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Abstract

Learning to Rank is a research area within Machine Learning. It is mainly used in Infor-
mation Retrieval and has been applied to, among other systems, web search engines and in
computational advertising. The purpose of the Learning to Rank model is to rank a list
of items, placing the most relevant at the top of the list, according to the users’ require-
ments. Online Learning to Rank is a type of this model, that learns directly from the users’
interactions with the system.

In this thesis a resume database is implemented, where the search engine applies an
Online Learning to Rank algorithm, to rank consultant’s resumes, when queries with re-
quired skills and competences are issued to the system. The implementation of the Resume
Database and the ranking algorithm, as well as an evaluation, is presented in this report.
Results from the evaluation indicates that the performance of the search engine, with the
Online Learning to Rank algorithm, could be desirable in a production environment.
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Chapter 1

Introduction

An introduction to the background, a detailed description of the problem, related work and
an outline of the thesis report is presented in this chapter.

1.1 Background

This thesis work was conducted in Ume̊a at Knowit Norrland AB (hereafter only addressed
as Knowit Norrland), a subsidiary to Knowit AB which is a consultancy firm that specializes
in IT, Design and Digital Management [9].

In 2013 Knowit Norrland requested a system to manage resumes for their consultants.
Up until this point all resumes had been stored and managed manually as documents,
which was considered too inefficient and unnecessarily difficult. This resulted in the start of
project 1117 1, where a prototype for a resume database was developed. Project 1117 was
completed in June 2013 and the development of the Resume Database was put on hold until
the start of this thesis work, in which further development of the system has been made.
The preliminary work done in project 1117 has been used as a foundation for this thesis
work, which has speeded up the preparation phase.

1.2 Problem statement

Today, Knowit Norrland is still managing their consultants’ resumes by storing them as
documents on local computers. This forces the salespersons to manually go through all
resumes to find the best match when assigning a consultant to a new project. Hereafter, a
user of the Resume Database addresses both a consultant and a salesperson, and a searching
user is the same as a salesperson. In addition to this, the resumes must often be edited
manually to highlight relevant details and remove irrelevant ones before handing them over
to the project owner. This is both time consuming and inefficient, and also why the primary
focus of this report is put on the search engine. The importance of having an efficient
and precise search engine is easily illustrated with the following example: Imagine if the
Resume Database returns a list of dozens, or hundreds of resumes that are all somewhat

1Project 1117 is a project conducted at Knowit Norrland by Sebastian Brink, Josefin Loggert, Johan
C Holmen, Dennis Nilsson, Elina Wikström, Jonathan Bäcker, Jonatan Wikström, Jannie Rönnbäck and
Emil Lundström. All project members were students at Ume̊a University during the duration of the project
implementation.
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2 Chapter 1. Introduction

relevant as a response to a query. This is a reasonable and likely event that can occur in
reality, but without any ranking of the resumes it is also an inconvenient problem for the
user. If this is the case, much work is required by the user to find the best match, since
he/she has to manually go through all the resumes. It is easy to conclude that this would
hardly be appreciated by the user because of how time consuming the process is. However,
it is important to note that if the search engine ranks the resumes - it is vital that the
ranking is relevant to the query and the user’s intentions. In other words, this puts a great
responsibility on the system - to present satisfying rankings, but makes the process much
easier and more efficient for the user.

Two main functionalities are prioritized in this thesis, the search functionality - which
matches resumes with projects, and the generate functionality - which generates resumes
with only the essential information for specific projects and provides them as documents.
For the in-depth study, the following question was stated; how will the system make use of
efficient search and resume generation functionalities, that meet the users’ needs?

Learning to Rank is a Machine Learning method used to solve the problem of ranking,
without the need to manually design a ranking function, but instead learn this from users
of the system. This method will be examined to see whether it can realize the envisioned
functionalities for the search engine in the Resume Database. One of the most important
parts of this thesis work will therefore be to adapt the algorithm to the specific requirements,
that are set on the system. The research questions addressed are:

1. How will the system learn to have the most efficient and precise search engine with
the help of Learning to Rank?

2. Which features in the resumes should the algorithm use when ranking?

3. How will the ranking algorithm be evaluated, so that we know that the system is
learning and improving?

4. How good is the performance of the algorithm when it has received a specific amount
of feedback?

5. Does the Resume Database actually benefit more from the Learning to Rank algorithm
than from a simple and static ranking algorithm2?

1.3 Purpose and goals

The purpose of the project is to streamline and simplify the management of the consul-
tants’ resumes at Knowit Norrland and evaluate if a Learning to Rank algorithm can work
efficiently in the system.

The goal is to design and implement a resume database that will assist the salespersons
at Knowit Norrland in their work of selecting the best matching consultant for a project.
Because of time constraints, the front-end of the Resume Database will not be completely
implemented, but instead serve as a high-fidelity prototype [31]. In the future this prototype
can be further developed or serve as a guideline when integrating with the business logic
and database of the system. To make sure that the system meets the requirements that are
set, the search engine is prioritized and a Learning to Rank algorithm will be implemented.
The goal of this implementation is to investigate if Learning to Rank is applicable in the
Resume Database and evaluate the performance.

2A ranking algorithm that is not using Machine Learning



1.4. Related work 3

The initial requirements stated for the Resume Database and the general goals that are
set for the project are summarized below.

Resume database requirements

– A consultant shall be able to create a profile and add resume details, such as compe-
tences and skills.

– A salesperson shall be able to search all consultants’ resumes for specific competences
and skills.

– A salesperson shall be able to generate a consultant’s resume as a document, with
only the necessary details for a specific project.

General goals

– Implement the back-end system fulfilling all requirements stated above.

– Implement a prototype of the front-end application with most of the requirements
stated.

– Implement a Learning to Rank algorithm and evaluate the performance.

1.4 Related work

There is a lot of interesting research happening in the area of Learning to Rank today.
It seems like listwise approaches, examples are ListNET[3] and Dueling Bandit Gradient
Descent [37], and pairwise approaches, such as SVMRank [14] are the most promising algo-
rithms in Information Retrieval. In this thesis the problem of matching consultants’ resumes
with projects is considered very similar to the ones in Information Retrieval. This is the
main motivation why such an algorithm is implemented and evaluated in the search engine
of the Resume Database.

The company Yelp implemented a pointwise Learning to Rank algorithm for their busi-
ness matching problem in 2014 [33] with Elasticsearch3 as the core search engine. Their
evaluation results showed that by using Learning to Rank their retrieval system’s match-
ing quality significantly improved and also became more flexible, stable and powerful. The
business matching problem is very similar to the one addressed in this thesis.

An e-recruitment system implemented as a web application, the subject of a paper [6],
was found similar in many ways to the Resume Database implemented in this thesis. That
system extracts information from the applicants LinkedIn accounts as well as their personal
blogs. Methods similar to these are discussed as future work in the Resume Database, in
section 6.3. The implemented system is stated to use a Learning to Rank process, but the
information about this is limited in the paper.

Another related work called Learning to Rank Resumes [25] briefly touches the problem
of ranking resumes in a resume search engine. This work features an experiment with the
pairwise Learning to Rank algorithm SVMrank [14]. The conclusion of the work was that
the problem of ranking resumes was identified and that ranking with SVMrank could be
done with good accuracy on approximate models of human relevance judgement.

3https://www.elastic.co/



4 Chapter 1. Introduction

Finally, a very recent related work published in 2015 by Mario Kokkodis, Panagiotis
Papadimitriou and Panagiotis G. Ipeirotis showcased three approaches that rank freelancing
applicants on their hiring probabilities in an Online Labor Marketplace4 [18]. In their paper
they argue that Learning to Rank can not be implemented as-is for their particular problem,
since they lack multiple ranks. The scenario they are faced with only observes whether or
not an applicant got hired and not in terms of which applicant is better than the other. They
conclude that the hiring decision problem is very close to the ”product search problem”, as
in [19], and base their work on this conclusion.

The difference in the Resume Database and the related works listed above is that the
Learning to Rank algorithm, implemented in this system, will learn from implicit feedback in
an online setting. In other words, this thesis focuses on implementing an Online Learning to
Rank algorithm in a resume search (or recruitment) system and on performing an evaluation
to find out the ranking accuracy of this approach.

1.5 Outline

The rest of the thesis is outlined as follows: Chapter 2 discusses the decision making for
the in-depth study and gives a description of Learning to Rank. Chapter 3 explains how
the project was planned and how the work was carried out. Chapter 4 presents the results
obtained during the thesis work. Both the implementation of the Resume Database and the
Learning to Rank algorithm is presented. Chapter 5 presents the result from the evaluation
of the ranking algorithm, along with a discussion. Finally, Chapter 6 summarizes the thesis
with reflections about the work, the conclusions that has been made and examples of further
work.

4The paper gives oDesk.com and Freelancer.com as examples OLM’s.



Chapter 2

Method

This chapter starts out with a discussion on the decision for the in-depth study and a
description of Learning to Rank. The focus here is on how Learning to Rank can be applied
in the search engine of the Resume Database, that is to be implemented. Note that the
content given about Learning to Rank in this thesis is not complete1.

