

Institutionen för datavetenskap
Department of Computer and Information Science

Final Thesis

 Extending a framework for a play and learn

game with drag and drop, a subgame and visual

feedback

av

Arvid Johnsson

LIU-IDA/LITH-EX-G--15/021--SE

 2015-08-28

Final Thesis

Linköpings universitet

SE-581 83 Linköping, Sweden

Linköpings universitet

581 83 Linköping

Linköpings universitet

Institutionen för datavetenskap

Final Thesis

 Extending a framework for a play and learn

game with drag and drop, a subgame and visual

feedback

av

Arvid Johnsson

LIU-IDA/ LITH-EX-G--15/021--SE

2015-08-28

Handledare: Agneta Gulz

Examinator: Annika Silvervarg

På svenska

Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare – under en längre

tid från publiceringsdatum under förutsättning att inga extra-ordinära omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut

enstaka kopior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning

och för undervisning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva

detta tillstånd. All annan användning av dokumentet kräver upphovsmannens medgivande.

För att garantera äktheten, säkerheten och tillgängligheten finns det lösningar av teknisk och

administrativ art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den

omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna sätt samt

skydd mot att dokumentet ändras eller presenteras i sådan form eller i sådant sammanhang

som är kränkande för upphovsmannens litterära eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se förlagets

hemsida http://www.ep.liu.se/

In English

The publishers will keep this document online on the Internet - or its possible replacement -

for a considerable time from the date of publication barring exceptional circumstances.

The online availability of the document implies a permanent permission for anyone to

read, to download, to print out single copies for your own use and to use it unchanged for any

non-commercial research and educational purpose. Subsequent transfers of copyright cannot

revoke this permission. All other uses of the document are conditional on the consent of the

copyright owner. The publisher has taken technical and administrative measures to assure

authenticity, security and accessibility.

According to intellectual property law the author has the right to be mentioned when

his/her work is accessed as described above and to be protected against infringement.

For additional information about the Linköping University Electronic Press and its

procedures for publication and for assurance of document integrity, please refer to its WWW

home page: http://www.ep.liu.se/

© Arvid Johnsson

Abstract

This report documents and describes the process of the extension of a JavaScript framework

for the math game Magical Island and implementation of one of its subgames. Moreover it

details the implementation of visual feedback within this subgame based on literature about

feedback within games. The method details the implementation process one system at a time,

starting with a study of the code and ending with the implementation of the visual feedback.

The results show that a systematic approach where an understanding of the existing code is

the most important thing when extending and implementing new features in a framework.

They also show that to properly design a system for visual feedback knowledge of the

research within this field is needed.

Contents
1. Introduction ... 1

1.1 Background and motivation .. 1

1.2 Purpose .. 2

1.3 Limitations ... 2

1.4 Goal ... 2

2. Theory .. 3

2.1 Learning through games .. 3

2.2 Feedback.. 3

2.3 Visual feedback and interaction .. 4

2.4 JavaScript and the Phaser framework ... 5

2.5 Magical Garden framework ... 6

2.5.1 Subgame structure ... 6

2.5.2 Button structure ... 9

3. Method .. 12

3.1 Learning the code and setting up a base ... 12

3.2 Implementation of the draggable objects ... 13

3.3 Implementation of the drag functionality ... 14

3.4 Implementation of the usage of the dragObjects from the subgame 15

3.5 Implementation of the goal objects .. 16

3.6 Implementation of the SharkGame ... 17

3.6.1 Graphics .. 18

3.6.2 The runNumber function and round handling ... 19

3.6.3 Cookie numbers and images .. 20

3.6.4 The sound ... 22

3.6.5 The win object .. 23

3.6.6 Showing the equation .. 24

3.7 Implementation of the visual feedback .. 25

3.8 Conversion to Ipad .. 26

4. Result ... 27

4.1 The draggable and goal objects ... 27

4.2 The graphics and the audio ... 28

4.3 The shark game ... 28

4.4 The visual feedback ... 29

5. Discussion .. 30

5.1 Result ... 30

5.2 method .. 31

5.3 Sources .. 33

5.4 Ethics ... 33

6. Conclusion ... 34

6.2 future work .. 34

7. References ... 35

1

1. Introduction
Magical Garden is a game for small children, where they get a chance to learn the absolute

basics of math in a fun and engaging way. A unique thing with Magical Garden is that it’s

using what’s called teachable agents. A teachable agent or TA for short is a digital student of

the child. This concept is built upon the established pedagogical method “learning by

teaching”. The existing subgames within Magical Garden focuses on developing the child’s

understanding of number sense. The game of which the implementation is started on in this

thesis work, called “Magical Island”, focuses on so called “friends of ten”.

1.1 Background and motivation

The current version of The Magical Garden, MG, is primarily built for 3-5 year olds.

However the Educational Technology group at Ida, Liu & LUCS, LU (the original

developers) also wants something that suits older children, 6-7 year olds more specifically, as

well as mathematically more advanced children in the age group of 3-5 year olds.

 There is a conceptual design of a novel module for MG called Magical Island, MI, which

targets topics from the grade one curriculum, specifically “friends of ten”, which narrative

builds on that of MG. The design is partly implemented in a Unity prototype. This prototype

is however far from finished and because it’s implemented in Unity it means that there are

probably some machines which can’t run the program. One would also have to install it on

every single machine that wants to run it. This is quite a big downside if it should be used by

small children in schools. It is much better if its web based because then its platform

independent and it will not have to be installed on the machines.

The Magical Garden is already implemented in HTML5/JavaScript, now the Educational

Technology Group wants MI to be implemented in HTML5/JavaScript so that MI too will be

platform independent and not need an installation. MG already has a working framework

written in JavaScript so because MG and MI is quite similar MI’s framework can be heavily

based upon MG’s. However MI does have some game mechanics such as drag and drop

which is basically nonexistent within the MG framework (one of the subgames have a very

specific implementation of drag and drop which can’t be used for anything else) which means

that the framework needs to be extended so that it supports the new mechanics within MI.

2

Besides this a requirement is some kind of system for visual negative feedback implemented

in MI, whereas in MG most feedback to the player is handled through dialogue. In other

learning games, for example Critter Corral [7] it’s handled through different types of visual

cues which have the potential to help the players even more.

