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Abstract

Workload burstiness and spikes are among the main reasons
for service disruptions and decrease in the Quality-of-Service
(QoS) of online services. They are hurdles that complicate
autonomic resource management of datacenters. In this pa-
per, we review the state-of-the-art in online identification of
workload spikes and quantifying burstiness. The applicability
of some of the proposed techniques is examined for Cloud
systems where various workloads are co-hosted on the same
platform. We discuss Sample Entropy (SampEn), a measure
used in biomedical signal analysis, as a potential measure for
burstiness. A modification to the original measure is introduced
to make it more suitable for Cloud workloads.

I. INTRODUCTION

Workload spikes and burstiness decrease online applica-
tions’ performance and lead to reduced QoS and service
disruptions [6], [34]. We define a workload spike (sometimes
referred to as a burst or a flash crowd [5]) to be a sudden
increase in the demand on an object(s) hosted on an online
server(s) due to an increase in the number of requests and/or
a change in the request-type mix [29].

Some spikes occur due to a non-predictable event in time
with non-predictable load volumes while others occur due to a
planned event but with non-predictable load volumes. Figure 1
shows the load on Michael Jackson’s English Wikipedia page
during the period around his death. Two significant spikes can
be seen in the figure. The first spike occurred right after his
death with the load on the page increasing by three orders of
magnitude. The second visible spike occurred 12 days after
his death during his memorial service. Before the memorial
service, the load on the page was still higher than normal
by one order of magnitude. The memorial service resulted in
another increase, one order of magnitude larger than the load
before the service. While it is impossible to predict the first
spike, it is important to detect and mitigate against the spike
with minimal reduction in the QoS. The second spike on the
other hand can be mitigated against before its occurrence since
it is a planned event.

A bursty workload is a workload having a significant num-
ber of spikes. The spikes make it harder to predict the future
value of the load. An example of a workload that exhibits little
burstiness is shown in Figure 2(a) for 10% of all user requests
issued to Wikipedia [30]. Most of the variations in the load
are due to the diurnal variations in the usage of Wikipedia.
Figure 2(c) shows the load on IR-Cache servers [18] deployed
in San Diego (SD-IRCache) and Figure 2(d) shows the load
on the servers of the FIFA 1998 world cup during the last two
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Fig. 1. Spike on the Michael Jackson Wikipedia entry after his death.

weeks before the games ended, with both workloads having
moderate burstiness. These bursts are either due to planned
events with hard to predict magnitude or just increased service
usage. Figure 2(b) shows strong burstiness in the number of
tasks submitted per minute to a Google cluster [36].

Bursty workloads complicate cloud resource management
since cloud providers host a multitude of applications with
different workloads in their datacenters. Problems such as
service admission control, Virtual Machine (VM) placement,
VM migration and elasticity [14] are examples of resource
management problems that are complicated due to workload
spikes and burstiness. Our interest in quantifying burstiness
is driven by our work on cloud elasticity [3]. Workload
burstiness has a profound effect on the performance of any
autoscaling algorithm. Some elasticity algorithms are better
suited for periodic workloads, where the repetitive workload
patterns can be used for estimating the future load [2]. Other
algorithms are better performing on bursty workloads without
repetitive patterns [3]. Since there is no one-size-fits-all
solution for workload predictions for elasticity control, we
needed a measure for burstiness that is able to compare and
classify workloads [4].

We identified some requirements for a burstiness metric to
be robust and work on a wide range of scenarios.

1) The metric should be able to capture changes in a
wide set of workload types. For example, using the
exponential increase will result in missing out bursts
where the required number of servers increases from
1000 servers to 1500 servers.

2) The parameters used for calculating the metric should
be intuitive, and therefore easy to set.
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(a) Workload with little burstiness (Wikipedia).
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(b) Bursty workload (Tasks in a Google cluster).

