One GCM goes from a relatively high to a relatively low 
100-year flood magnitude from RCP 4.5 to RCP 8.5, while another GCM 
does the opposite. This difference clearly shows the model uncertainty in 
climate change projections, how some models react to a certain climate 
signal in different ways.  

Looking at the entire ensemble of GCMs, the choice of GHG concentra-
tion scenario plays a smaller role on the overall uncertainty, due to the 
GCMs different ways of respond and therefore compensating for each 
other. RCP 8.5 in Scenario C gives a slightly larger variability between the 
simulations than RCP 4.5 in Scenario B (Table 21) and therefore also a 
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generally larger uncertainty zone in the probabilistic flood inundation 
maps. This was also expected, since the literature review indicated that a 
stronger climate signal generally increases the importance of the spread 
from different GCMs. 

The large variability between the GCMs (see e.g. the colour coded plots 
for Scenario B and Scenario C in Fig. 30 and Fig. 31) confirms how im-
portant it is to use projections from several models in climate change stud-
ies, due to their different bias and since none of the models can be said to 
be better than the other in representing the entire climate system. How-
ever, it is also the usage of ensemble projections that diminished the im-
portance of the GHG concentration scenario choice, since the GCMs 
compensated for each other in this particular case study. 

In Gävleborg County, the magnitude of a 100-year flood is expected to 
stay the same of even decrease at the end of the century (Table 15). As 
mentioned, the horizontal flood extent of the probabilistic maps is quite 
similar between the present climate and future climate, but with larger un-
certainty zones for the future climate scenarios (Fig. 32). This is suggested 
to be a relevant information to physical planners, to avoid misinformed 
decisions being taken. This method of comparison would presumably 
even be more crucial for physical planners and decision makers in areas 
where the magnitude of the 100-year flood is expected to increase at the 
end of the century. 

6.4. Methodology 
The aim with this report has been to explain the methodology clear 
enough to be repeatable. The method of fitting a normal distribution to a 
confidence interval from which random discharge samples are drawn has 
been made in flood uncertainty studies before (e.g. Beven et al. (2011)). 
The performed method of handling the RCP scenarios and the ensemble 
of climate change projection series in frequency analysis was however not 
obvious prior to this work, why this particular method is suggested to be 
a relevant contribution on its own. 

Quite some effort in this study was put into giving an account for im-
portant uncertainties behind the process of creating flood inundation 
maps and suitable uncertainty assessment methods available. Further-
more, the technical aspect of performing Monte Carlo simulations with 
MIKE 11 and integrating the results in ArcMap to produce the probabil-
istic maps was also a fundamental part of the endeavour. Once set up, this 
type of assessment is in many stages automatized, so repeating the proce-
dure would not be nearly as time-demanding. 

Performing this Monte Carlo analysis on a MIKE 11 model requires a bit 
of programming knowledge to implement. If a more user-friendly inte-
grated software was to be built, it would ease the work process and hence 
also possibly making these type of uncertainty assessments more common. 
It could possibly also make the uncertainty assessment process more trans-
parent, which could be beneficial when communicating the method and 
results to planners and decision makers.  

The focus in this case study have been fluvial floods, but the method could 
be used for other types of floods as well. Additional uncertainties could 
also be included in this type of uncertainty assessment.  

Worth mentioning is that all climate change projections in this study were 
based on the same RCM and hydrological model, meaning that the influ-
ence of these particular models and how they interact with the GCMs have 
not been investigated here. The uncertainties introduced by the methodo-
logical choices in this study has not been investigated either, for example 
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how the interpolation methods in GIS affect the resulting flood inunda-
tion maps. 

6.5. Contribution of the uncertainty assessment 
Even though uncertainty assessment can sometimes seem like an over-
whelming task due to the relatively complex nature of uncertainties, it 
should be stressed that it is an important part of modelling. This is espe-
cially true for models used for decision making, to avoid misinformed de-
cisions based on results that give the impression of being more certain 
than they really are. 

How to use uncertainties in decision making have been excluded from the 
scope of this project. Worth noting is that decision makers can use the 
probabilistic maps just like the deterministic maps when making decisions 
if they wish. For example, they can choose to follow the 50th percentile of 
flood extent for most locations. If an area is particularly high-risk, a higher 
percentile can be chosen instead.  

Probabilistic flood inundation maps have been argued to be a more fair 
representation of the subject than deterministic maps. They visualise how 
chosen uncertainties propagate through the flood inundation model in an 
effective way. Furthermore, they enable the possibility of including an en-
semble of climate change projections, which has been shown to be im-
portant for climate change studies.  

Even though it will never be possible to perform a completely objective 
and comprehensive uncertainty assessment, it should not be a reason for 
not performing these types of assessments at all. It should however be 
emphasized how important it becomes to make all assumptions available 
for the decision makers as well, since the uncertainty assessments at best 
can be conditional on these. 

Making decisions based on probabilistic uncertainty assessments also re-
quire that it should be clear for the decision maker what the probabilities 
are showing. For example, the probabilities in the probabilistic flood in-
undation maps from Scenario B are in no way claiming to represent the 
probability of RCP 4.5 to be realised. The probabilities in the maps are 
only representing the outcome from these particular simulations. This is 
also important to communicate if probabilistic maps were to be published 
for the public.  