1.2 Purpose

The tasks to be solved within the present thesis work are to implement a framework in

JavaScript which supports the mechanics within the Unity prototype of MI. In addition a

system for visual feedback will be implemented within the new framework and one subgame

that uses the new extensions. The final requirement is that this game should be able to run on

Ipad.

1.3 Limitations

This project will not handle the framework´s connection with the backend and logging to the

backend. Neither will it include production of any graphics; instead the existing graphics from

MI will be used. Lastly, It won’t handle any of the story or progression throughout the game

in large. The reason for this is that we have concluded that it will be better if the project is

focused on establishing a working base for the game so that other developers later on can

continue to work on it and develop the specifics for MI within it.

1.4 Goal

The goal of this report and thesis work is to find out the following:

How do you extend a base (framework) for a TA-based game with 10-friends as well as

implement a game in this framework?

How do you implement informative negative visual feedback for children within a

mathematics game of this kind based on research on feedback?

3

2. Theory

2.1 Learning through games

Digital games are primarily thought of as pure entertainment but they can be used as very

powerful tools for learning. Mark Prensky [1] explains why this is the case and how effective

educational games can be developed. Firstly he states that the main reason why games can be

used very effective as educational tools is that, today’s learners have changed radically from

previous generations and these learners need to be motivated in new ways.

So in what ways have learners changed? Prensky calls today’s learners for digital natives,

meaning that they have grown up with the digital world of which games are a big part of. This

has resulted in a change in how people raised today think and process information. Because

of this they are motivated in different ways and by different things. They are for example used

to the motivational techniques of digital games. Just to name a few of the motivating elements

from video games that Prensky takes up: they are fun which gives us enjoyment, they have

rules which gives us structure, they are interactive which gives us doing, they have goals

which gives us motivation and they have win states that gives us ego gratification.

 Moreover he takes up a couple of different valuable techniques that can be utilized with very

great effect in the present thesis project and in the Magical Garden overall.

 Practice and feedback which Magical Garden relies heavily upon in using repetition

of exercises and getting feedback on one’s actions within the game,

 Learning by doing which of course all games easily exploit because of their inherent

nature as an interactive medium.

 Goal oriented learning which is used in Magical Garden and Magical Island, in the

sense that there is a goal within the game that drives the player forward, giving

him/her an incentive to keep playing.

2.2 Feedback

Blair, K. P. [2] and Moreno, R., & Mayer, R [3] describe three different types of feedback,

Explanatory feedback (EF), Corrective Feedback (CF) and answer until correct (AuC) that are

used in learning games. EF means that the user is provided with an explanation why their

answer was incorrect, for example that the number was too high or too low. CF means that the

user is shown the correct answer and then is able to imitate it. AuC means that the user only

4

gets to know if their answer was right or wrong and then gets to continues answering until

he/she is correct.

Blair, K. P. [2] describes their implementation of the different types of feedback in the math

learning game Critter Corral. While the implementations of corrective feedback and answer

until correct are quite straightforward, the implementation of explanatory feedback can be

quite varied. Critter Corral relies upon visual aids for the explanatory feedback. For example

in one of their subgames where the users objective is to repair a chair which misses one leg,

the user has several legs to choose from which all have different lengths. If the user chooses a

leg that is too long the chair will start to tilt backwards and if the user chooses a leg that is too

short the chair will start to tilt forwards. Finally if the leg is the exact correct size the chair

will be fixed and the character on it can sit steadily. This is what they call implication

feedback which is a type of explanatory feedback; they show the student the implications of

their answers.

At the time of Blair`s [2] publication they were in the middle of a study regarding the

effectiveness of critter corral and the three different feedback types. They used two preschool

classes as their test subjects. Their preliminary test results indicated that the users use more

trial and error strategies when the AuC condition is employed and more deliberate choices

when CF and EF is employed. But they seem to enjoy EF and AuC more than CF which can

result in them playing longer.

2.3 Visual feedback and interaction

Moreno, R., & Mayer, R [3] discuss the possibility to design games as interactive multimodal

learning environments. They begin to state that the most effective learning environments are

multimodal which means that the user is presented with both a verbal representation of the

content as well as a corresponding visual representation. And of course if it’s interactive the

environment depends on the learner’s action and responds accordingly, e.g. with feedback.

However for the interactivity to have a positive effect on the learner it needs to foster

learning.

Paek, S et al. [4] states that “The idea that physical objects can help young children learn has

a long, well-argued path in educational theory” based on the research of many others. They

continue to state that these days many researchers claim that virtual manipulatives can have

the same positive effect. They also conducted a study using different version of a math game.

One version only had visual feedback, one had both visual and auditory feedback and one had

5

neither. In their results we can clearly see that you gain a lot of both having visual and

auditory feedback. In Magical Garden there is both verbal and visual representation for most

of the content. However there is only verbal feedback and the interaction is quite moderate,

there is little that the plyer can manipulate, only buttons, apart from the balloons in the

balloon game which can be dragged and dropped. So the addition of drag and drop in MI can

be beneficial both from a learning perspective according to Moreno, R., & Mayer, R [3] and it

can be more fun according to Prensky [1]. The addition of visual feedback could also benefit

the learner greatly according to Paek, S et al. [4].

2.4 JavaScript and the Phaser framework

Because Magical Island and Magical Garden are web based, JavaScript needs to be used as

the main programming language. JavaScript is a scripting language made to be used in web

browsers, it also is a dynamic language instead of a static language which is common for the

not browser based languages such as Java, C++ or C. So what is a dynamic language?

Mikkonen, T., & Taivalsaari [5] define a dynamic language as “a class of programming

languages that share a number of common runtime characteristics that are available in static

languages only during compilation, if at all.”. They continue to state that dynamic languages

include one or more of the following characteristics: Dynamic typing meaning that one

doesn’t have to declare variables before they are used or explicitly state what types they are.

Interpretation meaning that the code is first read at runtime, translated to an intermediate

representation and executed immediately and finally Runtime modification meaning that

some aspects of the code can be modified at runtime.

To make it easier to write a game with JavaScript the open source game framework Phaser is

used. Phaser is a HTML5 framework for making games in JavaScript. It provides the

programmer with common features for making games such as physics, sprite handling, sound

management, input and animation. When downloaded the programmer has accesses to a

multitude of abstracted methods which makes it a lot easier to write games from scratch. E.g.

it has inbuilt methods for drag and drop which make the drag and drop functionality much

easier to implement. It also uses a system called groups which are groups of objects, which

enables the programmer to perform operations on multiple objects at the same time.

