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Populärvetenskaplig sammanfattning 

 

Blodproppar är när en propp bildas på grund av att blod koagulerar inuti blodkärl. När en 

blodpropp lossnar och förs med i blodsystemet kan den sedan fastna när kärlen blir för smala. 

Detta kan medföra stroke och andra livshotande skador på kroppen. Faktor XI är ett protein 

som är delaktig i blodkoagulationen. Det har visat sig att Faktor XI har stor inverkan på 

utbredning och stabilisering av blodproppar. Förutom att höga nivåer av Faktor XI ökar risken 

för blodproppar så har det även visat sig att låga nivåer inte medför de stora problemen med 

inre blödningar som Faktor XIII och Faktor IX har.  

 

Därför letade vi efter mekanismer som kan reglera Faktor XI. Vi hittade tre specifika platser i 

genomet som var signifikant associerade med Faktor XI-nivåer i blodplasma. Vi undersökte 

vad i dessa platser som har inverkan på nivåerna av Faktor XI. Slutligen gjordes en 

undersökning efter små RNA som kunde minska uttrycket av Faktor XI genom att binda till 

Faktor XI-genen. Från de flertal möjliga små RNA som hittades valdes en att bli validerad 

med ett försök in vitro (i levande celler). Försöket visade att det finns indikationer på att valt 

RNA kan förändra uttrycket av Faktor XI. 
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Abbreviations 

aPTT   Activated Partial Thromboplastin Time 

ATE  Arterial ThromboEmbolism 

EAF  Effect Allele Frequency  

eQTL  Expression Quantitative Trait Loci 

GC   Genomic Control 

GWAS  Genome Wide Association Study 

LD  Linkage Disequilibrium 

MAC  Minor Allele Count 

MDS  MultiDimensional Scaling 

N   Number of studies/individuals 

QC  Quality Control 

SE  Standard Error 

SNP  Single-Nucleotide Polymorphism 

TFBS  Transcription Factor Binding Site 

VTE   Venous ThromboEmbolism 
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Chapter 1 Introduction 

Arterial thromboembolism (ATE) and venous thromboembolism (VTE) are major public 

health problems today. It is estimated that 300,000 – 600,000 individuals are affected by VTE 

each year in the United States alone. It is also considered the leading preventable cause of 

death in hospitals in the United States (Beckman et al. 2010).  

A thrombus is defined as a specific blood clot and thrombosis is the general condition 

of blood clotting somewhere in the blood circulatory system. Thromboembolism is a 

combination of thrombosis and embolism, in which a mobile thrombus is lodging and 

occluding the bloodstream in a downstream location. 

FXI is involved in the propagation and stabilization of developing thrombi in vivo 

(Gailani and Broze 1991). FXI is a serine protease expressed in the liver and one of the 

central and initiating enzymes in the coagulation cascade (Fujikawa et al. 1986). 

Heparin treatment is used as an anticoagulant to prevent and treat postoperative 

venous thromboembolism after total knee replacement. Lowering FXI levels in blood with an 

antisense oligonucleotide has been shown to be more effective than low molecular weight 

heparin (enoxaparin) treatment (Büller et al. 2015). FXI antisense treatment also had fewer 

patients experience clinically relevant bleeding complications than enoxaparin. Since high 

FXI levels are considered a risk factor for thrombosis, lowering FXI could be used for 

prevention of venous thrombosis (Büller et al. 2015). However, the genetic regulation of FXI 

is not well understood.  

To find an association between common genetic variants and a diseases or disease-

related traits that can be quantitative measured, the Genome-Wide Association Study 

(GWAS) approach has been applied successfully in previous investigations (Hindorff et al. 

2009). But individual GWAS can be too small to give the necessary power to detect 

associations, when accounting for the number of multiple independent tests. Combining 

multiple GWAS to a single meta-analysis can be an effective approach to increase the 

prediction power. 

