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1. INTRODUCTION

The present thesis is concerned with the dynamic aspects of damage in composite lam
Damage in composite laminates generally takes the form of micro cracking in the matrix mat
delamination of plies, fiber-matrix debonding and fiber fracture. The damage will lessen
stiffness of the material and alter, among other things, the dynamic properties of the materia
formation of damage will also release mechanical waves, which can be measured. Analysis
measured signals is an aid in attempts to understand and quantify the damage mechanism

1.1 The Use of Composite Materials

Polymer based composite materials are characterized by their high stiffness and stren
weight ratio, and owing to their inherent anisotropy it is possible to optimize load bea
capacity on the material level. The main drawback is that they are relatively expensiv
manufacture, especially continuous, or advanced, fiber composites. Therefore, continuou
composites have so far found their application in areas where weight is of great concern an
is not. Advanced composites are commonly used in sporting equipment (where perhaps co
concern!) such as rackets, hockey sticks and golf clubs. Another example is sailing boats, b
recreation and competition. The prime examples are, however, aerospace applications.
course very important to save weight on objects launched into space, and the incr
manufacturing cost is of less concern since many of the objects are made in very small num
if not unique - so in these cases design is much more expensive than manufacture.

A classical area for light and stiff construction is airplane design. Prior to World War II, w
was the most commonly used structural material. The stronger engines developed prior
during the war, however, increased the forces on the airplanes and called for more co
fuselage and wing designs, so the material choice shifted to the newly developed alum
alloys. This has been, and still is, the most important material in the airplane industry, bu
amount of composite materials in airplane structures is increasing. In high performance m
airplanes such as JAS 39 Gripen, Lockheed F-22 and Boeing B-2 composite materials acco
more than 20% of the structural weight. Composites have also found their way to civ
airplanes, in the Boeing 777 9% of the structural weight is composites. Composites are, how
still mainly used in non-critical parts such as wing panels and one reason, apart from cost, fo
is that the behavior of aluminum is much better understood than that of composites.

2. COMPOSITE LAMINATES

A composite material can roughly be defined as a material with two (or more) dis
macroscopical phases. Often the morphology of the composite is such that one materi
matrix, surrounds the other. The surrounded material can for example have spherical, fibr
disc shaped form, and when it comes to structural materials, fiber composites are most com
This has its origin in the fact that many materials can be manufactured with a much higher t
1
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strength in fibrous than in bulk form. Glass for example has a relatively high stiffness-to-we
ratio but is virtually worthless as a structural material. The reason is, as everybody knows
glass is very brittle. One small imperfection within a body of glass can trigger instable c
growth, and for glass in bulk form this is critical, whereas the fracture of one fiber in a bund
not. The advantages of surrounding the fibers with a matrix material are that the matrix kee
fibers in place, distributes load among them and protects them from external damage. In th
of structural fiber composites, polymers, such as epoxy, are commonly used as matrix mat

2.1 Laminates

A widely used geometry for continuous fiber composites is the laminate. Laminates are
of plies, in which all fibers often have the same direction. The fibers are usually much stro
and stiffer than the matrix so a ply is stiffer and stronger in the fiber direction - it is anisotropi
laminate, such as the one shown in Figure 1, usually contains plies with different fiber direc
even if the load is primarily in one direction. The reason is that a laminate with fibers in only
direction would be very weak in the direction transverse to the fibers, and small transverse
due to uneven lateral contraction, for example, could trigger fracture of such a laminate.

Figure 1 A [0/902/0] or [0/90]S laminate.

Laminate geometry is described by the direction of the fibers in its plies. The lamina
Figure 1 would, for example be labeled [0/902/0]. The direction of the fibers in the outer plies ar
in this case chosen as the reference direction, the -direction, and the middle ply, which is
as thick, has its fibers directed to the reference direction. Another way to label the lamin
[0/90]S where ‘S’ stands for symmetric. The anisotropic nature of the laminate opens a poss
of design and optimization on the material level, so the distinction between material
component or structure becomes less clear than it is for design with metals.

0°

0°

90°

0°
90°
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The static elastic response on the global level of an undamaged laminate is well unde
and can be predicted using well established models. In order to use laminated comp
effectively and safely there is, however, also a need for understanding and prediction of dam
laminates.

