
DEGREE PROJECT, IN , SECOND LEVELCOMPUTER SCIENCE

STOCKHOLM, SWEDEN 2015

Learning Playlist Representations for
Automatic Playlist Generation

ERIK AALTO

KTH ROYAL INSTITUTE OF TECHNOLOGY

SCHOOL OF COMPUTER SCIENCE AND COMMUNICATION (CSC)

Learning Playlist Representations for Automatic
Playlist Generation

Lärande av spellisterepresentationer för automatisk
spellistegenerering

ERIK AALTO
EAALTO@KTH.SE

Master’s Thesis at Spotify and CSC
KTH Supervisor: Carl Henrik Ek

Company Supervisor: Boxun Zhang
KTH Examiner: Danica Kragic

Abstract
Spotify is currently the worlds leading music streaming ser-
vice. As the leader in music streaming the task of provid-
ing listeners with music recommendations is vital for Spo-
tify. Listening to playlists is a popular way of consuming
music, but traditional recommender systems tend to fo-
cus on suggesting songs, albums or artists rather than pro-
viding consumers with playlists generated for their needs.
This thesis presents a scalable and generalizeable approach
to music recommendation that performs song selection for
the problem of playlist generation. The approach selects
tracks related to a playlist theme by finding the charac-
terizing variance for a seed playlist and projects candidate
songs into the corresponding subspace. Quantitative re-
sults shows that the model outperforms a baseline which
is taking the full variance into account. By qualitative re-
sults the model is also shown to outperform professionally
curated playlists in some cases.

Referat

Spotify är världens ledande service för musikstreaming. Som
ledare inom musikstreaming är musikrekommendation ett
centralt område för Spotify. Att lyssna på spellistor är ett
populärt sätt att konsumera musik, men traditionella sy-
stem för musikrekommendation fokuserar snarare på re-
kommendation av låtar, album eller artister än att till-
handahålla spellistor genererade efter konsumenters behov.
Denna avhandling presenterar en skalbar och generaliser-
bar metod för musikrekommendation för att välja lämpliga
låtar för spellistegenerering. Metoden väljer lämpliga låtar
genom att hitta den varians som karakteriserar den spellis-
ta man vill använda som bas för generering och projicerar
sedan kanididatlåtar ner i motsvarande delrymd. Kvanti-
tativa resultat visar att modellen presterar bättre än en
referensmetod som använder den fulla variansen. Kvalitati-
va resultat visar att modellen i vissa fall presterar bättre
än professionellt kurerade spellistor.

Acknowledgements
Writing this thesis I realize that I am a lucky guy. I have
had the opportunity to work on a very interesting project,
with engaged supervisors who have been there for me from
start to end. Therefore I would like to start off with thank-
ing my supervisors Carl Henrik Ek and Boxun Zhang. Thank
you for having created the opportunity for me to write this
thesis, for believing in me and for making this thesis a fun
and learning experience. I have had a great time working
with you. I further owe a great deal of gratitude to my fel-
low Spotify thesis workers Anders Pettersson and Matteo
Poletti, thank you for all the good times and the interesting
discussions. I want to thank Ahmad Qamar from Spotify
New York, thank you so much for walking me through all
the cool things that are happening with Machine Learning
in NYC. I also want to thank the rest of Spotify for making
this thesis a reality and a special thanks goes to the Analyt-
ics team, thank you for all the support. Last, but definitely
not least, I would like to thank my partner, Maria, for be-
ing supportive, understanding and always standing by my
side, you are simply the best.

Contents

1 Introduction 1
1.1 Project Introduction . 1
1.2 Project Aim . 2

2 Background 5
2.1 Collaborative Filtering . 5
2.2 Content Based Approaches . 8
2.3 Hybrid Systems . 9
2.4 Playlist Generation . 10

2.4.1 Probabilistic Graphical Models for Playlist Generation 10
2.4.2 Gaussian Processes for Playlist Generation 12

3 Representation Learning 15
3.1 Representation Learning . 15
3.2 Principal Component Analysis . 16

4 Representing Playlists 19
4.1 Assumptions . 19
4.2 Data . 20
4.3 Exploratory Data Analysis . 20
4.4 Learning Playlist Characteristics . 21

4.4.1 Handling zero variance terms 23
4.5 Selecting candidate songs for a playlist 23

4.5.1 Subspace method . 24
4.6 Playlist Comparison . 26
4.7 Approximate Nearest Neighbours . 30

5 Results 35
5.1 Precision . 35
5.2 Comparing Model to Baseline . 37
5.3 Confusions . 42
5.4 Qualitative Evaluations . 46

6 Discussion and Future Work 51

6.1 Discussion . 51
6.1.1 Complexity Analysis . 52

6.2 Future Work . 54

Bibliography 55

Chapter 1

Introduction

This chapter intends to provide the reader with an overview of the fields of music
consumption and recommendation as well as the outline and limitations of this
thesis project.

1.1 Project Introduction

Spotify is a music streaming service that provides music content from a very large
database. As of the writing of this thesis the Spotify song library contained over 30
million songs with over twenty thousand songs added on a daily basis[34]. Spotify
generates revenue by charging a fee from subscribing users, this service is called
Spotify Premium. A free version of music streaming is also available where revenue
is obtained by presenting users with ads. Record companies, who own the music
streamed from Spotify, are paid according to the popularity of the tracks for which
they hold digital rights. Spotify was launched in October 2008 and today over
twenty percent of the user pool subscribe to the premium service with over 15
million paying subscribers and over 60 million users in total[34].

The consumption of music in the Spotify client can be done by listening to
individual songs, top charts, albums, Spotify Radio or playlists created by either
users themselves or professional playlist curators. The use of playlists is a popular
means of consuming music and Spotify currently holds over 1.5 billion playlists,
a number that is larger than the number of songs provided by Spotify by several
magnitudes[34]. Playlists are particularly interesting in the context of music con-
sumption as well curated playlists intend to create a specific atmosphere that can
be enjoyed without interaction from the user. Albums can also be seen as playlists
and when the iTunes store was launched controversies were caused as users were
allowed to buy individual songs and thus loosing the particular experience album
creators seeked to create. The importance of playlists can still be seen today as
some songs only can be bought as part of an album on iTunes, without mentioning
the numerous number of DJs who are striving for the creation of the perfect music
experience for a specific moment.

1

CHAPTER 1. INTRODUCTION

Given that a user has a preference for a specific playlist, an interesting feature
would be to generate a playlist similar to the one a user has a preference for, but
with different songs. This type of feature is interesting as it allows users to get
music recommendations fitted to their needs. Such a feature could give Spotify a
competitive edge in the hardening competition for music streaming customers and
provide a complement to the manually curated playlists provided by Spotify.

The process of automatically suggesting music adapted to a specific user is a
field of its own and is called recommendation. More specifically the software provid-
ing such recommendations are called recommender systems. Recommender systems
provide an automated way to filter and rank information of interest for a certain
user. Recommender systems may take time into account, as a good recommenda-
tion might differ whether the time is 7 am or 7 pm. A famous example of recom-
mender systems is the product recommendation once initiated at Amazon, "Users
who bought this product also bought". Another example of recommender systems
are the movie recommendations provided by Netflix. Movie recommendations are
interesting and non-trivial as a specific user at a certain time is likely to not be
interested in the majority of movies provided by Netflix. The importance of good
recommendations can be seen from the creation of the Netflix Prize, a challenge
created by Netflix to improve the movie recommendations provided by them. The
Netflix Prize was a contest intending to improve the prediction of user ratings for
unseen movies with a 1 million dollar premium for the winning team. A further
example of recommendation could be restaurant recommendation, where time and
context are important factors. Recommending a simple hamburger restaurant is not
likely to be of interest at date night, but it might be the perfect recommendation
while driving the kids home after Saturday morning soccer game. Recommender
systems also exist within the music context, but typically consists of recommend-
ing individuals songs, albums or artists. Generating playlists that are suited for a
specific theme, context time or task is something that today is missing within the
Spotify client, despite listening to playlists is a popular way of consuming music.

1.2 Project Aim

The aim of this thesis is to provide a scalable method for selecting candidate songs,
in the context of playlist generation, given a predefined playlist to mimic. This is
an extension to the current work within music recommendation at Spotify.

Focus will be put on the modeling part of the playlist generation problem. Fo-
cusing on the model means that features will be treated in an abstract way, just
like abstraction layers within software engineering. Creating features, that gives a
good description of data, is a difficult problem in itself. As stated by Andrew Ng
Coming up with features is difficult, time-consuming, requires expert knowledge.[23].
With better features available, creating a model for the problem at hand becomes
easier[9]. But as the creation of better features is shown to be very demanding it
will stay outside the endeavor of this thesis.

2

1.2. PROJECT AIM

The problem of ordering songs in playlist generation is also outside the scope of
this thesis.

3

Chapter 2

Background

Previous work within the recommender system domain mainly focuses on two ap-
proaches. These are collaborative filtering and content based approaches. A hybrid
of these two approaches can also be used. Both collaborative filtering and content
based approaches typically try to infer a user ranking for a specific item[21]. An
item would in the context of music recommendation be a song, artist or album.
This section will present these traditional approaches to recommendation. As these
approaches do not focus on the playlist generation problem specifically work directly
related to solve this task is also presented.

2.1 Collaborative Filtering

The goal of recommender systems based on collaborative filtering is to infer a user’s
ranking of previously unrated items and present the user with items corresponding
to high inferred ratings. In a formalized way collaborative filtering can be said to
present a user u ∈ U with products p ∈ P that the user has not yet rated such that
the ratings Rup for those products are maximized[7].