Therefore we performed a meta-analysis of GWAS data with association between 

common genetic variants and FXI levels in plasma. Expression analyses in several tissues 

were also conducted. To further investigate regulation of FXI levels, microRNA (miRNA) 

binding prediction to genes associated with FXI levels was performed. The chosen miRNAs 

were validated using a luciferase reporter assay.  
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1.1 Aims 

The aims of this thesis are to 1) find regulatory mechanisms of FXI levels in plasma using a 

meta-analysis of GWAS data, 2) functionally annotate the discovered regulatory mechanisms 

and 3) find miRNAs with predicted binding sites in mRNAs that regulate FXI expression 

levels.   

 

1.2 Ethics 

It is ethically motivated to restrict the distribution and sharing of genome-wide genotype and 

phenotype data to protect individual’s privacy. In this thesis no patient data or individual 

genotyped data were handled. The data used was an association between a specific single 

nucleotide polymorphism (SNP) and FXI levels. The association was calculated by 

researchers that investigated the specific SNPs, with no possibility to trace the data back to a 

single individual. We therefore conclude that there is no breach in any individual’s integrity.
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Chapter 2 Materials and Methods 

 

2.1 Data 

The discovery set used consists of 16 809 samples from six European cohorts. The data 

consist of imputed SNPs and their association with FXI plasma levels in blood. The 

association was calculated using a linear regression model between every SNP and natural 

log-transformed levels, adjusted for age, sex, population stratification (and case-control status 

when necessary). The six different cohorts (FXI-1 to FXI-6) measured FXI either with an 

activity-based assay (Coagulometry: FXI-2, FXI-3 and FXI-6) or with an antigen method 

(ELISA like: FXI-1, FXI-4 and FXI-5). 

 

2.2 Meta-data Quality Control 

The six association studies were processed through a cleaning script (Supplemental Script 1) 

to ensure data quality for further downstream analysis and to create a common structure. For 

quality control the software EasyQC (Winkler et al. 2014) version: 9.0 for imputed 1000G 

data was used. The script performs several checks to validate the data. SNPs with missing 

alleles, p-value, beta, standard error (SE), effect allele frequency (EAF), individuals or 

imputation information were removed from the study. SNPs with values outside the range of 

the attribute (for example p-value not in the interval [0,1]) were removed from the study. 

SNPs were filtered by minor allele count (MAC, >5), and imputation quality (>0.3).  

Monomorphic SNPs were excluded. To reduce the file size, all data were converted to four 

significant digits. 

 

2.3 Meta-analysis 

GWAMA (Magi et al. 2010, Mägi and Morris 2010) version 2.1 was used to perform a  

meta-analysis of GWAS data after quality control (QC). Genomic Control (GC) was used to 

correct for inflation of the individual studies. We repeated the analysis with random effects to 

account for heterogeneity.  
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2.4 Selecting top SNPs  

We selected a list of five relevant top SNPs for downstream analysis using the following 

criteria: SNP with lowest p-value in a region of 2 Mbp, p-value (<10-6), not on sex 

chromosomes, present in all cohorts and showing the same effect direction in all cohorts. 

Regions containing the five top SNPs were plotted with regional plots. LocusZoom 1.3 

(Pruim et al. 2010) was used to create regional plots. LocusZoom visualize the location of 

SNPs and genes in the chosen region. It also shows the linkage disequilibrium (LD) between 

the target SNP and all others. SNPs of interest were plotted with 500 kb distance both up and 

down-stream of the SNP’s location. Three of the selected SNPs were genome-wide significant 

(p-value of 5*10 -8 (Barsh et al. 2012)) and two were not genome-wide significant but showed 

suggestive association p-values (lower than 10-6).  

To produce regional plots and Manhattan plots, all autosome SNPs in all cohorts with a 

p-value of < 0.05 were plotted. The selection procedure was performed by scripting in AWK. 

 

 

2.5 Functional annotation 

Functional annotation was done for the 5 top SNPs with ANNOVAR version 2014-11-12 

(Wang et al. 2010). ANNOVAR gives the option to collect data from several databases. The 

databases used to functional annotate our SNPs of interest were refGene, knownGene, 

ensGene, cytoBand, evofold, gwasCatalog, phastConsElements46way, targetScanS, 

tfbsConsSites, wgRna, wgEncodeBroadHmmHuvecHMM, and 

wgEncodeBroadHmmHepg2HMM. RegulomeDB (Boyle et al. 2012) was also used as an 

alternative to ANNOVAR to find evidence on SNPs that affect the binding regions for a 

regulatory element.  
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2.6 Adiponectin association 

An association between adiponectin levels and our top SNP (rs710446) was done in PLINK. 

