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Abstract

To try to outperform an externally given benchmark with known weights is the most common equity mandate in the
financial industry. For quantitative investors, this task is predominantly approached by optimizing their portfolios
consecutively over short time horizons with one-period models. We seek in this paper to provide a theoretical
justification to this practice when the underlying market is of Barndorff-Nielsen and Shephard type. This is done by
verifying that an investor who seeks to maximize her expected terminal exponential utility of wealth in excess of her
benchmark will in fact use an optimal portfolio equivalent to the one-period Markowitz mean-variance problem in
continuum under the corresponding Black-Scholes market. Further, we can represent the solution to the optimization
problem as in Feynman-Kac form. Hence, the problem, and its solution, is analogous to Merton’s classical portfolio
problem, with the main difference that Merton maximizes expected utility of terminal wealth, not wealth in excess of
a benchmark.
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1 Introduction
Classical portfolio optimization literature focus on the
problem of maximizing expected utility of wealth at a
deterministic future time. While this may be an intu-
itive problem setting, to measure performance in absolute
terms, the dominating approach in the financial industry
is rather to measure performance in excess of an exter-
nally given benchmark index. The return in excess of the
benchmark is called alpha. Measuring performance in this
manner better captures the skill of the individual investor.
Portfolio optimization started with Markowitz’ land-

mark paper, see (Markowitz 1952), where the investors’
conflicting objects of high return versus low risk was
quantified. Since then, the field has been generalized and
refined and sophisticated stochastic control models have
been proposed for making optimal investment decisions.
In continuous time, Merton solved the problem of opti-
mal allocation of a portfolio in order to maximize the
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expected utility of wealth in a Black-Scholes market in
(Merton 1969). For optimality with state-dependent risk
aversion see (Björk et al. 2014). To incorporate more
features from actual financial markets different stochas-
tic volatility models have been suggested. For portfo-
lio optimality in state-dependent Markov markets see
(Celikyurt and Özekici 2007). For the Heston model
see (Kraft 2005). Barndorf-Nielsen and Shephard (B-NS)
introduced in (Barndorff-Nielsen and Shephard 2001) a
stochastic volatility model where the stock prices are
non-homogeneous geometric Brownian motions, and the
dynamics of the multidimensional appreciation rate and
volatility matrix are driven by non-Gaussian Ornstein-
Uhlenbeck processes. A nice property of this model is that
it allows for very sudden increases in volatility, which is a
phenomenon often encountered in financial markets. For
a single stock B-NS market, Benth solved the portfolio
allocating problem in (Benth et al. 2003). For a multi-
ple stock market the problem was addressed and solved
in (Lindberg 2006a) and (Lindberg 2006b). Kallsen and
Muhle-Karbey solved a similar problem using a martin-
gale approach in (Kallsen and Muhle-Karbey 2010). Point
estimation in the B-NS market is done in (Lindberg 2007).
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A single investor hardly dictates the performance of
the market and absolute wealth depends directly on the
overall market fluctuations. By investigating the relative
wealth, defined as the difference of wealth between the
portfolio and the benchmark index, we have an isolated
measure of the investor’s performance which does not
depend on the underlying market. In order for the relative
wealth to be independent of the benchmark, it is necessary
that the benchmark is continously rebalanced, see (Korn
and Lindberg 2013). The level of wealth of the bench-
mark is set to be equal to that of the personal investor.
Mathematically, the rebalancing of the benchmark is being
done continuously. However, in practice it is often done
once a day or even more seldom. The adaptation of the
benchmark wealth is made to avoid that the investor’s per-
formance will be affected by the so called beta effect. The
term beta effect is used to describe the situation when
the performance of the investor, which is measured only
in terms of its performance in excess of the benchmark,
start to be affected notably on the absolute performance
of the benchmark. This happens if the investor’s capital
is considerably larger, or smaller, than the capital held in
the benchmark. This implies that we are evaluating per-
formance in excess of a non self-financing portfolio. It
sums over the difference between investor’s daily profit
minus the daily profit of the current benchmark. Hence,
the concept of relative wealth is merely an abstraction, but
nevertheless an industry ubiquity.
The problem of maximizing utility of wealth in excess

of a benchmark in a standard Black-Scholes market was
recently solved in (Korn and Lindberg 2013). We consider
the corresponding problem in the B-NS market.
The financial industry standard, regarding how port-

folio optimization is applied in practice, is to rebalance
one-period mean variance portfolios over short consecu-
tive time horizons. It is been unknown to what extent this
"local" optimization approach actually yields good results
also in the long run. We will show here that the opti-
mal portfolio in terms of exponential utility of relative
wealth in a B-NS market replicates the optimal portfolio
of the corresponding Markowitz mean-variance problem
in continuum. That is, by continuously rebalancing one-
period benchmark relative mean-variance solutions one
replicates the optimal portfolio for an investor maximiz-
ing expected utility of terminal wealth. This is actually
completely analogous to (Merton 1969), and the differ-
ences between his paper and the present one are small (set
aside that we use a stochastic volatility model). Mainly,
the difference is that Merton aims at finding an optimal
portfolio on an absolute level while we consider an opti-
mal alpha portfolio. Merton considers strategies as being
fractions of wealth and his optimal strategy - the local
mean-variance strategy the investor should apply contin-
uously - has the constraint that the sum of all portfolio

weights should be equal to one. We, in the other hand,
view the strategies in terms of capital, and use the con-
straint that the sum of all portfolio weights should sum to
zero, i.e. that the net exposure relative to the benchmark
should be zero. With Merton’s problem, the optimal strat-
egy amounts to solving the stochastic control problem of
maximizing expected utility of terminal wealth. Analo-
gously, for our problem the optimal strategy amounts to
maximizing expected utility of terminal wealth in excess of
the benchmark.
It is natural to ask whether we have almost sure non-