2.1 Introduction

The primary goal of the in-depth study was initially set to answer the question “How will
the system make use of efficient skill matching and resume generation functionalities that
meet the users’ needs?”. It is important to understand that the emphasis is put on the last
part of the question, that meet the users’ needs. How do you implement the system to find
the best suited consultant and generate only necessary details in the resumes, according to
the user?

Let us talk about the skill matching in the Resume Database from the programmer’s
perspective. If only a boolean model [7, 36] is used to match consultants on the query
terms entered by the user, a problem arises. How should the system be able to suggest
the best consultant for a specific project if the search query entered to the system match
several resumes? If there is more than one document retrieved by the model they are
indistinguishable and considered equally relevant to the entered query. A solution for this,
is that the system could compare the consultants’ resumes on other details (or features)
than the skills entered by the user. If two consultants are matched on their skills, but one
is more experienced in terms of, for example, education, certificates, earlier employments
or completed projects tied to the query, that consultant should be valued higher. But, how
will the system (programmer implicit) know which of these hidden details in the resumes
that are relevant to the specific entered query? How is this relevance valued? Can this
relevance change over time? If this responsibility is put on the programmer, the ranking is
likely biased towards the programmer’s own preferences; and even if it is not, how can one
know for sure that the users’ needs are met? Does research on the users of the system need
to be carried out to achieve this?

With these questions in mind it is evident that a ranking function is needed and that
Machine Learning - the sub-field of Artificial Intelligence concerned with programs that
learn from experience [29] - is of particular interest. If the Resume Database can learn from

1Tie-Yan Liu’s literature [21] contains more elaborate information on Learning to Rank.
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6 Chapter 2. Method

the user, how to rank the resumes depending on the query, a solution might be close.
A look-up into the field of Machine Learning and surrounding areas resulted in the

discovery of Learning to Rank which seemed to be a good match for this particular problem.

2.2 Learning to Rank

Because of the rapid growth of the Web today the efficiency of Information Retrieval on
the Web has become more important than ever [21]. Therefore one of the more vital tasks
in Web search engines, such as Google or Yahoo!, has become that of ranking. The ranker
(ranking function) in Web search engines orders the documents that are retrieved for a
given search query that should be presented to the user. This is necessary because of the
oftentimes huge result lists that are retrieved from the search engines. Anne Schuth explains
it the following way in one of his talks [30]:

“If a user comes to you with their query and you have 5 trillion matching docu-
ments you don’t want to put the document the user is looking for on the billionth
result page.”

Until recently, the rankers were developed manually, based on expert knowledge. This
might work in some applications, but in many cases a good ranking is dependent on the
search context such as users’ age, location, and their specific search goals and intents [11].
Addressing each of these settings manually is infeasible and has lead to ranking functions
with Machine Learning algorithms that can automatically tune these parameters. This and
the combining of predefined features for ranking is what Learning to Rank methods does
[21].

An important note is that Learning to Rank is not just used in Web search engines,
but can also be applied to several other search tasks. However, when Learning to Rank is
addressed in general in this chapter the example of Document Retrieval will be adopted.

The purpose of Learning to Rank is to learn a ranking function that produces satisfying
rankings according to the user. This learning can be done with the help of Machine Learning
in different ways. But, the Learning to Rank algorithms are often learned in a supervised
manner and uses training and testing phases [20]. A supervised algorithm is learned by an
explicit training phase to produce similar rankings as those presented by the training data,
which are verified with the test data [22]. The training and test data in supervised learning
for Document Retrieval are represented as sets of documents and queries, with a grade for
each document that represents the relevance to a specific query. These gradings are the
basic components used in the training phase that makes the Learning to Rank algorithms
able to learn in this setting.

A supervised Machine Learned search engine is illustrated in figure 2.1. When a user
query is posed to the system a set of relevant documents are extracted from all of the
indexed documents, this is called the Top-k document retrieval. This phase can consist of,
for example, a fast and simple boolean model [36]. After this the set of documents are
ordered by the ranking model where the most relevant documents are put at the top, before
presented to the user. This ranking model is machine-learned with training data that consists
of queries and documents. Each query in the training set is associated with a number of
documents and a relevance score for each document with respect to the query. An example
of this is seen in figure 2.2, where the search query Learning to Rank resumes is identified
with id 1 and the other search query Modo hockey arena with id 2. Four documents, two for
each query is also illustrated, with their specific relevance score to the query. A similar, but
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often smaller, set can also be used as test data to measure the performance of the ranker,
and to verify that it produces satisfying rankings, after it has been learned [29].

Figure 2.1: An example of a simple search engine with Learning to Rank.

Figure 2.2: An example illustration of training data.

2.2.1 Feature vectors

Tie-Yan Liu [21] summarizes Learning to Rank algorithms by having two properties and
defines them as being Feature Based and having Discriminative Training. Feature based
means that the documents under investigation are represented by feature vectors. These
vectors are used to describe the relevance of a document to a query. That is, for a given
query q, its associated documents d can be represented by a vector x = φ(d,q), where φ is
a feature extractor. The capability of combining a large number of features is an advantage
of Learning to Rank methods.

These features can be divided into the three groups listed below [21]:
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– Query features or query level features - only depend on the query.

Example: type and length of the query or properties of the user.

– Document features or query-independent features - only depend on the document.

Example: length of the document or importance of the document.

– Query-Document features or query-dependent (dynamic) features - depend on
both the document and query.

Example: the frequency of the query terms in the document.

Some ranking models that are often used as features in Document Retrieval include the
outputs of the BM252 model and the PageRank3 model.

The method of selecting and designing good feature vectors is called feature engineering.
In section 2.5.1 the feature engineering for the Resume Database is covered.

2.2.2 Discriminative Training

The other property, besides being Feature Based, that Liu [21] mentions, when summarizing
Learning to Rank algorithms is Discriminative Training. It means that the learning process
can be described by four key components4: input space, output space, hypothesis space and
loss function.

Discriminative training is an automatic learning process based on the training data where
the way of combining and weighting the relevance of the features, such that the output of
the hypothesis function (mapping function) can predict the scores in the training set, is
how the ranking model learns. In other words, Learning to Rank algorithms are trained to
model the dependence of unobserved future data, on the training data. To give an example,
when learning a linear ranking function a weight vector is used, with a weight for each
feature, that is extracted from the documents. These weights represent the importance of
each feature and are adjusted, or learned, by the Learning to Rank algorithm. The weight
vector is used to compute scores, for the documents under investigation, that are used to
rank the documents.

In order to better understand the Learning to Rank algorithms Liu categorizes them into
three approaches: the pointwise approach, the pairwise approach and the listwise approach.
The discriminative training differs for all of these approaches.

2.2.3 Ranking algorithm approaches

The form and semantics of the feature vectors and scores differ between the Learning to
Rank approaches. These are divided into pointwise, pairwise and listwise approaches by Liu
[21]. In this work a listwise approach is selected as the Online Learning to Rank algorithm,
to be implemented, in the Resume Database.

Pointwise

Pointwise Learning to Rank takes feature vectors of individual documents as input space and
learns a mapping for each relevance degree as output. The ranking problem is transformed
into classification, where a binary relevance score is used, or regression, with a continuous

2http://en.wikipedia.org/wiki/Okapi_BM25
3http://en.wikipedia.org/wiki/PageRank
4These are further explained by Liu in his literature [21]
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relevance score. To further explain, with classification a document can be predicted to be
relevant or not, whilst regression approaches can give a degree of relevance for a document.
A disadvantage of both formulations is that they do not correspond well to the Information
Retrieval ranking problem. In Learning to Rank for Information Retrieval, the order in
which documents are placed is crucial, while an exact prediction of relevance values is not.

Pairwise

Pairwise Learning to Rank approaches operate on pairs of documents, i.e., they take as
input pairs of document feature vectors for a given query. The ranking is transformed
into pairwise classification or pairwise regression. These pairs are mapped to binary labels,
e.g., y ∈ (-1,1). This would indicate whether the two documents under investigation are
presented in the correct order as 1, or should be switched as -1. In the extreme case, if all
the document pairs are correctly classified, all the documents are correctly ranked.

Listwise

The listwise approach addresses the ranking problem in a more straightforward way. It
operates on complete result rankings, i.e. ranked lists. These approaches take as in-
put the n-dimensional feature vectors of all m candidate documents for a given query
(x1, q, ..., xm, q) ∈ Rn∗m, and learn to predict either the scores for all candidate documents,
or complete permutations of documents. The idea is that a ranking function’s constructed
list is compared to the ground truth ranked list and updated accordingly to produce the
ideal ranking. Dueling Bandit Gradient Descent is a listwise approach algorithm that is
used in the Resume Database and is explained more in section 2.3.4.

2.3 Online Learning to Rank

So far in this thesis Learning to Rank has only been described as a supervised learning task
(which it is traditionally), where the algorithm is trained in a batch mode. This approach
is sometimes called Offline Learning to Rank where the learning and evaluation phases are
done in an offline setting. There are some issues with this approach such as that the training
data has to be annotated and labelled. This can both be expensive and difficult and may
be biased towards the assessors instead of the users [5]. For the Resume Database this issue
also applies. Imagine having to label resumes for a training set - it can be a difficult task to
decide to label a resume as a perfect match or just as a good match for a particular query.
The fact that a supervised Learning to Rank algorithm is only learned once and does not
continue to learn, is also seen as an issue. What if the users’ interest change? An Offline
Learning to Rank algorithm is not designed to adapt to this. To overcome these problems,
weakly supervised approaches can help.

