1. INTRODUCTION

The present thesis is concerned with the dynamic aspects of damage in composite laminates.
Damage in composite laminates generally takes the form of micro cracking in the matrix material,
delamination of plies, fiber-matrix debonding and fiber fracture. The damage will lessen the
stiffness of the material and alter, among other things, the dynamic properties of the material. The
formation of damage will also release mechanical waves, which can be measured. Analysis of the
measured signals is an aid in attempts to understand and quantify the damage mechanisms.

1.1 The Use of Composite Materials

Polymer based composite materials are characterized by their high stiffness and strength-to-
weight ratio, and owing to their inherent anisotropy it is possible to optimize load bearing
capacity on the material level. The main drawback is that they are relatively expensive to
manufacture, especially continuous, or advanced, fiber composites. Therefore, continuous fiber
composites have so far found their application in areas where weight is of great concern and cost
Is not. Advanced composites are commonly used in sporting equipment (where perhaps cost is a
concern!) such as rackets, hockey sticks and golf clubs. Another example is sailing boats, both for
recreation and competition. The prime examples are, however, aerospace applications. It is of
course very important to save weight on objects launched into space, and the increased
manufacturing cost is of less concern since many of the objects are made in very small numbers -
if not unique - so in these cases design is much more expensive than manufacture.

A classical area for light and stiff construction is airplane design. Prior to World War 1l, wood
was the most commonly used structural material. The stronger engines developed prior to and
during the war, however, increased the forces on the airplanes and called for more complex
fuselage and wing designs, so the material choice shifted to the newly developed aluminum
alloys. This has been, and still is, the most important material in the airplane industry, but the
amount of composite materials in airplane structures is increasing. In high performance military
airplanes such as JAS 39 Gripen, Lockheed F-22 and Boeing B-2 composite materials account for
more than 20% of the structural weight. Composites have also found their way to civilian
airplanes, in the Boeing 777 9% of the structural weight is composites. Composites are, however,
still mainly used in non-critical parts such as wing panels and one reason, apart from cost, for this
Is that the behavior of aluminum is much better understood than that of composites.

2. COMPOSITE LAMINATES

A composite material can roughly be defined as a material with two (or more) distinct
macroscopical phases. Often the morphology of the composite is such that one material, the
matrix, surrounds the other. The surrounded material can for example have spherical, fibrous or
disc shaped form, and when it comes to structural materials, fiber composites are most common.
This has its origin in the fact that many materials can be manufactured with a much higher tensile



strength in fibrous than in bulk form. Glass for example has a relatively high stiffness-to-weight
ratio but is virtually worthless as a structural material. The reason is, as everybody knows, that
glass is very brittle. One small imperfection within a body of glass can trigger instable crack
growth, and for glass in bulk form this is critical, whereas the fracture of one fiber in a bundle is
not. The advantages of surrounding the fibers with a matrix material are that the matrix keeps the
fibers in place, distributes load among them and protects them from external damage. In the case
of structural fiber composites, polymers, such as epoxy, are commonly used as matrix materials.

2.1 Laminates

A widely used geometry for continuous fiber composites is the laminate. Laminates are made
of plies, in which all fibers often have the same direction. The fibers are usually much stronger
and stiffer than the matrix so a ply is stiffer and stronger in the fiber direction - it is anisotropic. A
laminate, such as the one shown in Figure 1, usually contains plies with different fiber directions
even if the load is primarily in one direction. The reason is that a laminate with fibers in only one
direction would be very weak in the direction transverse to the fibers, and small transverse loads
due to uneven lateral contraction, for example, could trigger fracture of such a laminate.

Figure 1 A [0/90,/0] or [0/90]g laminate.

Laminate geometry is described by the direction of the fibers in its plies. The laminate in
Figure 1 would, for example be labeled [0/80). The direction of the fibers in the outer plies are
in this case chosen as the reference directionQthe  -direction, and the middle ply, which is twice
as thick, has its fibers direct@®°  to the reference direction. Another way to label the laminate is
[0/90]g where ‘S’ stands for symmetric. The anisotropic nature of the laminate opens a possibility
of design and optimization on the material level, so the distinction between material and
component or structure becomes less clear than it is for design with metals.