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0  1000  2000  3000  4000  5000  6000

N
u
m

b
e
r 

o
f 

R
e
q
u
e
st

s

Time (minutes)

Requests

(c) Workload with spikes that have a hard to
predict magnitude (IRCache servers).
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(d) Workload with spikes that have a hard to
predict magnitude (FIFA world cup servers).

Fig. 2. Different workloads have different burstiness.

3) The metric should be able to operate on short data
sequences and to be fast to compute.

4) The metric should differentiate between a gradual
workload increase and a sudden one. For example,
techniques using entropy are not able to do that.

This work describes our search for a measure of burstiness
that is able to differentiate between different workloads while
fulfilling the above requirements. Section II discusses the state-
of-the-art in both burst detection and quantifying burstiness.
While burst detection can be considered as a different problem
from quantifying workload burstiness, we include some of the
techniques for burst detection and discuss how we considered
modifying these to be able to quantify bursts. The limitations
of the various reviewed measures are discussed. We propose
a measure, AvgSampEn, for quantifying burstiness based on
SampEn, a measure used for quantifying abnormalities in
physiological signals. Section III explains the limitations of
SampEn and our modifications to make it suitable for cloud
workloads. We compare the proposed measure with the state-
of-the-art in quantifying burstiness.

II. STATE-OF-THE-ART

The problem of burst detection has been studied in many
contexts including bursts in human communications, neuron
spike trains, and seismic signals [15], [19], [13]. We have
surveyed a large body of work on signal analysis, time-series
analysis, workload analysis, spike detection and modeling,
workload generation and autonomic management. Unfortu-
nately, all the surveyed papers do not agree on a single
definition of what a true burst is. We believe that the techniques
discussed in this section are a representative set of the state-
of-the-art. While visual inspection has been used for workload
spike detection [6], [32], we focus on automated techniques
for detecting spikes and quantifying burstiness.

A. Detecting bursts

1) Index of dispersion: The index of dispersion (I) is a
measure of burstiness used in communication networks [12].
It was used by Caniff et al. [7] to detect bursts in server
workloads. Given a time-series with inter-arrival times (weakly
stationary), I is defined as,

I = SCV (1+2
∞

∑
k=1

ρk), (1)

where SCV is the squared-coefficient of variation (the ratio
between the variance and the mean squared) and ρk is the lag-k
autocorrelation coefficient. Since it is not practical to calculate
the autocorrelation coefficient for the inter-arrival time series
at ∞, the authors use a batch of K = arrival rate×C requests,
where arrival rate is the request arrival rate and C is a
constant which they set to 2000 in their design. The authors
substitute the infinite sum in the exact equation by the first
10% of the batch size. To detect the start and end of a spike,
they use the algorithm shown in Algorithm 1. The algorithm
detects a burst by comparing the changes in I through time.
While choosing the different parameters of the algorithm is not
intuitive, e.g., C, they can be set by the application owners.

2) Exponential increase: Wendel and Freeman [35] define
a flash crowd as a period over which request rates increase
exponentially. If rti is the average request rate per unit time
over a period ti, then a spike should satisfy the following
conditions,

rti > 2i× rt0 ,∀i ∈ [0,k], (2)

and,
maxi(rti)> m and maxi(rti)> n× ravg, (3)

where m is the minimum request rate required to consider
the workload increase as a spike, and k is the least sustained
modest period of continuous workload increase required to
consider a change in the request rate to be a spike. The constant
n specifies how much increase in the maximum sustained rate



Algorithm 1: Using the index of dispersion for burst detec-
tion.
1 for current batch of K requests do
2 current I← calculate I for current batch
3 batch rate← arrival rate for current batch
4 total rate← update average arrival rate (all requests)
5 SCV ← update SCV (all requests)
6 if (|current I-old I|> 2×SCV ) AND ( old I

current I >2
OR old I

current I <0.5) then
7 if batch rate >total rate then
8 burst starts
9 else

10 burst ends
11 old I← current I

must be achieved compared to the service’s average rate, ravg,
in order to consider the increase a spike. A spike is over when