negativity of the investor’s total wealth for the portfolio
problem we consider. The answer to this quesion is affir-
mative, since we can choose the bounds on our portfolio
weights such that the investor’s total portfolio holdings
remain positive. In practice, this constraint is often active
for stocks which have small index weights.
We solve the present portfolio problem using the corre-

sponding Hamilton-Jacobi-Bellman (HJB) equation. The
paper is structured in the following way. In Section 2
model parameters such as the market model, utility func-
tion and optimal value function are defined. We set up
the stochastic control problem in Section 3, and we also
reformulate the problem in terms of its associated HJB
equation. In Section 4, we prove that the optimization
problem is well defined. We prove in Section 5 a verifica-
tion theorem. In Section 6, a well defined explicit solution
to the HJB equation is given. The solution to the HJB
equation is verified to be a solution to the optimization
problem in Section 7.

2 Themodel
In this section we set up the market model, including
the governing dynamics and the investor’s utility function.
Further, we introduce the relative portfolio - the investor’s
portfolio holdings minus her benchmark portfolio - in
order to set up the optimal value function.

2.1 Themarket model
Suppose that for 0 ≤ t ≤ T < ∞ a complete probabil-
ity space (�,F , P) is given with a corresponding filtration,
{Ft}0≤t≤T , satisfying the usual conditions. In addition,{
Zi
t
}
i=1,...,k denotes k independent cádlág subordinators,

and
{
Wi

t
}
i=1,...,m is a set of m independent Brownian

motions independent of the subordinators. The filtration
to be considered is

Ft =
{{

Wi
s
}
i=1,...,m ,

{
Zi

λis
}
i=1,...,k : s ≤ t

}
,

where λ ∈ R
k+. Subsequently, T in superscript will denote

transpose. Boldface numbers denote column vectors of
suitable size with each element equal to the boldfaced
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number. I.e. 1 denotes a vector of ones and 0 denotes a
vector of zeros. Throughout the paper, the notation indi-
cating conditional properties will be omitted when there
is no risk of confusion.
The frictionless market is modelled as the multidimen-

sional B-NS factormodel defined in (Lindberg 2006b), and
the market is equipped with n ≤ m stocks

St = (
S1t , S

2
t , ..., S

n
t
)T

and k news processes

Yt =
(
Y 1
t ,Y

2
t , ...,Y

k
t

)T
.

The dynamics of the system is defined by the stochastic
differential equations

dSt = St . (μtdt + σtdWt) (1)

dYt = −λ.Ytdt + dZλt , (2)

where . denotes elementwise multiplication. Here, the
coefficients of St are given by

μt = μ0 + diag
(
σtσ

T
t
)
μ1

σt = �
√
Yt ,

where μ0,μ1 ∈ R
n, σt , is a n×m volatility matrix and � is

a n × m × k tensor. The tensor product, �
√
Yt , contracts

the resulting tensor so that the last dimension is dropped.
For the tensor � three constraints are imposed; all ele-

ments are non-negative, the sum over the last index equals
to one, and �y is non-singular for all y ∈ R

k+.
By construction Yt is a multidimensional non-Gaussian

Ornstein Uhlenbeck process

Yt = eλt .
(
Y0 +

∫ t

0
e−λudZλu

)
, (3)

where . denotes elementwise multiplication and the jumps
of the subordinator are suppressed by the rate of decay
parameter λ = (λ1, ..., λk). Note also that the time of the
subordinator, Z, is dilated by λ which makes the marginal
distributions of Yt independent of λ. This makes the sta-
tistical estimation of the model easier see e.g. (Barndorff-
Nielsen and Shephard 2001) and (Lindberg 2007).

2.2 The utility function and the relative portfolio
The utility function reflects the investor’s attitude towards
risk. Here we will consider exponential utility, U(x) = −
exp(−γ x), for the intensity parameter γ > 0. Positive
intensity entails that the investor is risk-averse. This is a
fairly reasonable property for most investors, as one token
gives more virtue to an investor with small funds than for
a rich dito.
The (externally given) non-scaled benchmark portfo-

lio, πb′ , is a self financing n dimensional adapted process

of the portfolio weightings, in capital, for the benchmark
index of interest. Analogously, the actual holdings in cap-
ital for the investor is denoted πp, which also is a a self
financing n dimensional adapted process. The wealth of a
portfolio is denoted V · = (·)T 1.
We now introduce the benchmark portfolio,

πb = Vπp

Vπb′ π
b′
.

Note here that πb is not a self-financing portfolio but is
continuously set to have the same wealth as the investor’s
portfolio, see (Korn and Lindberg 2013) for a rigorous
argument.
Furthermore, the progressivelymeasurable strategyπ =

πp−πb is the relative holdings of the investor compared to
the benchmark.We let Xt be the excess wealth of the port-
folio above the benchmark at time t, subsequently denoted
relative wealth. Then, by the stock price dynamics defined
in equation (1), Xt is governed by

dXt = πT
t (μtdt + σtdWt) ,

where πt =
(
π

(j)
t

)
j=1,...,n

is such that π
(j)
t denotes the rel-

ative amount of money invested in stock j at time t ∈
[0,T].
The set-up of relative portfolios is natural from a practi-

cioner’s view point. In the financial industry, active port-
folio managers are evaluated against a benchmark and
strive to generate positive wealth in excess of that specific
benchmark, so-called alpha. Hence, the relative portfolio
is simply an industry chosen approach to evaluate per-
formance. Here we give a brief justification of the set-up
taken in this paper.
A naive way to measure the skill of an active port-