The static elastic response on the global level of an undamaged laminate is well understood
and can be predicted using well established models. In order to use laminated composites
effectively and safely there is, however, also a need for understanding and prediction of damage in
laminates.

2.2 Damage in Composite Laminates

For safe and efficient use of composite laminates in structures it is important to understand
inelastic material behavior. In metals, plasticity and creep are examples of such inelastic behavior.
In polymer based fiber composites, an important type of inelastic behavior has its origin in the
micro damage, that appears as the load on the material increases. In polymer based continuous
fiber composites the development of damage often starts with matrix cracking transverse to the
principal load direction, see Figure 2. This is followed by fiber fracture and delamination between
plies, possibly aided by stress concentration at the tips of the existing matrix cracks. This scenario
has been seen in many experiments [4,7].

Delamination

Matrix crack

Fiber fracture

Figure 2 Common damage types in composite laminates.

Mathematical models for predicting the behavior of damaged composite materials are of great
value, and a lot of work has been done in this area. Ideally the model should have the character of
a constitutive relation for the material. That is, component size and geometry, and preferably
laminate lay-up (order of ply stacking), should not enter the material model directly. Real
constitutive relations, like Hookes’ law for linear elastic materials, have the advantage that
material properties can be measured on one geometry and transferred to another. For example, the
elastic deformation and stress in a pressure vessel of steel can be calculated using constitutive
parameters (Young’s modulus and Poisson’s ratio) obtained from a uniaxial test of the steel.



The constitutive description of damaged composite materials have two basic parts. The first,
and usually easiest part, is the behavior of the composite at a given damage state. The second part
describes the development of damage during loading. The approaches to the problem can very
roughly be divided into two groups - continuum damage mechanics and micromechanics.

The continuum damage mechanics approach is based solely on measurements of the global,
or overall, response of the material, and the goal is to generalize the measurements done for
particular geometries and loads to a constitutive relation. If plasticity is regarded as a damage
state in metals, then von Mises’ model for plasticity would be an example of successful
application of continuum damage mechanics.

The other approach, micromechanics, attempts to model the damage mechanisms on the
microlevel (in the case of plasticity, this would be models of dislocation movement) and predict
the global behavior. Micromechanics is often, at least in principle, successful in predicting the
response for a given damage state. Development of damage is more complicated, because
information about the material parameters and geometry on the microlevel is hard to obtain. The
main reason is the small length scales involved. The plies in composite laminates are typically
0.125 mm thick and the diameter of the fibers is about 1/100 mm. Modeling of matrix crack
formation and growth in laminates, in particular, requires knowledge regarding the position of the
crack, the stress state the crack is experiencing, crack tip velocity and so on. Part of this
information can be obtained after the formation of the crack by x-ray, edge replagebut there
is also a need to follow the formation of the crack in time. This can be done by recording and
analyzing the stress waves released in the laminate by a growing crack, so called acoustic
emission.

3. ACOUSTIC EMISSION

The object of acoustic emission is to gain knowledge about an event by recording the
mechanical waves it releases. Seismology is an old branch of acoustic emission. Responses, in
form of motion of the earth’s crust, are recorded in different parts of the world and these
recordings can be used to tell where the event took place, how big it was and whether it was an
earthquake or something else. The analysis of earthquakes has in fact spurred a lot of the research
regarding wave propagation in solids. For example, Rayleigh and Love waves were discovered in
attempts to explain observations from earthquakes [6]. Rayleigh waves travel on the surface of a
solid (not unlike waves on water) and Love waves exist in the border between an elastic layer and
its substrate.

The response due to an earthquake usually lasts for several seconds and therefore the
recording systems used do not have to be very fast. The formation of damage in composite
laminates, for example matrix cracks, on the other hand, is a very fast event, which is measured in
tens of microseconds. In order to resolve the time signal very fast recording systems, including
modern computer technology, have to be used.