Collaborative filtering focuses on user’s past behaviour. From the past behaviour
of a specific user and past behaviour of similar users the ranking for the specific
user for a certain item is inferred[32][33]. In other words, a user gets recommen-
dations of items that other users with similar taste like[1]. Finding similar users
mean that some type of similarity metric must be used. Often items and users are
mapped into vector spaces and distance metrics are used as similarity metrics. A
distance metric could be the euclidean distance, but also the cosine value of the
angle between vectors, also known as the cosine similarity or cosine distance, is
used for collaborative filtering[32]. Collaborative filtering has the advantage that it
typically relies on past user behaviour without the need of explicit user profiles[21].
This means that only the past behaviour of a user is needed to use collaborative
filtering and the creation of specific profiles that model a specific userÂ´s taste is
not needed. As collaborative filtering, in the general case, only looks at user data
it is also domain free, i.e. the model is not dependent on whether users have rated

5

CHAPTER 2. BACKGROUND

Figure 2.1. Image illustrating the problem collaborative filtering intends to solve.
The question marks are items that the specific user have not rated. Collaborative
filtering intends to infer these ratings.

books, movies, music or a combination thereof[15].
Collaborative filtering can be used with explicit user feedback. One example of

explicit user feedback are the movie ratings used by Netflix or the thumbs up or
thumbs down method used by the radio streaming feature from Spotify. Collabora-
tive filtering can also be used with implicit user feedback[15]. In the music context
implicit feedback could be whether a song has been played or skipped and in the
movie context implicit feedback could be if a movie is watched for more than fifteen
minutes or not.

Collaborative filtering methods can be divided into two categories, memory-
based and model-based. Memory-based collaborative filtering algorithms can be
seen as user based as they try to find recommendations based on what other users
like. The model-based algorithms can be seen as item based, as they often seek to
find similar items to the ones for which a user has a liking[32].

Memory-based collaborative filtering algorithms operate on the entire user-item
matrix where the full user history data set is used[7]. The user-item matrix could for
example consist of one user per row and one item per column, see figure 2.1. This
data set is used to predict a preference for a previously unseen item for a specific
user. To perform predictions first the rows most similar to the row corresponding to
the specific user are found. The ratings of the users corresponding to these rows for
the unseen item are then used to predict the rating for the specific user. As similar
user’s ratings are used to predict a specific user’s rating memory-based models can
also be thought of as neighbourhood models as similar users are treated as the near-
est neighbouring users in user space[15]. There are various ways of implementing a
memory-based model, but a naive way could be to find similar rows by using the
cosine similarity and then simply averaging the rating of the top-n similar users for
a specific item. This naive approach has a O(MN2) complexity where M is the

6

2.1. COLLABORATIVE FILTERING

number of users and N the number of items. One downside of this approach is that
it does not scale very well when the user-item matrix is large. Another downside is
that the user-item matrix is likely to be very sparse. Imagine a online retailer that
has millions of products, one percent of a million is ten thousand and a typical user
is likely to have rated less than ten thousand products. Using a nearest neighbour
approach in this sparse setting can lead to poor performance[32][33]. The reason
for this poor performance is that in a high-dimensional space the distance to the
closest point, for any given point, approaches the distance of the furthest point as
the dimensionality increases for many distributions[5]. This would mean that for a
given user the inferred ratings for previously unseen items would have equal weights
from users similar and different to the given user.

Model-based collaborative filtering means that historical data of users is used
to create a probabilistic model for ratings. At run time the model, rather than
the entire user history data set, is used to make predictions of items for users[7].
Model-based approaches are likely to scale better than memory-based ones[32]. One
approach to model-based collaborative filtering is to use latent factors. This means
that each user would be associated with a user-factors vector xu ∈ Rf and each
item with an item-factors vector yi ∈ Rf , where the number of latent factors f is
less than the number of items or users. The predicted value of a user for an item
would then be the inner product between the corresponding user and item vectors,
i.e. r̂ui = xT

u yi. To avoid overfitting the model can be regularized, which means
penalizing complex models. A cost function as follows is then obtained:

minx∗,y∗

∑
(rui − xT

u yi)2 + λ(||xu||2 + ||yi||2) (2.1)

In this equation rui is the explicit user feedback, for example a rating on the
scale one to five. The latter part of the equation is the added penalization, which
can be seen to penalize large values for x and y.

The problem with equation 2.1 is that it assumes knowledge of explicit feedback.
In the context of music recommendation the case is rather that implicit feedback is
available than explicit. It is for example much easier to collect information about
which songs a user has listened to than to collect ratings. Even if ratings are
collected, then the number of songs a user has streamed is likely to be much larger
than the number of rated songs.. What can be done in this case is to use binary
labels expressing whether a user has preference for an item or not. Having preference
for an item could mean that the user has streamed that song and not skipped it for
example. Therefore the binary variable pui is used to describe user preference.

There is however an uncertainty to the preference a user has. Has a user re-
ally preference for a song that is selected on Spotify Radio while the user was in
another room? What can be done is to create confidence variables, variables that
gives a describes how certain we are that a user has a preference for an item. Con-
fidence variables could for example depend on the number of times a song has been
streamed. What can be done here is to use another variable

cui = 1 + αrui

7

CHAPTER 2. BACKGROUND

where rui is the number of times user u has streamed item i. The α term is to
weight the number of times a song has been streamed, as we do not necessarily
want to increase the confidence linearly with the number of times a song has been
played.

The resulting cost function then becomes:

minx∗,y∗

∑
cui(pui − xT

u yi)2 + λ(||xu||2 + ||yi||2) (2.2)

Problems still remain as users and items can contain bias. The remedy is to
enter bias terms, the resulting cost function is then:

minx∗,y∗

∑
cui(pui − xT

u yi − bu − bi)2 + λ(||xu||2 + ||yi||2) (2.3)

Where bu is the user bias term and bi is the item bias term.
The resulting problem is a non-convex optimization problem, but by fixing either

the user or item vectors the problem becomes convex and can be solved by the use of
alternating least squares, where the cost function is guaranteed to get a lower value
with each iteration[15]. This approach is similar to the collaborative filtering method
used in production for recommending songs, artists and albums at Spotify[16].

The downside with collaborative filtering is that it suffers from something called
the cold start problem or first rater problem. If a user yet have not rated any items
collaborative filtering will fail to give that user good recommendations. The same
things applies to items that no one has yet rated or songs that no one has played
yet, if neither explicit or implicit feedback for items has been given then they cannot
be recommended[13][21]. In the context of Spotify where twenty thousand songs
are added each day this will pose a problem.

2.2 Content Based Approaches
In contrast to collaborative filtering approaches content based recommendation sug-
gest items that are similar to items a user has had preference for in the past. This
can be done by either comparing items to items or to create a user profile based on
a users preferred items[1]. Content based recommendation requires a representation
of each item and or user, typically by mapping items and users into vector spaces.
An rudimentary example of user profiles created from preferred items would be to
represent a user by an initially empty vector and each time the user presents prefer-
ence for an item the item vector is added to the user vector which is then normalized.
Content based approaches look at discrete features of items and tries to infer a sim-
ilarity between two items given their similarity of features. Similar to the approach
of finding similar users in memory-based collaborative filtering distance metrics can
be used as similarity measures in content based recommendation. A parallel can
be drawn between content based recommendation and information retrieval. In the
context of content based recommendation the utility function that is maximized is
the similarity between items, which typically is the inverse of the items distance[1].

8

2.3. HYBRID SYSTEMS

One of the main features of content based recommenders are that they are able to
provide recommendations even when little user history data is available, something
that is one of the major drawbacks of collaborative filtering[11].

Different approaches can be used to create the features used in content based rec-
ommendation in the music domain. One approach is to simply have human experts
annotating tracks with information[25][35]. Other approaches could be to extract
properties from the audio signal. One such example is the use of MFCCs, Mel-
Frequency Cepstral Coefficients, which creates features from short time intervals of
each track[19] and another is to use Deep Belief Networks[12].

An interesting property of content based recommendation is that it allows for
relevance feedback, for example with use of the Rocchio algorithm. The Rocchio
algorithm allows for a user to select a subset of recommended items as relevant and
move the recommendations displayed towards the direction of those items in the
vector space items are represented in[26].

Downsides with content based recommendation are that a user can never be rec-
ommended something that is not similar to what the user has expressed preferences
for in the past. Further, content based recommendation is limited to the features of
items. If the features used to describe items are poor a content based recommender
system is likely to perform poorly. Lastly, content based recommenders do not
take sequential information into account. Thus a well written news article is seen
identical to the same article written backwards as they contain exactly the same
words[1].

2.3 Hybrid Systems
Hybrid systems are recommenders that combine both the techniques of collabora-
tive filering and content based filtering, with the purpose of thus obtaining better
recommendations. The underlying assumption is that a combination of content
based recommenders and recommenders using collaborative filtering can redeem
the weaknesses these methods face on their own[11].

Hybrid recommenders can be made by combining the results of collaborative
filering methods with content based methods, by incorporating properties of one
method into the other or by creating a model that incorporates properties of both
types of systems[1].

A simple example of a hybrid system could be to create an ensemble model that
weight scores from content based and collaborative filtering based recommenders.
Given an item i ∈ I that has an inferred rating rcollaborativefiltering from a collabora-
tive filtering recommender and an inferred rating rcontentbased from a content based
recommender a way of combining thesis approaches could be to simple set the rating
of the hybrid model to

rhybrid = α1rcollaborativefiltering + α2rcontentbased

Here α1 and α2 are the weights to each of the individual recommenders.

9

CHAPTER 2. BACKGROUND

One way of combining collaborative filtering and content based recommendation
into one single method is to first create user ratings for all items that are completely
lacking ratings by a content based method. For example, for all users that rated
a product similar to the unrated item a content inferred rating can be created by
taking a user’s rating of the item closest to the unrated item and multiplying it with
one minus the cosine similarity of the items runrated = (1 − (cos(irated, iunrated)) ∗
rrated). This matrix can then be used for traditional collaborative filtering and the
cold start problem for unrated products will no longer be an issue. Another way of
tackling the same problem would be to infer ratings of all unrated items for all users
in a similar manner and then use collaborative filtering to weight the vote of each
previously unrated item for a specific user. That is an approach that have been used
to find improvement in recommendation over a pure content based approach[21].