2.2 Damage in Composite Laminates

For safe and efficient use of composite laminates in structures it is important to under
inelastic material behavior. In metals, plasticity and creep are examples of such inelastic beh
In polymer based fiber composites, an important type of inelastic behavior has its origin i
micro damage, that appears as the load on the material increases. In polymer based con
fiber composites the development of damage often starts with matrix cracking transverse
principal load direction, see Figure 2. This is followed by fiber fracture and delamination betw
plies, possibly aided by stress concentration at the tips of the existing matrix cracks. This sc
has been seen in many experiments [4,7].

Figure 2 Common damage types in composite laminates.

Mathematical models for predicting the behavior of damaged composite materials are of
value, and a lot of work has been done in this area. Ideally the model should have the chara
a constitutive relation for the material. That is, component size and geometry, and prefe
laminate lay-up (order of ply stacking), should not enter the material model directly. R
constitutive relations, like Hookes’ law for linear elastic materials, have the advantage
material properties can be measured on one geometry and transferred to another. For exam
elastic deformation and stress in a pressure vessel of steel can be calculated using cons
parameters (Young’s modulus and Poisson’s ratio) obtained from a uniaxial test of the stee

Matrix crack

Delamination

Fiber fracture

Load

Load
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The constitutive description of damaged composite materials have two basic parts. The
and usually easiest part, is the behavior of the composite at a given damage state. The seco
describes the development of damage during loading. The approaches to the problem ca
roughly be divided into two groups - continuum damage mechanics and micromechanics.

The continuum damage mechanics approach is based solely on measurements of the
or overall, response of the material, and the goal is to generalize the measurements do
particular geometries and loads to a constitutive relation. If plasticity is regarded as a da
state in metals, then von Mises’ model for plasticity would be an example of succe
application of continuum damage mechanics.

The other approach, micromechanics, attempts to model the damage mechanisms
microlevel (in the case of plasticity, this would be models of dislocation movement) and pr
the global behavior. Micromechanics is often, at least in principle, successful in predictin
response for a given damage state. Development of damage is more complicated, b
information about the material parameters and geometry on the microlevel is hard to obtain
main reason is the small length scales involved. The plies in composite laminates are typ
0.125 mm thick and the diameter of the fibers is about 1/100 mm. Modeling of matrix c
formation and growth in laminates, in particular, requires knowledge regarding the position o
crack, the stress state the crack is experiencing, crack tip velocity and so on. Part o
information can be obtained after the formation of the crack by x-ray, edge replicaet c., but there
is also a need to follow the formation of the crack in time. This can be done by recording
analyzing the stress waves released in the laminate by a growing crack, so called ac
emission.

3. ACOUSTIC EMISSION

The object of acoustic emission is to gain knowledge about an event by recording
mechanical waves it releases. Seismology is an old branch of acoustic emission. Respon
form of motion of the earth’s crust, are recorded in different parts of the world and th
recordings can be used to tell where the event took place, how big it was and whether it w
earthquake or something else. The analysis of earthquakes has in fact spurred a lot of the r
regarding wave propagation in solids. For example, Rayleigh and Love waves were discove
attempts to explain observations from earthquakes [6]. Rayleigh waves travel on the surfac
solid (not unlike waves on water) and Love waves exist in the border between an elastic laye
its substrate.

The response due to an earthquake usually lasts for several seconds and therefo
recording systems used do not have to be very fast. The formation of damage in com
laminates, for example matrix cracks, on the other hand, is a very fast event, which is measu
tens of microseconds. In order to resolve the time signal very fast recording systems, incl
modern computer technology, have to be used.

A typical acoustic emission experimental set-up for composite laminates is schemat
4
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shown in Figure 3. In this case acoustic emission in a uniaxial test specimen is measure
uniaxial specimens used are typically 2 cm wide and 20 cm long. Damage generates a wave
propagates through the specimen, and the transducer responds to this wave. The electrica
from the transducer is then amplified and filtered before it enters an analog-digital conv
where the continuous signal is translated to a sequence of samples. The sampling rate of t
converter should be at least 10 MHz. After sampling the signal is filtered and amplified a
before it is stored.

Figure 3 A typical acoustic emission experimental set-up.

Acoustic emission analysis is an inverse problem in the sense that a signal is recorded
cause is wanted. One way to do the analysis is by a direct approach, where the distortion
signal from a postulated event is modeled. The analysis can be performed by dividing the ac
emission chain into four parts. Damage (or source) modeling, wave propagation from sou
transducer, transducer response to surface movements and response of the recording sy
frequency domain this can be described by three transfer functions as shown in Figure 4.