Davey R [6]

6

2.5 Magical Garden framework
To get a better understanding of what has actually been done in this thesis work, the reader

needs a basic understanding of the framework which has been extended. The focus will be on

the underlying systems for buttons and the systems that are needed for the subgames.

2.5.1 Subgame structure
The subgame structure consists mainly of three classes Subgame, NumberGame and one

specific class for each subgame, for example BeeFlightGame. Subgame is the superclass for

all the subgames which contains the general logic for all the subgames, such as round and

mode handling (all the game consists of rounds which are repeated and modes in which

different things happen), start and stop functions for the subgames and creation of the menu,

the agent and the game object. NumberGame is the superclass for subgames which goal is to

find a specific number, the first thing it does is to run the subgame constructor. NumberGame

initializes the following variables.

Figure 1: NumberGame variables

The important ones are: method which specifies what kind of math method (add, subtract and

count e.tc) which is used in the subgame and amount which specifies the largest input number

in the current subgame as well as the number of buttons to be shown. The agents position,

7

scale, whether the agent is visible or not, the help button and the move function for the agent

is also defined here. The following functions in NumberGame are relevant for this thesis

work.

Finally there is the BeeFlightGame class. BeeFlightGame runs the NumberGame constructor

which in turn runs the subgame constructor. When the subgame and NumberGame have been

constructed the pos and preload functions will run. The pos function declares the position for

the in game objects and preload loads the audio and image assets. The create function sets up

the buttons, music, speech, background, agent and a move function. Moreover the subgame

class contains instruction functions which defines which speech instructions should be played

when. A runNumber function which tests the inputted number with the desired value, what

happens when the number is correct or wrong is also defined here and then it calls on the

nextRound function which goes on to the next round. All subgames also have four mode

functions modeIntro, modePLayerDo, modePlayerShow and modeAgentTry which functions

like a main function would in many other programs. The modeIntro differs from the other

three in that it basically only contains the intro for the subgame, it plays the relevant

Name Description

_nextNumber Returns a new random number to look

for.

_tryNumber Tests if the player choose the correct

value.

setupButtons Creates a new button panel.

pushNumber Links the buttons onClick to the

subgame runNumber function.

showNumbers Shows the number panel and hides the

yes no panel.

updateButtons Updates the values in the number

panel.

8

instructions. The main difference between the mode functions and an ordinary main function

being that the game has three of them, they are run until the player get 3 correct answers then

the program will go on to the next mode function. They define a timeline and then adds all the

relevant functions to their timeline. These functions will be run in the specified sequence

(ordinarily the order in which they are added in the code), the functions are generally the

instruction functions and the ones for manipulating the objects which are used in the games.

That is because the most part of the gameplay is made up of instruction and object

manipulation. The reason for having multiple instruction functions is because depending on

the method used in the subgame the gameplay will vary. This means that one needs separate

instructions for each method.

Figure 2: BeeFlightGames modePlayerDo function

9

Figure 3: BeeFlightGames instructions for the counting method

Another big part of this framework is timelines, as one can see in both modePlayerDo (figure

2) and instructionCount (figure 3) a timeline is created. Timelines are a way to queue up

different events sequentially. When something is added to a timeline it will be added at the

first empty position (the last position generally). The timelines are what drives the game

forward instead of having a loop which runs everything over and over the functions and

sounds are added to timelines which are run when they are needed. Which timeline that runs

at the moment is generally decided by the mode functions, depending on the current mode

different timelines are run (each function has one timeline).

2.5.2 Button structure
The button structure mainly consists of 5 classes, ButtonPanel, NumberButton, SpriteButton,

TextButton and GeneralButton. ButtonPanel is the first class used when creating a button. It

sets the objects variables to the ones sent to the class such as the coordinates and links an

onClick method to the object. Then it creates a new object buttonOptions containing all the

variables needed to create a button. Depending on what kind of button the subgame wants to

create, ButtonPanel calls on one of the constructors of the three classes NumberButton,

SpriteButton and Textbutton. The creation is done with the buttonOptions object, the

representation, a number and the game object After the button has been created it’s added to

the ButtonPanel group.

10

Figure 4: The buttonOptions object and the button setup

The ButtonPanel class also contains an updateButtons function which can update the number

of the individual button objects depending on which method the current subgame is using. So

if a subgame wants to create a button with a number on it ButtonPanell will call on

NumberButtons constructor. Basically the first thing that NumberButton does is to call its

parent constructor within GeneralButton. GeneralButton defines everything that is the same

for all the buttons, meaning the coordinates, the graphics, what size and what happens

graphically when a button is clicked (in this case, its color is changed and a sound is played).

After a GeneralButton is constructed the program will go back to the NumberButton

constructor. There it defines the specifics for a number button such as the smallest number it

can be and the largest, the actual number it has, and finally it defines that the number should

be sent to the onClick method when the button is clicked. Moreover it contains the function

updateGraphics which defines which representation the button should use and creates the

representation and places it on top of the button graphic.

11

Figure 5: NumberButton constructor

The final thing needed for the button structure is the setupButtons function within the

NumberGame class. The NumberGame class is a superclass for most of the subgames. The

setupButtons function provides the link between the button set up from within the subgame

and the actual creation in ButtonPanel. The main functionality of setupButtons is to link the

onClick function of the buttons to a function which defines what happens internally within the

current subgame, to create the button panel and save the resulting object in a button variable

which the programmer has access to within the subgames for manipulation.

12

3. Method

3.1 Learning the code and setting up a base
Because the new framework would be quite similar to the old one, instead of starting from

scratch instead the existing one was extended. At the start of the project a thorough

examination of the code was conducted, to see what needed to be added, deleted and

modified. A conceptual design was drawn up (figure 6), showing the new structures to be

added. The information presented in 2.5 is the result of the study. Because the backend isn’t

part of this thesis work it was separated from the relevant code so that it wouldn’t interfere

with the new code. A baseline subgame from where the new extensions could be tested was

needed. The baseline subgame was a very striped down copy of the BeeFlightGame named

SharkGame. The only things left in the baseline subgame were the functions that loaded the

assets, the ones that created the specific objects and placed them on the screen as well as the

two mode functions modeIntro and modePlayerDo.