Online Learning to Rank is such an approach where learning is done by using real-time
user click feedback. This way the system learns directly from the user and will dynamically
adjust the ranker as long as the system is used.

2.3.1 User feedback

Online Learning to Rank algorithms are designed to learn from user feedback. Instead of
relying on a traditional training phase where annotators must label the training data the
algorithm learns directly from the user of the system. One of the first methods to use
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user feedback in a system was introduced by Rocchio [28]. This method was introduced as
relevance feedback and made the users able to communicate their evaluation to the system
after every operation. Relevance feedback is an example of explicit feedback, which as the
name suggests is collected from custom interactions in the system. This makes explicit
feedback expensive for the users, since it takes both their time and effort. Instead, implicit
feedback can be used, which is extracted directly from the users’ natural interactions with the
system. An early approach learning from this type of feedback was presented by Joachims
[13], which proved that it can be used to improve ranking in search engines. Examples of
implicit feedback are clicks, mouse movement and dwell time. Mouse clicks is a good choice
of implicit feedback compared to the others, since large quantities can be collected at a low
cost [11]. An illustration of the interaction between the user and ranker (ranking algorithm)
where mouse clicks are evaluated can be seen in figure 2.3. The user issues a query to the
system, which returns a ranked list. Once the user clicks a document in the list, the click is
registered and evaluated, which is used to re-learn and update the ranking function.

Figure 2.3: An illustration of the interactions between the user and ranking algorithm.

One important note when using mouse clicks is to interpret them as relative feedback,
instead of absolute feedback. Relative feedback can be explained by saying that a clicked
document is more relevant to a query than some other (non-clicked) document. Absolute
feedback on the other hand, means that a clicked document is, or is not, relevant to a query.
Results indicate that the users’ clicking decisions are biased by the order in which the ranked
documents are presented [15]. This means that if the ranking is not perfect, the users might
not always click the most relevant document because it is not presented at the top of the
list. Because of this, absolute feedback is not ideal, since you can not know how relevant the
clicked document is by itself to the query. Relative feedback can still be valuable though,
because it is easier to know if a clicked document is more or less relevant than a preceding
non-clicked document.
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The position bias mentioned here can still be a problem for the ranking algorithm, even
when relative feedback is used. How this is usually solved is explained in the following
section.

2.3.2 Exploitation versus exploration

The position bias is often explained by saying that top results are clicked more often than
other results. This is because the user expects more relevant documents to be listed at the
top and because people are used to reading pages from top to bottom. Eye-tracking studies
have confirmed this and given some interesting results about how the rank influence the
attention of a user. Results of a study performed with Google on students at a university in
North America [8] showed that the mean time a user looks at link 1 and 2 in a result list is
almost equal, but the link ranked first is substantially more often clicked. The results also
show that rank becomes much less of an influence for attention when the user has to scroll
or change page to study more links. The conclusion of this implies that the position bias is
a real and important problem that must be addressed.

Put simply, the ranking algorithm can not always rank based on what it has learned
so far (exploit), it also needs to explore other solutions and add different documents to
the list [12]. This is what exploitation versus exploration refers to. The ranking algorithm
needs to balance what it already has learned with new solutions to continuously learn the
best possible ranking in an effective way. If only documents that are expected to satisfy
the user is presented, it cannot obtain feedback on other, potentially better documents.
However, if only documents that the algorithm can gain a lot of new information from is
presented, it risks presenting bad results to the user during learning. This is not unique
in Information Retrieval or Learning to Rank. Balancing exploitation and exploration is
considered important in Reinforcement Learning as well [17].

It has been proven that balancing exploitation and exploration can significantly improve
the performance of Online Learning to Rank. The effect of balancing exploration and
exploitation is complex but it is concluded in [12, 11] that more or less exploration, depending
on how reliable the feedback to the algorithm is, can improve learning. This type of finer
balancing of exploration and exploitation is not implemented in the Resume Database at
this time.

2.3.3 Interleaved comparison methods

With an Online Learning to Rank algorithm implemented with a listwise approach a com-
parison method to evaluate the quality of two rankings is needed. It is obvious that both
rankings can not be presented to the user side-by-side to evaluate the best ranking [26]. In-
stead an interleaved comparison method is often used, which first has the task of interleaving
the ranked lists into one list that is presented to the user, and later the task of evaluating the
clicks made by the user. As an example, the interleaving of two ranked lists when searching
on ”Modo Hockey fans”5, with two Web search engines, is illustrated in figure 2.4. There
have been several methods proposed, such as Balanced Interleave, Team-Draft, Document
Constraints and Probabilistic Interleave. Balanced Interleave and Team-Draft, two methods
that have been shown to work reliably and efficient in practice [4], are described below.

5Modo Hockey is a swedish ice hockey team from Örnsköldsvik - my home town.
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Figure 2.4: An example illustration of an interleaved ranking.

Balanced Interleave

The Balanced Interleave (or balanced interleaving) method was proposed [13] to interleave
two rankings into one in a balanced way. First, one of the lists is randomly selected to start
to contribute its top-ranked document that is not yet part of the interleaved list. Then,
the other list does the same by contributing its highest ranked document that is not yet in
the interleaved list. This continues until the lists are empty or the interleaved list is fully
constructed. When this is done the interleaved list is presented to the user and clicks are
recorded. A click is counted towards the original list where the clicked document is ranked
the highest. Ties are broken randomly. The original list that gets the most clicks among
its top-ranked documents is declared the winner and the learning algorithm is updated
accordingly.

Unfortunately the Balanced Interleave method can potentially lead to biased results in
some cases. This is made obvious by Radlinski, et al. [26] who proposed the Team-Draft
method as a substitute.

Team-Draft

To correct the bias problem in Balanced Interleave a similar comparison method was pro-
posed called Team-Draft [26]. This method follows the analogy of selecting teams for a
friendly team-sports match, hence the name Team-Draft. The difference compared to the
Balanced Interleave method is minor, but significant. With the Team-Draft method, it is not
just at the start that a list is randomly selected to contribute its highest ranked document,
but at every new round. This method also remembers which list that each document is con-
tributed from. This is done with an assignment, which later is used during the evaluation
- instead of then identifying which list that has the clicked document ranked the highest.
To compare the two lists, the clicks are counted towards the list that contributed those
documents. This ensures that each list has an equal chance of being assigned clicks. The
Team-Draft algorithm implemented in the Resume Database is summarized in algorithm
A.2 in the appendices.
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2.3.4 Dueling Bandit Gradient Descent

Dueling Bandit Gradient Descent [37] is a listwise algorithm that has been specifically
developed for Learning to Rank in an online setting. It is designed to compare the quality
of two document lists from implicit feedback. To summarize, DBGD optimizes a weight
vector which represents the importance of each feature that is used in the score calculation.
The algorithm maintains a candidate wt as source weight vector and compares it with a
different weight vector w′t along a random direction ut. If w′t wins the comparison, the
source weight vector wt is updated along ut. Two parameters are required, the exploration
and exploitation step sizes, which impact how much the algorithm explores each step and
how much the exploitative weight vector is updated.

An iteration in the DBGD algorithm, i.e. each time a search query is handled by the
system, can be described as follows:

1. (The first time the algorithm is run, an initial weight vector, w0, is set as the exploita-
tive source weight vector wt)

2. A search query is received and an exploratory weight vector, w′t is constructed with a
uniformly sampled unit vector and an exploration step size parameter.

3. Two lists are constructed; one exploitative list with wt, called l1 and one exploratory
list with w′t, l2.

4. A new interleaved list L is constructed by the Team-Draft method with l1 and l2.

5. The top-ranked results in L is presented to the user.

6. If items assigned to the explorative list, l2, was clicked the most, wt is updated in the
direction of w′t with an exploitative step size.

7. The new best weight vector wt is persisted and used for the next iteration.

The DBGD algorithm implemented in the Resume Database is presented in the appen-
dices as algorithm A.1.

2.4 Evaluation measures

Several evaluation measures are used in Information Retrieval and to evaluate Learning
to Rank algorithms. One of these are Normalized Discounted Cumulative Gain [16] which
will be covered in this section and later used in the evaluation of the Learning to Rank
algorithm in the Resume Database. To fully understand NDCG one must first understand
what Discounted Cumulative Gain is.

Assume that documents are ranked based on relevance scores and highly relevant docu-
ments are more valuable than marginally relevant documents, for the user. This implies that
if the relevance scores, for all documents in a result list, are summed, the total relevance of
the documents in the result list is evaluated, but not the ranking. Hence, two result lists
containing the same documents, but ranked differently, will get the same summarized score.
To overcome this problem and actually evaluate the ranking of a result list, a discount factor
is used for each rank, hence the name Discounted Cumulative Gain.