In physical planning, it is common to use the simulated water level at the 
specific cross-section when making decisions. For this purpose, the histo-
grams of the simulated water levels for the scenarios can be used (Fig. 30, 
Fig. 31, Fig. 32). 

6.6. Suggestions on future work 
From a long-term and general point of view, continuing to give examples 
of how to assess uncertainties in flood inundation studies is judged to be 
beneficial since it contributes to setting a “code of practice” on both how 
to methodologically perform the assessments, and also how to 
acknowledge uncertainties in decision making.  

Regarding MIKE 11, it is suggested to be relevant to investigate how to 
vary the geometrical description (e.g. configuration of cross-sections) in a 
Monte Carlo analysis. The geometrical description was suggested to play 
a significant part for the overall uncertainty for one-dimensional models 
from the literature review, but was excluded in this study. Other uncer-
tainties, like rating-curve uncertainty and dam failure events could also be 
further included in this type of Monte Carlo assessment.  



Mapping Uncertainties – A case study on a hydraulic model of the river Voxnan 

 

 57 

Further developments of the software, making the process of conducting 
this type of Monte Carlo analysis with MIKE 11 easier and more user-
friendly, would together with more examples on how to assess and handle 
uncertainties be useful steps in the direction towards turning probabilistic 
flood inundation maps to tradition rather than being an exception.  

7. CONCLUSIONS  

This thesis gives an account for the many uncertainties behind one-dimen-
sional hydraulic models and flood inundation maps, as well as suitable un-
certainty assessment methods for different types of uncertainties. The dif-
ferent types of uncertainties included in the case study of the flood 
inundation model of the river Voxnan could be assessed by combining a 
GLUE calibration, Monte Carlo analysis and scenario analysis. 

As expected, significant uncertainties regarding the magnitude of a 100-
year flood from frequency analysis was found. The largest contribution to 
the overall uncertainty is given by the variance between the nine global 
climate models, emphasizing the importance of taking ensemble of pro-
jections into account in climate change studies.  

The choice of greenhouse gas concentration scenario plays a significant 
role for how some of the individual global climate models projects the 
streamflow in Voxnan at the end of the century. Seen on the entire en-
semble of global climate models, the importance of choice of greenhouse 
gas concentration scenario is marginal since the models compensate for 
each other’s differences. 

The spatially varying roughness coefficient in the hydraulic model gives a 
smaller contribution to the overall uncertainty compared to the discharge 
uncertainty. The GLUE calibration method gave several roughness coef-
ficient parameter sets that can all be argued to represent the system in an 
acceptable manner. These parameter sets yield water level variations of 
over three times the acceptance criterion of residual errors in the calibra-
tion points. 

Furthermore, the study gives an example on how to present uncertainties 
visually in probabilistic flood inundation maps, from MIKE 11, MATLAB 
and ArcMap. The conducted method of how to handle climate change 
scenario and model uncertainties in frequency analysis is also suggested to 
be a relevant result of the study. 

Presenting flood inundation maps as probabilistic rather than determinis-
tic is judged to be a more representative way, due to the many inherent 
uncertainties prevailing the maps. Important is however that the assump-
tions and potentially subjective decisions behind the uncertainty assess-
ment are stated explicitly, for preventing further uncertainty contributions 
to an already uncertain-filled process. 
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APPENDIX I  –  RESULTS DELIVERED IN DIGITAL FORMAT 

The results are delivered in digital format in both maps and water levels. 

Excel, MATLAB and image files, giving data on the simulation 
results for all cross-sections 

File name Description 

Waterlevels.xls Excel tables with all simulated water levels. 

View_waterlevels.m MATLAB program for visualising the simulated water lev-
els for a chosen cross-section. 

CS_numbers.png Map of the unique cross-section IDs 

ArcGIS shape files. The coordinate system in plane is SWEREF 
99 and the height system is RH 2000 

File name Description 

Netw River network 

CS_ScI Cross-sections with water levels for Scenario I. 

CS_ScII Cross-sections with water levels for Scenario II. 

CS_ScA Cross-sections with water levels for Scenario A. 

CS_ScB Cross-sections with water levels for Scenario B. 

CS_ScC Cross-sections with water levels for Scenario C. 

ArcGIS raster files. Resolution: 2 m. Value: Probability of flooding 
where the value 1 means that the pixel was flooded in all simula-
tions for the specified scenario. 

File name Description 

Probmap_ScI Probabilistic flood inundation map for Scenario I, present 
climate discharge uncertainty. 

Probmap_ScII Probabilistic flood inundation map for Scenario II, rough-
ness coefficient uncertainty. 

Probmap_ScA Probabilistic flood inundation map for Scenario A, pre-
sent climate discharge and roughness coefficient uncer-
tainties. 

Probmap_ScB Probabilistic flood inundation map for Scenario B, future 
climate discharge in emission scenario RCP 4.5 and 
roughness coefficient uncertainties. 

Probmap_ScC Probabilistic flood inundation map for Scenario C, future 
climate discharge in emission scenario RCP 8.5 and 
roughness coefficient uncertainties. 
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APPENDIX II  –  PROBABILISTIC FLOOD INUNDATION MAPS  

The probabilistic flood inundation maps for Scenario A, Scenario B and 
Scenario C can be found for six chosen locations along the model reach. 
The probabilities are shown in a continuous gradient from black to white, 
where complete black means that the pixel was flooded for all simulations 
for that scenario. The blue on top of the probability layer indicates where 
there normally is water. 
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