folio manager would be to monitor the wealth of the
investor’s portfoliominus the the wealth of the non-scaled
benchmark, Vπp − Vπb′ . In order to show that this is an
inappropriate measure of skill for an active portfolio man-
ager we introduce some additional notation; a bar over
the portfolio denote the number of stocks in the portfolio,
e.g., π̄p = πp./St where ./ denotes elementwise division is
the number of the respective stock in the investors port-
folio. By the self-financing properties of the non-scaled
benchmark and the investor’s portfolios the differential
of Vπp − Vπb′ can be reformulated by the benchmark to
equal

dVπp − dVπb′ = (
π̄
p
t
)T dSt −

(
π̄b′
t

)T
dSt

=
(
π̄
p
t − π̄b

t

)T
dSt +

(
π̄b
t − π̄b′

t

)T
dSt ,

(4)

where the first term is the relative wealth and the second
term constitutes the beta effects. From equation (4) it is
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evident that the difference in wealth between the portfo-
lio and the non-scaled benchmark depends on the overall
market fluctations. In the financial industry, it is com-
mon to measure performance with zero net exposure to
the market and relative wealth is the industry standard
measure of skill for active portfolio managers.

2.3 The optimal value function
For some deterministic evaluation time T ∈ (0,∞), the
value function J is defined as

J(t, x, y,π) = E
[
U(XT )|Xt = x,Yt = y,π

]
,

for the relative portfolio π , current wealth x and news
state y. Furthermore, � denotes the set of all relative
strategies π = πp − πb such that πp is self-financing and
for vectors c+, c− ∈ R

k+, the relative money invested in
stock j satisfies −c(j)− ≤ π

(j)
t ≤ c(j)+ for all j = 1, ..., n and

t ∈[0,T]. The optimal value function V is given by

V (t, x, y) = sup
π∈�

J(t, x, y,π), (5)

which is the investor’s maximum expected utility of ter-
minal relative wealth. Furthermore a relative portfolio, π∗,
which replicates a value function equal to the optimal
value function such that V (t, x, y) = J(t, x, y,π∗) for all
(t, x, y) is called the optimal portfolio.

3 The control problem
Now, when we have the market model set up, we will
in detail study the optimization problem. Our solution
approach is to solve the Hamilton-Jacobi-Bellman (HJB)
equation associated with equation (5).
For brevity, let the infinitesimal operator of the function

v(t, x, y) be

Vv = ∂v
∂t

+ sup
π∈�

(
πT μ

∂v
∂x

+ 1
2
πT σσT π

∂2v
∂x2

)
−(λ.y)T

∂v
∂y

+
k∑

i=1

∫ ∞

0
v (t, x, y+ zei) − v(t, x, y)mi(dz),

where μ and σ are functions of y, the . denotes element
wise multiplication, ei is the unity vector in the ith dimen-
sion, and mi are the Lévy measures associated with the
subordinators Zi.
The original optimization problem of Section 2 is now

reformulated by Itô’s formula as finding a function, v :
[0,T]×(0,∞)k+1 → R, such that

Vv = 0 (6)
v(T , x, y) = U(x).

Equation (6) is hereafter referred to as the HJB equation.
We remark that, once the solution to the HJB equation

is found a verification result is needed in order to guar-
antee that the solution coincides with the optimal value
function, see e.g. (Korn and Kraft 2004).

4 Well definedness of the optimal value function
In this section we will show that the optimal value func-
tion is well defined. This will be done by invoking two
basic constraints of the model. Recall c+ and c− are
the upper and lower limits of π , see Section 2.3. First
constraint; the constant cπ = max

(‖c+‖∞ , ‖c−‖∞
)
is

bounded, recall this implies ‖π‖∞ ≤ cπ , i.e. there is a
bound on the amount of relative wealth invested short
and long in each stock. Second constraint; there exist a
constant, cL ∈ R, such that for all c ≤ cL then∫ ∞

0+
(
ecz − 1

)
dmi(z) < ∞ ∀i = 1, ..., k (7)

which is equivalent to
∑k

i=1 | ∫∞
0+(ecLz − 1)dmi(z)| < ∞.

The financial interpretation of the second condition is
more complex. But equation (7) essentially gives a bound
of the impact of news process jumps for the volatilities.
In order to derive the well definedness of the optimal

value function two lemmas will be utilized.

Lemma 1. If equation (7) holds for every c ≤ cL then for
some c1 ∈ R we have

∑k
i=1 E

[
exp

(
c1
∫ T
0 Yi

udu
)]

< ∞.

The proof of Lemma 1 rests on the coarse bound Zλt ≤
ZλT , where the inequality applies element-wise, for every
t ≤ T and is due to that the subordinators are non-
decreasing.

Proof of Lemma 1. By equation (3) and the mentioned
bound,

E

[
exp

(
c1
∫ T

0
Yi
udu

)
|Y0 = y

]

≤ E

[
exp

(
c1
∫ T

0
eλiu

(
yi + Zi

λiu
)
du

)]

= ec1
eλiT
λi

yi
E

[
exp

(
c1
∫ T

0
eλiuZi

λiudu

)]
,

where the term outside the expected value is finite. Fur-
thermore, by another application of the same bound then

E

[
exp(c1

∫ T

0
eλiuZi

λiudu

]

≤ E

[
exp

(
c1TeλiTZi

λiT

)]
= exp

(
λiT

∫ ∞

0+

(
ec1Te

λiT z − 1
)
dmi(z)

)
,
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where the equality is due to the infinite divisibility of
Lévy processes, and thus c1Te||λ||∞T ≤ cL is a sufficient
condition for

k∑
i=1

E

[
exp

(
c1
∫ T

0
Yi
udu

)
|Y0 = y

]
< ∞.