ADIPOQ that encodes for adiponectin has been associated with cardiovascular disease (Gable 

et al. 2006) and lies in proximity (100 kbp downstream) of our top SNP (rs710446). The 

covariates used were age, gender and population stratification. The data consisted of 3711 

individuals, of which 3440 individuals (1674 males, 1792 females) passed QC. All 

participants in this database were of European decent and have at least three vascular risk 

factors. Adiponectin levels were measured with a double antibody radioimmunoassay 

(Millipore). 

The natural logarithm levels adiponectin was used due to the untransformed levels of 

adiponectin showing non-normal distribution. Other transformations were also tested 

(Supplemental Figure 2).  

 

2.7 Gene-based association study 

Versatile Gene-based Association study (VEGAS) (Liu et al. 2010) version 0.8.27 was used 

to find genes that could be associated with FXI levels. VEGAS is unable to run on the hg19 

build of the Homo sapiens and on hapmap data. Therefore it had to be extended with the 

1000genome data and also extended to hg19. This was done with AWK scripting, TABIX and 

PLINK v1.90b2m  (Purcell et al. 2007) on data from the 1000 genomes ftp site 

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/). After this,VEGAS was run successfully with the 

population set to 1000gEUR. All autosome SNPs with p-value <0.05 and in all cohorts were 

used as input.  

To choose the top genes after VEGAS, a selection step was performed. Genes with rank 

50 in gene p-value or best SNP-p-value were selected and concatenated. Both, gene p-value 

and SNP p-value, were required to be lower than 10-4 in order for the gene to be selected. 

SNPs with the lowest p-value in a gene with LD ∆2 > 0.5, and with SNPs in another gene with 

a lower p-value were removed. 

 

 

 

 

 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
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2.8 Pathway analysis 

Pathway analysis was performed on the raw output from VEGAS. All interactions between 

the genes with lower p-value than 10-3 were collected from the databases GeneMANIA, 

MENTHA, BioGrid, intact, MINT, UniProt and Reactome. The software to collect the data 

and to visualize the result was CytoScape Version 3.2.0 (Saito et al. 2012). PINBPA version 

1.1.6 (Wang et al. 2015) was used to map the data. 

Gene Relationships Among Implicated Loci (GRAIL) Beta from Broad institute 

(Raychaudhuri et al. 2009) was used to get a further understanding of the pathway of our 

genes. Since GRAIL does not work with 1000 genomes data, we converted our SNPs from 

1000 genomes hg19 to hapmap CEU hg18. This was done (Supplemental Script 2) with the 

following parameters R2 (0.2) and distance (100 kb). SNPs that had a p-value less than 1*10-8 

from the VEGAS output was used as input to GRAIL.  

Pathway Analysis by Randomization Incorporating Structure (Paris) version 1.1.3 

(Yaspan et al. 2011) was also used to find pathways (Supplemental Script 3). All autosome 

SNPs present in all cohorts with p-value < 0.05 were used as input to the Paris analysis.  

 

2.9 Expression Quantitative Trait Loci (eQTL) 

eQTL analysis was performed on the SNPs with the lowest p-value for each genes selected 

after VEGAS, to see if SNPs may cause an expression change in cis genes at 250kb. eQTL 

was done in collaboration with another group at Karolinska institutet in Sweden. The samples 

used are from the Advanced Study of Aortic Pathology (ASAP) at the Karolinska University 

Hospital, Stockholm and include patients undergoing aortic valve surgery. The different 

tissues used for the eQTL are mammary artery intima-media (89 samples), liver (212 

samples), aortic media (138 samples), aortic adventitia (133 samples), and heart (127 

samples).  