2−1× rt j < rt j+1 < 2× rt j (4)

The choice of the three parameters, k, m and n, is arbitrary and
in most cases application dependent. These three parameters
can be chosen by the application owner or after profiling an
application before its deployment. The main limitation of this
method is the assumption that a spike should have exponen-
tial growth. One example where spikes were not increasing
exponentially is the caching servers’ workload in Figure 2(c)
where some spikes occurred during the first day where the load
increased by less than a factor of two. Another example is large
systems serving millions of requests. For a system serving
more than 0.5 million requests per minute like Wikipedia, an
increase of as little as 10% in the total load can be considered
as a spike [2].

Algorithm 2: Using the standard deviation from the moving
average for burst detection.
1 Calculate Moving Average MAw over a period of w

time units
2 Calculate T hreshold← (MAw)+ x× std(MAw)
3 bursts←{|MAw(i)|> T hreshold}

3) Standard deviation from the moving average: Vlachos
et al. [31] use the simple algorithm shown in Algorithm 2 to
detect bursts in online search queries. The algorithm calculates
the moving average and the standard deviation of a workload
over a window of w time units. A burst is any increase above
a threshold equals to the summation of the average and x
standard deviations. By setting x large enough, only real spikes
are captured by the algorithm.

4) Limitations: With the exception of the index of dis-
persion based method, the measures and techniques described
above are only suitable for online burst detection but not for
quantifying workload burstiness. While the index of dispersion
method can be used as a measure of burstiness, the choice
of C is not intuitive. One possible modification to quantify
burstiness using the above methods is to identify and count
spikes in each workload over a certain period of time. The
more bursty workloads will have larger number of spikes over
the same period. The drawback of this technique is its inability

to discover periodic bursts, e.g., more people search for the
word “Cinema” on search engines during the weekends [31].

B. Quantifying burstiness

Many of the work on quantifying burstiness is based on
the information theoretic entropy (H) [11] which is a measure
of uncertainty in a workload X . Entropy is calculated using,

H(X) =−∑
i=1

pi× log pi, (5)

where pi is the probability of the workload having the value Xi
to occur. The main limitations with using entropy are the need
for a long sequence to be able to calculate the probabilities, its
inability to differentiate between slowly increasing workloads
and sudden spikes, and its inability to take into account burst
periodicity.

1) Slope of entropy plots: Wang et al. [33] introduce
entropy plots, plots showing the entropy of a workload at
different aggregation levels for the workload. If entropy is
calculated at a fine resolution, no correlation in the load is
observed. The higher the resolution of aggregation is, the more
correlations that can be captured by H. If the plot shows a
linear relationship then the correlation and burstiness is stable
across different workload resolutions. The slope can then be
used as an indicator for workload burstiness. If there is a
change in the workload burstiness and the plot is non-linear,
then this method does not work [21].

2) Normalized entropy: Minh et al. [21] introduce the use
of normalized entropy as a measure of workload burstiness.
It is known that the maximum value achievable for H is
logN [11]. Given a time interval T , Minh et al. divide the
interval into N equal sized intervals. The normalized entropy
is then defined as,

HNE(X) =−∑
N
i=1 pi× log pi

logN
, (6)

where pi denotes the probability that a job arrives in interval
i. HNE is bounded between 0 and 1. According to Minh et al.,
HNE values close to zero indicates stronger burstiness.