A typical acoustic emission experimental set-up for composite laminates is schematically



shown in Figure 3. In this case acoustic emission in a uniaxial test specimen is measured. The
uniaxial specimens used are typically 2 cm wide and 20 cm long. Damage generates a wave which
propagates through the specimen, and the transducer responds to this wave. The electrical signal
from the transducer is then amplified and filtered before it enters an analog-digital converter
where the continuous signal is translated to a sequence of samples. The sampling rate of the A/D
converter should be at least 10 MHz. After sampling the signal is filtered and amplified again
before it is stored.
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Figure 3 A typical acoustic emission experimental set-up

Acoustic emission analysis is an inverse problem in the sense that a signal is recorded and its
cause is wanted. One way to do the analysis is by a direct approach, where the distortion of the
signal from a postulated event is modeled. The analysis can be performed by dividing the acoustic
emission chain into four parts. Damage (or source) modeling, wave propagation from source to
transducer, transducer response to surface movements and response of the recording system. In
frequency domain this can be described by three transfer functions as shown in Figure 4.
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Figure 4 The acoustic emission chain in frequency domain.

The postulated event produces a sigrigkp) , Which is distorted as the wave travels through
the specimenH,,(w) . The resulting signal is also changed as it passes from the specimen
through the transducelf(w) , andinto the recording syst¢py(w) , before it is stored as the
signal g(w) . The distortion due to the transducer and transducer characteristics are briefly
discussed below.



3.1 Transducers

The transducer is critical because it provides input to the recording system, and no subsequent
signal conditioning can make up for bad transducer behavior. Therefore transducers have been the
object of a substantial amount of research and development, see for example [5]. Figure 5 shows a
schematic diagram of a transducer. The active part in a transducer is the piezoelectric element,
which generates an electric potential when deformed. This element is usually made of a
piezoelectric ceramic and is often circular in shape.

Case

\ ?ﬂ

Piezoelectric
element

Backing
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Couplant media

Figure 5 A schematic diagram of a transducer.

The element is protected by the wear plate, which is in contact with the surface under observation
via a couplant media, such as grease. The object of the couplant media is to ensure an even
contact between the wear plate and the surface. The case provides packaging for the transducer
and makes handling easier. An important part of the transducer is the backing, which is often
made of cured epoxy with a suspension of heavy particles such as tungsten. Its purpose is to allow
waves to propagate away from the piezoelectric element with a minimum of reflection, and to
provide damping in order to give the transducer a flatter frequency response. A flat frequency
response is desired because it gives less distortion when the surface motion is translated to
variation in voltage.

Figure 6 shows a simple mechanical model of the transducer. The spring coistant, , is
mainly related to the size and shape of the piezoelectric element, the viscous damping, , is
governed by the backing, and the mass, , is the effective inertia of the transducer system. The

amplitude,|u”| , of the frequency or impulse response of the system can be written as
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where the natural frequency of the undamped system) is /k/m , and the damping parameter
isa = ¢/.Jkm.
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Figure 6 A simple transducer model and its frequency response.

The frequency response is shown for different values of in Figuen@ as can be seen high
damping provides a flatter frequency response at the expense of sensitivity. The vaflues of and
m can also be varied to provide a flat response in the frequency range of interest, but the physical
dimensions of the transducer are strongly related to these parameters, and this limits the possible
variation. Modern transducers (for example B1025 by Digital Wave Inc.) are of course much too
complex for the model above and they have a fairly flat frequency response from 50 kHz to 1
MHz and are also very sensitive.

Typical transducers are 10 mm in diameter and this gives them limited wavelength resolution
for waves which produce an uneven surface motion under the transducer, see Figure 7. A model of
the phenomenon is found in [5]. Consider the interaction between a plane Wéxgt) , and a
transducer with radiua . The average displacement under the transduyer, , can be written as

a
U
u(t) = 5= J’COS(kX—oot)A/aZ—XZdX,
a“Tt
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whereU, ,w andk are the amplitude, circular frequency and wavenumber, respectively, of the
incident plane wave. If it is assumed that the transducer response is proportian@) to , the
output may be estimated from

u(t) = wuocos(wt) ,

whereJ; is a Bessel function of the first kind. The sensitivity of the transducer depends in other
words on the wavenumber or the wavelength. This is shown in the diagram in Figure 7.
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Figure 7 Transducer wavelength resolution.