2.4 Playlist Generation

The approaches of recommendation presented gave a general overview to the field
of recommender systems. However, these approaches where either based on item to
item recommendation or recommendations of the type item to user. The problem
this thesis intends to solve regards music or more specifically playlists, why previous
work related to playlist generation is presented here.

2.4.1 Probabilistic Graphical Models for Playlist Generation

Earlier attempts of playlist generation has been made by Microsoft Research[28].
Ragno, Burges and Herley has made a model for playlist generation that employs
probabilistic graphical models. Probabilistic graphical models can be said to be
graph-based models that give a compact way of describing the structure in a dis-
tribution. A probabilistic graphical model describes the conditional dependence
between random variables in the form of a graph[17]. In a music setting this could
mean that given that a song A is spotted in a playlist we can get the probabil-
ity for song B being in the same playlist. The probabilistic graphical model used
for playlist generation by Ragno, Burges and Herley can take any type of ordered
playlist material, such as curated playlists or albums, as training data, and use this
input data to generate new playlists as output data. The initial step in the model
is to create an undirected graph.

In this graph each song will be represented by a node. Each edge in the graph
corresponds to a first to nth ordered Markov property. What this means is that
for a first order Markov property edges between songs adjacent to each other in a
playlist or album will be present in the graph. For a second order Markov property
songs that are one or two steps before or behind any given songs will have edges
between the corresponding nodes. The weights corresponding to the edges in the
graph depends on how many times the songs fulfills the nth order Markov property
in the input data. For example, if a song A is adjacent to a song B twenty times

10

2.4. PLAYLIST GENERATION

Figure 2.2. Illustration of an undirected graph. Here transitions between nodes A
and B can be made, transitions can also be made between nodes A and C. No direct
transitions between nodes B and C can be made.

Figure 2.3. Illustration of a directed graph. Each edge corresponds to a one way
transition. In this graph transitions can be made between nodes A and B both ways,
transitions can be made one way from node A to node C but not from C to A. From
node C transitions to node B can be made, but no transitions from node B to node
A are possible.

in the input data playlists the weights on the edge between node A and B will be
twenty.

Once the undirected graph is created for all songs in the music library a directed
graph is created from the undirected graph.

When the undirected graph is converted into a directed graph the weights of
edges, the transition probabilities, are normalized by the sum of outgoing weights
from each node. That is if the edge between nodes A and B in the graph has a
value of five and node B has outgoing edges which sum to ten and node A has
outgoing edges that sum to fiften then the value of the directed edge from A to
be will be edgeAB = 5/10 and the edge between B and A will have a value of
edgeBA = 5/15. Once the directed graph is created a playlist can be generated
by selecting an initial seed song, choosing a node as starting point, and simply
performing a random walk in the graph. This model assumes that the connectivity
between songs is independent of the order in input data. From one perspective
this is a bad assumption as DJs, playlist curators and artists spend a large amount
of time perfecting the order of songs, information that is lost in this model. On
the other hand, consider the following example: song A is followed by song B five
thousand times in input data, but song B is never followed by song A in. Then songs
B and C both follow each other five times each. First creating an undirected graph

11

CHAPTER 2. BACKGROUND

and then a directed graph would not rank the connectivity between B and C as
being higher, which is a reasonable behaviour. Lastly, a problem that might occur
is something called playlist drifting. Playlist drifting would mean that the generated
playlist would consists of songs in the following order: A, B, C, D. Where each song
is realted to the song before, but song D might be completely unrelated to song A.
The solution to this problem would be to use higher order Markov properties, that
is adding taking songs further away from each song into considerationwhen creating
the graphical model[28].

Problems with the directed graphical model approach taken to playlist genera-
tion by Rango, Burges and Herley is that if you generate a playlist from a random
walk you cannot chose the playlist theme for the generated playlist on before hand.
Another problem with the probabilistic graphical model approach to playlist gen-
eration is that the graph created during training phase only works for songs that
are in the training data set. This model is not generalizable in the sense that as
new songs are added updates are needed for the graph in which the random walk is
performed to create a playlist. This is not an ideal situation for Spotify as a high
quantity of songs are added to the Spotify music library every day[34].

2.4.2 Gaussian Processes for Playlist Generation

An approach for playlist generation that is generalizable to data outside the data
used to train the model is to employ the use of gaussian processes[27]. A gaussian
process is characterized by its mean and covariance functions[20]. A gaussian pro-
cess is a model that associates each data point with a stochastic normally distributed
variable and provides a joint gaussian distribution over the data[29]. Gaussian pro-
cesses are useful when the number of dimensions is large compared to the number
of data points. The setting of few data point but many dimensions is relevant in the
playlist generation case. A playlist can be about ten, twenty or thirty songs long,
while the number of dimensions for each song can be on the magnitude of music
genres. As there are hundreds of music genres, the number of features for each song
in a playlist might then very well exceed the number of songs in that playlist. A
gaussian process does not provide a direct function that reflects the data but rather
a distribution over functions[30]. To employ a gaussian process a prior assumption
of distribution is needed and as data is seen the prior is updated according to data.
This new distribution that incorporates data is called a posterior distribution. The
posterior can then be used similarly as the prior for the next data point, then called
the predictive posterior.

In the work taken by Platt et al, also at Microsoft Research the authors try
to learn a gaussian process prior from training data[27]. This prior is then used
together with a set of songs, for which a user has expressed preference, to gener-
ate a playlist given an initial seed song. In the training phase a blend of linear
kernels is used to learn the relationship of meta data features among songs that
come in sequence. A blend of linear kernels is the same things as weighting sev-
eral linear predictions where weights are learned from data. The coefficients for

12

2.4. PLAYLIST GENERATION

each linear kernel is learned by finding the coefficient that minimizes the difference
between the empirical covariance between songs and the value given by the lin-
ear kernel. Empirical covariance is in this case as simple as whether the training
data songs belong to the same album or not. Once the training phase is done the
playlist generation phase consists of predicting the user preference for each song
in a set of candidate songs. This is equal to calculating the posterior probability
p(preferenceForNewSong|knownPreferences). This probability is calculated by
weighing the blend of linear kernels between a seed song and each candidate song
with a factor. This factor is the sum of similarity between the initial seed song and
each user preference song weighted by how central each user preference song is in
the preference space. Playlist generation is then done by simply choosing the songs
with highest probability for user preference[27].

This model generalizes to new songs, but the user preference space is seen as
one single space. This is a simplification of reality where a user preference space
is probably divided into several categories, for example a workout preference space
and a chill-out preference space, something the model provided does not take into
account, which can be claimed as a weakness in terms of generating a playlist
adapted for a specific theme or context. Neither does the model take the ordering
of songs into account, but the authors argue that the ordering obtained from listing
the songs by their predicted user preference value creates a good order of songs[27].

13

Chapter 3

Representation Learning

A popular way of music consumption is listening to playlists. Traditional recom-
mender systems are not focused on creating playlists suited for a user, theme or
moment. The goal of traditional music recommendation is rather recommendation
of items given a certain user. What is then a reasonable approach to extend rec-
ommendation into the playlist context? If one starts with looking at playlists it is
evident that playlists consist of songs as a playlist is a flow of songs. A random
sample of songs does not make as good a flow of music as a carefully mixed playlist.
One can therefore conclude that there is a relation between the tracks in playlists.
The tracks in a playlist, even though being correlated, vary somehow. A good way
of approaching the playlist generation problem then seems to be to learn how a
playlists vary. Methods to learn the underlying factors of how a good playlist vary
all involve learning a representation. Once a representation of a playlist is learned
the representation can be used for playlist generation. This chapter will give an in-
troduction to the field called representation learning and relate it to the generation
of playlists.

3.1 Representation Learning

Representation learning is about learning the factors that represent something. The
idea behind representation learning is that the data used for a task often can be
represented in a simpler way that is more suited for the task at hand[3]. This idea is
nothing novel, even as far back as during the time of Greek rationalists and atomists
the idea that observed data was dependent upon something latent was present[22].
Representation learning assumes that there is an intrinsic representation of data
that is less complex than the observed representation. One example could be an
image represented by pixels. If the image is of size 320 x 320 pixels it can be
thought reasonable to assume that the image has an equivalent amount of degrees
of freedom as pixels. However in an image of a man wearing a shirt every pixel
is not independent as most shirt pixels are adjacent to other shirt pixels and thus
not independent for example. As all number of pixels in an image do not vary

15

CHAPTER 3. REPRESENTATION LEARNING

independently of each other learning a representation of images also means that
the number of factors learned are less than the number of pixels for each image in
the data set. A lower number of learned factors than observed ones implies that a
dimensionality reduction is made while learning a representation.

Another explanation of learning representations is the one of Factor Analysis,
which intends to describe how a number of observed variables vary together. One
example could be points on a two dimensional plane in a three dimensional space.
The points on the plane covary, but only in two dimensions. Therefore a dimension-
ality reduction can be made to describe the points in this plane, as they need not
be described by three dimensions. However we cannot be sure that the points only
vary in lets say the x or y direction. The directions in which the points vary must
be learned and does not have to be well represented in the original dimensions of the
vector space. These two learned dimensions of the plane then becomes the latent
factors of the representation. Factor Analysis can be used in an exploratory way
as a means of learning the underlying factors of something we want to represent,
but it can also be used to synthetically generate data once the latent factors of the
original data are learned.

3.2 Principal Component Analysis
Learning a representation is about extracting latent factors from connected data.
Connected data means that the data points in the data set examined are related to
other data points in the same set. As there is covariance in the data latent factors
can be learned. One way of deriving latent factors due to linear relationships in the
data is Principal Component Analysis, PCA. What PCA can be said to do is to
connect the covariance in a data set to a set of principal components that explain
the variance in the data. Another explanation to PCA is that it models the variance
in the data into principal components that are ranked depending on how much of
the variance in the data they explain. To provide a better understanding of PCA
lets look at its derivation:

Let C be a matrix of dimensions D x D where D is the number of features repre-
senting each data point.

C ∈ RDxD

Let X be the data matrix representing each data point as a row in the matrix.