3) Burst density: Shen et. al. [28] propose to use signal pro-
cessing techniques to measure the burst density in a workload.
The authors use the Fast Fourier Transform (FFT) to calculate
the coefficients that represent the amplitude of each frequency
component for recent resource usage, e.g., L= {lt−Wa , ...., lt−1}
where L is the time series of recent resource usage and Wa is
the number of measurements considered. They consider the top
k (e.g., 80%) frequencies in the frequency spectrum as high
frequencies and apply inverse FFT over the high frequency
components to synthesize the burst pattern. They calculate
a burst density metric β as the percentage (or number) of
positive values in the extracted burst pattern compared to the
total signal. Higher percentages of β indicate strong burstiness
and vice versa. One main disadvantage of this technique is the
complexity in choosing k, the number of top frequencies that
are considered as burst components. We discuss the limitations
for both the normalized entropy and burst density techniques
in Section III-C in more details.



4) The Hurst parameter: The Hurst parameter (exponent
or coefficient) has been used as a measure for burstiness
in the literature for numerous workloads [27], [17], [20].
The Hurst parameter, H, is a measure of the level of self-
similarity of a time-series. Self-similar processes have heavy-
tailed distributions, and thus, there burstiness can be observed
at all time scales.

Various practical issues with estimating the Hurst exponent
have been discussed in the literature [9]. In the literature,
there are many suggested techniques to estimate the Hurst
exponent differ for the same time-series to an extent making
the estimation unreliable [22]. Just picking one algorithm from
the literature to estimate the Hurst parameter and applying it
to different workloads “is likely to end up with a misleading
answer or possibly several different misleading answers” [9].
Using the Hurst parameter to quantify cloud workload bursti-
ness can thus lead to wrong conclusions about the workloads
running resulting in “bad” management decisions.

III. A NEW BURSTINESS MEASURE

Sample Entropy (SampEn) is a robust burstiness measure
that was developed by Richman et al. over a decade ago [26],
[25]. It is used to classify abnormal (bursty) physiological
signals. It was developed as an improvement to another bursti-
ness measure, Approximate Entropy, widely used previously
to characterize physiological signals [24]. Sample Entropy is
defined as “the negative natural logarithm of the (empirical)
conditional probability that sequences of length m similar
point-wise within a tolerance r are also similar at the next
point”.

It has two advantages over Shannon’s entropy: i) being
able to operate on short data sequences and, ii) it takes
into account gradual workload increases and periodic bursts.
These advantages make it an interesting potential measure for
workload burstiness as a workload having periodic bursts, e.g.,
every weekend, is easier to manage compared to workloads
with no repetitive bursts.

Three parameters are needed to calculate SampEn for a
workload. The first parameter is the pattern length m, which
is the size of the window in which the algorithm searches
for repetitive bursty patterns. The second parameter is the
deviation tolerance r which is the maximum increase in load
between two consecutive time units before considering this
increase as a burst. The last parameter is the length of the
workload which can easily be computed. We therefore focus
on m and r and their choice.

The deviation tolerance defines what is a normal increase
and what is a burst. When choosing the deviation tolerance,
the relative and absolute load variations should be taken in
account, For example, a workload increase requiring 25 extra
servers for a service having 1000 VMs running can probably
be considered withing normal operating limits, while if that
increase was for a service having only 3 servers running
then this is a significant burst. Thus by carefully choosing an
adaptive r, SampEn becomes normalized for all workloads. If
SampEn is equal to 0 then the workload has no bursts. The
higher the value for SampEn, the more bursty the workload
is.

A. Implementation of the algorithm

There is one main limitation of SampEn, it is expensive
to calculate both CPU-wise and memory-wise. The computa-
tional complexity (in both time and memory) of SampEn is
O(n2) where n is the number of points in the trace [1]. 1 In
addition, workload characteristics might change during oper-
ation, e.g., when Michael Jackson died, 15% of all requests
directed to Wikipedia were to the article about him creating
spikes in the load [6]. If SampEn is calculated for a long
history, then recent changes are hidden by the history.

Algorithm 3: The algorithm for calculating AvgSampEn.