The models above are, as discussed, very simple and at the best give qualitative information
about transducer behavior. In practice the frequency response of the last two links in the acoustic
emission chainkl; an#izg ) shown in Figure 4 are found through calibration of the equipment.
In the light of the discussion above regarding surface waves, it is important that this calibration is
performed on the type of waves (surface or body waves) that will be measured.

The source and wave propagation are on the other hand possible and useful to model. Useful,
because the frequency responiig, , Is very dependent not only on the geometry and lay-up of
the specimen but also on the location of the source. To complicate things further, the damage
development will alter the wave propagation characteristics of a laminate. This was studied in
paper 2. Experimental determination d¢4,,, is in other words a laboring task. The wave motion
resulting from transverse matrix cracking and fiber fracture is modeled in the appemoed 3
and4 of this thesis.

4. WAVE PROPAGATION IN COMPOSITES AND WAVEGUIDES

Wave propagation in solids can often be modeled using linear strains and linear material
behavior. The governing differential equations are linear, and a general wave displacement field
can therefore be written as a superposition of harmonic waves with different wavelengths and
frequencies. It may even be argued that the concepts of wavelength and frequency are intimately
connected with linear wave motion.

The linear differential equations governing waves in a homogeneous isotropic infinite solid
are

[+ 18,68 + 18, Bieluy 1 = pil, @



whereu; andp are the displacement and density, respectively. The stiffness is expressed using
Lame’s constantd and , arﬁ;lj is Kronecker’s delta. Differentiation with respect to spatial
coordinates and time are denoted by a comma and a dot, respectively. The usual summation
convention is also used. Plane wave solutions for the above equation are considered, that is,

U (X t) = Ad, e Khmm=b) .

wherei is the imaginary unitl, and,, are unit vectdks, is the wave numbewand the
circular frequency. This results in the following relation

(L + pnen; + s, 1k2 - 02p8;, }d, = 0, 3)

which is a system of equations for the unknown componepts . The condition for a non-trivial
solution is that

Det({[(A + p)n,n; + 13, Jk2 - ?p3, }) = O, @

This is called the dispersion relation because it gives a relation between k and , thatin general
(but not here) has the effect that different frequencies travel at different velocities. The solutions

d, are called modes of wave propagation. In the present case the solutions can be found by
rearranging equation (3)

K2(A + p)(n d;)n; + (uk? - w?p)d; = 0. ()

This vector equation has two solutions,
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The waves described by equation (6) and (7) are called shear and dilatational waves. As
mentioned earlier the relation between  dad is in general non-linear. This means that the
different frequency components in the superposed wave will travel at different velocities, because
the velocity is given by

o
1
|
~le

(8)

The distance between the fast frequency components and the slower components will increase as
the wave propagates, resulting idispersionof the wave, hence the term.
Dispersion is an everyday phenomenon and
there is even a saying relating to it - “... as rings
on the water. Ordinary water waves are
dispersive! If a large pebble is thrown in to
water a local disturbance is created. If water
waves were non-dispersive one single ring
would propagate outwards, but since velocity
increases with wavelength, for these gravity
@ controlled waves, the disturbance is dispersed,
and a ring pattern is formed with the largest
wavelengths at the outer edge. Smaller
disturbances, such as rain drops, cause wave
motion controlled by surface tension, and for
those waves velocity decreases with wavelength. The ring pattern formed in this case have the
shortest wavelength at the outer edge, see Figure 8.