The second lemma deals with the well definedness of
E

[
exp

(
c
∫ T
0
(
1T σuσ

T
u 1
)
du
)]

for some c ∈ R. Recall that
σu = �

√
Yu and let � = (αijl) and

αl,l′ =
n∑

i=1

n∑
i′=1

m∑
j=1

αijlαi′jl′

so that

1Tσuσ
T
u 1 =

k∑
l=1

Yl
uαl,l +

k∑
l=1

∑
l′ �=l

√
Yl
uY l′

u αl,l′ .

Lemma 2. If

c2 ≤ cL
Te||λ||∞T

(
max1≤l≤k

∑
l �=l′ αl,l′ + max1≤l≤k αl,l

) ,
then we have

E

[
exp

(
c2
∫ T

0

(
1T σuσ

T
u 1
)
du

)]
< ∞.

Proof of Lemma 2. By the definition of σu,

E

[
ec2
∫ T
0
(
1TσuσT

u 1
)
du
]

= E

⎡
⎣exp

⎛
⎝c2 k∑

l=1
αl,l

∫ T

0
Yl
udu+

k∑
l=1

∑
l′ �=l

αl,l′
∫ T

0

√
Yl
uY l′

u du

⎞
⎠
⎤
⎦

≤E

[
epc2

∑k
l=1 αl,l

∫ T
0 Y l

udu
] 1

p
E

[
eqc2

∑k
l=1
∑

l′ �=l αl,l′
∫ T
0

√
Y l
uY l′

u du
] 1

q
,

(8)

where we have used Hölder’s inequality with conjugate
exponents p, q. We begin by addressing the foremost term.
By independence of the news processes,

E

[
epc2

∑k
l=1 αl,l

∫ T
0 Y l

udu
]

= �k
l=1E

[
epc2αl,l

∫ T
0 Y l

udu
]

(9)

and in addition by choosing

p = max1≤l≤k
∑

l �=l′ αl,l′ + max1≤l≤k αl,l

max1≤l≤k αl,l

then pc2 max1≤l≤k αl,l ≤ c1 so that equation (9) is finite
by a direct application of Lemma 1. For the latter term
in equation (8), observe that

√
YlY l′ ≤ (Yl + Yl′)/2 and

by a double application of independence of different news
processes then we have

E

[
eqc2

∑k
l=1

∑
l′ �=l αl′ ,l

∫ T
0

√
Y l
uY l′

u du
]

≤ E

[
e
qc2
2
∑k

l=1
∑

l′ �=l αl,l′
∫ T
0 Y l

u+Y l′
u du
]

= E

[
e
qc2
2
∑k

l=1
∑

l′ �=l 2αl,l′
∫ T
0 Y l

udu
]

= E

[
eqc2

∑k
l=1

∑
l′ �=l αl,l′

∫ T
0 Y l

udu
]

= �k
l=1E

[
eqc2

∑
l′ �=l αl,l′

∫ T
0 Y l

udu
]
.

This is bounded by Lemma 1 since the conjugate expo-
nent

q = max1≤l≤k
∑

l �=l′ αl,l′ + max1≤l≤k αl,l

max1≤l≤k
∑

l �=l′ αl,l′
,

so that qc2 max1≤l≤k
∑

l′ �=l αl,l′ ≤ c1.

Now are we ready to state and prove the well defined-
ness of the optimal value function.

Proposition 1. If there exist a big enough constants
cπ , cL ∈ R such that ||π ||∞ ≤ cπ and equation (7) holds for
every c ≤ cL then E

[|U (XT ) | | Xt = x,Yt = y,π
]
is finite.

Before we start, let ξ = −γ
(
Xt + ∫ T

t πT μudu + cπ
∫ T
t

1T σudWu
)
. We will see that

E
[
exp(ξ)|Xt = x,Yt = y,π

]
< ∞ (10)

is a sufficient condition for the optimal value function to
be well defined. Assume that equation (10) holds. Then
we have by Jensen’s inequality that E[ξ ] exists. Note that
ξ and −γXT share first moment while P(ξ > x) ≥
P (−γXT > x) for all x ≥ E[ξ ], where probabilities are
conditional Xt = x,Yt = y and π . Now, with Pξ denoting
the distribution function of ξ ,

E

[
emax(ξ−E[ξ ],0)

]

=
∞∑
k=0

E
[
max(ξ − E[ξ ] , 0)k

]
k!

=
∞∑
k=0

∫∞
E[ξ ] (x − E[ξ ] )k dPξ (x)

k!

= P(ξ ≥ E[ξ ] ) +
∞∑
k=1

∫∞
E[ξ ](x − E[ ξ ] )k−1P(ξ > x)dx

k!

≥P(−γXT ≥E[ξ ] )+
∞∑
k=1

∫∞
E[ξ ](x−E[ξ ])k−1P(−γXT >x)dx

k!

= E

[
emax(−γXT−E[ξ ],0)

]
,
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where we have used Tonelli-Fubini twice, see e.g. (Durrett
2010). Further,

E
[
eξ
]+ eE[ξ ] ≥ eE[ξ ]E

[
emax(ξ−E[ξ ],0)

]
≥ eE[ξ ]E

[
emax(−γXT−E[ξ ],0)

]
≥ E

[
e−γXT

]
and the desired result follows.
We will need an auxiliary function in the proof, to

bound the integrals involving the Brownian motions for
the optimal value function. For s ≥ t, let


s = 2γ cπ
∫ s

t
1T σudWu.

Further, by an application of Lemma 2 then if c2 ≥
2 (γ cπ )2 , we have that

E

[
exp

(
2 (γ cπ)2

∫ T

t
1T σuσ

T
u 1du

)]
< ∞.

In addition, Novikov’s condition, see e.g. (Protter
2010)[theorem 45], gives that E(
s) is a martingale and
thus has constant expected value equal to one, since

0 = 0.