Figure 4 The acoustic emission chain in frequency domain.

The postulated event produces a signal, , which is distorted as the wave travels th
the specimen, . The resulting signal is also changed as it passes from the spe
through the transducer, , and in to the recording system, , before it is stored a
signal . The distortion due to the transducer and transducer characteristics are b
discussed below.
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3.1 Transducers

The transducer is critical because it provides input to the recording system, and no subs
signal conditioning can make up for bad transducer behavior. Therefore transducers have b
object of a substantial amount of research and development, see for example [5]. Figure 5 s
schematic diagram of a transducer. The active part in a transducer is the piezoelectric el
which generates an electric potential when deformed. This element is usually made
piezoelectric ceramic and is often circular in shape.

Figure 5 A schematic diagram of a transducer.

The element is protected by the wear plate, which is in contact with the surface under obser
via a couplant media, such as grease. The object of the couplant media is to ensure a
contact between the wear plate and the surface. The case provides packaging for the tran
and makes handling easier. An important part of the transducer is the backing, which is
made of cured epoxy with a suspension of heavy particles such as tungsten. Its purpose is t
waves to propagate away from the piezoelectric element with a minimum of reflection, a
provide damping in order to give the transducer a flatter frequency response. A flat frequ
response is desired because it gives less distortion when the surface motion is transla
variation in voltage.

Figure 6 shows a simple mechanical model of the transducer. The spring constant,
mainly related to the size and shape of the piezoelectric element, the viscous damping,
governed by the backing, and the mass, , is the effective inertia of the transducer system
amplitude, , of the frequency or impulse response of the system can be written as

,

where the natural frequency of the undamped system is , and the damping para
is .

Piezoelectric
element

Backing

Case
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Couplant media
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Figure 6 A simple transducer model and its frequency response.

The frequency response is shown for different values of in Figure 6, and as can be seen hig
damping provides a flatter frequency response at the expense of sensitivity. The values of

can also be varied to provide a flat response in the frequency range of interest, but the ph
dimensions of the transducer are strongly related to these parameters, and this limits the p
variation. Modern transducers (for example B1025 by Digital Wave Inc.) are of course muc
complex for the model above and they have a fairly flat frequency response from 50 kHz
MHz and are also very sensitive.

Typical transducers are 10 mm in diameter and this gives them limited wavelength reso
for waves which produce an uneven surface motion under the transducer, see Figure 7. A m
the phenomenon is found in [5]. Consider the interaction between a plane wave, ,
transducer with radius . The average displacement under the transducer, , can be wr

,

where , and are the amplitude, circular frequency and wavenumber, respectively,
incident plane wave. If it is assumed that the transducer response is proportional to
output may be estimated from

,

where is a Bessel function of the first kind. The sensitivity of the transducer depends in
words on the wavenumber or the wavelength. This is shown in the diagram in Figure 7.
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Figure 7 Transducer wavelength resolution.

The models above are, as discussed, very simple and at the best give qualitative inform
about transducer behavior. In practice the frequency response of the last two links in the ac
emission chain ( and ) shown in Figure 4 are found through calibration of the equipm
In the light of the discussion above regarding surface waves, it is important that this calibrat
performed on the type of waves (surface or body waves) that will be measured.

The source and wave propagation are on the other hand possible and useful to model. U
because the frequency response, , is very dependent not only on the geometry and la
the specimen but also on the location of the source. To complicate things further, the da
development will alter the wave propagation characteristics of a laminate. This was stud
paper 2. Experimental determination of is in other words a laboring task. The wave mo
resulting from transverse matrix cracking and fiber fracture is modeled in the appendedpapers 3
and4 of this thesis.

4. WAVE PROPAGATION IN COMPOSITES AND WAVEGUIDES

Wave propagation in solids can often be modeled using linear strains and linear ma
behavior. The governing differential equations are linear, and a general wave displacemen
can therefore be written as a superposition of harmonic waves with different wavelength
frequencies. It may even be argued that the concepts of wavelength and frequency are inti
connected with linear wave motion.