Figure 6: NumberGame creates the subgame and the ObjectPanel, ObjectPanel creates Cookies which are

DraggableObjects.

In Magical Gardens development build there is a menu in which the player chooses which

game, method, the range of the numbers (1-4 or 1-9) and the representation. In Magical Island

the player will instead have a screen with different islands on which the different subgames

are on. The selection menu wasn’t removed instead the options were defaulted so the only

button which matter is the actual subgame button which later on can be bound to an island

instead. In Magical Garden the possible numbers on the objects always correlated to the

amount of objects (1-9 or 1-4). In the subgame that was implemented in this project there

13

should always be 4 objects but with 1-9 as possible numbers. So instead of setting the max

number to amount it was set to 9 directly.

3.2 Implementation of the draggable objects

When implementing the base structure for the draggable objects the structure for creating

buttons was copied. The classes ButtonPanel, NumberButton and GeneralButton was copied

and their names where changed to ObjectPanel, Cookies and DraggableObject. The biggest

change that was made was that everything regarding the representations on the buttons was

deleted. Because in MI there is only a number representation so it was unnecessary to include

the different representations when only one will be used. Besides on the given cookie images

the numbers where already drawn. Instead the number was saved internally in the object and

the corresponding picture is loaded in. Furthermore the variables dropPlaceX, dropPlaceY, id,

idName, startPosX and startPosY were added to the objectOptions field in ObjectPanel.

DropPlaceX and Y define where the object can be dropped, id identifies which is which of the

same objects, idName identifies what kind of object it is and startPosX and Y keeps track of

the original position of the object in the original coordinate system. StartPosX and Y are

needed because in DraggableObject each object has its own coordinate system so the original

start position is needed when calculating the new position for the visual feedback.

Figure 7: The objectOptions object

14

3.3 Implementation of the drag functionality

The drag and drop functionality for the objects was very easy to implement thanks to Phaser.

Phaser has built in support for drag and drop so the only thing one has to do is to make an

object draggable, as seen in figure 8.

Figure 8: Creating the sprite and enabling drag

One of the big reasons to why the number representation wasn’t used (besides the fact that the

numbers already were on the images) was the fact that the representation and the sprite were

two different objects. And Phasers implementation of drag (seen in figure 8) does not support

drag on multiple objects at the same time. This meant that it would be easier to have the

cookie and the number as one image instead and change the images during the course of the

game so they correlate to their objects internal numbers. In order to trigger something when

the player drops the object at a specific position one also have to use the onDragStop

functionality with which one can bind a new function to be triggered when you stop dragging

the object. In the stopDrag function the position of the mouse cursor is cheeked so as to know

where the object is. However the draggable objects and the input (mouse and touch) dos not

use the same coordinate system so the input coordinates need to be adjusted so as to correlate

to the objects coordinates. Then the new adjusted input coordinates are compared to the

dropPlace coordinates, if the input coordinates corresponds with the dropPlace coordinates.

The dragObject is placed according to the design of the visual feedback (explained in 3.9)

otherwise it’s placed on its start position.

15

Figure 9: The stopDrag function

3.4 Implementation of the usage of the dragObjects from the

subgame

The original connection of the buttons to the onClick method was done in GeneralButton by

having a function onInputDown which called on the objects onClick method which is linked

to the NumberButton class onClick which in turn is linked to buttonPanels onClick which

called the function pushNumber which finally called the runNumber function within the

current subgame.

This structure was basically kept intact with only one real difference, being that dragObjects

onClick was called from its stopDrag function. The reason for this is that when using drag and

drop interfaces you want the resulting function to be triggered on drop and more often than

not (as in this case) you only want it to be triggered when dropped on a specific position. This

is why the onClick function first is called if the new coordinates corresponds to the drop place

coordinates.

16

3.5 Implementation of the goal objects
In order to have the possibility to have different drop zones in different subgames as well as

having a more easily extended structure the drop coordinates are sent to the dragObject at

creation from the subgame. A goalObject which coordinates are generally the same variable

as the dragObjects dropPlace coordinates was also made. This e.g. makes it possible to

switch drop positions by only changing the value of the two dropPlace coordinates that you

send to dragObject. An even neater solution would be to get the dropPlace coordinates

directly from the goalObjects sprite size but then you would also force future programmers to

have a goalObject when they are using a dragObject which isn’t always optimal. The

goalObject is basically a downscaled version of the dragObject, everything handling any kind

of input was deleted. The only thing left was the constructor which sets the coordinates, color

and the background sprite, the setSize function and a highlight function which can highlight

the object. There is also a child class to goalObject, goalCookie which basically is the same as

the Cookies class except for the input handling.

A small addition was needed to be done in ObjectPanel and NumberGame for the creation of

goalObjects. Here the id object variable came in handy because both the cookies and the

goalObject are created within objectOptions so depending on if the current object you wanted

to create was the Cookies or the goalObject the different constructors were called as seen in

figure 10.

Figure 10: Button setup in ObjectPanel

The same thing was needed to be done in NumberGames setupDragObject function. If the

current object is the dragObject the dragObject options where sent to the ObjectPanel and

vice versa.

17

3.6 Implementation of the SharkGame

The subgame which were going to use the dragObjects was already basically fully

implemented in the MI prototype which meant that the design was already done. The subgame

works like this, there is a monkey which wants to get water from the ocean but an angry shark

won’t let him so to make the shark happy the monkey tries to feed him with cookies. However

the shark only wants whole cookies and all of the monkey’s cookies are broken. The player’s

task is to match two cookies to make one whole and then feed the shark with the new whole

cookie. At the start of each round a new goal cookie is loaded in as well as four alternative

cookie pieces to match it with.

Figure 11: The shark game

Each cookie has a number and a whole cookie has always the number ten so if the goal cookie

has number six the player should drag the cookie with number four to the goal cookie

because 6+4 = 10. When the player has accomplished this three times the first mode is over

and the next one is started. Now a TA will come and watch and after another three times the

last mode is started wherein the TA will try to guess the correct number. When the TA

guesses the player’s task is to confirm if it was correct or not by clicking a yes or no button. If

the agent was wrong the four alternatives will be shown and the player gets to choose. If the

18

agent is right the program will go on to the next round and after three successful guesses the

game is done.