The RNA was isolated with Trizol (BRL-Life Technologies) and treated with 

RNasefree DNase set (Qiagen) following the manufacturer’s instruction. RNA quality was 

analyzed with the Agilent 2100 bioanalyzer (Agilent Technologies Inc, Palo Alto, Calif), and 

quantity was measured using NanoDrop (Thermo Scientific Waltham, Mass). Gene 

expression was generated using Affymetrix ST 1.0 Exon arrays (Affymetrix, Santa Clara, CA) 

and Affymetrix Meta prob set (Affymetrix). Whole gene variation with genotype and QC 

procedures have been reported (Folkersen et al. 2010).  



 

15 

 

The eQTL was performed using a linear regression model and corrected with FDR and 

Bonferroni separately.  

2.10 miRNA binding prediction 

To find miRNA believed to bind and change expression of genes associated with FXI levels, a 

scoring algorithm was produced. The scoring algorithm is described in the following lines. 

miRNAs get one point for every passed of the following steps: TargetScan (context+ score < 

0.045), miRanda (Score > 145), SVR good hits, miRWalk 2 5’ UTR algorithms (>60%). 

miRWalk 2 3’ UTR algoritms (>50%), miRWalk 2 promoter (>75%). In MirWalk not all 

algorithms can predict binding in all regions, therefore the same cut-off cannot be used for all 

regions. Only miRNA that were expressed in the liver and had at least 4 points were selected.  

To get the most updated data available, a local installation of TargetScan v 6.2 

(Friedman et al. 2009, Garcia et al. 2011, Grimson et al. 2007, Lewis et al. 2005) and 

miRanda 3.3a (John et al. 2004) was performed to run on mirBase release 21 (Griffiths-Jones 

et al. 2008, 2006, Griffiths‐Jones 2004, Kozomara and Griffiths-Jones 2014, 2011) so that 

new miRNA not featured in TargetScan’s or miRanda’s online algorithms could be detected. 

The regions (3’ UTR, 5’ UTR and promoter) to investigate for miRNA:mRNA binding were 

collected from TargetScan’s own database.  

SVR files from August 2010 Release of microRNA.org (Betel et al. 2010) were used. 

Good mirSVR scores (defined from microRNA.org) with both conserved and non-conserved 

sites were used, but not those with insufficient mirSVR scores.  

 MiRWalk 2 (Dweep et al. 2011) is a concatenation of different algorithms and 

databases. All available databases and algorithms (maximal of 12) of miRWalk 2 were chosen 

for 3’ UTR, 5’ UTR and promoter regions. All databases/algorithms cannot be utilized on all 

three regions (3’ UTR, 5’UTR and promoter), because not all algorithms in miRWalk 2 were 

built to work on all regions. We were interested in the total number of algorithms that predict 

binding between miRNA and target gene. 

 MiRWalk 1 (Dweep et al. 2011) was also used to see if any difference exists in 

relation to to miRWalk 2. The same parameters as for miRWalk 2 were used.  

 Tarbase (Vlachos et al. 2015) was used to investigate if miRNAs found were already 

experimentally validated and to give the miRNAs a miTG score.  

 To find out which miRNAs were expressed in liver, three different databases were 

used: 1) SmirnaDB version 2009-05-08 from Swiss Institute of Bioinformatics. All miRNA 

that had more than one clone count in liver samples were assumed to be expressed in liver; 2) 
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microRNA.org version 2010-11-01 (Landgraf et al. 2007). The data here is represented in the 

form of clone counts normalized to the total number of miRNAs that were cloned in each 

library. All miRNAs with a value above 0.00072 of the normalized clone counts were 

assumed to be expressed in liver; 3) data used in the article by Salloum-Adfar et al. (2014), 

which established the cut-off at 500 au were also utilized as well. Any miRNA that passed 

any of the selections was assumed to be expressed in the liver. 

 

 

2.11 Luciferase reporter assay 

To validate if the miRNA of interest changes the expression of FXI, a luciferase reporter 

assay was performed. In a luciferase reporter assay, cells are transfected with a vector 

containing a luciferase gene. Cells are then stimulated to induce expression of the luciferase. 

It is then possible to quantify the expression of the luciferase using the substrate, if any, to 

detect luciferase activity using a luminometer. By adding a 3’UTR section after the luciferase 

gene in the vector, and subsequent co-transfection with a miRNA, one can assess the effect a 

specific miRNA has to different vectors. In this case six different conditions were tested: 1. 