The linear differential equations governing waves in a homogeneous isotropic infinite
are

, (1)

2a

x
y

z

5 10 15
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where and are the displacement and density, respectively. The stiffness is expressed
Lame’s constants and , and is Kronecker’s delta. Differentiation with respect to sp
coordinates and time are denoted by a comma and a dot, respectively. The usual sum
convention is also used. Plane wave solutions for the above equation are considered, that 

, (2)

where is the imaginary unit, and are unit vectors, is the wave number and
circular frequency. This results in the following relation

, (3)

which is a system of equations for the unknown components . The condition for a non-t
solution is that

. (4)

This is called the dispersion relation because it gives a relation between and , that in g
(but not here) has the effect that different frequencies travel at different velocities. The solu

are called modes of wave propagation. In the present case the solutions can be fou
rearranging equation (3)

. (5)

This vector equation has two solutions,

(6)

or

. (7)

ui ρ
λ µ δij

ur xm t,( ) Adre
i knmxm ωt–( )=

i dr nm k ω

λ µ+( )nrnj µδ jr+[ ]k2 ω2ρδ jr–{ }dr 0=

dr

Det λ µ+( )nrnj µδ jr+[ ]k2 ω2ρδ jr–{ }( ) 0=

ω k

dr

k2 λ µ+( ) nrdr( )nj µk2 ω2ρ–( )dj+ 0=

ω k
µ
ρ
---= n d⊥

ω k
2µ λ+

ρ
----------------= n d||
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The waves described by equation (6) and (7) are called shear and dilatational wave
mentioned earlier the relation between and is in general non-linear. This means th
different frequency components in the superposed wave will travel at different velocities, be
the velocity is given by

. (8)

The distance between the fast frequency components and the slower components will incre
the wave propagates, resulting in adispersion of the wave, hence the term.

Dispersion is an everyday phenomenon a
there is even a saying relating to it - ‘... as ring
on the water’. Ordinary water waves ar
dispersive! If a large pebble is thrown in to
water a local disturbance is created. If wate
waves were non-dispersive one single rin
would propagate outwards, but since veloci
increases with wavelength, for these gravi
controlled waves, the disturbance is disperse
and a ring pattern is formed with the larges
wavelengths at the outer edge. Small
disturbances, such as rain drops, cause wa
motion controlled by surface tension, and fo

those waves velocity decreases with wavelength. The ring pattern formed in this case ha
shortest wavelength at the outer edge, see Figure 8.

In the analysis of wave motion from, for example acoustic emission, the infinite b
solutions above are useful only if, the distance between the source and the receiver is small
the dimensions of the body and the wavelengths considered are much larger than inhomog
in the body. If this is not the case, reflections from outer boundaries and the interfaces be
different components, such as fiber and matrix, become important. Reflections in solid
complicated by a phenomenon called mode conversion. An incident shear wave can for ex
result in reflected shear and dilatational waves, so keeping track of the resulting field after a
number of reflections is quite demanding. Nevertheless, circular symmetric wave propagat
homogeneous plates, which have two boundaries, have been studied in this way by Cerano
Pao [3]. The maximum distance between source and receiver in that work was 6 plate thickn
which is too small in many situations. For some geometries it is possible to use another app
than keeping track of reflections. In the case of composites, for example, it is sometimes po
to analyze a unit or typical cell instead, and for plates or rods the cross section can be stud

ω k

cg k∂
∂ω=

Figure 8 Dispersion of water waves.
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4.1 Composites

In the case of composites there are two basic approaches. One is to assume that the co
is periodic and analyze a periodic cell, and the other is to ‘smear out’ the inhomogenetie
calculate average, or effective, dispersion relations and displacement fields from a represe
geometry. Considering fiber composites in particular, the different philosophies can
symbolized by Figure 9. The geometry pictured in Figure 9 relates to the averaging method
the generalized self-consistent scheme. This was used by Yang and Mal [8] to study
propagation in composites (more references on average property methods can be found
introduction topaper 1). The fiber, in that case, is embedded in the matrix material, which in t
is embedded in an effective medium with unknown properties. Given a certain circular frequ

, an effective or average wavenumber, , is computed. The relation between and
general non-linear.

Figure 9 The effective media and periodic cell approaches to composites.

The effective wavenumber, , can be real, complex or imaginary, where a real v
corresponds to propagating waves and complex or imaginary values correspond to attenua
damped) waves.