3.6.1 Graphics
The first thing implemented in the subgame was the graphics from the Magical Island cookie

subgame. The existing framework is setup to work with sprite sheets with corresponding json

files. This meant that the given separate images had to be used to generate new sprite sheets

with a tool found online called texture packer. One sprite sheet including the backgrounds and

the shark, one with the monkey and one with the cookies was created. In figure 11 one can see

that the monkey doesn’t have any legs that’s because there wasn’t any separate image for the

legs, meaning that no sprite sheet could be generated for them. When constructing the sprite

sheet for the cookies the placing algorithm for the images in the sprite sheet had to be set to

basic. This algorithm, instead of altering the orientation of the images to use the size of the

sprite sheet optimally, just places the images next to each other in their original orientation. If

another of the more optimal placing algorithm where used it would cause the game to not

always find the correct image within the sprite sheet.

Sometimes graphic bugs occur in the selection screen which is left in from the development

version of MG. It is likely that it has to do with the uncoupling of the backend because the

graphic bugs started first after the back end was uncoupled.

As mentioned earlier the cookie images also have the numbers on them which means that they

have to be switched after every successful pairing of two cookies. This must be done every

time when a new set of cookies should get loaded in. In Phaser the only thing needed to

switch objects background images when using sprite sheets is to change the background

frame.

Figure 12: Cookies updateGraphics function

19

The switch is handled by the updateGraphics function seen in figure 12. The num variable is

the actual number you want to show, the 8 that is added to num is needed for the number to

correlate with the index of the wanted image in the json hash. On every new round the update

graphics method is called for each separate cookie which sets the frame number

corresponding to the cookies number which is set in the calling function. Then the number is

modified to correspond to the correct frame in the sprite sheet.

3.6.2 The runNumber function and round handling
A part of the implementation of the subgame was that the onClick function needed to be

linked to the runNumber function in order to let it check if the chosen number was correct or

not, as well as progressing to the next round with the nextRound function. Each round consists

of one complete run through of one of the mode functions modeIntro, modePlayerDo,

modePlayerShow or modeAgentTry. The game begins in the modeIntro function which

basically only plays the description audio files and then goes on to the next round which will

be modePlayerDo. Unlike modeIntro, the other three mode functions have at least three

rounds each, the mode is only changed after three rounds with a correct answer. SharkGames

modePlayerDo is a scaled down version of bee games modePlayerDo this is the first mode

where the player does everything without a TA. When modePlayerDo is finished it will go on

to modePlayerShow which is basically the same as modePlayerDo except that a specific

sound asset is played. In this mode the player also does everything by himself but the TA is

watching, finally it will go to the modeAgentTry this mode is quite a bit different from the

others. At first the only thing that is shown is the goal object with the showGoalObject

function and then the TA will guess the right answer with the agentGuess function. Then the

showYesNo function is run which enables input and shows the “yes” and “no” buttons and the

player will get to say if the agent was correct or not. The “yes” and “no” buttons also have

onClick functions which if “no” is clicked will run showNumbers so the player can put in the

correct answer and if “yes” is clicked the number will be checked with the correct number and

then proceed to the next round. If the number wasn’t correct when the player clicked “yes” the

cookie alternatives are shown and the player gets to guess.

20

Figure 13: SharkGames runNumber function

The runNumber function in SharkGame (shown in figure 13) checks if the sent in number is

correct with the preexisting function tryNumber. If the returned result was correct the win

object (the whole cookie) is shown and the goalObject and the dragObjects are hidden. If the

returned result was wrong the sound for the wrong cookie is played if the current mode is

agentTry the cookie alternatives are shown with the showNumbers function and the

nextRound function is called.

3.6.3 Cookie numbers and images
In the SharkGame you want three of the cookies numbers to be randomized and one of them

to be the desired number. One also wants to update them and their images each new round.

The number randomization and update was done in the already existing _updateObjects

function, the _updateObjects function (seen in figure 13) is the renamed copy of the

previously mentioned _updateButtons function. Originally it changed the order of the

21

numbers depending if you wanted them from least too biggest or the other way around.

However 3 random numbers, the desired number as well as the invers of the desired number

for the goal object was needed for the shark game. E.g. if the desired number is four the goal

object should have 10-4 = 6. To achieve this a number between one and nine was randomized,

the current desired number was saved to the local variable “correct” and an index between one

and four was randomized. Then if the current object being handled was a cookie the program

looped over all the cookies and sat the cookie with the random index internal number to the

desired number and the rest of the three to a new random value. At the end of each loop the

current cookies updateGraphics function (seen in figure 14) was called and there the image

was set for that cookie. The check for final dragObject is a failsafe; if updateGraphics is

called with the finalDragObject it shouldn’t change the frame because the finalDragObject

should always have the same image (the whole cookie with the number 10). The internal

number doesn’t matter for the finalDragObject and that’s why that check isn’t in the

_updateObjects function. However if the object being handled by updateObjects is

goalObject, GoalCookies updateGraphics is immediately called with the invers of the correct

number. To get the numbers and images to change every time the _updateObjects is called

from the showNumbers function that is called on every new turn in the modePlayerDo

function. There was however a problem with this because when the player chooses the wrong

number the game still progressed to the next turn which meant that the draggable cookies

images would be changed when the player were wrong which they shouldn’t. The

goalCookies image didn’t change because its number is set up since before only to change

when the correct answer is given. The solution to this was to set this.isRelative to true or false

depending on if you were wrong or correct after each new answer is checked. The show

numbers function checks if this.isRelative is true and if it isn’t _updateObjects isn’t called.

22

Figure 14: ObjectPanels _updateObject function

Probably the biggest difficulty with this system was the handling of the two different objects

this.cookie and this.goalCookie because at every step the programmer needs to make sure that

the function does the correct operation with each object. E.g. there is only one goalCookie but

4 Cookies which is why the check in updateObjects is required, otherwise the program will

crash when it tries to loop over nonexistent objects.

3.6.4 The sound
The sound in the rest of the subgames is handled with one file containing all the lines coupled

with a speech sheet containing so called markers which details where each line starts in the

file and how long it is. This means that one only needs to load in one sound asset and the play

parts of it whenever you want. In the magical island prototype they use one file for each line

of dialogue. In order to follow the standard within the framework the individual files were

merged to one using the program audacity. Then it was a simple task of adding the wanted

parts of the file to the appropriate timelines with the help of the markers and the preexistent

addSound function from the timeline library.