Empty vector and a scrambled miRNA, 2. Empty vector and hsa-miR-145-5p, 3. Empty 

vector and has-miR-181-5p, 4. FXI vector and a scrambled miRNA, 5. FXI vector and hsa-

miR-145-5p, 6. FXI vector and hsa-miR-181-5p. The empty vector is the vector without the 3’ 

UTR of FXI and the FXI vector contains the 3’ UTR of FXI (Supplemental figure 1). 

HEK293 (Human embryonic kidney cells, Sigma St. Louis, United States of America) 

were used due to their ease of growth and transfection. The HEK cells were cultured in 

Dulbecco's Modified Eagle Medium and 10% Fetal bovine serum (DMEM, FBS, Life 

technologies, Carlsbad, United States of America).  

To perform the Luciferase reporter assay, cell transfection is necessary.  Cells were 

seeded in a 24 well plate 24 hours before transfection. The cells were co-transfected 

(FuGENE® HD Transfection Reagent, Promega United States of America, Madison) when at 

70% confluence with 10 nM of double-stranded miRNA (miR-145 or miR-181a or 

mirVana™ miRNA Mimic, Life technologies, Carlsbad, United States of America) and 100 

ng of vector (Active Motif, LightSwitch™ GoClone™ Collection, 3’ UTR FXI vector or 

EMPTY_3UTR, Carlsbad, United States) according to manufacturer’s instructions. The 

amount of miRNA was later increased to 20 nM and the vector increased to 400 ng to 

improve the transfection efficiency.  
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The luciferase assay (LightSwitch™ Luciferase Assay Kit, Carlsbad, United States) was 

used as previously described (Maegdefessel et al. 2014). The luminescent was measured in a 

96 well plate for 2 seconds (GLOMAX MULTI+ Detection system, Promega United States of 

America, Madison).  
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Chapter 3 Results 

3.1 Meta-data Quality Control 

Six different (FXI-1 to FXI-6) cohorts were QC tested. QC is of importance to validate the 

data and see that it is of good quality. A QQ-plot is a plot comparing two probability 

distribution here representing the expected vs. observed –log10(p-value). From the QQ plot 

(Figure 1) there is an elevation of the curve prematurely for FXI -3 and FXI-5. An elevated 

curve suggests false positives. The elevation of FXI-5 was enough to be excluded from all 

analysis downstream of EasyQC.  

The Effect Allele Frequency (EAF) plot is used to find data management errors, 

analytical errors or miss-specified effect alleles, which no cohorts showed (Figure 2).  

The Lambda-N shows problems with population stratification. FXI-4 was above the 

threshold of 1.1, but not considered enough to be removed from downstream analysis (Figure 

3).  

The P-Z plot indicates problems with beta estimates, p-values or/and SE values if 

there is deviation from the identity line. FXI-3 does not align with the identity line and 

deviates lower and above the identity line. However, it was not deemed to be enough to be 

removed from downstream analysis (Figure 4). See Supplemental Table 1-3 for more QC-

data.  
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Figure 1. QQ-plot. The correlation between expected –log10(p-value) and observed –log10(p-value) for the different cohorts.  
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Figure 2. EAF of the reference vs EAF in the samples from the six cohorts. The outliers here are more likely to be samples of 

non-European ancestry than data management errors, analytical errors or miss-specified effect alleles. The region between 

the yellow lines indicates differences between EAF that is negligibly small.  See Winkler et all 2014 for more information 

about the EAF plots.  
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Figure 3. Lambda-N plot to evaluate if the different cohorts have issues with population stratification. From the left FXI-5, 

FXI-6, FXI-3, FXI-2, FXI-4 and FXI-1.Yellow line indicates no population stratification, values above the red line indicates 

problems with population stratification. See Winkler et al. 2014 for more information about Lambda-N plots. 
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Figure 4. Correlation between the –log10(p-value) and –log10(p-value under Z-test).  