The other approach is to approximate the geometry of the composite with a periodic
Thanks to the translational symmetry, harmonic wave propagation in the composite can be s
by solving the equations of motion for a periodic cell subjected to boundary conditions w
depend on the wavenumber (references on this approach are also found inpaper 1). Although the
boundary conditions are formulated using complex valued displacements and stresse
possible to use standard finite element codes to solve the equations of motion. This is do
using one mesh for the real part and one for the imaginary part, and then couple the meshe
the boundary conditions. An eigenfrequency computation is performed, and the res
eigenfrequencies give the dispersion relation. For a given wavenumber, several eigenfrequ
or branches, with different displacement patterns exist (see Figures 6 and 7 inpaper 1). The
method is presented inpaper 1. A shortcoming is that only propagating waves,i.e. waves with
real valued wavenumbers, can be studied.

ω k ω k

Periodic cellFiber

Matrix

Effective media

Fiber

k
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4.2 Waveguides

The behavior of 1- and 2- dimensional waveguides such as bars and plates can be exa
by studying the cross section, which is perpendicular to the direction of wave propagation. F
dimensional waveguides the cross section is a surface and for 2-dimensional it is a line seg
see Figure 10. Exact solutions for isotropic homogeneous circular rods have been deriv
Pochhammer and for homogeneous plates by Rayleigh and Lamb, see [6]. In both case
possible to find a series solution by postulating a displacement field in the form of an harm
wave in the axial or in-plane directions. Fulfillment of the boundary conditions on the
surfaces give an homogeneous system of equations, with frequency and wavenumb
parameters, for the coefficients in the series. The dispersion relation is found by demanding
trivial solution, and the resulting coefficients determine the different mode forms.

Except for the special cases mentioned above, solutions for waveguides have to be
numerically or approximately. This can be done by assuming a cross section displacemen
and deriving differential equations and boundary conditions with the help of Hamilton’s princ

Figure 10Cross sections for 1- and 2- dimensional waveguides.

For, example the simple displacement field

, (9)

for the 1-dimensional waveguide in Figure 10 leads along with Hamilton’s principle
Timoshenko’s beam equations for bending. Note that the beam displacements and
depend on one coordinate and time. Inpaper 3 a displacement field containing several bea
displacements was used to study extensional and bending waves in laminated beam
alternative to using fields for the whole cross section is to discretize it with finite elements. Fo
1-dimensional case the nodal displacements will, like beam displacements, be functions
axial coordinate and time. Aalami [1] was the first to use this approach for waveguides, and
used inpaper 4 for laminated beams.

x1

x2

x3

u3 xi t,( ) w x1 t,( )=

u1 xi t,( ) x3ψ x1 t,( )=



w ψ
12



pled.
ming

for the
ables)
us, and

there
. The
xity of
umber
e with
ity in
nding

ng its
ne in

ss the
time
same

cement
e this

ient
ork by

s, can
rmal
will

, see
The
The differential equations for the beam or nodal displacements are in general cou
Employing Fourier transforms in time and axial coordinate to these equations, or assu
harmonic wave propagation, leads, as for the exact solutions, to a system of equations
displacements, in which the frequency and wavenumber (or, equivalently the transform vari
act as parameters. In the absence of volume forces the system of equations is homogeneo
the dispersion relation is a result of requiring non-trivial solutions. For a given wave number,
will be several possible frequencies, or branches, one for each degree of freedom
displacement solutions for each branch describes its displacement pattern. The comple
these patterns increase with increasing frequency and wavenumber, so for a given waven
the branches with higher frequency will have more complex displacement patterns than thos
lower frequency. Therefore an assumed displacement field will have a limited range of valid
frequency and wavenumber. Equation (9) for example describes only the lowest mode of be
for beams. The range of validity of one displacement field can be determined by compari
dispersion relation to that due to a more sophisticated displacement field. This was do
papers 2and3, and to some extent inpaper 1.

4.3 Transient Problems

The above mentioned solutions to the homogeneous problem can be used to expre
transient wave field that results from transient nodal or generalized beam forces and
dependent end or boundary conditions. This can be done by subjecting the loads to the
transforms used to solve the homogeneous problem and then superposing the displa
solutions. The result is a formal solution in transform variables, and to get the time respons
formal solution must be inverted.

In papers 3and4 transverse matrix cracking and fiber fracture was translated to trans
generalized beam forces and nodal forces, respectively. The translation was based on the w
Burridge and Knopoff [2], who have shown how displacement discontinuities, such as crack
be replaced by dynamically equivalent volume forces. The methods used to invert the fo
solutions inpapers 3and4 are perhaps best illustrated through an example. The example
also, hopefully, shed some light on other issues discussed above such as dispersion.