Data: r, m, T , L
Result: AvgSampEn

1 N← Length(L);
2 Pdivided ←{T (L.k).....T (L.(k+1)} ∀k ∈ {0,N};
3 TotSampEn← 0;
4 for W in Pdivided do
5 n← Length(W );
6 Bi← 0;
7 Ai← 0;
8 Xm←{Xm(i)|Xm(i) = [x(i), ...x(i+m−1)] ∀ 1 < i <

n−m+1};
9 for (Xm(i),Xm( j)) in Xm: i 6= j do

10 Calculate d[Xm(i),Xm( j)] =
max(|x(i+ k)− x( j+ k)|) ∀ 0≤ k < m;

11 if d[Xm(i),Xm( j)]≤ r then
12 Bi← Bi +1;
13 Bm(r)← 1

n−m ∑
n−m
i=1

1
n−m−1 Bi;

14 m = m+1
15 Xm←{Xm(i)|Xm(i) = [x(i), ...x(i+m−1)] ∀ 1 < i <

n−m+1};
16 for (Xm(i),Xm( j)) in Xm: i 6= j do
17 Calculate d[Xm(i),Xm( j)] =

max(|x(i+ k)− x( j+ k)|) ∀ 0≤ k < m;
18 if d[Xm(i),Xm( j)]≤ r then
19 Ai← Ai +1;
20 Am(r)← 1

n−m ∑
n−m
i=1

1
n−m−1 Ai;

21 TotSampEn← |− log[Am(r)
Bm(r) ]|+a×TotSampEn;

22 AvgSampEn← TotSampEn/N;

To address these two points, we modified the sample
entropy algorithm [1] by dividing the trace into smaller
equal sub-traces. SampEn is calculated for each sub-trace.
A weighted average, AvgSampEn, is then calculated for all
SampEn values for the sub-traces. More weight can be given
to more recent SampEn values. This way the time required
for computing SampEn is reduced since n is reduced signif-
icantly. Our modification also enables online characterization
of workloads since SampEn is not recomputed for the whole
workload history but rather for the near past. This approach
of dividing the workload into smaller sub-traces is similar to
the approach used by Costa et al. [10] where they divide a
signal to calculate its multi-scale entropy. The main difference

1There are some suggested implementations that significantly improve the
complexity to be between O(n) and O(n3/2) [23] making SampEn an even
more attractive measure.



between the two approaches occurs after SampEn is computed
for the smaller sub-trace, Costa et al. plot the results while we
take a weighted average.

Our algorithm is shown in Algorithm 3. 2 T is the workload
for which SampEn is calculated. The trace is divided into N
sub-traces of length L (lines 1 to 3). For each sub-trace, W ,
SampEn is calculated. The first loop in the algorithm (lines
9 to 14) calculates Bm(r), the estimate of the probability that
two sequences in the workload having m measurements do
not have bursts. The second loop in the algorithm (lines 15
to 19) calculates Am(r), the estimate of the probability that
two sequences in the workload having m+1 measurements do
not have bursts. Then SampEn for the sub-trace is calculated
and is added to the sum of the SampEn values of all previous
sub-traces multiplied by a weighting factor a (line 20). The
average SampEn for the whole trace is then calculated.

B. Choosing the parameters

SampEn has been shown relatively robust towards the
choice of the two main parameters, the deviation tolerance,
r, and the pattern length, m [25], [8]. Ideally, r should be
chosen such as to capture all true bursts while m should be
long enough to capture interesting periodic patterns. While
choosing m, another contributing factor is the granularity
of data, studying patterns occurring yearly is different from
studying patterns occurring daily or hourly. Some studies
suggest different techniques to set the two parameters in the
context of biomedical signals [8], [16].

Choosing r, some studies suggest the use of some percent-
age of the standard deviation of the signal [25], [24]. Lake et.
al. [16] show that this can lead to a reduction in the calculated
SampEn due to the inflation of the standard deviation by the
spikes. We have thus chosen a different approach to calculate r.
Instead of using the standard deviation of the trace, r is set as a
percentage of some high percentile of the workload, e.g., 50%
of the 75th percentile of the load values. Any increase above
that value will be considered as a spike. Since percentiles in
general are a robust measure of scale, the errors described by
Lake et. al. are no longer an issue.