In the analysis of wave motion from, for example acoustic emission, the infinite body
solutions above are useful only if, the distance between the source and the receiver is smaller than
the dimensions of the body and the wavelengths considered are much larger than inhomogeneties
in the body. If this is not the case, reflections from outer boundaries and the interfaces between
different components, such as fiber and matrix, become important. Reflections in solids are
complicated by a phenomenon called mode conversion. An incident shear wave can for example
result in reflected shear and dilatational waves, so keeping track of the resulting field after a large
number of reflections is quite demanding. Nevertheless, circular symmetric wave propagation in
homogeneous plates, which have two boundaries, have been studied in this way by Ceranoglu and
Pao [3]. The maximum distance between source and receiver in that work was 6 plate thicknesses,
which is too small in many situations. For some geometries it is possible to use another approach
than keeping track of reflections. In the case of composites, for example, it is sometimes possible
to analyze a unit or typical cell instead, and for plates or rods the cross section can be studied.

Figure 8 Dispersion of water waves.
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4.1 Composites

In the case of composites there are two basic approaches. One is to assume that the composite
is periodic and analyze a periodic cell, and the other is to ‘smear out’ the inhomogeneties and
calculate average, or effective, dispersion relations and displacement fields from a representative
geometry. Considering fiber composites in particular, the different philosophies can be
symbolized by Figure 9. The geometry pictured in Figure 9 relates to the averaging method called
the generalized self-consistent scheme. This was used by Yang and Mal [8] to study wave
propagation in composites (more references on average property methods can be found in the
introduction topaper 1). The fiber, in that case, is embedded in the matrix material, which in turn
Is embedded in an effective medium with unknown properties. Given a certain circular frequency,
w, an effective or average wavenumbjg]| , Is computed. The relation between ||klland isin
general non-linear.

Effective media
Fiber Periodic cell

Matrix . . . .
e &
Fiber
@

Figure 9 The effective media and periodic cell approaches to composites.

The effective wavenumber]k| , can be real, complex or imaginary, where a real value
corresponds to propagating waves and complex or imaginary values correspond to attenuated (or
damped) waves.

The other approach is to approximate the geometry of the composite with a periodic one.
Thanks to the translational symmetry, harmonic wave propagation in the composite can be studied
by solving the equations of motion for a periodic cell subjected to boundary conditions which
depend on the wavenumber (references on this approach are also fqapeirl). Although the
boundary conditions are formulated using complex valued displacements and stresses it is
possible to use standard finite element codes to solve the equations of motion. This is done by
using one mesh for the real part and one for the imaginary part, and then couple the meshes with
the boundary conditions. An eigenfrequency computation is performed, and the resulting
eigenfrequencies give the dispersion relation. For a given wavenumber, several eigenfrequencies,
or branches, with different displacement patterns exist (see Figures 6 angdapeén 1). The
method is presented ipaper 1. A shortcoming is that only propagating waves, waves with
real valued wavenumbers, can be studied.
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4.2 Waveguides

The behavior of 1- and 2- dimensional waveguides such as bars and plates can be examined
by studying the cross section, which is perpendicular to the direction of wave propagation. For 1-
dimensional waveguides the cross section is a surface and for 2-dimensional it is a line segment,
see Figure 10. Exact solutions for isotropic homogeneous circular rods have been derived by
Pochhammer and for homogeneous plates by Rayleigh and Lamb, see [6]. In both cases it is
possible to find a series solution by postulating a displacement field in the form of an harmonic
wave in the axial or in-plane directions. Fulfillment of the boundary conditions on the free
surfaces give an homogeneous system of equations, with frequency and wavenumber as
parameters, for the coefficients in the series. The dispersion relation is found by demanding a non-
trivial solution, and the resulting coefficients determine the different mode forms.

Except for the special cases mentioned above, solutions for waveguides have to be found
numerically or approximately. This can be done by assuming a cross section displacement field
and deriving differential equations and boundary conditions with the help of Hamilton’s principle.

Figure 10Cross sections for 1- and 2- dimensional waveguides.