23

3.6.5 The win object
The win object is the whole cookie which is shown when you have put together the correct

pieces which then should be fed to the shark. The finalDragObject (the win object) is created

in the same way as the ordinary dragObjects with the exception that only one is created and

its image is defaulted to the number ten cookie. In finalDragObjects onClick function the

nextRound function is triggered as seen in figure 15 instead of in dragObjects. However

nextRound was still needed to be called from runNumber if the player chooses the wrong

number. In that case no winObject should be shown but one still wants to progress to the next

round. So the runNumber function now only runs showWinObject and sets this.isRelative.

Then the player gets to move the whole cookie to the shark and the win sound is played and

the nextRound function is run.

Figure 15: The pushNumber and moveObject functions

The win function which is linked to final dragObject plays both the dialogue line when the

shark is fed and when the player wins the entire game. In order to know when the player has

won the entire game the _totalCorrect variable is checked because the player has won when

he/she has gotten the correct answer 9 times as seen in figure 16.

Figure 16: Check which sound should be played in the win function

24

3.6.6 Showing the equation
When the correct cookies are paired together the preformed equations is shown in numbers,

e.g. if the player paired cookie 4 with 6, 4 + 6 = 10 should be shown. Because they wouldn’t

be interactable in any way, but just fade in when a pairing is made and fade out when the

shark has been fed. They are implemented as ordinary sprites. In SharkGames create function

the sprites are created with the images for +, =, 10 and two arbitrary numbers (seen in figure

17) which are replaced in runNumber. Their visible variable is set to false which means that

they won’t be visible. In runNumber when the player is correct the first sprites frame name is

set to the number that was chosen by the player and the second number to 10 – the chosen

number and then the sprites visible variable is set to true as seen in figure 18. Lastly in the

win function which is triggered when the shark is fed the sprites visible variable is once again

set to false.

Figure 17: Sprite initialization

Figure 18: Setting the sprites to the corresponding images

25

3.7 Implementation of the visual feedback
The implementation of the visual feedback works as follows in the game. When the correct

number or a number smaller than the correct number is drawn to the goal cookie the

dragObject will be placed in the hole in the goal cookie. If the number is too big it will be

placed to the left of the goal cookie.

To get the cookie pieces to fit together they needed to have the same orientation, in the

original images they had the same orientation. And thanks to the use of the basic algorithm

when constructing the sprite sheet (mentioned in 3.6.1) the images kept their original

orientation. The next problem was that all the objects had their own specific coordinate

system meaning that their start position always was 1,1. That’s why the ids are needed to keep

track of the individual objects because then one can set a new position for each individual

object. The dropPlaceX and Y variables of course didn’t match the object coordinates either

which meant that compensation for them was needed too. On the other hand because their star

position is 1.1 for all of the objects it was very easy to move them back to the start positions.

The placement of the cookie when the number is to big was done in the same way except that

it was placed the width of one object to the left of the goal object. The hard part was to get the

program to figure out whether the current objects number was smaller or bigger. In the

NumberGame class there is a tryNumber function which tests whether the chosen number was

correct or not, but it also saves the offset to the correct number in this.lastTry. Meaning that if

the answer was too small the offset will be less than zero, if the answer was to big the offset

will be more than zero and if the answer was correct the offset will be zero. A new function

setTry was created in DraggableObject; it’s called from tryNumber with this.lastTry. As

mentioned earlier, in JavaScript when you call on other objects prototype functions you have

to send with an object (this) and that is the object that will be handled in the function. Which

meant that instead of using “this” (which in this case would not refer to DraggableObject but

the object from which one sent the call) in setTry, DraggableObject.try is specifically stated

which is accessible in the stopDrag function. In setTry DraggableObject.try is set to the value

26

of this.setTry. The placement is handled by the algorithm shown in figure 19 which works as

follows. This.id is the id number (1-4) of the cookie meaning that the algorithm for the first

cookie will basically only subtract startPosX from dropPlaceX. The multiplication with 113 is

needed for the 3 following Cookies because the space between each cookie is 113. The

algorithm for placement to the left of the goalCookie is the same with the addition of an

addition of 75 at the end because the cookie should be placed 75 pixels to the left of the

goalCookie. The y position is the same for all of the Cookies, which is why it’s enough with

the initial subtraction.

Figure 19: Sprite placement algorithm in stopDrag

3.8 Conversion to Ipad
As stated above, one of the requirements was that the game should be able to run on an Ipad.

When everything else was done an Ipad was borrowed from the Educational Technology

Group to test on. The testing process was very easy because the program is run on a

development server which is run locally on my computer. To test it on Ipad one simply had to

connect with the server through the Ipad’s web browser using my computers ip address and

port number 9000 which is the port that the server runs on.

Luckily the only real change needed to be done in the code was that, DragObjects stopDrag

function checked specifically for the mouse coordinates. But because Ipads only use touch

input that did of course not work. The very simple fix was to check for all inputs last

coordinates which works for both touch input and mouse input.

27

Figure 20: Getting input coordinates in stopDrag

There is however one problem with the program at the moment, and that is that the audio files

that were given and then merged is too big for an Ipad which causes the program to crash

about 60% of the time at startup. The audio file simply needs to be compressed in order to

lessen the amount of stereo channels used. A few different file formats were tested of

differentiating sizes but there were no major differences. But because sound compression is

not a specific part of this thesis work we have agreed that future developers will solve this

problem.

4. Result
In this chapter exactly what has been implemented and the reasons are presented.

4.1 The draggable and goal objects
Drag and drop is a part of another subgame in Magical Garden, so why was that

implementation not just copied to the shark game? That is because what was wanted was a

general and extendable structure that could be used in other subgames just as with the already

existing buttons in Magical Garden. Besides drag and drop objects are basically the same

thing as buttons with the addition that they can be moved with the mouse. This meant that the

button creation could be copied to be used when creating drag and goal objects, avoiding

much of the ground work. This meant that a fast and working base for my drag and drop

functionality was established. So what was implemented is an easily extendible structure for

drag and drop mechanics, the only thing one needs to do to create a new dragObject except

actually creating it in NumberGame and a subgame is to create one new class modeled after

the Cookies class and create it in the object panel. Then one can add features to it by

extending the ObjectPanel and DraggableObjects stopDrag function. New goalObjects can

be created in exactly the same way.