For choosing m, using Auto-Regressive models [16] or us-
ing the combination of the first minimum value of the nonlinear
correlation function called average Mutual Information (MI)
and the calculation of False Nearest Neighbor (FNN) [8] has
been proposed. Cloud workloads are different from biomedical
signals since most cloud workloads will have some inherent
pattern, e.g., hourly, daily and weekly patterns. Therefore, m
should be picked up to capture these patterns instead of using
more complicated models or methods suitable for biomedical
signals. The value of L should be chosen to be longer than m.
Since L controls the rate at which AvgSampEn, it should be
chosen to suit the frequency with which decisions are taken.

C. Comparison to the state-of-the-art

We calculated AvgSampEn for a set of more than 70
workloads (more than 10 real workloads and 60 synthetic
traces). Due to space limitations, we only show AvgSampEn

2While there are implementations of SampEn in Matlab, we chose to
implement our algorithm in Python.

TABLE I. WORKLOAD ANALYSIS RESULTS.

Workload AvgSampEn HNE β80 β0.0001
Wikipedia 0.22 0.998 0.45 0.5

FIFA 0.48 0.988 0.27 0.6
SD-IRCache 3.3 0.975 0.25 0.23

Google 236.25 0.9 0.28 0.4

values for a subset of these loads, the workloads in Figure 2.
The traces shown all have minutes time granularity. We set the
pattern length m to one hour and the value of L to one day.
The deviation tolerance r is set to 30% of the 70th percentile
of the load values during a period L. The weighting factor a
is set to one.

Table I shows the AvgSampEn values for the 4 workloads
Figure 2 compared to the use of Normalized entropy described
in Section II-B2 and the burst density metric described in
section II-B3. The burst density metric, β , was computed when
different percentage of frequencies constitute the burst pattern.
We choose to show only two values representing two extremes,
when the top 80% and the top 0.0001% frequencies constitute
the burst pattern.

Since the Wikipedia workload shows very little burstiness
and is repetitive, the value of AvgSampEn is very low, almost
zero, indicating no burstiness. The SD-IRCache has more
bursts where the load almost doubles in a very short period and
thus the value of AvgSampEn increases and is almost one. The
number of tasks submitted to the Google cluster is very bursty
in nature, thus AvgSampEn is very high. Our experiments
on the other workloads showed similar results for the values
of AvgSampEn with different workloads. We therefore used
AvgSampEn in our workload analyzer and classifier [4].

The values of HNE given in Table I show that HNE changes
marginally with the different workloads. A workload with
clear and strong burstiness such as the Google workload
has an HNE value almost equal to the Wikipedia workload
which is very stable. On the other hand, AvgSampEn varies
significantly with the workload burstiness. The increase in
AvgSampEn with increasing burstiness is non-linear due to
the logarithmic function. The burst density metric is clearly
unable to differentiate the workloads in terms of burstiness. It
is also not robust with changing parameters, i.e., the order
of the workloads changes with changing the percentage of
frequencies considered.

D. Sensitivity of AvgSampEn

To check the sensitivity of AvgSampEn while varying the
two main parameters, r and m, we calculate the value of
AvgSampEn when the value of m varies between ten minutes
and six hours with steps of ten minutes, i.e., when m takes
the value of 10, 20, 30, ...., 360 minutes. For each step for m
we vary r between the 5th percentile of all workload values
multiplied by 0.05 to the 95th percentile multiplied by 0.95
with an increase of 5 percent in the percentiles and 0.05 in the
multiplicative factor.