X ∈ RNxD

16

3.2. PRINCIPAL COMPONENT ANALYSIS

We define C as the covariance matrix of the data.

C = (X − µ)T (X − µ)

We can also describe the covariance matrix by its spectral decomposition, i.e. C
is described as a product of the matrix’s eigenvectors, times the eigenvalues, times
the transpose of the eigenvectors.

C = V λV T =
D∑

i=1
λiviv

T
i

Further, let A be an approximation of the covariance in matrix C.

A =
D∑

i=1
γiviv

T
i

The variance covered by PCA can then be approximated up to a certain threshold
in the following way

argminA||C −A||F = ||
D∑

i=1
λiviv

T
i −

D∑
i=1

γiviv
T
i ||

F

Here C and A are replaced by the expressions of their spectral decompositions.

= ||
D∑

i=1
(λi − γi)viv

T
i ||

F

= ||
d∑

i=1
(λi − γi)viv

T
i +

D∑
i=d

λiviv
T
i ||

F

And it can be seen that variance is approximated up to a threshold.

Here X is our data and C is the covariance matrix of the data observed. A
is an approximation of the covariance C and as can be seen from the derivation

17

CHAPTER 3. REPRESENTATION LEARNING

Figure 3.1. Graphical illustration of PCA

above. A approximates C up to a certain threshold of variance, if the full variance
is covered then A will equal C, but if C only goes up to a certain threshold of
variance a dimensionality reduction is made. In the general setting this means
that a high threshold of variance, for example 90 percent, can be explained by
d < D dimensions. These dimensions that explain the major part of variance in
the data can also be seen as the latent factors of the data. These factors are
linear combinations of the original dimensions of data and are orthogonal to each
other. Doing Principal Component Analysis of a data set is the same as doing an
eigendecomposition of the covariance matrix of the data and selecting eigenvectors
corresponding to eigenvalues up to a certain threshold. As PCA takes a covariance
matrix as input and gives latent factors as output PCA can be said to connect the
covariance of the data to a representation of the data.

As can be seen in the figure above, the first principal component lays in the di-
rection that describes the largest part of variance in data. The principal components
are orthogonal to each other.

18

Chapter 4

Representing Playlists

Without assumptions you cannot do machine learning

Ryan Adams

This thesis intends to make an initial step towards fully automated playlist
generation in the form of candidate song selection. The problem this thesis is
trying to solve is to select a number of songs given a predefined playlist so that the
selected songs constitute a playlist similar to the predefined one. This chapter will
bring the reader through the process of investigating playlist data to the creation of
representations with the help of that data. The reader will be presented with some
of the difficulties along the process and how playlist represenations are related to
the problem of candidate track selection. Lastly theoretical shortcomings of the way
a representation is related to the selection of appropriate tracks will be discussed.
The remedy taken to compensate for the shortcomings will also be covered, together
with the positive side effects this remedy brings along.

4.1 Assumptions
The goal of the thesis is to generate playlists, similar to seed playlists choosen by
the user. In order to do this there is a need for assumptions regarding playlists.

• The first assumption for this thesis is that curated playlists, playlists made by
professionals whose work is to create good playlists, suited for a specific con-
text,genre or mood are suitable training data to create a model that generates
playlists suited to the same playlist theme.

• The second assumption made is that features that belong to each track in a
curated playlist contain enough information to create a representation of the
theme this curated playlist is made for.

• The third assumption is that a playlist can be looked at as a good mixture of
songs, i.e. there is an inherit variance in the playlist that defines it. This is a

19

CHAPTER 4. REPRESENTING PLAYLISTS

clear distinction from assuming that playlists only consist of songs similar to
each other.

4.2 Data
To be able to learn representations of playlists there is a need for data. A classical
notion within the machine learning community can densely be presented by the
following quote by Bob Mercer "There is no data like more data"[4]. Recent studies
however doubt this notion and currently a diversion towards less but better data can
be spotted. An example is a study presented by Rehbein and Ruppenhofer where
they show that passing the information that is needed to learn a task rather than
flooding a model with data yields good results[31]. As stated in the assumptions
section in this chapter an underlying assumption is that playlists made by profes-
sional playlist curators provide a suitable base for learning playlist representations.
Due to this assumption all playlists available from Spotify where not used, but the
playlists used were limited to the ones created by professional playlist maker, so
called playlist curators. Data for the tracks in these playlists were provided from
Spotify including features consisting of discrete values for genre, mood and tempo
for each track.

An important note regarding features is that they do not pertain within the
scope or focus of the thesis. The scope of the thesis is rather to represent these
features. The way this distinction affects the work of this thesis is that features are
treated as a different abstraction layer than the focus of this study. Just like the
driver of a car does not need to know how a car engine works to drive a car, this
model treat feature data in a similar manner. Once someone has learned how to
drive the car used is to a high degree irrelevant. In the same way this thesis seeks
to investigate how representations of playlist data can be learned, without being
tightly coupled to the data used to represent the tracks in playlists. At the same
time, just as a driver can driver faster with a better engine, better feature data
would also make the model presented work better.

4.3 Exploratory Data Analysis
The data set consisting of feature data for playlist tracks contains information and
a good way of providing insight of information is visualization. In order to get an
overview of how features in the data set relate to each other visualizations where
made. A good way of visualizing relations in data is to plot covariances, in the
context of playlist representation visualizing playlist feature covariances is therefore
a reasonable approach. The approach taken was however to visualize correlations
rather than covariances. The idea behind visualizing correlations instead of covari-
ances is that the magnitude of the correlation shows the strength of the linear rela-
tionship between features, while a covariance plot would be polluted should different
features be on different ranges. By plotting correlations the problem of calculat-

20

4.4. LEARNING PLAYLIST CHARACTERISTICS

ing correlations for features with zero variance, given a seed playlist, emerged. Zero
variance terms are a problem in the correlation setting as calculating the correlation
for a zero variance term would imply dividing by zero, a mathematically undefined
operation. This problem was solved by setting the correlation for feature relations
with zero covariance to zero. It can be argued whether this is mathematically cor-
rect or not. But the approach can be motivated in this setting by the fact that plots
are done to get an intuition of the data. A correlation of zero for features with zero
covariance thus gives a better intuition of relationships in the data set compared to
setting the correlation to one.

Performing visualizations of feature covariances in a playlist also shows whether
there are linear realtionships among features in that playlist or not.

As we can see from 4.1, there are clearly linear correlations among features for
our example playlist. As relationships is shown to be prevalent in the data, these
relationships can be learned and used to generate data similar to the data used as
a base for learning these relationships.

4.4 Learning Playlist Characteristics

Once that linear relationships have been spotted in the data the next step is to
create a model that can learn the representation of a specific playlist. One simple
approach to learning latent factors in data is principle components analysis, PCA.
Explaining the characteristics for a certain playlist could be seen as equivalent of
explaining the variance of features for tracks, given a curated playlist. Therefore
extracting the main characteristics for a playlist can be done by extracting the
principal components for the curated playlist. It is reasonable to assume that all the
variance that is modelled by PCA is not of interest to model a playlist. Why PCA
is performed up to a certain threshold for the variance explained, which means that
the variance of interest is kept. By keeping the relevant variance a dimensionality
reduction is made. The relevant variance is different for each playlist Using this
approach extracting eigenvectors for the covariance matrix, rather than correlation
matrix, is a motivated choice. The motivation behind this choice is that scaling the
covariance matrix to a correlation matrix is a nonlinear transformation. If we want
to apply the principal components of a correlation matrix to the original data, then
the original data need to undergo the same transform as transforming covariances
to correlations. For a data set where each curated playlist makes up less than one
percent of the total data it would be impractical to transform the original data
over and over as we extract the principal components for each playlist. Doing so
would also not be feasible in terms of scalability. Using the covariance matrix for
extraction of features is therefore motivated as the principal components of the
covariance matrix can be directly related to the existing data.

21

CHAPTER 4. REPRESENTING PLAYLISTS

Figure 4.1. Visualization of covariances in a sample playlist. Zero variance terms
have been removed. As can be seen there are linear correlations between features
in the playlist data for this particular playlist. The conclusion that can be drawn
from this is that there are dependencies between features and that the presence of
certain features is related to other features and vice versa. This information is an
important factor for modeling the characteristics of the playlist. The symmetry along
the diagonal of the figure is due to relationships between features being two way. As
can be seen from the geometry in the figure, features that are related are grouped
into squares along the diagonal of the image.

22

4.5. SELECTING CANDIDATE SONGS FOR A PLAYLIST

4.4.1 Handling zero variance terms

Even though there are no zero variance terms in the whole data set, there are
some terms that have zero variance within a certain curated playlists. These terms
will not be handled by the principal components describing a playlist, as principal
components describe the variance of a playlist. Despite not being handled by the
principal components zero variance terms might still have an important role in
describing a playlist. For example, if we have a curated jazz playlist then it is
probably an important factor that all of the tracks in this playlist have a zero value
for rap. The importance of this can be easily understood by imagining the opposite,
what if those tracks would have a constant non-zero value for rap? Then a non-zero
value for rap associated with jazz would be an important indicator for that playlist,
why the absence must also be an important indicator.

4.5 Selecting candidate songs for a playlist
The process of selecting candidate songs given a specific seed playlist is a challenging
problem without a given approach. Earlier work is focused mainly on item to
item recommendation, i.e. recommending similar items of the same type given
preferences for items of a certain type. But when it comes to selecting appropriate
songs in the context of mimicing a playlist the items are of different kinds. The goal
is to recommend songs, one type of item, given a seed playlist, which is another
type of item.