For, example the simple displacement field

U3(X;, 1) = w(xy, 1)

06, = x006,0) ®)

for the 1-dimensional waveguide in Figure 10 leads along with Hamilton’s principle to
Timoshenko’s beam equations for bending. Note that the beam displacements ¢ and  only
depend on one coordinate and time.paper 3 a displacement field containing several beam
displacements was used to study extensional and bending waves in laminated beams. An
alternative to using fields for the whole cross section is to discretize it with finite elements. For the
1-dimensional case the nodal displacements will, like beam displacements, be functions of the
axial coordinate and time. Aalami [1] was the first to use this approach for waveguides, and it was
used inpaper 4for laminated beams.
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The differential equations for the beam or nodal displacements are in general coupled.
Employing Fourier transforms in time and axial coordinate to these equations, or assuming
harmonic wave propagation, leads, as for the exact solutions, to a system of equations for the
displacements, in which the frequency and wavenumber (or, equivalently the transform variables)
act as parameters. In the absence of volume forces the system of equations is homogeneous, and
the dispersion relation is a result of requiring non-trivial solutions. For a given wave number, there
will be several possible frequencies, or branches, one for each degree of freedom. The
displacement solutions for each branch describes its displacement pattern. The complexity of
these patterns increase with increasing frequency and wavenumber, so for a given wavenumber
the branches with higher frequency will have more complex displacement patterns than those with
lower frequency. Therefore an assumed displacement field will have a limited range of validity in
frequency and wavenumber. Equation (9) for example describes only the lowest mode of bending
for beams. The range of validity of one displacement field can be determined by comparing its
dispersion relation to that due to a more sophisticated displacement field. This was done in
papers 2and3, and to some extent paper 1

4.3 Transient Problems

The above mentioned solutions to the homogeneous problem can be used to express the
transient wave field that results from transient nodal or generalized beam forces and time
dependent end or boundary conditions. This can be done by subjecting the loads to the same
transforms used to solve the homogeneous problem and then superposing the displacement
solutions. The result is a formal solution in transform variables, and to get the time response this
formal solution must be inverted.

In papers 3and4 transverse matrix cracking and fiber fracture was translated to transient
generalized beam forces and nodal forces, respectively. The translation was based on the work by
Burridge and Knopoff [2], who have shown how displacement discontinuities, such as cracks, can
be replaced by dynamically equivalent volume forces. The methods used to invert the formal
solutions inpapers 3and4 are perhaps best illustrated through an example. The example will
also, hopefully, shed some light on other issues discussed above such as dispersion.

4.4 Two Examples

Consider an infinite elastic rod loaded by the volume force

F(x t) = Fado(x)T(1), (10)

where d(x) is Dirac’s delta function and the time dependen¢® Is triangular in shape, see
Figure 11. The motion in the rod will be calculated using two different differential equations. The
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first is the regular wave equation for thin rods and the second is Love’s rod equation.

z
T(1)
y X 1
0 —=F{1
T | e
At t
Figure 11 A rod loaded by a time dependent volume force.
The regular rod equation is
02 0
u u
o+F(x, t) _ 1% (11)

Ix2 E c20t2’

where E is Young’s modulus of the rod ard= J/E/p , whgre is the density of the rod
material. The volume forcé is given by equation (10). The following Fourier transform pairs are
introduced to solve the differential equation

820 = [g(x heidx MxO:ijmanwwamd (12)
g%xmzjnmowwt,mxo:%j¢MmeWm (13)

Transformation of equation (11) and rearrangement gives

FoT"
0 = oo (14)

w?g
Ef2-50
which must be inverted to get the time response. In this case inversion is easily performed by the
use of tables for example, but for the purpose of illustration the method ugepars 3and4
will be used here. Also, the displacement veloaity  will be calculated insteag) of . Rewrite
equation (14)

0 - = - )
Sl SO
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where the relatiom”™ = —iwu® has been used. Start by inverting with resp&ct to

« ] O
) FocT 1 1 .
* [l _ ixE
Ug = —i dg . (16)
e _{,%—%’ z+%’§e

For a givenw this integral
can be evaluated by extending
the real valued to complex
values. If the analysis is
limited to x>0 and a semi-
circle in the upper half plane is
added to the path of
integration, the contour in o > >
Figure 12 results. With the use M Re(£)
of residue calculus equation Figure 12 Path of integration in the complex plane.