28

Figure 21: Button setup in ObjectPanel

4.2 The graphics and the audio
The reason why sprite sheets were used instead individual images was that the existing

framework already used sprite sheets. Which also meant that the way they were handled could

be copied which in turn saved time. Time that otherwise would have been spent on having to

look up ordinary sprite handling in the Phaser documentation. Besides it’s much more

convenient to have one uniform way in which one handle all the images than two separate.

Besides the images had to be changed for the objects quite often which is much easier to do

with a sprite sheet coupled with a json file than if individual images were used. As stated

above it’s neater to have one uniform way to handle a group of assets than several different

ways. That’s why the audio implementation was done in the same way as in the rest of the

subgames.

4.3 The shark game
The shark game was implemented as described in 3.7, as stated earlier most of the structure is

copied from the BeeFlightGame. SharkGame also uses NumberGame and subgame in

basically all the same ways. This is because at a very basic level they are the same types of

game but with different input types. They are both games whose goal is to find a specific

number, they both use the same mode and round mechanics and both use TAs. Basically when

one is given working code why not use it? Instead the two main things that were implemented

was a system which would randomize numbers and switch to the corresponding images for

the objects. As well as the following modifications to the round and mode handling: a way to

stop the objects from being updated when the answer isn’t correct and trigger the next round

after a second input instead of the first. The first modification was achieved by changing the

isRelative variables value from true to false as stated earlier. IsRelative was already checked

29

in showNumbers so it was the neatest solution. To trigger the next round on the second input

was achieved by calling runNumber with the first inputs onClick, in runNumber show the

object which has the second input and then moving the nextRound call to the new function

triggered by the second input. The implementation was designed in this way because

otherwise an entire new mode function would have had to be constructed where the second

input could be triggered which would have altered the entire lay out for the rest of the

framework.

4.4 The visual feedback
Lastly a system for visual feedback was implemented within the drag and drop structure so all

the new dragObjects can use a version of it to. The visual feedback was implemented as

described in 3.8. It was based on the design presented in Blair K.P [2] by showing the player

the implications of his/her choice. The player gets to see if his/her choice lead to a whole

cookie or not. As stated in [2] and [3] visual feedback should be informative and tell the

player in what way he/she is wrong but without telling them the right answer. This follows the

basic principles of EF or more specifically implication feedback, as in one of the versions of

Critter Corral. In this version of Critter Corral there is a clear difference between if the player

has chosen too high a number or too low a number. To emulate this, the too small pieces are

placed in the goalCookies hole so that the player easily can see that the piece that they picked

isn’t large enough. If the too large cookies would have placed in the hole they would have

covered the hole completely and the cookie would seem whole even though the answer was

incorrect. Instead it is placed to the side of the goal cookie to simulate that they don’t fit

together. Just as in the real world if one would try to fit together two cookies that don’t match

the best result one could get would be the pieces at the side of each other. And when they are

directly beside each other the player can compare the two more easily and hopefully realize

that the chosen piece indeed was too big.

30

5. Discussion
5.1 Result
While an extendible structure for draggable objects have been implemented there are some

possible disadvantages to it. To begin with the sprite object needs to be created in the

DraggableObject class because it’s on the sprite that the drag and drop functionality is

enabled. Otherwise one would have to enable it on every single object and specify a new stop

drag function for every object. However because of this if one wants to create a new object

that uses another set of images one would either have to make a new sprite sheet containing

both the new and old images and compensate for it in updateGraphics or have an if check in

the constructor. Depending on what object is created a different sprite sheet is loaded. A better

way to do it would for the programmer to state which sprite sheet he/she would want to use in

the specific objects constructor which then sends it to the DraggableObject constructor but

support for this hasn’t been implemented.

Secondly the dragObject gets its drop position at creation which one generally would set to

the same coordinates as the goalObjects coordinates. This gives the programmer freedom to

decide if he wants to use a goalObject or not, because it’s possible to have a dropPlace

specified even without a goalObject. However if DraggableObject instead got the drop

position directly from the goalObject with a get function one would get an safer environment

where the drop place couldn’t by mistake get the wrong coordinates. It would eliminate

human error and the programmer wouldn’t have to rely as much on statically typed numbers.

The shark game have been implemented with all the same features as in the prototype with

one exception. In the prototype there are several animations for the cookies, e.g. on each new

round when new cookies are created they glide from the cookie jar to their positions, in my

implementation they just fade in. When idle they also increase and decrease in size to indicate

that they are interactable. In my implementation they aren’t animated. These animations

surely contribute to the player’s enjoyment, but because this project had a limited amount of

time. Animations where not prioritized and instead focused on the gameplay and features of

the game.

While the visual feedback is implemented as stated which also follows the theories of EF, IF

and virtual manipulates presented by Blair, K. P. [2], Moreno, R., & Mayer, R [3] and Paek,

S., Hoffman et al [4] it could have gotten a nicer finish. Especially what could be improved is

the situation when the correct choice is made. Because the same objects are reused every turn

31

with just updated graphics, if the cookie moved to the goal cookies position isn’t moved back

to its start position it will still be on the goal cookie the next turn when it’s shown again. This

would sometimes give the player the correct answer straight away. The best way to do this

would be to move it back while it’s still faded out, to do it at the same time as the graphics are

updated in the updateObjects function was tested. However the objects internal coordinates

are saved in DraggableObjects and there every cookies start position is 0.0, as mentioned

earlier each cookie has its own coordinate system. This is not the case in ObjectPanels

updateObjects function, an implementation of a conversion from the ordinary coordinate

system to the objects own was tested but failed. Instead when the correct cookie has been

placed on the goal cookie the position is reverted immediately to its start position. This means

that the player can see the cookie being moved back right before it’s faded out. This doesn’t

look that good but it was deemed that it would be better than leaving it in its place and

sometime giving the player the correct answer the next round.

5.2 method
Learning the code base and getting an understanding of what had to be done was done by

studying the code and writing down quite generally what happened where in the code. The

goal was to get a general picture of the code; this was achieved in about 2 or 3 days. However

this general picture was far from enough. Much more time should have been spent on getting

an understanding of the finer points of the code and what the relevant functions actually did

and then write it down in a well-structured and readable way. That would have saved a lot of

time at the beginning of the project.