Proof of Lemma 3. By definition of ξ and the martingale
E(
s) then,

E[ eξ ]

= E

[
exp

(
−γ

(
Xt +

∫ T

t
πT μudu + cπ

∫ T

t
1T σudWu

))]

= e−γ x
E

[
exp

(
−γ

∫ T

t
πT μudu − cπγ

∫ T

t
1T σudWu

)]

= e−γ x
E

[
exp

(
−γ

∫ T

t
πT μudu + (γ cπ)2

2

∫ T

t
1T σuσ

T
u 1du

)

× E(
T)
1
2

]

≤ e−γ x
E

[
exp

(
2

∣∣∣∣∣
∫ T

t
− γπTμu + (cπγ )2

2
1Tσuσ

T
u 1du

∣∣∣∣∣
)] 1

2

× E[E(
T )]
1
2

≤ e−γ x
E

[
exp

(
2
∫ T

t
γ cπ1T (||μ0||∞ + σuσ

T
u 1||μ1||∞)

+ (cπγ )2

2
1Tσuσ

T
u 1du

)] 1
2

≤ e−γ x+2cπ γ ||μ0 ||∞T
E

[
e(cπ γ∨1)2(2||μ1||∞+1)

∫ T
0
(
1TσuσT

u 1
)
du
] 1
2 ,

(11)

where first we have used an application of the Cauchy-
Schwarz inequality and secondly the definition of the
appreciation rate μ. Furthermore, if

c2 ≥ (cπγ ∨ 1)2
(
2||μ1||∞ + 1

)
,

then by an application of Lemma 2, the right-hand side of
equation (11) is finite which yields the desired result.

5 Verification theorem
Here, we will prove that the well defined solution to the
HJB equation is a maximizer of the value function and
thus a solution to the optimization problem. This section
follows the deduction in (Korn and Lindberg 2013).

Theorem 1 (Verification Theorem). Suppose v(t, x, y) ∈
C1,2,1T ([ 0,T]×(0,∞)k+1), where 1T is of length k, is a
solution to the HJB equation given in equation (6). Also let,

sup
π∈�

∫ T

0
E
[
vx(t,Xt,Yt−)2πT σtσ

T
t π |X0=x,Y0=y

]
dt<∞,

(12)

where

� =
{
π = πp − πb : πT

t 1 = 0 and − c(j)− ≤ π
(j)
t ≤ c(j)

+ ,

∀ j = 1, ..., n and t ∈[ 0,T]
}

and πp is a self financing portfolio and πb the correspond-
ing benchmark portfolio, and

k∑
i=1

∫ T

0

∫ ∞

0+
E [|v(t,Xt ,Yt− + zei) − v(t,Xt ,Yt−)| |X0=x,

Y0 = y
]
dmi(z)dt < ∞

.

(13)

Then,

v(t, x, y) ≥ V (t, x, y), ∀(t, x, y) ∈[ 0,T]×R
k+1+ . (14)

Further, if there exist a measurable admissible trading
strategy, π∗, such that J(t, x, y,π∗) = v(t, x, y) then that
trading strategy is the optimal trading strategy for the port-
folio optimization problem of maximizing utility of relative
wealth in the B-NS market.
For brevity, let the infinitesimal operator of v(t, x, y)

given portfolio π be

Vπv = ∂v
∂t

+ πT μ
∂v
∂x

+ 1
2
πT σσT π

∂2v
∂x2

− (λ.y)T
∂v
∂y

+
k∑

i=1

∫ ∞

0
v(t, x, y+ z · ei) − v(t, x, y)mi(dz),

where in accordance with previous notation . denotes
element-wise multiplication, ∂v

∂y is of k-dimension and ei
denotes the unity vector of ith dimension.
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Proof of Lemma 4. By Itō’s formula, equation (12), and
equation (13), then

J(t, x, y,π)

= E[U(XT ) | Xt = x,Yt = y,π ]

= v(t, x, y)+E

[∫ T

t
Vπv(u,Xu,Yu)du |Xt =x,Yt =y

]

≤ v(t, x, y)+E

[∫ T

t
sup
π∈�

Vπv(u,Xu,Yu)du |Xt =x,Yt =y

]

= v(t, x, y),

which is the first part of the theorem. Further, with the
optimal portfolio π∗ then

sup
π∈�

Vπv = Vπ∗v

which yields J(t, x, y,π∗) = v(t, x, y) and thus is v(t, x, y)
the solution to the optimization problem and π∗ is
the optimal portfolio in the setting of the B-NS factor
dynamics.

6 Probabilistic representation of the solution
Here a probabilistic representation of the solution to the
HJB equation will be given. By suitable conjectures, the
original HJB equation is first reduced and subsequently
solved. The solution is of Feynman-Kac form.
By (Korn and Lindberg 2013), we make the ansatz that

the optimal value function v(t, x, y) = −e−γ xh(t, y), for
some function h. Again for brevity, let the infinitesimal
operator of h(t, y) be

Hh = ∂h
∂t

+ h(t, y)γ sup
π∈�

{
πT μ − γ

2
πT σσT π

}

− (λ.y)T
∂h
∂y

+
k∑

i=1

∫ ∞

0
h(t, y + zei) − h(t, y)mi(dz),

with previously introduced notation for . and ei. By the
postulated function, the original HJB equation is reduced
to finding a function h :[0,T]×(0,∞)k → R, such that

Hh = 0 (15)
h(T , ·) = 1.

We will start out by defining a function h(t, y) and
by some effort it will become clear that the proposed
function solves equation (15). In order to ease up the com-
putations some further notation is introduced. Let � :
R
k+ → R+ and ω : Dk → C1 [0,T], where D denotes

the Skorohod space and thusDk consists of k-dimensional
cádlág functions, be such that

�(y) = γ sup
π∈�

{
πT μ − γ

2
πT σσT π

}

and

ω·(Y ) =
∫ ·

0
�(Yu)du.