One initial idea to select songs for a given playlist could be that songs are either
good candidates or not. This is a reasonable assumption, as for example for a rock
classics playlist then songs are either rock classics or not. Given that this can be
formulated as a binary classification problem, an efficient two class classifier might
seem as a good idea at a glance. A support vector machine, SVM, is an optimal two
class classifier by definition, as a SVM maximizes the margin between classes[8], and
has the capability of multi class classification with for example the one versus all
approach[14]. There is however one problem with support vector machines, or any
classifier that requires training data within playlist generation. The problem is that
it is easy to define training data which labels a song as belonging or not belonging to
a certain playlist. But it is hard to define what songs that belong to other playlists,
than the one describing a specific playlist theme, which are still relevant for that
playlist theme. For example a song belonging to a house workout playlist may very
well be a suitable candidate for a house party playlist. It is actually often the case
that many songs belong to several playlists, describing different playlist themes.
Given this example a discriminative model turns out to be a bad fit for the problem
this thesis is trying to solve. If a song belongs to a house party playlist then it is
reasonable to assume that it would be outside the margin defining a house workout
playlist if feeded to a SVM, even though this particular song might very well be a
suitable match for the house workout playlist. This rules out the use of SVMs for
the purpose of this thesis, as SVMs need to know the mapping between songs and

23

CHAPTER 4. REPRESENTING PLAYLISTS

playlist themes to work. The same mapping that we are trying to find.
A second idea to selecting songs suitable for a specific playlist theme would be

to use centroid based clustering. The wikipedia definition of clustering is as follows:
"clustering is the task of grouping a set of objects in such a way that objects in
the same group (called a cluster) are more similar (in some sense or another) to
each other than to those in other groups (clusters)". One could for example cluster
all tracks in curated playlists and then simply assign each song that is not part
of a curated playlist to the cluster providing the best fit for each track. But one
problem is that there is not a one to one mapping between tracks and playlists, one
playlist can contain many tracks and one track can belong to many playlists. This is
different from clustering where each cluster consists of many points, but each point
only belongs to one cluster, which yields centroid based clustering impropriate for
the scope of this thesis.

A third approach to finding candidate songs given a playlist theme would be
to tweak the normal usage of collaborative filtering. The common approach of
collaborative filtering is to use a sparse matrix to infer the rating of items for one
user given the ratings of similar users. What can be done instead is to use binary
ratings and instead of inferring ratings for a user one could infer ratings for songs
given a playlist. What this means is that playlists that contain the same songs as a
playlist describing a playlist context one is interested in will be used to infer songs
that are good matches for the specified playlist context.

4.5.1 Subspace method

Another approach for track candidate selection would be to use the subspace method,
which was the method choosen for this thesis. Given that the principal components
for a playlist, are at hand, one can simply treat each track as a vector rather than
a point. Each vector can then be projected into the principal component space for
that playlist. The underlying assumption is then that points that have a low rela-
tive change in magnitude under projection are well described by the characteristics
defining the playlist, and thus good candidates. Tracks that are not well described
by the playlist characteristics on the other hand, will change under projection and
will therefore also have a high relative change in magnitude. As all tracks will
be projected this is actually a ranking algorithm where tracks with lower relative
change in magnitude will have a higher rank and tracks with higher change in mag-
nitude a lower rank. To illustrate how the subspace method works lets look at figure
4.2:

In figure 4.2 two playlists are illustrated in the two dimensional plane and their
first principle component is the line through the points. As can be seen projecting
the point into the principal component space of plaaylist 1 means a lower change
of magnitude for the point than projecting the point into the principal component
space of playlist 2. This means that the point, representing a track, provides a
better fit for playlist 1 than playlist 2.

There are however problems with the subspace method. Lets say that there

24

4.5. SELECTING CANDIDATE SONGS FOR A PLAYLIST

Figure 4.2. Illustration of how points relate to principal component spaces under
projection of the subspace method.

is a playlist that is defined by variance in the dimensions jazz, blues and rap and
our vector space consists of the dimensions jazz, blues, rap and rock. If there is a
song that is characterized by jazz and blues only, then this song will go unchanged
under projection. As the relative change in magnitude is none then this song will
be suggested as a suitable candidate for the jazz, blues, rap playlist. However a
playlist consisting of variance in the dimensions of jazz, blues and rap is likely to be
pretty peculiar and a song characterized by jazz and blues only is not likely to be a
suitable match for such a playlist. Another problem would be songs that consists of
zero values for all features, these songs would also go unchanged under any playlist
principal component space projection, but are not likely to be good candidates for
all playlist. Also by looking at the definition of covariance

σ(X,Y) = E[(X − E[X])(Y − E[Y])T] (4.1)

one sees that covariance only takes the relative difference into consideration. That is

25

CHAPTER 4. REPRESENTING PLAYLISTS

if the variance of a variable is on the scale of five to twenty or from twenty to thirty
five the direction of variance when applying the Principal Component Analysis will
be the same. Therefore one can say that the subspace method only takes direction
but not location into consideration as the use of covariance is a normalizing method,
as it subtracts the mean.

Further, the subspace method is a linear transformation and it can be questioned
if a linear transformation is powerful enough to describe the necessary mappings
between songs in a curated playlist.

4.6 Playlist Comparison
As principal components were chosen to describe playlists, it is reasonable to assume
that if principal components analysis works well for describing playlist characteris-
tics, then the same approach should also work well for comparing playlists. Playlists
were compared pairwise. To compare two playlists all eigenvectors from each playlist
were multiplied by each other. If we think of playlist A as

A = U1λ1U
T
1

and of antother playlist B as
B = U2λ2U

T
2

then the operation performed to compare them can be seen as

M = U1U
T
2

where M is the resulting matrix from the comparison. By doing this a measure
proportional to the cosine measure of vector similarity for each pair of vectors was
obtained for similarity between playlists.

The problem with this approach is that it gives an unbalanced comparison. By
simply looking at the similarity of eigenvectors implies that eigenvectors correspond-
ing to low eigenvalues have the same importance as eigenvectors corresponding to
high eigenvalues. This means that components explaining a high part of the char-
acteristics of a playlist are regarded an equal importance as components explaining
a low part of playlist characteristics. To remedy this problem the cosine score be-
tween eigenvectors from each playlist was scaled by the square root of the product
of the corresponding eigenvalues, which mathematically can be formulated as

M = U1
√
λ1

√
λ2U

T
2

The result obtained from this multiplication was a square matrix. To rank the
similarity between these matrices some type of transformation from a matrix to a
scalar is needed. The initial idea was to aggregate the entries of the matrix, but
an aggregated value does not tell which values that have led up to the aggregated
result. Therefore by simply adding values of the matrix one would not know if the

26

4.6. PLAYLIST COMPARISON

Figure 4.3. Hierarchical clustering of playlists where the aggregated measure of the
weighted dot product matrix is taken by the sum of the matrix diagonal. If one looks
closely at the diagonal it can be seen that this approach clusters playlists together,
in the form of squares around the diagonal. Clusters are mostly in a pairwise manner
and are sensible. For example Dub on The Breach and Svensk Reggae are clustered
together, as are House Workout and Dinner Party, as well as Coffee Table Jazz, Jazz
på Svenska and Late night Jazz.

similarity comes from dot products between vectors corresponding to high or low
eigenvalues. The variance that is deemed as relevant is the one corresponding to high
eigenvalues and the irrelevant variance the one corresponding to low eigenvalues.
Therefore it was chosen to only take the matrix diagonal, the trace of the matrix,
into consideration. Three different approaches were taken: the sum of the values
of the diagonal, the absolute value of the sum of the diagonal and the sum of the
absolute values of the matrix diagonal. These approaches were taken to compare
28 playlists among themselves.

27

CHAPTER 4. REPRESENTING PLAYLISTS

Figure 4.4. Hierarchical clustering of playlists where the aggregated measure of the
weighted dot product matrix is taken by the absolute value of sum of the matrix diag-
onal. A look at the squares of correlation along the matrix diagonal shows interesting
clusters. The three classical rock playlists in the data set are grouped together, three
hip hop playlists are grouped into one cluster and so are three reggae playlists, there
are two jazz clusters with two songs in each and there is also a workout/party cluster
and a modern rock/metal cluster.

28

4.6. PLAYLIST COMPARISON

Figure 4.5. Hierarchical clustering of playlists where the aggregated measure of the
weighted dot product matrix is taken by the sum of the absolute values of the matrix
diagonal. The clusters along the diagonal using this method are more prominent than
using the other methods. The clusters are easier to spot along the diagonal of the
picture. The playlist comparison method used for this figure also does not provide
several smaller clusters that are similar, such as two jazz clusters or two hip hop
clusters as in figure 4.3 or figure 4.4

29

CHAPTER 4. REPRESENTING PLAYLISTS

As can be seen in figure 4.5 summing the absolute values of the matrix diagonal
provides a good clustering of similar playlists in the data set used. From a theoreti-
cal perspective summing the absolute values is also the method that makes the most
sense. Eigenvectors from the covariance matrix explains the direction of variance,
but it does not really matter if the variance is seen as going from a point a A to
another point B or from point B to A. Hence the direction of eigenvectors from a
playlist feature covariance matrix does not really matter. If the direction of eigen-
vectors do not matter then the resulting values of the matrix diagonal, provided by
multiplying the weighted eigenvectors from two different playlist covariance matri-
ces, do not matter either and it makes sense to use the sum of absolute values as
an aggregated measure is used.

4.7 Approximate Nearest Neighbours

The major theoretical weakness of using Principal Component Analysis for finding
latent factors of playlists is that PCA does not take location into consideration.
PCA is an approximation of covariance in the data. When calculating covariance,
the mean for each dimension in the data is subtracted from each data point. This
operation is the same thing as normalizing or centering the data. Therefore when
performing PCA the location of data is lost. Two sets of data, having the same
relative variance among themselves, but located at two different places will have
the same principal components despite having different location.

An example of where the theoretical weakness comes into play could be as fol-
lows: if the vector space used for describing tracks only consist of the genres Rock
and Pop then a Rock playlist that varies from values ninety to one hundred in Rock
and zero to ten in Pop and a Pop playlist that varies from ninety to one hundred
in Pop and zero to ten in Rock would have the same principal components. It can
be argued that in the real case if two distinct playlists have the same principal
components then they are either actually similar or badly described by their fea-
tures. However the lack of capability of taking location into consideration is still a
theoretical shortcoming that is intrinsic of the model.