3.2 Meta-analysis 

3.2.1 Discovery and Manhattan-plot  

From the meta-analysis of the GWAS data in the discovery set approximately 18 million 

SNPs were obtained. A Manhattan-plot was created (Figure 5 and 6) to illustrate the 

distribution of strong associations between SNPs and FXI levels (–log(p-values)) along the 

genomic coordinates from the meta-analysis. Results from Manhattan plot show three 

genome-wide significant loci and two suggestive regions (with p-values between 10-6 and 

5*10-8). After selection for top SNPs (see methods) we have three genome-wide significant 

SNPs and two suggestive SNPs (Table 1).  

 

3.2.2 Replication  

To validate the findings from the meta-analysis, a replication study was done by other 

members of the same KI group. The replication was done in three other cohorts not present in 

our discovery set. The combined data from the three cohorts consists of 2058 individuals with 

European ancestry. The three genome-wide significant top SNPs (rs710446, rs4253417, 

rs780094) are significant in the replication set (Table 2). The two SNPs under the significant 

threshold for GWAS were not significant in the replication set. 
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3.2.3 Heterogeneity  

The three significant SNPs have high heterogeneity in the discovery set. A search for the 

cause was done. We repeated the GWAMA run but left one of the cohorts out at the time. But 

there are not one cohort that alone were responsible for the high heterogeneity. Two different 

ways to measure FXI were used in the discovery set. To investigate if the high heterogeneity 

is caused by the different ways of measuring FXI, the cohorts with coagulometry and ELISA 

like methods were separated and then rerunning the analysis. The heterogeneity decreased but 

not enough to say that the heterogeneity are due to the different ways to measure FXI 

(Supplemental Table 4).  

 
Figure 5. Manhattan plot of the results from GWAMA where the X-axis is genomic location increasingly and the y-axis is the 

 –log10(p-value) where p-value represent the association with FXI levels from the Meta-analysis. The red line indicates 

genome-wide significant ( -log10(5*10-8)). The blue line indicates a suggestive line (-log10(1*10-5)). 
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Figure 6. Manhattan plot of the results from GWAMA where the X-axis is genomic location increasingly and the y-axis is the   

-log10(p-value) where p-value represent the association with FXI levels from the Meta-analysis. The red line indicates 

genome-wide significant ( -log10(5*10-8)). The blue line indicates a suggestive line (-log10(1*10-5)). This figure is a zoomed 

version of figure 5. 
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Table 1. Top 5 SNPs after filtering step.  

rs-number chromosome location beta SE P-value I2 Effects* 

rs710446 3 186459927 -0.0890 0.0024 6.95×10-299 0.8510 ----- 

rs4253417 4 187199005 -0.0735 0.0025 3.04×10-190 0.8882 ----- 

rs780094 2 27741237 0.0147 0.0025 5.50×10-09 0.5520 +++++ 

rs78802760 17 66163686 -0.0196 0.0038 3.30×10-07 0.0000 ----- 

rs199841773 11 92254694 0.0135 0.0027 3.88×10-07 0.2335 +++++ 

*Sign of beta in the different cohorts 
 

Table 2. Replication of top 5 SNP.  

rs-number chromosome beta SE P-value FDR p-value* Effects** 

rs710446 3 -0.1246 0.0094 8.86×10-40 7.97×10-39 --- 

rs4253417 4 -0.0898 0.0098 6.51×10-20 2.93×10-19 --- 

rs780094 2 0.0238 0.0096 0.01372 0.0412 +++ 

rs78802760 17 -0.0082 0.0138 0.5534 1.24515 ++- 

rs199841773 11 0.0063 0.0098 0.5174 0.93132 +-+ 

* FDR corrected p-value calculated with Benjamini Hochberg procedure ( #tests*P-value/Rank, #tests is nine ) 

** Sign of beta in the different cohorts 

 

 

3.2.4 Regional plots 

Regional plots of the five top SNPs are displayed in figures 7-11. The SNP with rs-number 

rs199841773 did not have information to calculate the LD. Therefore SNP rs505383 was used 

to get information about the LD in that region.  
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Figure 7. Regional plot of rs710446. On the x-axis genomic location and below genes in that loci. On the y-axis  –log10(p-

value) from GWAMA and also the recombination rate (cM/Mb). The color of the SNPs represent the r2 value where red is r2 

close to one and dark blue close to zero.  
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Figure 8. Regional plot of rs4253417. On the x-axis genomic location and below genes in that loci. On the y-axis  –log10(p-

value) from GWAMA and also the Recombination rate (cM/Mb). The color of the SNPs represent the r2value where red is r2 

close to one and dark blue close to zero. 