We state now a series of lemmas which characterizes the
properties of � and ω. These are proved in Section 6.1.

Lemma 3. �(y) is non negative and well defined for all
y ∈ R

k+.

For the following two lemmas the stochastic dynamics
of Y is given by equation (2).

Lemma 4. For all τ ∈[ 0,T] and y ∈ R
k+,

E

[
e2ωτ (Y )|Y0 = y

]
< ∞.

Lemma 5. For all τ ∈[0,T], y ∈ R
k+,

k∑
i=1

∫ ∞

0
E

[
eωτ (Y )|Y0=y+zei

]
−E

[
eωτ (Y )|Y0=y

]
dmi(z)<∞.

Note that by an application of Jensen’s inequality then
Lemma 4 entails thatE

[
eωτ (Y )|Y0 = y

]
is well defined.We

assume now that

h(t, y) = E

[
eωT (Y )−ωt(Y )|Yt = y

]
(16)

is a solution to the reduced HJB equation, equation (15)
and state an additional lemma:

Lemma 6. For all τ ∈ [0,T], y ∈ R
k+, ∇yh exists and is

continuous.

Note that the stochastic process, t �→ eωT (Y )−ωt(Y ),
features the Markov property and thus h(t, y) =
E
[
eωT−t(Y )|Y0 = y

]
i.e. the expected exponential of

ωT−t(Y ) conditional on the initial value of Y set at time
t = 0. Further, by Lemma 4 with τ = T − t, we have that
h(t, y) is well defined, and since h(T , ·) = 1, the terminal
condition of the associatedHJB equation is satisfied by the
proposed function.
By Lemma 4 and dominated convergence, see e.g.

(Folland 1999)[theorem 2.27], we are allowed to arbi-
trary shift order of limits and expected values regarding
the function eω·(Y ). By this property then h′

t(t, y) is well
defined since;

h′
t(t, y) = E

[
d
dt

eωT−t(Y ) | Y0 = y
]

= E

[
−ω′

t(Y )e
∫ T
t �(Yu)du | Yt = y

]
= −�(y)h(t, y), (17)

where�(y) and h(t, y) are finite by Lemmas 3 and 4. Note,
by equation (17), the interesting property that the ratio
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h′
t(t, y)/h(t, y) is independent of t, a property that will be

utilized below.
Next, for a fixed τ ∈[0,T] and by the aid of the aux-

iliary function gτ : Rk+ → R such that gτ (y) = h(T −
τ , y) = E

[
eωτ (Y )|Y0 = y

]
, we will see that h(t, y) solves the

reduced HJB equation. Furthermore, for ε > 0, we have

E[ gτ (Yε)] | Y0 = y] = E

[
E

[
eωτ (Y ) | Y0 = Yε

]
| Y0 = y

]
= E

[
E

[
e
∫ τ
0 �(Yu+ε )du | Fε

]
| F0

]
= E

[
E

[
e
∫ τ+ε
ε �(Yu)du | Fε

]
| F0

]
= E

[
e
∫ τ+ε
ε �(Yu)du | F0

]
= E

[
eωτ+ε (Y )−ωε(Y ) | Y0 = y

]
, (18)

where the first equality is due to the definition of g and
the second equality is due to the Markov property. By
equation (18) and the non-negativeness of �

E[ gτ (Yε)] | Y0 = y]≤ E

[
eω2T (Y ) | Y0 = y

]
,

sufficiently small ε. Further, by a variable substitution then
ω2T (Y )

L= 2ωT (Y ), where L= denotes equality in dis-
tribution and E[ gτ (Yε)] | Y0 = y] is well defined by
Lemma 4.
Now, by reversing the order of expectations and deriva-

tives for g, we can show that the function h solves
the reduced HJB equation (15). By an application of
equation (18), for ε > 0, we have that

E

[
g(Yε ) − g(y)

ε
| Y0 = y

]

= 1
ε
E

[
eωτ+ε (Y )−ωε(Y ) − eωτ (Y ) | Y0 = y

]
= E

[
eωτ+ε(Y ) 1

ε

(
e−ωε(Y ) − 1

)
| Y0 = y

]

+ 1
ε
E

[
eωτ+ε(Y ) − eωτ (Y ) | Y0 = y

]
= I1 + I2,

where

I1 = E

[
eωτ+ε(Y ) 1

ε

(
e−ωε(Y ) − 1

)
| Y0 = y

]

→ε E

[
eωτ (Y )

(−ω′
ε(Y ) |ε=0

) | Y0 = y
]

= h(T − τ , y)(−�(y))

and

I2 = 1
ε
E

[
eωτ+ε (Y ) − eωτ (Y ) | Y0 = y

]
= h(T − τ + ε, y) − h(T − τ , y)

ε

→ε −h′
t(T − τ , y).

Putting things together, by equation (17), I1 + I2 →ε 0
and thus
E[ d

dt gτ (Yt) | Y0 = y]= 0. Furthermore, by an application
of Itō’s formula for gτ (Yε) with ε > 0, then

0←ε E

[
gτ (Yε) − gτ (y)

ε
| Y0 = y

]

= E

⎡
⎣−1

ε

⎛
⎝∫ ε

0
(λ.Yu)T

∂gτ
∂y

(Yu)du −
k∑

i=1

∫ ε

0

∫ ∞

0+

× gτ (Yu + zei) − gτ (Yu)dmi(z)ds

⎞
⎠ | Y0 = y

⎤
⎦

→ε −(λ.y)T
∂gτ
∂y

(y) +
k∑

i=1

∫ ∞

0+
gτ (y + zei) − gτ (y)dmi(z)

= −(λ.y)T
∂h
∂y

(T − τ , y) +
k∑

i=1

∫ ∞

0+
h(T − τ , y + zei)

− h(T − τ , y)dmi(z),
(19)

where the last line is familiar from the reduced HJB
equation. Since λ, y ∈ R

k+, by an application of Lemma 5
we have that ∂h

∂y (t, y) is well defined. To sum up, by apply-
ing equations (17) and (19) with τ = T − t, we have that
h(t, y) ∈ C1,1T

(
[ 0,T]×R

k+
)
is a solution to the reduced

HJB equation (15). Furthermore,

v(t, x, σ) = −E

[
eωT−t(Y )−γ x | Y0 = y

]
, (20)

is a well defined solution to the original HJB equation if
Lemmas 3, 4, 5, and 6 holds.