4.4 Two Examples

Consider an infinite elastic rod loaded by the volume force

, (10)

where is Dirac’s delta function and the time dependence is triangular in shape
Figure 11. The motion in the rod will be calculated using two different differential equations.

F x t,( ) F0δ x( )T t( )=

δ x( ) T t( )
13
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first is the regular wave equation for thin rods and the second is Love’s rod equation.

Figure 11A rod loaded by a time dependent volume force.

The regular rod equation is

, (11)

where is Young’s modulus of the rod and , where is the density of the
material. The volume force is given by equation (10). The following Fourier transform pairs
introduced to solve the differential equation

 and (12)

. (13)

Transformation of equation (11) and rearrangement gives

, (14)

which must be inverted to get the time response. In this case inversion is easily performed
use of tables for example, but for the purpose of illustration the method used inpapers 3and4
will be used here. Also, the displacement velocity will be calculated instead of . Rew
equation (14)

, (15)

x

F t( )
t

T t( )

1

∆t

z

y

x2

2

∂
∂ u0 F x t,( )

E
----------------+

1
c2
-----

t2∂
∂u0=

E c E ρ⁄= ρ
F
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where the relation  has been used. Start by inverting with respect to

. (16)

For a given this integral
can be evaluated by extending
the real valued to complex
values. If the analysis is
limited to and a semi-
circle in the upper half plane is
added to the path of
integration, the contour in
Figure 12 results. With the use
of residue calculus equation
(16) may be expressed as

, (17)

where is the integrand in equation (16), and the first term is the sum of the of the residu
the poles inside . In this case the integrand has two poles, , on the real
These relations are the dispersion relations, because given a value of only two values of
allowed. It is not self evident which poles should be included, but by adding a small damping
in equation (11) it can be shown that poles with move upwards, in to the up
half plane, and vice-versa. From a physical point of view this is reasonable since and w
with move in the positive -direction. Therefore, only the pole should
included, and the residue in equation (17) becomes

. (18)

The second term in equation (17) will vanish. Let be the radius of the circle. For
 the factor in front of the exponential in  then follows the relation

, (19)
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Figure 12Path of integration in the complex plane.
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will

(22).

ve for
which means that

, (20)

where the last inequality follows from Jordan’s inequality. The last expression in relation (20)
clearly vanish as  approaches infinity. Returning to equation (17) it is seen that

, (21)

which has the inverse transform

. (22)

The wave propagation analyzed above was non-dispersive, which is seen in equation
Taking lateral contraction into account by assuming the displacement field

, (23)

where  is Poisson’s ratio, results in Love’s rod equation,

, (24)

where is the radius of gyration for the cross-section. Following the same scheme as abo
 gives,

, (25)
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. (26)

Equation (25) can be inverted by FFT if it is evaluated for a discrete set of values in (paper 4)
or, for large values of , by the stationary phase method (paper 3).

Figure 13Dispersion relations for non-dispersive rod equation ( ), Love’s rod equatio
( ) and exact ( )

Figure 13 shows a comparison between the dispersion relations due to the ordinary
equation (dashed), Love’s rod equation (long dashed) and the exact result due to Pochh
(solid) for a rod with circular cross-section and . Wave components with lo
wavelengths (small ) move faster than those with short wavelengths, as is seen in the lef
diagram in Figure 13. It is also seen that Love’s rod theory is valid only down to wavelength
about , but it has the right qualitative behavior. Figure 14 shows the displacement velocit
to a volume force according to equation (10). The force’s time dependence has triangular
as shown in Figure 11, with . The response according to the ordinary rod equ
does not change as the wave progresses because the wave propagation is non-dispers
response according to Love’s equation, on the other hand, has been dispersed from its o
triangular shape. The long wavelength components are found at the front, as is predicted
Figure 13, and the pulse is more spread in time and has lower maximum amplitude tha
undispersed, or original, pulse (compare with water waves). This is typical for dispersive
propagation.
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Figure 14Dispersion of triangular pulse. The response according to the ordinary rod equat
( ) and according to Love’s rod equation ( ).