One remedy for the model not taking location into consideration would be to
add a pre-filtering step. The purpose of the pre-filtering step is to filter out tracks
that are not located near the tracks of the seed playlist in track feature space.
The naive solution to perform pre-filtering would be to use the nearest neighbours
algorithm[10]. The naive version of the nearest neighbour algorithm has shortcom-
ings however. The first shortcoming is that all points in the data set needs to be
taken into consideration for each track in a seed playlist. The second shortcoming
is that the algorithm needs a metric to calculate distance between points, such as
the cosine similarity, and the calculation of distance for points becomes more ex-
pensive as the dimensionality of the vector space increases. For example, if nearest
neighbours is used with the cosine similarity as a distance metric, there is also a
quadratic complexity in the number of features if track vectors are not normalized.

30

4.7. APPROXIMATE NEAREST NEIGHBOURS

Figure 4.6. As can be seen the two data sets, if treated like independent data sets,
have different location but still share the same principal components. This illustrates
that information about location is thrown away by PCA. The information that is
preserved is the direction, as the principal components show in which directions the
variance in the data reside.

With normalized track vectors a linear complexity in features is obtained. This
gives a time complexity of O(MND) where M is the number of tracks in the seed
playlist, N is the number of tracks in the entire data set and D is the number of
dimensions in the vector space. With tracks in the order of millions this approach
quickly renders itself unfeasible.

Based on the notion that calculating distances in high dimensional vector spaces
is an expensive procedure, an alternative solution is to compare points in lower
dimensional spaces instead, by simply projecting the points from the high dimen-
sional space into a subspace of lower dimension. It has been shown that if the
dimensionality of the lower dimensional space is chosen to be within a range of
d = O(1/γ2log|S|) where d is the dimensionality of the lower dimensional space
and S is the number of points we project then all pairwise distances between points
will be within an error margin of γ[6]. The problem that arises here is that if many
points are projected and a small error margin is desired, an efficient dimensionality
reduction cannot be made. If a larger dimensionality reduction is desired, points
that are distant in the original space might seem close in the subspace onto where
they get projected. To make such confusions less probable several random subspace
projections can be used. Instead of using random projections, hashing can be used
so that points located close to each other collide and end up in the same bucket.
This technique is also known as Locality Sensitive Hashing, LSH[2].

Locality Sensitive Hashing performs a good way of segmenting a high dimen-

31

CHAPTER 4. REPRESENTING PLAYLISTS

Figure 4.7. Illustration of multiple subspace projections. The illustration shows
how points can be separated by multiple projections. This is conceptually similar to
locality sensitive hashing.

sional space into clusters. One way to implement LSH is to deploy the use of ran-
dom hyperplanes for separation. Random hyperplane segmentation for approximate
nearest neighbours can be implemented by the use of several separating random hy-
perplanes. Each hyperplane is treated as a node in a binary tree as it separates
all points into two categories. The segmentation made by one such tree is not
necessarily optimal, but with several such trees an approximate nearest neighbour
forest is obtained. Theoretically a higher number of trees in an approximate nearest
neighbour forest should provide better segmentation of points up to a point on the
magnitude of the number of relevant features in the data. Increasing the number
of trees beyond this point would theoretically lead to a overly harsh discrimination
and thus a less optimal segementation of data points. The time to retrieve the
nearest neighbours of one point from approximate nearest neighbours is a constant
time operation once the indexing of points is done. Thus by adding a approximate
nearest neighbour pre-filtering step to the subspace method implies that subspace
projections given an initial seed playlist only needs to be done for a subset of points
from the whole data set.

This chapter has shown how principal component analysis, PCA, can be used to
extract playlist characteristics. Subspace projections has been shown to be appli-
cable when selecting candidate tracks in the setting of playlist generation based on
the components found by PCA. The information that is lost while doing PCA, the
location, has been discussed and a method to take location into account, approxi-
mate nearest neighbours, has been presented. With this is mind the natural next

32

4.7. APPROXIMATE NEAREST NEIGHBOURS

step is to evaluate how this music recommendation pipeline performs which will be
presented in the next chapter.

33

Chapter 5

Results

5.1 Precision

Evaluating a generated playlist is a difficult task as there is no known ground truth
for what a good playlist is. Even when asking normal persons or domain experts
opinions about what consists a good playlist are likely to differ. There are of course
sanctioned methods for evaluating data when features are present, using the cosine
distance as an evaluation metric is one such approach. However using such as metric
presents new problems. If the cosine distance, for example, is used for evaluation
this would imply that the cosine distance should also be used for the model. But if
the evaluation metric and the objective function one tries to minimize are the same
is there really an actual evaluation framework present or is the entire evaluation
pipeline simply a tautology? Imagining the opposite is not compelling either. If one
objective function is minimized by the model and another is used for evaluation one
finds oneself in a situation of comparing apples and oranges, which is unlikely to be
desired. Finding a way to evaluate generated playlists is without doubt a difficult
task, but some metric is still needed as a proxy. The first evaluation approach
choosen for evaluating generated playlists finds its roots in the method of describing
playlist similarity described in the methods section.

Based on the method of comparing playlists by taking the dot product of the
principal components of two playlists, weighting by eigenvalues and transforming
the resulting matrix into a scalar by summing the absolute values of the trace,
the matrix diagonal, of the matrix an additional hierarchical clustering step can be
added to create meaningful playlists clusters, as seen in 5.1. As these clusters make
up a sensible segmentation of playlists they where used as a base for evaluation.
When the subspace method was applied to rank candidate songs for a seed playlist
all songs that originates from a playlist within the same cluster as the seed playlist
were considered true positives. All other songs were considered false positives. For
the evaluation task a subset of data was used were only the tracks of the seven
clusters consisting of more than one playlist from the figure above were used and
pre-filtering was made by using approximate nearest neighbours with an euclidean

35

CHAPTER 5. RESULTS

Figure 5.1. Image showing the clustering used as a base for calculating precision.
Clusters consisting of one single playlist were not used for evaluation.

distance measure. The approximate twenty nearest neighbours were used and the
number of trees in each approximate nearest neighbour forest was varied. This is a
non-optimal way of using approximate nearest neighbours as the proper way would
be to select a by magnitude larger number of neighbours than actually needed, due
to the fact that the method is an approximate. The reason for not doing doing so
is that as a small data set was used for evaluation using the two-hundred nearest
neighbours would mean that the pre-filtering step would loose its effect as almost
the entire data set would pass through pre-filtering. Precision was calculated for
the ten, twenty and thirty top ranked songs. Calculating precision this way is a
conservative measure as songs from playlists outside the cluster also might be good
candidates.

To give a reference to how the model performs a baseline is needed. What the

36

5.2. COMPARING MODEL TO BASELINE

Figure 5.2. Images showing how the model, left image, performs compared to the
baseline, right image, for precision at 10.

model does is that it only takes part of the variance in playlist data into account. A
reasonable baseline would therefor be to use a method that takes the full variance
of data into account. A baseline that do this would be to use a random sample
of songs after the initial approximate nearest neighbour step. This baseline was
choosen and precision was calculated the same way as for the model. The evaluation
then consists of one model only taking relevant variance into account and the other
one considering the full variance of data. To account for randomness the random
sampling was done ten times and the presented results are the averages of these ten
sample sets.

5.2 Comparing Model to Baseline

As can be seen in figures 5.2, 5.3 and 5.4 the model outperforms the baseline in some
cases by an increase in precision by hundred percent or more and never performs
less than twenty five percent better than the baseline, on average. When increasing
the number of trees in the approximate nearest neighbour pre-filtering step while
using the model the lower limit of variance goes down. This implies that using
approximate nearest neighbours as pre-filtering discriminates tracks that are true
positives. To scrutinize this lets look more closely at the data and see how the data
points are distributed along the axis of variance, which is shown in figures 5.5 - 5.10.

What can be seen is that there is only one point that causes the lower tail in
variance for each boxplot, this point is a result of the same playlist for each boxplot
and is also the overall lowest performing playlist. This point can therefore be treated
as an outlier as it is not well described by the model. Removing this outlier yields
the following result.

37

CHAPTER 5. RESULTS

Figure 5.3. Images showing how the model, left image, performs compared to the
baseline, right image, for precision at 20.

Figure 5.4. Images showing how the model, left image, performs compared to the
baseline, right image, for precision at 30.

38

5.2. COMPARING MODEL TO BASELINE

Figure 5.5. Image showing the averages for the model including data points for
precision at 10

Figure 5.6. Image showing the averages for the model including data points for
precision at 20

39

CHAPTER 5. RESULTS

Figure 5.7. Image showing the averages for the model including data points for
precision at 30

Figure 5.8. Image showing the averages for the model including data points for
precision at 10 with one outlier removed

40

5.2. COMPARING MODEL TO BASELINE

Figure 5.9. Image showing the averages for the model including data points for
precision at 20 with one outlier removed

Figure 5.10. Image showing the averages for the model including data points for
precision at 30 with one outlier removed

41

CHAPTER 5. RESULTS

With the outlier removed the lower tail of variance is stable or decreasing as
the number of trees in the pre-filtering step increase. As increasing the number
of trees while pre-filtering leads to a higher discrimination the plausible decrease
in variance is coherent with theory. There is also a fluctuation in precision as the
number of trees varies, but without a clear trend. Removing one outlier also alters
how the precision varies, what this entails is that the amount of data used for these
experiments is not enough to draw conclusions regarding a trend in precision as a
function of the number of trees used in pre-filtering. The fluctuations in precision
are to be regarded as pecularities in the data set rather than ground for generalized
conclusions as no clear trend can be spotted.