6.1 Exposition of �(y), ω· and conjectured lemmas
In this section, the Lemmas 3, 4, 5, and 6 are proved, which
are the cornerstones in showing the well definedness of
the probabilistic representation of the solution to the HJB
equation. We start out with a short detour to the function
�(y) where the exposition follows the deduction done in
(Korn and Lindberg 2013). Next, Lemma 4 is proved with
the aid of a linear growth condition implicit in the def-
inition of �. Lemma 5 follows by pursuing the growth
condition combined with some properties of �.
We will now analyze �(y). Let f (π) := πT μ −

γ
2 πT σσT π , and recall that

�(y) = γ sup
π∈�

f (π) ,

where both μ and σ are functions of y and

� =
{
π = πp − πb : πT

t 1 = 0 and − c(j)− ≤ π
(j)
t ≤ c(j)+ ,

∀j = 1, ..., n and t ∈[ 0,T]
}
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where πp is a self financing portfolio and πb the corre-
sponding benchmark portfolio.
We solve this optimization problem by introducing the

Karuch-Kuhn-Tuckermultipliers, see e.g. (Nash and Sofer
1996), δ ∈ R for the equality constraint, and ν+, ν− ∈
(R+ ∪ {0})n for the upper and lower constraints of π ,
respectively. The optimal portfolio then satisfies

μ − γ σσT π − δ − ν+ − ν− = 0
πT 1 = 0

ν+.(π − c+) = 0 (21)
ν−.(π + c−) = 0 (22)

where . denotes elementwise multiplication. These
equations have the solution

π∗= 1
γ

(
σσT )−1

(
μ−ν∗+−ν∗−+

(
μ−ν∗+−ν∗−

)T(
σσT )−1 1

1T
(
σσT

)−11

)

(23)

δ∗ =
(
μ − ν∗+ − ν∗−

)T (
σσT )−1 1

1T
(
σσT

)−1 1
(24)

where ν∗+, ν∗− satisfies equations (21) and (22). If none of
the inequality constraints are sharp then we have that
ν+ = ν− = 0 and plugging π∗ in f (·), and noting that

(
μ − μT (σσT )−1 1

1T
(
σσT

)−1 1

)T (
σσT )−1 μT (σσT )−1 1

1T
(
σσT

)−1 1
1

= γ
μT (σσT )−1 1

1T
(
σσT

)−1 1
π∗T 1 = 0,

we find that

�(y) = 1
2

(
μ − μT (σσT )−1 1

1T
(
σσT

)−1 1

)T (
σσT )−1

μ. (25)

Note that �(y) is independent of the risk aversion param-
eter γ in this particular case. This does not hold in
general.
In order to progress, we need bounds on �(y). By defi-

nition of �, σσT is positive definite. Now we are ready to
prove Lemma 3.

Proof of Lemma 5. The foremost part, �(y) ≥ 0, follows
direct since the relative portfolio π = 0 is in �. The latter
part follows by the definition of f combined with ‖π‖∞ ≤
cπ and the positive definiteness of σσT so we have that
�(y) ≤ cπ ||μ||. Thus,

0 ≤ �(y) ≤ cπ ‖μ0‖∞ + cπ ‖μ1‖∞ 1T y. (26)

Further, recall that ω·(Y ) = ∫ ·
0 �(Yu)du. We are now

equipped to prove Lemma 4.

Proof of Lemma 6. Since � is non-negative, ω· is non-
negative and for τ ∈[ 0,T]

ωτ (Y )≤
∫ T

0
�(Yu)du≤Tcπ‖μ0‖∞+cπ ‖μ1‖∞

∫ T

0
1TYudu,

and hence also ω·(Y ) follows a linear growth condition.
Further by applying these inequalities,

E

[
e2ωτ (Y )|Y0 = y

]
≤ e2Tcπ‖μ0‖∞E

[
e2cπ ‖μ1‖∞

∑k
i=1

∫ T
0 Y i

udu|Y0 = y
]

= e2Tcπ‖μ0‖∞�k
i=1E

[
e2cπ ‖μ1‖∞

∫ T
0 Y i

udu|Y0 = y
]

where, by an application of Lemma 1, a sufficient
condition for E

[
e2ωτ (Y )|Y0 = y

]
to be finite is 2cπ

‖μ1‖∞ ≤ c1.

Now, we will deduct a local growth bound on � which
will be utilized to prove Lemma 5.
From the definition of f , for fixed y, � is a quadratic

program with linear constraints. It is well known from
optimization theory that this problem has a unique solu-
tion, see e.g. (Nash and Sofer 1996)[Theorem 14.4]. We
can now apply Danskin’s theorem, see e.g. (Bonnans and
Shapiro 2000)[Theorem4.13], to conclude that� is conti-
nously differentiable and ∇y� = γ f ′

y (π∗) ∈ R
n. Calcula-

tions give now that∇y� is bounded ∀(t, y) on [ 0,T]×R
k+.

We are now equipped to prove Lemma 5 and 6.