Using a graded relevance scale of documents in a search engine result set, DCG measures
the usefulness, or gain, of a document based on its position in the result list. The gain
is accumulated from the top of the result list to the bottom with the gain of each result
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discounted at lower ranks. In other words, a smaller share of the document score is added to
the cumulated gain for greater ranks, than for lower ranks [16]. A simple way of discounting
the document score, as its rank increases, is to divide the document score by the log of its
rank. This produces a smooth reduction, in comparison with dividing with just the rank.
For example 2log 2 = 1 and 2log 1024 = 10, thus a document at position 1024 would still
get one tenth of its face value.

The equations in this section are not presented as they were originally [16], but instead as
in [32]. DCG at a particular rank position p can be expressed in formula 2.1 (the logarithmic
with base 2 is used).

DCGp = rel1 +

p∑
i=2

reli
log2(i)

(2.1)

Where reli is the graded relevance of the result at position i and the document score at the
highest ranked position does not need to be discounted, hence rel1 is not divided with the
logarithmic. However DCG can not be used alone to compare a search engine’s performance
from one query to the next since the gain at each position is not normalized across queries.
This is why NDCG is used instead, which can be calculated as in formula 2.2.

NDCGp =
DCGp

IDCGp
(2.2)

Where IDCGp refers to the idealized DCGp.
This means that in a perfect ranking algorithm, the DCGp will be the same as the

IDCGp, producing a NDCG score of 1. All NDCG values are on the interval 0.0 to 1.0 and
are therefore cross-query comparable. A simple example with NDCG, that illustrates how
it is calculated can be seen in figure 2.5.

Figure 2.5: An example of how NDCG is calculated for two ranking functions with four
documents.
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2.5 Ranking algorithm for the Resume Database

As already concluded, the benefits of not having to label training data but instead learn
directly from the users clicks in the system is a major advantage for the Resume Database.
This argument as well as the personal interest in realising Machine Learning in a system
constitutes the foundation for choosing to implement an Online Learning to Rank algorithm
in the Resume Database. This also answers Research Question 1 stated in section 1.2, how
the system will learn to have the most efficient and precise search engine with Learning to
Rank.

If we look back on the questions posed at the beginning of this chapter, it is certain that
Online Learning to Rank can be a good solution that answers the majority of them. With
this algorithm implemented it is not up to the system or programmer to know which details
that are most relevant to use in a ranking. Manual adjustments to the system should not
be necessary when taking into account that the relevance for these details can change over
time. The user is not forced to manually go through the complete search result to decide the
best or most relevant resume each time searching, but can instead rely on the ranking by
the algorithm that is an extension of the user’s previously selected preferences. An Online
Learning to Rank algorithm does all this, and most importantly it does satisfy the users’
needs. The notion that the ranking is continuously learning from the users via their natural
interactions with the system is an ideal solution in theory.

A Dueling Bandit Gradient Descent algorithm with a Team-Draft method is imple-
mented in the system. Only a few adjustments to the main functionality and data used for
the system are needed to integrate the algorithm efficiently. The Team-Draft interleaved
comparison method is chosen because it does not suffer from the bias problem found in
Balanced Interleave and is easy to implement. The user click that is made when generating
a resume as a document is used as the implicit feedback to learn the ranking algorithm.
This click is considered to be made by a user that has decided that the selected resume is
the best choice and therefore highly relevant to the issued search query. No other clicks in
the system are registered or used as feedback to the algorithm.

The computation of scores for the resumes is simple and done linearly, meaning that all
extracted features will be multiplied with its weight and summed into one total score for
each resume.

In section 4.4 the result of the implementation of the ranking algorithm is presented.

2.5.1 Feature engineering

Feature engineering is the process of selecting and determining which features that the
algorithm should calculate the ranking on. Research Question 2 in section 1.2 is therefore
addressed here. Some examples of features that can be used by the ranking algorithm in
the Resume Database are listed in table 2.1. The features are described as large-grained
and generic here, but can be implemented more fine-grained in the system. Note that not
all of the features listed are used by the Resume Database and some of them that are used
have been disassembled into several sub-features. An example is the skill match feature,
which is split in the system into smaller features depending on if the skill is tied to a project,
education or certificate - making it possible to weigh the importance of these differently.
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Feature Description

Document features
Importance How important the consultant is to the company.
Experience How experienced the consultant is based on earlier projects.
Completeness How complete the consultant’s resume is.
Popularity How often the consultant is chosen (irrespective of the query).
Salary How expensive the consultant is.

Query-document features
Skill match How far the consultant’s skills/competences match the query.
Text match How far the textual content match the query (Apache Lucene TF-IDF).
Popularity How often the consultant is chosen with respect to the query.
Up-to-date How up-to-date the consultant is regarding skills/competences.
Availability Is the consultant available for the project?

Table 2.1: Features that are engineered to be used by the ranking algorithm in the Resume
Database.

The features described in table 2.1 are mimicked on so-called document features and
query-document features. Query-features, the last feature type described in section 2.2.1,
are not used in the Resume Database. This is because the ranking model is linear and these
features are the same for all resumes under a query and therefore do not impact the scores.

2.5.2 Evaluation methodology

The evaluation of the ranking algorithm in the Resume Database is using Normal Discounted
Cumulative Gain. This evaluation metric has been proven to be reliable with Learning to
Rank [2]. Research Question 3 in section 1.2, concerning how the ranking algorithm should
be evaluated to know if it is learning and improving, is therefore addressed in this section.

Preliminaries

If a Web search engine is implemented with a Learning to Rank algorithm, the evaluation
can make use of several publicly available sets6 of graded documents and queries as training
and test data. This is however not an option for this thesis work, since no pre-existing,
publicly available data has been found that can be used for the Resume Database, prior to
the evaluation. The training and test data for this evaluation is instead generated manually
and graded on a relevance scale between 1-5, with the help of future expert users of the
Resume Database. These gradings can then be used to create rankings of the resumes that
is seen as truth tables for each query. In table 2.2 the relevance scale, used in the evaluation,
is presented.

Relevance Description
5 Perfect match
4 Good match
3 Fairly relevant
2 Minimally relevant
1 Completely irrelevant

Table 2.2: The relevance scale used in the evaluation of resumes for search queries.

6http://research.microsoft.com/en-us/um/beijing/projects/letor/letor4dataset.aspx9
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The resumes and search queries are generated by selecting random features from sets
of skills, professions, projects and earlier employments. It is important that these resumes
and search queries only contain data that the expert users can produce honest rankings on.
Only features that the ranking algorithm use are presented in the resumes, which implies,
for example, leaving out personal details such as name, sex and age. We do not want to
present other features, that can affect the user’s gradings, so that their rankings can not be
imitated by the ranking algorithm.

When the expert users have graded all resumes for each search query, rankings, based on
these gradings, can be constructed and used as truth tables, or IDCG rankings (see section
2.4, for the evaluation.

Evaluation phase

When the preliminary work is done for the evaluation and the IDCG values are computed,
the ranking algorithm with an initial weight vector can be evaluated. This initial weight
vector will be set to zero which is considered equivalent to an unlearned algorithm7. The
evaluation then proceeds by loading the Resume Database with the same set of resumes that
the expert users graded earlier and for each search query that the expert users had available,
calculate the NDCG score for the rankings produced by the algorithm. All NDCG scores
are averaged into one score, which can be used as a measure on how good the algorithm is
ranking at this particular time.

After this the algorithm can be learned, both by a click model and by real users, on a
training set of resumes and search queries that also are graded to know their real relevance
grades. A click model can simulate users’ click behaviour in a system and is further ex-
plained below. Why a click model is used is because the learning phase, when the algorithm
is completely untrained, is not well-suited for real users. Having real user’s interact with
the system with an unlearned algorithm would most likely be a very bothersome and time-
consuming task. During and after the learning phase, the algorithm’s ranking accuracy is
evaluated. This is done by computing NDCG scores for the rankings generated by the algo-
rithm with the test data. These scores can then be inspected, to find out if the implemented
algorithm actually is learning a better ranking or not.

Click model

A click model is used to simulate real users’ click behaviour in a system. It can be used
to systematically simulate clicks to learn a ranking algorithm for evaluation purposes. The
click model explained in [11], which is based on the Dependent Click Model [10], is used
in the evaluation of the Resume Database. This model is taking advantage of that users
start examining at the top of a result list and for each item examined, they determine if it
seems promising enough to click on it and if the clicked item is enough satisfactory to stop
examining further results. Therefore, both click, P (C|R), and stop, P (S|R), probabilities
usually need to be defined based on the relevance of the items. However for the evaluation
in this thesis only the click probability is used, since the stop probability is always 1 for all
click models. This is because the Resume Database does not use other feedback than the
click when a consultant’s resume is selected to be generated as a PDF, i.e. only one click is
registered and used as feedback. See section 4.4 for further explanation.