(16) may be expressed as

Im(€),

ol
@® olg

*

. FocT _
Up = A= 2T Res(ll)—J’Ildl'2 : (17)
2

wherel ; is the integrand in equation (16), and the first term is the sum of the of the residues of
the poles insidd™; + I, . In this case the integrand has two pgles,+w/c , on the real axis.
These relations are the dispersion relations, because given a value of  only two vaiues of are
allowed. It is not self evident which poles should be included, but by adding a small damping term
in equation (11) it can be shown that poles vwgﬂ = 0w/0¢ >0 move upwards, in to the upper
half plane, and vice-versa. From a physical point of view this is reasonable)sinfe and waves
with Cy>0 move in the positivex -direction. Therefore, only the pdle= w/c should be
included, and the residue in equation (17) becomes

Reql,)= e %)X. (18)

The second term in equation (17) will vanish. [Rt |w/ | be the radius of the circle§ For on
I, the factor in front of the exponentialin  then follows the relation

2w/c < 2|(*)|;§|D2’ (19)
R2e2i6 _ %%’EZ R? - o0
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which means that

i
|1dr2 < Mj'e—RxsineRde < Mg’ (20)
R2 — EE)DZ 0 R2 — EE)DZ
2 LU L

where the last inequality follows from Jordan’s inequality. The last expression in relation (20) will
clearly vanish a®k approaches infinity. Returning to equation (17) it is seen that

FocT" iw?
T (21)

=k

Ug =

which has the inverse transform

. FoC X
Ug(x, t) = EETB{— EE' (22)

The wave propagation analyzed above was non-dispersive, which is seen in equation (22).
Taking lateral contraction into account by assuming the displacement field

%U(X, M Z D = uO(X! t)
O ou
%’(X, Y 2 D = _Vywo ’ (23)

0
EW _ ou,
. (xyz?Y= Vzgo

wherev is Poisson’s ratio, results in Love’s rod equation,

2 4 2
OUp or2dl  F(xt) _ 19U
X2 c29x20t2 E c20t2 '

(24)

wherer is the radius of gyration for the cross-section. Following the same scheme as above for
x>0 gives,

o = FocT 1 eiooz—:( /l—vzrngi)g2
0~ 2E ’
/1—v2r2[&)DZ
(O

(25)
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and the accompanying dispersion relation is given by

A 1

¢ = : (26)
’ /1—v2r25%)%2

Equation (25) can be inverted by FFT if it is evaluated for a discrete set of values paper(4)
or, for large values ot , by the stationary phase metpapegr 3).
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Figure 13 Dispersion relations for non-dispersive rod equation-(- - ), Love’s rod equation

(-—-)and exact—— )

Figure 13 shows a comparison between the dispersion relations due to the ordinary wave
equation (dashed), Love’s rod equation (long dashed) and the exact result due to Pochhammer
(solid) for a rod with circular cross-section and = 0.29 . Wave components with long
wavelengths (smalk ) move faster than those with short wavelengths, as is seen in the left most
diagram in Figure 13. It is also seen that Love’s rod theory is valid only down to wavelengths of
about6a , but it has the right qualitative behavior. Figure 14 shows the displacement velocity due
to a volume force according to equation (10). The force’s time dependence has triangular shape,
as shown in Figure 11, witht = 30a/c . The response according to the ordinary rod equation
does not change as the wave progresses because the wave propagation is non-dispersive. The
response according to Love’s equation, on the other hand, has been dispersed from its original
triangular shape. The long wavelength components are found at the front, as is predicted from
Figure 13, and the pulse is more spread in time and has lower maximum amplitude than the
undispersed, or original, pulse (compare with water waves). This is typical for dispersive wave
propagation.
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Figure 14 Dispersion of triangular pulse. The response according to the ordinary rod equation
(- — - ) and according to Love’s rod equatior{— ).