When the structure for the draggable object was done a search for information about how to

implement the drag functionality itself was begun. The mistake was that instead of looking up

if Phaser (the framework Magical Garden uses) had any built in functionality for drag and

drop. Implementation of drag and drop with jquery was started. This was a complete waste of

time because as seen in the method chapter Phaser has its own support for drag and drop. If

Phaser had been looked up at the start of the project, a few days’ worth of time would have

been saved.

A big advantage of the implementation of the setup of the creation structure of objects in the

framework meant that it was very easy to implement both the goalObject and the

finalDragObject. Another big advantage was that the implementation of the subgame could

32

use much of the existing code from the bee game. All structures and major functions was

copied they only needed some small modifications. The only new system was the system for

updating the objects which were basically built from the ground up.

At the end of the project the visual feedback and the showing of the equation when the correct

cookie has been placed were implemented. Both of these features were quite easy to

implement thanks to a good working knowledge of the code.

The plan for the proceeding of the project was structured in a good way. The fact that the

testing environment was the first thing to be set up and that the implementation of the

draggable object was started after it was done allowed for a lot of testing without the risk of

sabotaging any other part of the code. However the approach to the coding during the project

could definitely have been better, during the project the approach was: Test first, study the

code later. Many unnecessary mistakes where made which would have been easily avoided if

the relevant part of the code would have studied before trying to implement something new.

Just the sheer amount of recompilations has taken up an unnecessary amount of time. On the

other hand it has resulted in a deep understanding of the code because what happens when

something goes wrong has been experienced many times.

The codebase that was given was quite large and as stated before this enabled a lot of reuse of

the existing code. This means that much of what has been done is not coding new systems. Of

course has some new functions been written but most of the work has been to refurbish

already existing code to work in a slightly different manner. This meant that a deep

understanding of the existing code was needed, to understand how it had to be modified and

what could be reused in which instances.

33

5.3 Sources
The scientific sources were found by using Google scholar which of course only is a search

engine which doesn’t guarantee any sort of reliable sources. So it was checked that basically

all the sources that are used have been published in some sort of scientific journal or

presented on some sort of conference which means that they have been peer reviewed. This is

some sort of guarantee of reliability. Any proof that Prenskys M [1] and Mikkonen, T., &

Taivalsaari [5] has been peer reviewed wasn’t found. However Prensky M [1] has been cited

in 4081 other articles which were interpret as a sort of guarantee of reliability and the facts

that are used from Mikkonen, T., & Taivalsaari [5] are quite well known facts of JavaScript.

They have been cited in 39 other reports while not a very large number it’s not that small

either. The source about Phaser is its own website which were assumed that its reliable

regarding the type of features that Phaser has which is what is used from the site.

5.4 Ethics
In this project a part of a math game for children has been built, this can have a positive effect

on today’s childrens ability to learn math, as stated by Prensky, M [1] today’s children could

learn better from, e.g. games than older ways of learning math. However it could also have a

negative effect on children by making them even more dependable on computers and making

them ignore traditional Medias such as books. This report could help future programmers on

this project or similar projects regarding how to build these kind of systems and how to design

feedback.

34

6. Conclusion
The purpose of this thesis work was to extend the existing framework of magical garden to

accommodate the needs of one of the subgames within Magical Island as well as to implement

the shark game from MI. This has been achieved through a systematic approach where one

feature at a time was implemented. This project is the start of the implementation of Magical

Island in JavaScript which will be continued by future programmers. Features such as the drag

and drop which are used in other of the subgames in the prototype for Magical Island can then

be used by the future developers. Future development can also follow my implementation of

visual feedback which is mostly based on the work of Blair, K.P. [2] as an implementation to

model from in future sub games.

 The answer to my first question is the following: A big part of extending an existing

framework is to understand the code, much of what one does is copying and refurbishing code

which is the actual hard part. New code will have to bee written but if one understands the

framework this will most likely not be that hard especially in a framework as big as this one.

Because so many features already are implemented the programmer can take advantage of

them. The specific approach that was used is described in the method chapter. The answer to

my second question is the following: From the articles read it was deemed that implication

feedback would be the most appropriate feedback for this kind of game based on the test

results from Blair, K. P [2] and Paek, S et al [4]. Then a way to convert this concept to the

shark game through placing the Cookies in different way to show the player the implication of

their choices was designed. The exact implementation can be found and is discussed in the

results and discussion chapters.

6.2 future work
If there was more time the game would be more polished and animation for the Cookies and

some way to indicate that the whole cookie should be placed on the shark would have been

implemented. The dropPlace for the drag object would also be fixed. Instead of having a

fixed size to the drop area it would get it from the goalObjects sprite size. Furthermore the

sprite sheets for the drag objects would be defined in the specific objects instead of in the

parent constructor and the sound file would be compressed so that the game doesn’t crash on

Ipad.

35

7. References

[1] Prensky, M. (2005). Computer games and learning: Digital game-based learning.

Handbook of computer game studies, 18, 97-122.

[2] Blair, K. P. (2013, June). Learning in critter corral: evaluating three kinds of feedback in a

preschool math app. In Proceedings of the 12th International Conference on Interaction

Design and Children (pp. 372-375). ACM.

[3] Moreno, R., & Mayer, R. (2007). Interactive multimodal learning environments.

Educational Psychology Review, 19(3), 309-326.

[4] Paek, S., Hoffman, D., Saravanos, A., Black, J., & Kinzer, C. (2011, May). The role of

modality in virtual manipulative design. In CHI'11 Extended Abstracts on Human Factors in

Computing Systems (pp. 1747-1752). ACM.

[5] Mikkonen, T., & Taivalsaari, A. (2007). Using JavaScript as a real programming

language.

[6] Davey R. 2015. Phaser Features. https://phaser.io/ (2015-04-13)

[7] Stanford University. 2013. Pre-school mathematics: Critter Corral.

http://aaalab.stanford.edu/research/stem-builders/pre-school-mathematics-critter-corral/

(2015-04-04)

https://phaser.io/
http://aaalab.stanford.edu/research/stem-builders/pre-school-mathematics-critter-corral/