As explained in [11] several instantiations of click models can be used to simulate different
types of user behaviours, ranging from very reliable to very noisy click behaviour. In this

7Later in production the initial weight vector can be set with values that by experiments are known to
produce good and satisfying rankings from start.
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thesis a perfect, realistic and almost random click model is used for the evaluation and
these are defined with the relevance grades (1-5) used by the expert users during the initial
evaluation phase, when grading training and test sets. An overview of the resulting click
models can be seen in table 2.3.

click probabilities
relevance grade R 1 2 3 4 5
perfect 0.0 0.2 0.4 0.8 1.0
realistic 0.1 0.3 0.5 0.65 0.85
almost random 0.4 0.45 0.5 0.55 0.6

Table 2.3: Overview of the click models used to learn the algorithm for the evaluation.

The perfect click model can be seen as an upper bound on the performance (a ”perfect
clicking user”), which always clicks on perfect matching resumes and never clicks on com-
pletely irrelevant resumes. On the other side, the almost random click model is seen as a
lower bound on the performance and has a very small linear decay in the click probabilities
for the different relevance grades. The realistic click model is constructed to approximately
or roughly simulate the clicking behaviour of a real user in the Resume Database, i.e a
salesperson at Knowit Norrland.



Chapter 3

Work process

In this chapter, the preliminary work is described, along with an explanation of how the
project was carried out. The work has been divided into two parts, one for the implemen-
tation of the ranking algorithm and one for the implementation of the rest of the system.

3.1 Preliminaries

At the start of the project, focus was put on evaluating frameworks, practical models,
libraries and languages to be used in the implementation of the Resume Database. This
was possible because a major part of the requirements on the system was clear from the
beginning, since the preparatory work from Project 1117 was available. It was early decided
that a REST API middleware would be implemented to decouple the system’s front-end and
back-end, as well as that the implementation of the back-end would be prioritized and that
the front-end would only be implemented as a prototype. After this preliminary evaluation,
some time was spent on getting acquainted with the chosen frameworks and libraries.

The in-depth study, which surrounded Online Learning to Rank, was also initially focused
upon, during the beginning of the project. At the end of this period a first draft for the
ranking algorithm was designed, in addition to some work on the feature engineering. Plans
for the evaluation phase were also established during this time.

After gathering this background information the design and implementation stage was
initiated.

3.2 How the work was carried out

The plan during the implementation stage of the Resume Database was to adopt the agile
development method, Scrum1. This would have included iterative sprints, daily meetings,
Kanban boards, and using a product backlog. However, during the start of this phase,
this plan was changed and ended in a custom, but simple, agile method with just weekly
meetings and demonstrations with direct feedback from Urban Holmgren and Andreas Hed
at Knowit Norrland, who acted as product owners. Reasons for this decision were that
the time available with the product owners did not seem sufficient enough, and the gain
of using Scrum was not considered more beneficial than the time needed to work with the
method. The implementation stage followed an iterative process where the main focus was

1Read more here: http://scrummethodology.com/ (last visited 2015-03-16)
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on implementing only the most necessary features according to the product owners and
future users.

At the beginning of the implementation some ground work was done to set up the base
for both the back-end and front-end, and to have a minimal but working prototype of the
system. After this the system could be further developed in small steps, continually adding
functionalities based on feedback from the product owners, i.e. the future users of the
system. When an initial demonstration of the system had been shown, the implementation
continued by adding small building blocks to the prototype and continually demonstrating
these to the product owners to get direct feedback.

The back-end system was prioritized during the implementation, but developed along-
side with the front-end application. During the first weeks of the implementation stage the
development of the ranking algorithm was put aside. It was only during the last weeks that
the ranking algorithm was implemented and integrated into the system. Before the end of
the project the ranking algorithm was evaluated with the help of Andreas Hed and Urban
Holmgren as system experts.



Chapter 4

Results

In this chapter the results of the implementation of the Resume Database and Learning to
Rank algorithm is presented.

4.1 System overview

Here a general overview of the Resume Database is presented. First the system architecture
is described and second the main functionalities implemented in the system with companying
screenshots.

4.1.1 System architecture

The resume database is developed from scratch with a back-end system written in Java, a
MySQL database and a front-end application implemented as a website with AngularJS and
Bootstrap. In figure 4.1 a system illustration over the Resume Database is presented. All
dependencies, such as programming languages, libraries, frameworks and softwares, used for
the back-end are listed in section 4.2.4 and for the front-end in section 4.3.2. The business
logic and user interface are decoupled by communicating via a REST API. This decision was
made to ease the implementation of a new front-end application and is discussed further in
section 4.2.2.

The ranking algorithm is implemented as a proof of concept and is therefore also de-
coupled from the back-end system in its own sub-module. This module can be disabled at
start-up of the back-end server. The decision was made because the goal is to use the system
in a real setting and the ranking algorithm, as it is implemented today, is very unlikely to
be suited for this purpose.

21
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Figure 4.1: An overview of the Resume Database architecture.

4.1.2 System functionalities

The resume database is using Knowit’s AD service for authentication, which implies that
no explicit registration is needed by Knowit’s employees before starting to use the system.
This is because each employee at Knowit Norrland is given their own AD account when
hired. The first time an employee logs in to the Resume Database, with his AD credentials,
a new user will be created, with the entered AD username.

Each user have their own profile page, which presents their merits and experiences, see
image 4.2. This page is one of two central parts of the Resume Database. If a user visits a
consultant’s profile page, there is an option to download that consultant’s resume as a PDF
document and also to open an edition of that consultant’s resume, that has been generated
earlier. These two functionalities are described further below. If the visited profile page is
the user’s own there is also an option to edit personal and resume details.
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Figure 4.2: An example of the detail box on a user’s profile page.

Figure 4.3: Auto complete when searching.

The second major part of the system is
the search engine. Here a user can search for
resumes with skills, professions and custom
keywords, which for example can be com-
pany names of earlier projects. The skills
and professions are constants that can be
added manually by the consultants when
editing their resumes. This enables the use
of auto-complete which is used on the search
page to assist the searching user. An example of this is shown in image 4.3. The custom key-
words can be entered as anything, since those are searched for in the text fields of projects
such as the description field and name field. In the future these keywords could be searched
for in several other text fields as well. Each search term, entered in the search field, is
illustrated in a coloured block (or tag). In the advanced settings tab these tags can be
marked as required or optional. A required tag must exist in a consultant’s resume while
an optional tag must not, but is seen as a qualifying keyword and will only be used in the
ranking of matching resumes.

When a search query is issued to the system the result will be a list of relevant consultants
that have the searched, required keywords in their resumes. If the ranking module is enabled
in the back-end system the returned list will be ranked, placing the most relevant consultants
at the top of the list.

Figure 4.4: A search result list.

Each row in the result list will represent
a consultant, where some general informa-
tion will be presented, such as the relevant
skills matching the search query and all pro-
fessions that the consultant has (image 4.4).
Information about which Knowit office they
belong to, as well as their name and profile
picture are also displayed. There are two al-
ternatives represented with two buttons for

each consultant in the result list. One button is used to open a modal with detailed in-
formation from the consultant’s resume, that can be used to quickly inspect a consultant’s
relevance to the search query. The other button is used to get directly to the ”edit and
preview”-page of the consultant’s resume, where the user can choose to hide or show details
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in the resume and also generate and download it as a PDF. Each returned resume will have
all relevant skills and professions, that matches the search query, highlighted and irrelevant
ones hidden. This is implemented because experienced consultants may have large number
of skills, projects, professions and other details added in the system, but only those that are
searched for are relevant in a generated resume.

Figure 4.5: Irrelevant skills
can be hidden before PDF
generation.

When a user chooses to download a resume as a PDF doc-
ument, the selected consultant’s resume will first be opened in
the ”edit and preview”-page. On this page the resume can be
edited, by manually hiding and editing resume details before
generation, see image 4.5. The appearance of the resume at
the preview page will be the same as the resulting PDF docu-
ment. However, one important note is that all changes made
to the resume at this page are only temporary and will not
update the consultant’s original details. They will only be re-
flected on the generated PDF document. All generated PDF
documents are stored on the server with a unique name and
are therefore available for download at a later time. The re-
sume edition created on the ”edit and preview”-page will also
be persisted with the unique name, which can be re-opened
and modified as new editions later. Saved resume editions can
be opened from the profile page of a consultant.

See the appendix, chapter B for more and larger screen-
shots of the system.

4.2 Back-end

The back-end system is implemented in Java, with a REST API that handles the commu-
nication, and a database to persist the data. All dependencies used in the implementation
of the back-end system are listed in section 4.2.4.

The main components used in the Resume Database are the representations of a user
and a resume, the relationship between these is one-to-one, meaning that a user has exactly
one resume, and vice versa. However, when a resume is generated as a PDF document, a
resume edition will be created and used in the generation process. These resume editions
are modified versions of a user’s resume and have a many-to-one relationship to the original
resume. In figure 4.6 these classes and their relationships are illustrated.

The resume generation is making use of the software wkhtmltopdf, which is capable of
converting HTML files to PDF documents. An explanation of how the resume generation
works in the system can be read in section 4.3.1.