To give an example, Figure 3(a) shows the ranking of the
values of AvgSampEn when r is set to the 50th percentile of the
workload values, i.e., the median workload value, multiplied
by 0.5. We multiply the percentile by a factor to make the
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Fig. 3. The ranking of the workloads is relatively stable for varying m but shows less stability when r varies and the two workloads have AvgSampEn values
close to each other.

differences between the tolerances chosen large and to be
consistent with the way we defined r in III-C. The pattern
length, m, varies in the figure between ten minutes to 6 hours.
It can be seen that the ranking of the workloads is robust with
respect to the pattern length. On the other hand, this ranking
differs with the ranking in Table I. The difference in ranking
is for the FIFA and Wikipedia workloads, the least two bursty
workloads.

Figure 3(b) shows the ranking when m is set to 5 hours
while r is left to vary as described above. While the ranking of
the two most bursty workloads is stable, the least two bursty
workloads ranking switch when r is set to the 40th percentile
of the workload values multiplied by 0.4. A low value for r,
the deviation tolerance, results in less stable workload ranking
since r defines the sensitivity of the measure to what a “true
burst” is. It is thus advised to use a large enough r to make sure
that only “true bursts” are taken in to account when estimating
the burstiness of a workload.

IV. DISCUSSION

While AvgSampEn has been able to quantify burstiness
in all the workloads we have tested it with, it is still far
from perfect. The computational complexity of the algorithm is
O(n2), even for the modified algorithm [23]. The time required
to update AvgSampEn depends highly on L and m. In addition,
the choice of the parameters, while intuitive, is arbitrary.
Despite all the limitations, we were able to use AvgSampEn
for workload classification and assignment to the most suitable
elasticity algorithm with very high accuracy [4]. The sensitivity
analysis showed that the measure is sensitive to the deviation
tolerance chosen. To choose a “correct” deviation tolerance,
one has to have a definition of a “true” burst. Defining bursts
is still a problem that is far from being solved in the literature
and it requires more focus within the community. We leave
this for future work.
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Department of Computing Science, 2013. Available:
www8.cs.umu.se/research/uminf/index.cgi?year=2013&number=13.

[5] ARI, I., HONG, B., MILLER, E. L., BRANDT, S. A., AND LONG, D. D.
Managing flash crowds on the internet. In MASCOTS (2003), IEEE,
pp. 246–249.

[6] BODIK, P., FOX, A., FRANKLIN, M. J., JORDAN, M. I., AND PATTER-
SON, D. A. Characterizing, modeling, and generating workload spikes
for stateful services. In SoCC (2010), ACM, pp. 241–252.

[7] CANIFF, A., LU, L., MI, N., CHERKASOVA, L., AND SMIRNI, E.
Fastrack for taming burstiness and saving power in multi-tiered systems.
In ITC (Sept 2010), pp. 1–8.

[8] CHEN, X., SOLOMON, I., AND CHON, K. Comparison of the use
of approximate entropy and sample entropy: Applications to neural
respiratory signal. In IEEE-EMBS (Jan 2005), pp. 4212–4215.

[9] CLEGG, R. A practical guide to measuring the hurst parameter. In
Proceedings of 21st UK Performance Engineering Workshop, School of
Computing Science, Technical Repo (2005), N. Thomas, N. Thomas.

[10] COSTA, M. D., PENG, C.-K., AND GOLDBERGER, A. L. Multiscale
analysis of heart rate dynamics: Entropy and time irreversibility mea-
sures. Cardiovascular Engineering 8, 2 (2008), 88–93.

[11] COVER, T. M., AND THOMAS, J. A. Elements of information theory.
John Wiley & Sons, 2012.

[12] GUSELLA, R. Characterizing the variability of arrival processes with
indexes of dispersion. IEEE Journal on Selected Areas in Communica-
tions 9, 2 (1991), 203–211.

[13] KARSAI, M., KASKI, K., BARABÁSI, A.-L., AND KERTÉSZ, J. Uni-
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