5.3 Confusions

As can be seen in the image showing the playlist clusters there is often a high corre-
lation between a playlist inside a cluster and another playlist outside the cluster, as
for example between the playlists Digster SVENSK HIPHOP and Dance Workout.
Using precision by only considering tracks from playlists inside the clusters as true
positives is therefore a conservative measure and the actual results might therefore
be better than what the precision results entail. To quantify and investigate to what
extent false postives come from closely related playlists histograms of the rank of
playlists from which the false postive tracks originated were made. Here the rank is
the rank of how highly ranked the playlist the false positive sample originated from
was related to the seed playlist for the entire data set. That is, for each playlist
in the data set a ranking of all playlists in terms of similarity in their principal
component spaces, as performed when comparing playlists earlier, is made. Once
this ranking is made for each playlist, all tracks classified as false positives when
calculating the precision for a seed playlist are mapped to the rank of the playlist,
from which the false positive originates, when compared to the seed playlist. Once
this is done all these ranks are saved. To visualize the distribution of these ranks
histograms were made for all number of trees for the approximate nearest neighbour
pre-filtering step.

There is a similar behaviour for all number of trees in the approximate nearest
neighbour forest where roughly fifty percent of all false positives come from the
seven playlists most similar to the seed playlist. This result show that to a high
extent tracks regarded as false positives come from playlists that are ranked as being
similar to the seed playlist. In all figures it can be seen that the third column has
the highest frequency of rank for false positives. This column correspond to the
cluster with rank four, and with an average number of clusters of 3.43 this is a
reasonable result.

Due to the distributions of ranks presented it is reasonable to believe that preci-
sion calculated as tracks coming from playlists in the same cluster is a conservative
measure and that the actual results are better than what the precision measure
reveals.

42

5.3. CONFUSIONS

Figure 5.11. Image to the left showing a histogram over similarity ranks to the seed
playlists, for the playlists to which the false positive samples belong. The figure to the
right shows the cumulative distribution of rankings. Both figures show performance
for 1 tree in the pre-filtering step.

Figure 5.12. Image to the left showing a histogram over similarity ranks to the seed
playlists, for the playlists to which the false positive samples belong. The figure to the
right shows the cumulative distribution of rankings. Both figures show performance
for 3 trees in the pre-filtering step.

43

CHAPTER 5. RESULTS

Figure 5.13. Image to the left showing a histogram over similarity ranks to the seed
playlists, for the playlists to which the false positive samples belong. The figure to the
right shows the cumulative distribution of rankings. Both figures show performance
for 5 trees in the pre-filtering step.

Figure 5.14. Image to the left showing a histogram over similarity ranks to the seed
playlists, for the playlists to which the false positive samples belong. The figure to the
right shows the cumulative distribution of rankings. Both figures show performance
for 10 trees in the pre-filtering step.

44

5.3. CONFUSIONS

Figure 5.15. Image to the left showing a histogram over similarity ranks to the seed
playlists, for the playlists to which the false positive samples belong. The figure to the
right shows the cumulative distribution of rankings. Both figures show performance
for 20 trees in the pre-filtering step.

Figure 5.16. Image to the left showing a histogram over similarity ranks to the seed
playlists, for the playlists to which the false positive samples belong. The figure to the
right shows the cumulative distribution of rankings. Both figures show performance
for 30 trees in the pre-filtering step.

45

CHAPTER 5. RESULTS

Figure 5.17. Image to the left showing a histogram over similarity ranks to the seed
playlists, for the playlists to which the false positive samples belong. The figure to the
right shows the cumulative distribution of rankings. Both figures show performance
for 50 trees in the pre-filtering step.

5.4 Qualitative Evaluations

To find out if the results from evaluating the rank of playlists from which the con-
fused false positives originated actually means that the tracks selected as candidate
songs really are good candidates to a higher extent than what the precision met-
ric reveals and to get an idea of how the selected candidate songs sounded to the
human ear qualitative evaluations were performed. Three playlists for which the
seed playlists were Old School Hip Hop, Old School Rock and Old School Heavy
were selected for qualitative evaluations . The reason for selecting these playlists
are that they contributed to uniformity of the test as they all were "Old School"
and all were genre playlists. Also Hip Hop was seen to precision a high performing
playlist, Rock middle performing and Metal low performing so to see how well the
performance of the quantitative measures responded to listeners opinions. To have
a reference point both playlists with songs selected by the model as well as songs
from the original curated playlists were selected. To haven an even distribution of
biases from the persons listening to the playlists new playlists were created where
ten songs in order came from the top ranked candidate songs by the model and the
other ten songs, also in order, were the first ones in the seed playlist. Users were
then presented with these three playlists and were asked how well the first or last
ten songs matched the theme, how many outliers there were and how well the songs
matched the theme with outliers removed.

As can be seen form the user evaluations surprisingly the tracks from the model
were ranked higher than those taken from the curated playlists for both Hip Hop and

46

5.4. QUALITATIVE EVALUATIONS

Figure 5.18. Results from qualitative evaluation for Hip Hop. The image to the
left shows the performance of how the tracks in the playlist for qualitative evaluation
matches the playlist theme for both the model and the reference playlist. First column
shows how well the tracks in the model playlist matches the theme, second column
how well the tracks from the model matches the theme with outliers removed. The
third and fourth column show the same values for the reference playlist. The image
to the right shows the number of outliers found for the playlist from the model or
reference respectively. As can be seen the model slightly outperforms the reference.
The most probable reason for one person spotting eight outliers in the model is
that the user saw one outlier and that was track number eight. Feedback after the
qualitative evaluation confirms this.

Rock. The model selected tracks for metal were ranked lower, but the users rankings
confirmed the notion that precision as used for the quantitative evaluations was a
conservative measure as users found less outliers than there were false positives from
the quantitative evaluation.

47

CHAPTER 5. RESULTS

Figure 5.19. Results from qualitative evaluation for Rock. The image to the left
shows the performance of how the tracks in the playlist for qualitative evaluation
matches the playlist theme for both the model and the reference playlist. First column
shows how well the tracks in the model playlist matches the theme, second column
how well the tracks from the model matches the theme with outliers removed. The
third and fourth column show the same values for the reference playlist. The image
to the right shows the number of outliers found for the playlist from the model
or reference respectively. As can be seen the model outperforms the reference. A
reasonable explanation to the low performance of the reference could be that experts
designing the playlist and the users evaluating the playlist have different opinions
about what rock is. Is the song Son of a preacher man that was present among the
reference songs old school rock or pop for example.

48

5.4. QUALITATIVE EVALUATIONS

Figure 5.20. Qualitative results for the Metal playlists. The image to the left shows
the performance of how the tracks in the playlist for qualitative evaluation matches
the playlist theme for both the model and the reference playlist. First column shows
how well the tracks in the model playlist matches the theme, second column how
well the tracks from the model matches the theme with outliers removed. The third
and fourth column show the same values for the reference playlist. The image to the
right shows the number of outliers found for the playlist from the model or reference
respectively. As can be seen the reference clearly outperforms the model. As one
user misunderstood the outlier scale for Hip Hop it is reasonable to assume that the
one person ranking the number of outliers for the metal playlist having commited the
same mistake, but as opinions about music differ we cannot be sure about this.

49

Chapter 6

Discussion and Future Work

6.1 Discussion

Using playlists is an attractive means of consuming music. This can be shown by
the fact that in the Spotify music library the number of songs is in magnitude of
millions but the number of playlists is in magnitude of billions. It is therefore desir-
able for a music provider to be able to automatically generate playlists adapted to
a users distinct taste. One way of doing this is to generate playlists from an initial
seed playlist which the user can specify. The method used in this thesis provides a
scalable and parallelizable approach for a step on the way of creating automatically
generated playlists of high quality, merely the selection of candidate songs for a
generated playlist. The method has proven to perform better than a baseline in
form of random sampling from approximate nearest neighbours for candidate song
selection. The baseline might seem trivial at a glance, but these results imply that
learning a playlist representation present a superior approach for playlist song se-
lection than neighbourhood-based approaches. Results therefore confirm that the
initial assumption of regarding a playlist as a good mix of songs and therefore re-
garding variance as a important factor to distinguish playlist characteristics is a
valid approach. Quantitative results also imply that the actual quality of songs
selected for playlist generation is better than the one measured by calculating pre-
cision. Qualitative assesments further strengthens this hypothesis. The qualitative
assesments made ranked the generated playlists higher than the ones from where
the representation was learned in two out of three cases. The third cased consisted
of a playlist with the second lowest precision in the entire experiment and the eval-
uations made qualitatively suggest a more than a hundred percent higher actual
precision of that playlist than what the precision measure entails. These results
together suggest that learning a playlist representation in an eigenbased way is an
effective approach for playlist generation together with approximate nearest neigh-
bour pre-filtering. Lastly, as rankings of false positives for the precision measure to
a high extent came from similar playlists it is also reasonable to assume that the
performance of the model would be even better should a bigger data set with more

51

CHAPTER 6. DISCUSSION AND FUTURE WORK

relevant tracks for each seed playlist be present.

6.1.1 Complexity Analysis

One reason to why time complexity is important in the field of Machine Learning is
that it gives a unified measure of the time and resources needed to solve a problem.
One example is if the run-time for an algorithm is asked a not uncommon answer is
that it takes x time. An answer as such gives no information of how the algorithm
scales, whether it is implemented in an efficient manner or not or if the run-time
is hardware dependent. For example, an algorithm that take one day to solve a
problem, but has linear time complexity can solve the same problem for the double
amount of data in two days. For an algorithm with quadratic running time it would
take four days to solve the same problem should input data be doubled. Another
example is if an algorithm is run on a brand new computer or a computer that
is 15 years old, simply stating the run-time does not give a unified measure as
run time will change depending on hardware. Lastly, given the size of input data
and the time complexity of the algorithm a hint of the expected run-time can be
obtained and used for debugging purposes. As can be easily understood analyzing
time complexity within the machine learning field is essential to understand the
scalability of a machine learning algorithm. An algorithm that grows faster than
linear with data quickly becomes unfeasible as the amount of data used grows large.
In the case of Spotify the number of tracks in the song library and the number of
users are in the magnitude of millions or tens of millions which means that even a
linear run-time might be too slow to be practically usable.

Computational complexity theory is about analyzing the amount of resources
needed to solve a particular problem and classifying problems according to how
difficult they are to solve. Resources needed to solve a problem generally mean
running time or memory, but could also include randomness or communication.