4.2.1 Database

Different databases were evaluated before a MySQL database was chosen for the implemen-
tation of the Resume Database. These included the NoSQL and graph databases OrientDB1

and Neo4j2. A graph database was considered to fit the application good, especially in the
sense of performance and simplicity for matching consultants in the search engine. However,
the time limit for the thesis work as well as the choice of focusing on the ranking problem

1http://orientDB.org
2http://neo4j.org
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Figure 4.6: An illustration of the relationships between the main classes used in the system
regarding resume generation.

ended in the decision of using a relational database instead. In section 6.1 this reasoning is
further discussed. A potential transition to a graph database is discussed in section 6.3.

The communication between the back-end and database is done with the object-relational
mapping framework Hibernate. All tables for the Resume Database can be automatically
created by setting the hibernate.hbm2ddl.auto parameter to create or update in the Hibernate
XML configuration. This setting will create the tables based on the Hibernate annotations
set in the source code. At this time the parameteris set to validate, which will output a
warning if the database structure is invalid.

In figure 4.1 the database API is illustrated, which uses Hibernate and is built with a
custom pattern similar to a repository pattern [23] or data access object pattern [24]. This
API is implemented to ease further development and a possible transition to a new database,
if needed in the future. There is an abstract class called BaseRepository that makes use
of generics and handles all standard CRUD methods, such as Create, Read, Update and
Delete. This class uses Hibernate operations to communicate with the database, and should
be extended with a custom repository, if further development of the system takes place.
An example of this is the User object, used in the system, which makes use of its own
UserRepository, which extends the BaseRepository.

4.2.2 API middleware

The API middleware is built with Restlet, a lightweight Web API framework for Java. With
Restlet you can easily customize which server you want the API to be hosted on. The resume
database uses a Simple HTTP server connector as the internal Web server to host the API.
Changing the desired server connector is as easy as replacing the jar file included in the
Maven project with another supported server connector [35].
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Authentication

The authentication is session-based by using HttpOnly3 cookies, which are non-standard but
widely supported as explained in the CookieSetting4 documentation [27]. When authenti-
cation is made against /authenticate a cookie is created by the server and sent to the client.
This cookie contains an encryption of the username of the authenticated user concatenated
with an expiration time, and must be sent by the client with all subsequent calls to the
API. The expiration time makes the cookie unusable after a period of time, which forces the
client to re-authenticate. To destroy the cookie a call can be made against /logout which
sets the expiration time of the cookie to 0 and triggers the cookie to be instantly removed
at the client-side (this is often handled by modern browsers).

The authentication is making use of Knowit’s AD service that is used for other internal
systems by all employees already. This decision was made both because it eases the account
managing for the users of the Resume Database and the credential confidentiality for the
back-end system. The passwords are stored in Knowit’s AD service while only the usernames
are duplicated in the back-end of the Resume Database.

Along with this authentication method is also an alternative method implemented, which
uses an API key, that can be passed as a parameter in the URL to the front-end. In section
4.3.1 this authentication method is explained more.

Securing the API with SSL is a requirement if the system is to be available outside of
Knowit’s local network, since user credentials are sent via unencrypted POST messages to
the Resume Database API. However, the communication between the Resume Database
API and Knowit’s AD service is secured with SSL already. The alternative authentication
method using the API key, on the other hand, is recommended to be reworked, if the back-
end system and front-end application is located on different networks outside of Knowit’s
local network. SSL encryption is not enough here, since the key is sent in plain-text as a
parameter in the URL. But, as long as the system only is located and open for machines
connected to Knowit’s private network, which is considered secure, and not put online, this
is not seen as a significant vulnerability.

Authorization is not a feature in the system at this moment, but can easily be set up
as suggested by the Restlet team [34]. This would enable the use of role authorization
which could for example be used to handle administrators or setting different permissions
for consultants and salespersons.

4.2.3 Search engine

The search engine in the Resume Database is using Hibernate Search, which integrates the
full text indexing and searching library Apache Lucene5 for use with Hibernate. With Hi-
bernate Search, all skills, professions, project names and project descriptions in the Resume
Database are indexed, which offers a fast and reliable search for resumes. Experiments
with 10000 consultants added in the system showed that search queries took less than a
second (with the ranking module enabled), which is more than enough performance-wise in
a practical setting for the Resume Database.

A search query that is handled by the back-end system can be composed by both required
and optional keywords. These are combined in the back-end to construct a Lucene query
that represents a boolean junction which can be looked-up against the set of indexes created
by Hibernate Search.

3https://www.owasp.org/index.php/HttpOnly
4The attribute accessRestricted specifies the CookieSetting as an HttpOnly cookie.
5https://lucene.apache.org/core/
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Hibernate Search is using Apache Lucene for an internal scoring algorithm which makes
use of a Vector Space Model to score documents and rank them by relevance. This scoring
algorithm can be customized6, but in its default form it, simply put, makes use of a variant of
the TF-IDF formula [1]. In general this model scores based on how many times a query term
appears in a document relative to the number of times the term appears in all the documents
in the collection. Because the returned result list when searching with Hibernate Search
is ranked with the Apache Lucene scoring algorithm, the set of resumes is always shuffled,
if the ranking module is enabled, before being ranked. The scoring algorithm’s relevance
score for each resume is instead leveraged and used as a feature by the implemented ranking
algorithm, see section 4.4. If the ranking module is disabled in the back-end the set of
resumes is never shuffled. Instead, the returned search result will be ranked by the TF-IDF
scores.

4.2.4 Dependencies

The libraries, frameworks and relevant softwares used in the implementation of the back-end
system are listed in table 4.1.

Dependency Version
Java 1.8
Restlet 2.3.1
MySQL 5.5.41
MySQL Connector/J 5.1.34
Hibernate 4.3.8
Hibernate Search 5.1.1
imgscalr 4.2
args4j 6.1.0 (beta 1)
docx4j 3.2.1
wkhtmltopdf 0.12.2.1

Table 4.1: All dependencies used in the back-end system.

4.3 Front-end

The front-end is a website implemented with AngularJS and Twitter Bootstrap. As stated
earlier the front-end is only implemented as a prototype and therefore not providing all
functionalities that are required by Knowit Norrland, at this time. All dependencies used
in the implementation of the front-end application is listed in section 4.3.2.

At the writing of this report, the website is hosted on an Apache/2.4.7 HTTP server.
This Web server is configured to rewrite all URLs that are not pointing at a static file to
the index.html file. The configuration is made because html5Mode7 is enabled in AngularJS
and the website will not work properly if a page reload is made without it.

6The scoring algorithm can be overriden and customized for specific ranking scenarios. This is however
classed as an expert user task in the documentation for Apache Lucene and is therefore not addressed in
this thesis. Read chapter 6 for a discussion regarding this

7The reason why html5Mode is used in the system is described by Chris Sevilleja at https://scotch.

io/quick-tips/pretty-urls-in-angularjs-removing-the-hashtag
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4.3.1 PDF resume generation

In this section the resume generation as PDF with the software wkhtmltopdf is described.
Even though the description is put under this section dedicated for the front-end, it describes
the process in the back-end as well.

Wkhtmltopdf is an open source command line tool capable of generating a PDF docu-
ment from an HTML page with just the URL to the HTML page. This software is installed
on the same server as the back-end system for the Resume Database and is executed and
handled by a special PDF generation module in the back-end.

In the front-end application it is possible to edit and preview a resume before download-
ing it as a document. This ”edit and preview”-page has a unique url for each resume that
is to be generated, and is ideal to be used by wkhtmltopdf to generate the PDF documents.
However, since the website requires authentication and cookie sessions are used for this, an
alternative authentication method is used when generating PDF documents.

There is an unique API key that can be passed in the URL when visiting the ”edit
and preview”-page, that authenticates the caller. This key should not be known by anyone
except the PDF generation module and the authentication module in the back-end (where
this key is also stored). The front-end does not need to know the correct key, but simply
redirects the API key with all PDF generation calls to the back-end and lets this system do
the authentication. If the call is not authenticated the front-end will redirect the caller to
the login page. Note that some elements and some of the design on the ”edit and preview”-
page in the front-end application is hidden and changed when the API key is passed, in the
URL, to generate a clean PDF. The process flow in the system when generating a PDF can
be seen in figure 4.7.

As stated in section 4.2.2, this authentication method is not intended to be used, if
the Resume Database is available outside of Knowit’s local network. This applies espe-
cially if the back-end system and front-end application are located on separate networks,
where communication is done outside of Knowit’s private network. If this is the case, it
is recommended to implement a different authentication method for the PDF generation
module.

Figure 4.7: A flowchart showing the PDF generation in the Resume Database.
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4.3.2 Dependencies

The libraries, frameworks and relevant softwares used in the implementation of the front-end
application are listed in table 4.2.

Dependency Version
JQuery 2.1.3
AngularJS 1.3.0
Twitter Bootstrap 3.3.4
UI Bootstrap 0.12.1
X-editable 1.5.1
ngTagsInput 2.3.0
Flow.js ng-flow 2.6.1
angular-unsavedChanges 0.2.3
Apache HTTP server 2.4.7

Table 4.2: All dependencies used in the front-end application.