5. SUMMARY OF APPENDED PAPERS

Paper 1 The usage of standard finite element codes for computation of dispersion relatio
materials with periodic microstructure.Harmonic wave propagation in periodic structures,
composites, can be analyzed by studying a unit cell subjected to boundary conditions, whi
formulated using complex valued displacement and stress fields. In the method presente
complex valued displacement fields are split in to real and imaginary parts and one finite ele
mesh for each part is used. The identical meshes are coupled using the boundary conditio
the wavenumber enters as a parameter in this coupling. The dispersion relation is subseq
found by computing the eigenfrequencies of the coupled meshes for a given wavenumbe
scheme was implemented in the standard finite element code ABAQUS. Dispersion relation
2-dimensional laminate were computed and compared with an analytical solution in ord
validate the method. As an example the dispersion relation in a hexagonal fiber composit
computed and the results were compared with experiments and an existing approximate
Agreement was very good for waves propagating along the fibers and satisfactory for w
propagating perpendicular to the fibers. One drawback of the method is that only real v
wavenumbers can be used.

4000 4040 4080 4120 4160

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

tc a⁄

Eu̇0

cF0
---------

x 4000a=
18



ment
e
at the
ersion
acks’
r shear
ay be
racked

then
where
s not
sidual
usually

e in
thin
sed to
l and
were
atrix

n turn
g the
sition.
sing
fiber

nd to
ng to a
ustic
valid
is too
e and
from

fiber
cross
nodal
lume
Paper 2Dispersion of waves in composite laminates with transverse matrix cracks, finite ele
and plate theory computations.Matrix cracking in a composite laminate will affect wav
propagation. This was studied using two methods. In the first approach it was assumed th
laminate is cracked periodically and the method from paper 1 was used to compute the disp
relations. It was found that for wavelengths down to the order of laminate thickness, the cr
influence is mainly a reduced stiffness. This inspired the second approach where a first orde
deformation laminate model was developed for laminates with matrix cracks. This model m
viewed as a two step homogenization. In the first step, the cracked plies are replaced by unc
plies with reduced stiffnesses. The regular first order shear deformation laminate theory is
applied using the reduced ply stiffnesses. Both symmetric and unsymmetric laminates
studied and the two approaches compared favorably. The effects of crack closure wa
modeled. Crack closure can have large effects on wave propagation, but in real laminates re
stresses tend to keep the cracks open, and the displacements due to wave propagation are
small.

Paper 3Micromechanical modeling of transient waves from matrix cracking and fiber fractur
laminated beams.The transient wave propagation from matrix cracking and fiber fracture in a
laminated beam of infinite length was modeled. The method developed in paper 1 was u
compute dispersion relations and mode forms for the two lowest branches of extensiona
bending (in two directions) wave propagation. Based on the mode forms, displacement fields
assumed and Hamilton’s principle was used to derive a higher order beam model. The m
cracking and fiber fracture were translated to known time dependent volume forces, which i
were used to calculate generalized beam forces. The equations of motion, includin
generalized forces, were then formally solved using Fourier transforms and mode superpo
The time response was found by an asymptotically valid inversion of the formal solution, u
residue calculus and the stationary phase method. It was found that matrix cracking and
fracture excite several modes of propagation in a laminated beam. Matrix cracking was fou
be a slow event compared to fiber fracture in the sense that the response from matrix cracki
large extent was associated with low frequencies. The applicability of this method to aco
emission experiments is mainly limited by two factors. Firstly, the developed beam model is
up to frequencies corresponding to 50 kHz in a typical acoustic emission experiment, which
low. Secondly, the inversion method used requires unrealistic distances between sourc
receiver - typically 50 beam widths. This could be alleviated by using the inversion method
paper 4.

Paper 4Numerical modeling of acoustic emission in laminated tensile test specimen.This paper
is also concerned with modeling transient wave propagation from matrix cracking and
fracture in a thin laminated beam, or tensile test specimen, of infinite length. In this case the
section was discretized using finite elements, and a system of differential equations for the
displacements were derived using Hamilton’s principle. Nodal forces from the same vo
19
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forces as used in paper 3 (from a matrix crack and fiber fracture) were included in the differ
equations. The system was formally solved using Fourier transforms and mode superpo
including attenuated modes. The formal solution was then inverted using residue ca
followed by FFT. A total of 64 nine node elements were used, and the maximum frequency
in the computations corresponds to 300 kHz in a typical acoustic emission experiment
resulting time responses indicated that dispersion is a very important phenomenon in these
of experiments. It was also seen that torsional modes of wave propagation, which wer
included in paper 3, give important contributions to the motion in the specimen. Finally, a me
to measure average matrix crack propagation velocity was suggested.
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