5. SUMMARY OF APPENDED PAPERS

Paper 1 The usage of standard finite element codes for computation of dispersion relations in
materials with periodic microstructurddarmonic wave propagation in periodic structures, or
composites, can be analyzed by studying a unit cell subjected to boundary conditions, which are
formulated using complex valued displacement and stress fields. In the method presented, the
complex valued displacement fields are split in to real and imaginary parts and one finite element
mesh for each part is used. The identical meshes are coupled using the boundary conditions, and
the wavenumber enters as a parameter in this coupling. The dispersion relation is subsequently
found by computing the eigenfrequencies of the coupled meshes for a given wavenumber. The
scheme was implemented in the standard finite element code ABAQUS. Dispersion relations for a
2-dimensional laminate were computed and compared with an analytical solution in order to
validate the method. As an example the dispersion relation in a hexagonal fiber composite was
computed and the results were compared with experiments and an existing approximate theory.
Agreement was very good for waves propagating along the fibers and satisfactory for waves
propagating perpendicular to the fibers. One drawback of the method is that only real valued
wavenumbers can be used.
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Paper 2Dispersion of waves in composite laminates with transverse matrix cracks, finite element
and plate theory computationdatrix cracking in a composite laminate will affect wave
propagation. This was studied using two methods. In the first approach it was assumed that the
laminate is cracked periodically and the method from paper 1 was used to compute the dispersion
relations. It was found that for wavelengths down to the order of laminate thickness, the cracks’
influence is mainly a reduced stiffness. This inspired the second approach where a first order shear
deformation laminate model was developed for laminates with matrix cracks. This model may be
viewed as a two step homogenization. In the first step, the cracked plies are replaced by uncracked
plies with reduced stiffnesses. The regular first order shear deformation laminate theory is then
applied using the reduced ply stiffnesses. Both symmetric and unsymmetric laminates where
studied and the two approaches compared favorably. The effects of crack closure was not
modeled. Crack closure can have large effects on wave propagation, but in real laminates residual
stresses tend to keep the cracks open, and the displacements due to wave propagation are usually
small.

Paper 3Micromechanical modeling of transient waves from matrix cracking and fiber fracture in
laminated beamdslhe transient wave propagation from matrix cracking and fiber fracture in a thin
laminated beam of infinite length was modeled. The method developed in paper 1 was used to
compute dispersion relations and mode forms for the two lowest branches of extensional and
bending (in two directions) wave propagation. Based on the mode forms, displacement fields were
assumed and Hamilton’s principle was used to derive a higher order beam model. The matrix
cracking and fiber fracture were translated to known time dependent volume forces, which in turn
were used to calculate generalized beam forces. The equations of motion, including the
generalized forces, were then formally solved using Fourier transforms and mode superposition.
The time response was found by an asymptotically valid inversion of the formal solution, using
residue calculus and the stationary phase method. It was found that matrix cracking and fiber
fracture excite several modes of propagation in a laminated beam. Matrix cracking was found to
be a slow event compared to fiber fracture in the sense that the response from matrix cracking to a
large extent was associated with low frequencies. The applicability of this method to acoustic
emission experiments is mainly limited by two factors. Firstly, the developed beam model is valid
up to frequencies corresponding to 50 kHz in a typical acoustic emission experiment, which is too
low. Secondly, the inversion method used requires unrealistic distances between source and
receiver - typically 50 beam widths. This could be alleviated by using the inversion method from
paper 4.

Paper 4 Numerical modeling of acoustic emission in laminated tensile test specithesnpaper

is also concerned with modeling transient wave propagation from matrix cracking and fiber
fracture in a thin laminated beam, or tensile test specimen, of infinite length. In this case the cross
section was discretized using finite elements, and a system of differential equations for the nodal
displacements were derived using Hamilton’s principle. Nodal forces from the same volume
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forces as used in paper 3 (from a matrix crack and fiber fracture) were included in the differential
equations. The system was formally solved using Fourier transforms and mode superposition,
including attenuated modes. The formal solution was then inverted using residue calculus
followed by FFT. A total of 64 nine node elements were used, and the maximum frequency used
in the computations corresponds to 300 kHz in a typical acoustic emission experiment. The
resulting time responses indicated that dispersion is a very important phenomenon in these kinds
of experiments. It was also seen that torsional modes of wave propagation, which were not
included in paper 3, give important contributions to the motion in the specimen. Finally, a method
to measure average matrix crack propagation velocity was suggested.
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