4.4 Ranking algorithm

A Dueling Bandit Gradient Descent algorithm, with a Team-Draft comparison method, is
implemented in the Resume Database. The algorithm is developed in Java, built without
any external Machine Learning libraries or frameworks. However, the algorithms and models
implemented, in the ranking module, are well-known in the Online Learning to Rank area.
Initial weights and values for the exploratory and exploitative step size parameters can
be set in the configuration file ranking-settings.cfg.xml. The exploitative weight vector is
persisted and backed up in the file ranking-weight-vector-backup as binary data. This is
done every hour as a precaution. By removing the ranking-weight-vector-backup file, the
ranking algorithm is reset and will start running with the initial weight vector set in ranking-
settings.cfg.xml.

In figure 4.8, one complete iteration of how the ranking algorithm is integrated and used,
in the system, is illustrated. Note that clicked consultants, which resume’s are not selected
for generation, are not registered to learn the algorithm. Usually all clicks made in the
interleaved result list is registered as feedback to the algorithm, but this is not the case in
the Resume Database. Only the chosen resumes for PDF generation are used as implicit
feedback, to learn the algorithm, at this point.

The ranking algorithm is implemented with the goal to be as smoothly integrated with
the rest of the system as possible. All data handled by the algorithm is stored in the back-
end, and hidden as much as possible from the front-end. There is no extra communication
or data needed in the messages between the front-end and back-end, except the user id of
the sending client, when a search query is issued, and the user id of the clicked consultant,
when a resume is selected to be generated as PDF. The user id of the searching user is
used as a key when storing data during the ranking phase, and when loading the correct
data, when the ranking algorithm is later updated. This data is information about which
resumes that were assigned to, and contributed from, the exploratory list, and the sampled
unit vector used when generating the exploratory weight vector.

Not all features listed in section 2.5.1 are implemented in the ranking algorithm of the
Resume Database. This is mainly because the data indexed by Hibernate Search is the only
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Figure 4.8: A flowchart showing how Online Learning to Rank is used in the Resume
Database.

data regarding the resumes and consultants that is available for the ranking algorithm. The
reason why the indexed data is the only data used in the ranking algorithm, is because it
significantly improves the performance of the system. Initial experiments showed that sets
of resumes larger than 200 could take several seconds to rank, when data, to be used by the
ranking algorithm, was fetched from the database. This is further discussed in section 6.1.

The results of the evaluation of the ranking algorithm is presented in chapter 5.



Chapter 5

Evaluation

This chapter presents the results from the evaluation of the Online Learning to Rank algo-
rithm.

5.1 Method summary

Below follows a summary of the evaluation process of the ranking algorithm. In section
2.5.2 the evaluation methodology is described more in-depth.

Andreas Hed and Urban Holmgren at Knowit Norrland, who represents expert users of
the Resume Database, assisted in the evaluation of the ranking algorithm by ranking a set
of resumes for a set of search queries. These resumes were generated by selecting random
features from sets of skills, professions, projects and earlier employments. Personal details
such as name, sex and age were ignored in the resumes, since these are not part of the
features used in the implemented ranking algorithm. The search queries were created with
varying number of query terms, consisting of skills, professions, company names and other
keywords. Both the resumes and search queries for the evaluation were generated to capture
a large range of realistic scenarios. The expert users task for the evaluation were to label
all resumes, for each search query, based on a relevance scale. The relevance scale consisted
of grades between 1-5, where 1 represented a completely irrelevant resume and 5 a perfect
matching resume. Permutations of the resumes based on the grades labelled by the expert
users were constructed for each query, and these rankings were later considered the ground
truth tables, during the rest of the evaluation.

It was concluded in an early stage of the evaluation phase, that the results could be
greatly affected by the time allocated to gather and construct training and test data. This
was because the time proved to be too short and therefore it resulted in very limited data for
the evaluation. The problem has however, been taken into account during the discussion and
presentation of the results later in this section. One reason why the time was not sufficient,
was that the learning phase in the evaluation was beforehand decided to only be performed
by real users - hence no graded training data would have been needed. Unfortunately
this plan had to change, since the time that the intended users could spare, to learn the
algorithm for the evaluation, seemed insufficient, to guarantee that the learning would turn
out adequate. The algorithm was instead decided to solely be learned by click models,
which on the other hand needs graded training data to work efficiently, but this problem
was considered easier to get around.

The algorithm was learned by three different click models; one that simulates a perfect
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clicking user, one that simulates a realistic clicking user and one that simulates an unreliable
clicking user. These are further explained in section 2.5.2. For each click model an exper-
iment consisting of 1000 clicks were performed, and during the experiment an evaluation
with the testing data was done every 10th click. This was repeated 5 times and an average
was computed for each click model. During the experiments the exploration and exploita-
tion step size parameters were varied to find out the best performing values on a validation
set1. The experiments showed that an exploration step size of 0.1 and exploitation step size
of 0.01 performed well. Joachims and Yue [37] confirms this, when they show that 1 and
0.01 are the best performing parameters, but suggest that smaller values are better when
sampling fewer queries, as the case in this evaluation.

5.2 Result

The results presented here are not advised to be taken completely for granted. Do not place
too much importance on the exact figures and numbers presented, instead see the result
as indications and pointers of the performance of the implemented ranking algorithm. The
initial results presented here might indicate that the algorithm has been fallen victim to
overfitting, the case where the model has learned only how to predict the training data
and not unseen data (the test data), which is the actual goal. If not made clear before, the
training and test data that was used in the evaluation are different from each other, and does
not contain the same resumes or search queries, which is seen as a necessary requirement.
To confirm that only minimal overfitting might have taken place, experiments were made
where it was shown that the performance of the test set closely followed the training set
performance. This was followed up by gathering additional data for a second test set which
yielded similar performance as the first test data, that is used in the figures and tables
below. These arguments can however, not be used to completely conclude that overfitting
has not been a factor during the learning of the ranking algorithm, for this evaluation. The
point here is simply to show that this problem has been taken into account during the
evaluation. It is strongly recommended to perform new evaluations, with larger training
and test sets, before considering to use the implemented algorithm in the Resume Database
in a real setting.

In figure 5.1, the result when running the algorithm five times with 1000 iterations with-
out any learning is presented. This result is presented to demonstrate the initial performance
scores of the algorithm. The experiment shows that an unlearned algorithm can produce
rankings with varying NDCG scores. This is because the list of resumes is shuffled at each
iteration, and therefore it can produce even perfect rankings initially, without any learning.
However, as can be seen in the graph, the average rankings in this experiment varied in
performance roughly between 0.38 and 0.67.

In table 5.1 the resulting NDCG scores, of the ranking on the top 4 resumes (NDCG@4),
for the algorithm, learned with a perfect, realistic and almost random click model, can
be seen. As expected the almost random click model performs the worst rankings and
the perfect click model performs the best rankings. Slightly surprising is the fact that
the realistic click model’s final performance is almost on par with the perfect model with
only a small difference in final scores. The performance improvements presented in table
5.1 answers Research Question 4 in section 1.2, how good the performance of the ranking
algorithm is after being learned. Even with the almost random click model the algorithm
is improving over time with a 40% improvement. This is however, as expected, far from

1A separate set, of graded resumes and queries, that is not part of the training or test data.
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Figure 5.1: Graph with results when running the ranking algorithm with exploration and
exploitation step sizes set to 0.

the improvements when learned with the remaining click models, which landed at a 72%
improvement for the realistic and 79% improvement for the perfect click model.

Click model Final score Performance improvement
Perfect 0.88 79%
Realistic 0.85 72%
Almost random 0.72 40%

Table 5.1: The final average NDCG scores and performance improvements for each click
model after running an experiment consisting of 1000 iterations, five times.

In figure 5.2 the learning curves for the experiments where the performance was calcu-
lated with NDCG@4, are plotted. The illustration clearly shows that the ranking algorithm
is learning a better ranking via the implicit feedback over time. It is concluded that the
perfect click model is the fastest at learning the algorithm, while the almost random click
model takes the longest time to learn the algorithm. Both the realistic and almost random
click models are naturally more unreliable, because of the increased noise in the feedback,
than the perfect click model, which is visible in the figure. Especially the almost random
model is learning the algorithm in a very unstable way with a lot of noise that results in a
widely varying curve between iterations, which makes it jump between high and low perfor-
mance scores, during the entire learning phase. This is very much expected because of the
added noise and the small decay in click probabilities for this model. However, even with
this significant noise it is still obvious that the algorithm does learn, when the feedback is
unreliable.

A final experiment was performed with the realistic click model learning the algorithm
during 2000 iterations and 25 runs, to plot a smooth realistic2 learning curve for the imple-
mented ranking algorithm. In this experiment the NDCG@8 was calculated to find out the

2The small size of the training and test sets must be carefully taken into account here, especially since the
realistic click model is not proven to actually simulate a realistic human behaviour, but is only reasonably
constructed on known facts about real users of the system.
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Figure 5.2: Graph illustrating the learning curves for all three click models when running
1000 iterations, five times.

ranking performance of the top 8 resumes in the ranked list. The result of the experiment
is presented in figure 5.3. Here the learning is shown to steadily improve up until iteration
300-350. At iteration 2000 the performance score averaged to 0.83. After the 300th iteration
the performance is pending between a score of 0.80 and 0.84. This result suggests that an
upper limit is met, and it seems like the algorithm can not learn a better ranking than this,
with the settings and data used in the experiment.