Analyzing the time it takes for an algorithm to solve a problem is also called
time complexity. Time complexity is a quantification of the time needed to solve
a problem as a function of the length or size of the input. A common way to
describe time complexity is the asymptotic behaviour of running time needed as a
function of input, also called Big-O notation. Time complexity analysis with Big-O
notation takes the dominant terms into regard as input data grows towards infinity.
For example if we have a problem that for the length of input n requires (2n)2

operations the problem has a time complexity of O(n2). Big-O notation assumes
that some operations called trivial operations take a constant time to perform,
O(1), and if n such operations are performed the time complexity becomes O(n).
All operations that do not grow with the size of input data are dropped using Big-O
notation. For example if an algorithm needs a cubic number of operations for each
input data term and an additional thousand operations that do not change with
the size of input data the total amount of operations needed is n3 + 1000 which
becomes O(n3)

The first step in the model is to create a covariance matrix from the features of

52

6.1. DISCUSSION

tracks in the seed playlist. The computational complexity of creating a covariance
matrix is O(ND2) where N is the number of tracks in the playlist and D is the
number of features that represent each track[18]. Once the covariance matrix is
created an eigenvalue decomposition is needed to get an orthogonal representation
of features in the data, the time complexity for the eigenvalue decomposition is in the
magnitude of O(D3) where D is the number of rows, or columns due to symmetry,
in the covariance matrix which is equal to the number of dimensions of features for
each playlist track[24]. After the eigendecomposition a projection matrix is needed
to project tracks into the principal component space of a seed playlist. To create
the projection matrix one matrix inversion with complexity of O(D3) and three
matrix multiplications, also with time complexity of O(D3) are needed. The total
time complexity for all steps involved in the creation of a projection matrix then
becomes O(ND2 +D3).

To project each track into the principal component space a matrix vector mul-
tiplication is needed with time complexity of O(D2) and this is done for each track
which yields a resulting time complexity of O(ND2) where N are the number of
tracks to be projected. The calculation of relative change in magnitude requires cal-
culating the length of each track represented as a vector which includes a squared
root operation and thus has the time complexity of O(D2). Creating a covariance
matrix, eigendecompose it and creating a projection matrix does only have to be
done once and as the number of tracks in a playlist does not exceed the magnitude
of hundreds and the number of dimensions for each track is fixed the steps of the
model before projecting tracks can be regarded as constant operations. Using ap-
proximate nearest neighbours for one track is a constant time operation and needs
to be done for each track in the seed playlist which gives a resulting time complex-
ity of O(N) where N is the number of tracks in the seed playlist. The resulting
complexity of the model thus becomes O(nD2) where n are the number of tracks
obtained by using approximate nearest neighbours and n « N where N is the total
number of tracks in the music library.

The total time complexity for the entire model is O((n + N)D2 + D3) where
n is the number of tracks after the nearest neighbour pre-filtering step, N is the
number of tracks in the original playlist and D is the number of dimensions for our
track data. What needs to be noted here is that O(ND2 + D3) complexity term
only needs to be done once. This yields a resulting run time complexity which is
sub-linear in the number of tracks and quadratic in the number of features. What
is further interesting is that the projection of tracks into sub-spaces can be done in
parallel.

53

CHAPTER 6. DISCUSSION AND FUTURE WORK

6.2 Future Work
So many things to do and so little time

The Joker

A given first step of continuing the work presented in this thesis would be to also
take the ordering of songs, once selected as good candidate for playlist generation,
into consideration. It would also be interesting to study how the amount of variance
captured when creating a principal component space for a playlist would relate to
the quality of the songs selected. Feature selection has been outside the scope of
this thesis, but it is very likely that the creation of better features would make the
model perform better. One particularly interesting feature that has been lacking
for this thesis is time, which is an important factor in the music context. The use
of a larger data set for better evaluation is also of interest as this would give a bet-
ter generalizability than what could be fitted into the scope of this thesis. Lastly,
and what seems like the most fun, would be to consider other covariance functions
than the linear one and to use a model, such as probabilistic principal component
analysis, which apart from covariance also can take location, such as in the form of
the mean, into consideration intrinsically.

54

Bibliography

[1] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible extensions.
Knowledge and Data Engineering, IEEE Transactions on, 17(6):734–749, 2005.

[2] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for ap-
proximate nearest neighbor in high dimensions. In Foundations of Computer
Science, 2006. FOCS’06. 47th Annual IEEE Symposium on, pages 459–468.
IEEE, 2006.

[3] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning:
A review and new perspectives. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 35(8):1798–1828, 2013.

[4] Thierry Bertin-Mahieux, Daniel PW Ellis, Brian Whitman, and Paul Lamere.
The million song dataset. In ISMIR 2011: Proceedings of the 12th International
Society for Music Information Retrieval Conference, October 24-28, 2011, Mi-
ami, Florida, pages 591–596. University of Miami, 2011.

[5] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. When
is "nearest neighbor" meaningful? In Database Theory?ICDT’99, pages 217–
235. Springer, 1999.

[6] Avrim Blum. Random projection, margins, kernels, and feature-selection. In
Subspace, Latent Structure and Feature Selection, pages 52–68. Springer, 2006.

[7] John S Breese, David Heckerman, and Carl Kadie. Empirical analysis of pre-
dictive algorithms for collaborative filtering. In Proceedings of the Fourteenth
conference on Uncertainty in artificial intelligence, pages 43–52. Morgan Kauf-
mann Publishers Inc., 1998.

[8] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learn-
ing, 20(3):273–297, 1995.

[9] Carl Henrik Ek and Danica Kragic. The importance of structure. International
Symposium on Robotic Research, 2011.

55

BIBLIOGRAPHY

[10] Evelyn Fix and Joseph L Hodges Jr. Discriminatory analysis-nonparametric
discrimination: consistency properties. Technical report, DTIC Document,
1951.

[11] Asela Gunawardana and Christopher Meek. A unified approach to building
hybrid recommender systems. In Proceedings of the third ACM conference on
Recommender systems, pages 117–124. ACM, 2009.

[12] Philippe Hamel and Douglas Eck. Learning features from music audio with
deep belief networks. In ISMIR, pages 339–344. Utrecht, The Netherlands,
2010.

[13] Jonathan L Herlocker, Joseph A Konstan, Loren G Terveen, and John T Riedl.
Evaluating collaborative filtering recommender systems. ACM Transactions on
Information Systems (TOIS), 22(1):5–53, 2004.

[14] Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods for multiclass
support vector machines. Neural Networks, IEEE Transactions on, 13(2):415–
425, 2002.

[15] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for im-
plicit feedback datasets. In Data Mining, 2008. ICDM’08. Eighth IEEE Inter-
national Conference on, pages 263–272. IEEE, 2008.

[16] Chris Johnson. Algorithmic music recommendations at spotify.
Available from: http://www.slideshare.net/MrChrisJohnson/
algorithmic-music-recommendations-at-spotify/ [cited 29:th of June
2015].

[17] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles
and techniques. MIT press, 2009.

[18] Vivek Kwatra and Mei Han. Fast covariance computation and dimensionality
reduction for sub-window features in images. In Computer Vision–ECCV 2010,
pages 156–169. Springer, 2010.

[19] Beth Logan et al. Mel frequency cepstral coefficients for music modeling. In
ISMIR, 2000.

[20] David JC MacKay. Introduction to gaussian processes. NATO ASI Series F
Computer and Systems Sciences, 168:133–166, 1998.

[21] Prem Melville, Raymond J Mooney, and Ramadass Nagarajan. Content-
boosted collaborative filtering for improved recommendations. In AAAI/IAAI,
pages 187–192, 2002.

[22] Stanley A Mulaik. A brief history of the philosophical foundations of ex-
ploratory factor analysis. Multivariate Behavioral Research, 22(3):267–305,
1987.

56

BIBLIOGRAPHY

[23] Andrew Ng. Machine learning and ai via brain simulations "machine learn-
ing and ai via brain simulations. Available from: http://www.cs.stanford.
edu/people/ang//slides/DeepLearning-Mar2013.pptx [cited 29:th of June
2015].

[24] Victor Y Pan and Zhao Q Chen. The complexity of the matrix eigenproblem. In
Proceedings of the thirty-first annual ACM symposium on Theory of computing,
pages 507–516. ACM, 1999.

[25] Pandora. The music genome project. Available from: http://pandora.com/
mgp [cited 13:th of May 2015].

[26] Michael J Pazzani and Daniel Billsus. Content-based recommendation systems.
In The adaptive web, pages 325–341. Springer, 2007.

[27] John C Platt, Christopher JC Burges, Steven Swenson, Christopher Weare, and
Alice Zheng. Learning a gaussian process prior for automatically generating
music playlists. In NIPS, pages 1425–1432, 2001.

[28] Robert Ragno, Christopher JC Burges, and Cormac Herley. Inferring similarity
between music objects with application to playlist generation. In Proceedings
of the 7th ACM SIGMM international workshop on Multimedia information
retrieval, pages 73–80. ACM, 2005.

[29] Carl Edward Rasmussen. Gaussian processes in machine learning. In Advanced
lectures on machine learning, pages 63–71. Springer, 2004.

[30] Carl Edward Rasmussen. Gaussian processes for machine learning. 2006.

[31] Ines Rehbein and Josef Ruppenhofer. There’s no data like more data? revisiting
the impact of data size on a classification task. In LREC, 2010.

[32] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based
collaborative filtering recommendation algorithms. In Proceedings of the 10th
international conference on World Wide Web, pages 285–295. ACM, 2001.

[33] Xiaoyuan Su and Taghi M Khoshgoftaar. A survey of collaborative filtering
techniques. Advances in artificial intelligence, 2009:4, 2009.

[34] Spotify Press Team. Spotify public information. Available from: https://
press.spotify.com/se/information/ [cited 2:nd of June 2015].

[35] George Tzanetakis and Perry Cook. Musical genre classification of audio sig-
nals. Speech and Audio Processing, IEEE transactions on, 10(5):293–302, 2002.

57

www.kth.se