Proof of Lemma 7. For brevity here Yy
u denotes Yu with

Y0 = y. If the derivative of the integrand in equation (16)
is absolutely integrable then by dominated convergence
we may shift the order of derivative and expectations, see
(Folland 1999)[Theorem 2.27]. Further,

E

[∣∣∣∣ ∂

∂yj
eωT−t(Y )

∣∣∣∣ |Y0 = y
]

= E

[
eωT−t(Y )

∣∣∣∣∣ ∂

∂yj

∫ T−t

0
�
(
Yy
u
)
du

∣∣∣∣∣ |Y0 = y

]

≤ E

[
eωT−t(Y )

∫ T−t

0
| ∂

∂yj
�
(
Yy
u
) |du|Y0 = y

]

≤ (T − t) sup
u∈[0,T ]

∣∣∣∣ ∂

∂yj
�
(
Yy
u
)∣∣∣∣E [eωT−t (Y )|Y0 = y

]

which is finite by Lemma 4 and the finiteness of ∇y�.
Hence

∂

∂yj
h(t, y) = E

[
∂

∂yj
eωT−t(Y )|Y0 = y

]
, j = 1, ..., k.
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Proof of Lemma 8. The first part follows from 5 by
equation (19). Note that | ∂

∂yj e
ωT−t (Yy)| is continuous in

t and y so by (Folland 1999) [Theorem 2.27(a)] then
∂

∂yj h(t, y) is continous in (t, y) ∈[ 0,T]×R
k+.

Thus, the lemmas 3, 4, 5 and 6 are proved, and
by equation (17), h′

y is continuous. Hence, h(t, y) ∈
C1,1T

(
[ 0,T]×R

k+
)
, as given in equation (16), is a well

defined solution to the reduced HJB equation.

7 Verification of the probabilistic representation
of the solution

In Section 6,

v(t, x, y) = −e−γ xh (t, y) = −e−γ x
E

[
eωT−t (Y ) | Y0 = y

]
is conjectured to be a solution to the HJB equation.
We have also that v is a solution to the actual opti-
mization problem if all conditions in the Verification
Theorem, theorem 1 hold. The three conditions are
the following: suitable differentiability i.e. v(t, x, y) ∈
C1,2,1T ([ 0,T]×(0,∞)k+1); boundedness of the quadratic
variation of the Itō integrals i.e. equation (12); bounded-
ness of the Levy measures, i.e. equation (13).
First, the diffentiablility part is trivial since by Section 6,

h(t, y) ∈ C1,1
(
[ 0,T]×R

k+
)
. Further, v(t, x, y) is infinitely

differentiable in x and the desired result follows. Secondly,

E
[
vx (t,Xt,Yt−)2 πT σtσ

T
t π

] ≤ E
[
vx(t,Xt ,Yt−)2q

] 1
q

× E

[(
πT σtσ

T
t π

)p] 1
p

due to Hölder’s inequality with p, q conjugate exponents.
The latter term is finite for every p ∈[ 1,∞) by Lemma 2
since ‖π‖∞ ≤ cπ . Further, since vx(t, x, y) = −γ v(t, x, y),
another application of Hölder’s inequality yields that
equation (12) is finite if
∫ T

0
E
[
v(u,Xu,Yu)2q

]
du=

∫ T

0
E

[
e2q(ωT−u(Y )−γXu)

]
du<∞.

We fix some ε > 0 and let q = 1 + ε. Hölder’s inequality
gives

∫ T

0
E

[
e2(1+ε)(ωT−u(Y )−γXu)

]
du ≤

∫ T

0
E

[
e−2p̂(1+ε)γXu

] 1
p̂

×E

[
e2q̂(1+ε)ωT−t (Y )

] 1
q̂du,

(27)

where p̂, q̂ are new conjugate exponents. Further, choose
p̂ = 2/(1+ε). We can now reason completely analogously

to the deduction of Proposition 1 to see that the first part
of the integrand is finite if

c2 ≥ (4cπγ ∨ 1)2
(
2||μ1||∞ + 1

)
.

In complete analogue to the deduction of Lemma 4, we
have, since q̂ = 2/ (1 − ε), that the second part of the
integrand is finite if 8 1+ε

1−ε
cπ
∥∥μ1∥∥∞ ≤ c1. This gives the

desired result.
Finally, by the definition of v(t, x, y) and Hölder’s

inequality with p = 4, then

E [|v(u,Xu,Yu− + zei) − v(u,Xu,Yu−)|]
= E

[∣∣e−γXu (h(u,Yu− + zei) − h(u,Yu−))
∣∣]

≤ E
[
e−4γXu

] 1
4
E

[
|h(u,Yu− + zei) − h(u,Yu−)| 43

] 3
4 ,

for all i = 1, . . . , k. The first term is identical to the first
integrand term in equation (27), and hence finite. We see
that the integral with respect to Lévy measure of the sec-
ond term is finite by arguing completely analogously to the
deduction of Lemma 4, but with cL ≥ 4

3Tc�′ . The desired
result follows.
To conclude, the proposed function v(t, x, y) satisfies all

conditions of Theorem 1, and thus the optimal value func-
tion v(t, x, y) is the solution to our optimization problem.
Furthermore π∗, given by equation (24), is the optimal
portfolio strategy.

Remark 1. Note that the portfolio optimization part
of Hh, supπ∈�

{
πTμ − γ

2 πTσσTπ
}
completely replicates

the problem of maximizing the investors expected wealth
without exceeding a predetermined risk level in a one-
period set up. Thus any optimal solution of our problem
will correspond to consecutive solutions of the classical
Markowitz mean-variance problem in continuum.

Remark 2. We can choose the bounds on our portfolio
weights π such that the optimal strategy does not cause any
of the investor’s total portfolio holdings, i.e. the portfolio
weights π plus the benchmark weights, to become negative.
This ensures that the investor’s wealth remains positive.
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