Figure 5.3: A smooth plot over the learning curve when learning the algorithm with the
realistic click model and running 2000 iterations, 25 times.

The last Research Question (5) posed in section 1.2 is not trivial to answer. It is quite safe
to say that a static ranking algorithm would probably be able to construct more reliable and
better rankings, if adjusted good enough, than the algorithm implemented here. However,
it is the complexity of knowing or determining these adjustments that is the key challenge.
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If you already know how to produce good rankings for a scenario and know that this will
not change over time, then a static ranking algorithm should preferably be a better choice.
But, if this ranking is unknown, Machine Learning can contribute with a major advantage
to this ranking problem, which also reflects the preferences of the users of the system.

To summarize this discussion: If the Resume Database would operate in a real setting
at Knowit Norrland today even a simple static ranking function would probably be efficient
enough for this purpose. However, if this system would be used in a larger setting, lets
say for the whole Knowit concern with almost 2000 employees, then the answer might be
different. If the Online Learning to Rank algorithm implemented in the Resume Database
would prove, in a larger evaluation, to be as good as the results in this evaluation suggest,
it sure do stand as a serious contender, at least.
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Chapter 6

Conclusions

The goal of this thesis has been to implement a resume database with an Online Learning
to Rank algorithm and evaluate the performance. Results from the implementation and
evaluation have been presented and discussed in this paper, hence all general goals addressed
in section 1.3 are therefore considered reached. The requirements that were initially set on
the Resume Database together with Urban Holmgren and Andreas Hed at Knowit Norrland
are also considered met by the involved parties.

The result from the evaluation of the ranking algorithm indicated that performance in
a simulated environment proved to be sufficient, and that the algorithm could be desirable
in a real setting for the Resume Database in the future. It is however concluded that the
algorithm is not suitable to be used, in practice, in its current state. More experiments and
a larger evaluation is necessary before this can be suggested.

6.1 Restrictions

Originally the evaluation of the ranking algorithm was planned to utilize the expert users
of the Resume Database more than how it turned out. It has been discussed already in
this paper, but can not be addressed enough, that a larger evaluation with more training
and test data would have been the highest priority if more time was available for this thesis
work. An evaluation where actual users learn the algorithm, instead of simulations with
click models, would have been interesting both from a personal and scientific point of view,
since no earlier work on this has been found during this thesis.

Regarding the implementation of the Resume Database, the biggest regret was to not
apply a test-driven development. This was discussed initially and even suggested by people
at Knowit Norrland, but was opted out due to the time limit set for the thesis work. The
system is however implemented with this in mind, and adding testability at this time should
not need to be a major task. Another regret, regarding the implementation of the Resume
Database, is the choice of using a relational database. The decision behind this is discussed
in section 4.2.1, and the reasons still holds, but it would have been more interesting to use
and evaluate a graph database for this system.
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6.2 Limitations

The decision on using only the indexed data by Hibernate Search in the ranking module,
resulted in a limited set of features implemented for the computations in the Online Learning
to Rank algorithm. To use all features listed in section 2.5.1, more data about the resumes
and consultants, than what can be extracted from the indexes, is needed.

If a user issues a search query twice, directly followed by each other, to the system
today, the search result will most likely differ. This is because the Online Learning to Rank
algorithm injects exploratory resumes with the Team-Draft method, and the exploratory
resumes are selected by a randomly generated unit vector each time. To overcome this
problem, which mainly is considered to affect the user experience, the search results are
suggested to be cached.

Knowit Norrland requested a functionality to display a relevance score for each resume
in the search results. This was looked into, but unfortunately no solution was found during
the thesis work. The scores that are computed for each resume and used internally by the
ranking algorithm might seem like an obvious candidate at first. However, since a result list
is always interleaved by two rankings, one exploitative and one exploratory, the scores can
not be used together.

6.3 Future work

The improvements possible for the Resume Database and, in particular, the implemented
ranking algorithm are many. However, the improvements needed to use the Resume Database,
without the Online Learning to Rank algorithm, in a production environment, are not con-
sidered major.

One important improvement is to handle errors in the back-end system and, more im-
portantly, in the front-end application better than it is done today. Restlet automatically
handles most common errors and returns these as HTTP error messages (such as code 500,
404, 401, etc.) to the client. There are also a few customized error messages created and
returned when specific errors regarding the Resume Database occurs in the back-end. The
error management in the front-end is however, almost completely disregarded, except major
errors, such as authentication or server errors.

Except the authentication vulnerabilities already discussed in section 4.2.2 and 4.3.1,
the expiration time set on the authentication cookie should be pro-longed as long as a client
is active. Today, the expiration time is static and will not update for an already created
cookie. This forces the client to re-authenticate after the expiration time has run out, even
if the client has been active during the whole session. If the expiration time instead is
pro-longed, as long as the client is active, the client will only be needed to re-authenticate
if being inactive for the specified duration.

Other identified improvements for both the front-end application and back-end system
are:

– Even if the website is implemented with a responsive design, the ”edit and preview”-
page and search page need improvements, if mobile usage is a priority.

– If a user returns to the search page, where a search has been issued before, by using
the navigational buttons, the search result should still be available. Adding the search
query as a parameter in the URL is a suggestion to implement this behaviour.
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– Some styling is hard-coded on the website. This code should be refactored into classes
and put in the CSS stylesheet.

– Pagination on the search page. This is partly implemented in the back-end system,
when fetching all users in the system, but the search engine would need a similar
implementation as well.

– The resumes could be a lot more detailed. As examples, the project description could
be separated into smaller components and more information, such as a consultant’s
cost could be added.

– A backup interval should be set-up for the database. Today no backups are done
automatically.

A transition to a graph database, such as Neo4j, from the MySQL database currently
in-use in the Resume Database, is recommended as a further development. The MySQL
database used today with Hibernate Search is more than enough for the intended usage of
the system. However, a graph database is considered a much better fit, especially in the sense
of performance, for the matching of consultants than a relational database. Unfortunately,
since Hibernate has not been found to support NoSQL-like databases such as Neo4j, the
database API, used in the Resume Database, can not be used for this purpose. This implies
that if a transition to a graph database is done, the database API must either be modified or
a new separate API must be implemented. If more time would have been available for this
thesis work, the possible usage of both a graph database and a relational database would
also be looked into. This way, the graph database can hold all data about resumes that
is needed for the matching in the search engine, and the relational database all other data
used in the system.

A further development that could be beneficial for the Resume Database, but is far from
a requirement, would be to integrate LinkedIn’s API, to fetch information from a user’s
personal profile. This idea is influenced by the work done in [6] and would probably be
of great assistance to the users of the Resume Database, since a LinkedIn profile often is
updated with resume information.

The Apache Lucene functionality in Hibernate Search could be utilized far more, than it
is in the Resume Database today. An interesting area to investigate would be the possible
integration of the Online Learning to Rank algorithm in the Lucene scoring algorithm.
This is certainly something that should be looked into if the Resume Database is further
developed. With more time this unexplored area could prove to be a much more efficient
way to implement the Learning to Rank algorithm than it is now.
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Appendix A

Algorithms used in the Learning
to Rank implementation

The algorithms that are implemented in the Resume Database which builds off the Dueling
Bandit Gradient Descent algorithm with a Team-Draft method are presented here. Note that
both algorithms are modified for hopefully easier understandings but are similar summaries
of how the algorithms originally were illustrated.

A.1 Dueling Bandit Gradient Descent

Algorithm 1 The DBGD algorithm implemented in the Resume Database

1: Input: γ, δ, w0

2: wt ← w0 //Set initial weights.
3: for query qt(t = 1..T ) do
4: R← All resumes relevant to qt.
5: Sample unit vector ut uniformly.
6: w′t ← wt + δut //Generate exploratory weight vector
7: if TD(R,wt, w

′
t) then //Team-Draft interleave compare method

8: wt+1 ← wt + γut
9: else

10: wt+1 ← wt

Clarification:

– γ = Exploitation step size.

– δ = Exploration step size.
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A.2 Team-Draft method

Algorithm 2 The Team Draft interleave comparison method algorithm : TD

1: Input: R,w1, w2

2: Generate ranked list l1 from R with w1.
3: Generate ranked list l2 from R with w2.
4: for rank r (1..rmax) do
5: k ← Random double between 0 and 1.
6: if count(l1)<count(l2) ∨ k>0.5 then
7: L[r]← Top-ranked resume from l1 not already in L.
8: else
9: L[r]← Top-ranked resume from l2 not already in L.

10: Display L and observe clicked resume c.
11: if c ∈ l1 then
12: return true
13: else
14: return false

Clarification:

– R = All relevant resumes based on the search query.



Appendix B

Screenshots

Figure B.1: A screenshot of a profile page.
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Figure B.2: A screenshot of the edit pages.
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Figure B.3: A screenshot of the ”edit and preview”-page for a resume, where preview mode
is enabled.
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Figure B.4: A screenshot of the ”edit and preview”-page for a resume, where edit mode is
enabled.
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Figure B.5: A screenshot of the ”edit and preview”-page for a resume, where edit mode is
enabled.