 

28 

 

 
Figure 9. Regional plot of rs780094. On the x-axis genomic location and below genes in that loci. On the y-axis –log10(p-

value) from GWAMA and also the Recombination rate (cM/Mb). The color of the SNPs represent the r2value where red is r2 

close to one and dark blue close to zero. 

 
Figure 10. Regional plot of rs78802760. On the x-axis genomic location and below genes in that loci. On the y-axis  –log10(p-

value) from GWAMA and also the Recombination rate (cM/Mb). The color of the SNPs represent the r2value where red is r2 

close to one and dark blue close to zero. 
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Figure 11. Regional plot of rs505353. On the x-axis genomic location and below genes in that loci. On the y-axis  –log10(p-

value) from GWAMA and also the Recombination rate (cM/Mb). The color of the SNPs represent the r2value where red is r2 

close to one and dark blue close to zero. The SNP rs505353 is just below rs199841773 so it was used to get an idea of LD in 

that region because rs199841773 does not give enough information to calculate a good LD score.  
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3.3 Functional annotation 

Relevant information from Annovar for the top five SNPs are shown in table 3. Rs4253417 

and rs780094 are intronic regions in the FXI and GCKR genes respective while rs710446 is in 

the exonic region of the KNG1gene. Rs710446 was found to associate (in previous GWAS) in 

activated partial thromboplastin time (aPTT). Rs780094 has been identified in several GWAS 

studies (see table 3). None of these SNPs was in any known transcription factor’s binding site 

but from the chromHMM predictions we see that rs780094 got classified as a strong enhancer. 

chromHMM is a software utilizing the Hidden Markov Model (HMM) for characterizing 

chromatin states. 

 

Table 3. Information from Annovar for the top 3 SNPs.  

rs-number Gene Func Exonic 

Function 

GWAS Catalog BroadHmm 

Hepg2HMM 

rs710446 KNG1 exonic Non 

synonymous 

SNV 

Activated partial 

thromboplastin time 

Weak Enhancer 

rs4253417 FXI intronic NA NA Weack 

transcribed 

rs780094 GCKR intronic NA Uric acid levels, Metabolic 

syndrome, Urate levels, 

Calcium levels, Metabolic 

traits, Fasting insulin-related 

traits (interaction with BMI), 

Fasting glucose-related traits 

(interaction with BMI), 

Phospholipid levels (plasma), 

C-reactive protein, 

Triglycerides, LDL 

cholesterol, Fasting glucose-

related traits, Fasting insulin-

related traits 

Strong Enhancer 

rs78802760 None intergenic NA NA Heterochromatin, 

low signal 

rs19984177

3 

FAT3 intronic NA NA Heterochromatin, 

low signal* 

*BroadHmmHuvecHMM 
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From RegulomeDB, rs780094 was predicted to likely affect binding. The supporting data for 

this location is Transcription factor (TF) binding, matched TF motif and DNase peak. 

Rs710446, rs4253417 and rs199841773 got no data supporting binding.  Rs78802760 has TF 

binding or DNase peak, and represent minimal binding evidence in regulomeDB.   

3.4 Adiponectin association 

Top SNP (rs710446 in KNG1) is close (100 kbp upstream) to the gene ADIPOQ. An 

association test between rs710446 and adiponectin levels were conducted to see if there exists 

an association with adiponectin levels. The result was not significant with a p-value of 0.1996 

and a BETA of -0.0297 (SE=0.0232). 

 

3.5 Gene association  

VEGAS generates a list of genes and its gene-based test statistics. This gives a list of genes 

that could be associated with our phenotype. Table 4 shows the top 20 genes based on SNP p-

value. GCKR and SNX17 are the genes with the best association in the locus on chromosome 

2, where rs780094 is the SNP with lowest p-value in GCKR. The SNX17 gene only has four 

SNPs inside and could be biased. In the locus on chromosome 3 (where rs710446 has the 

lowest p-value), there are several genes with a p-value of 0. But the gene KNG1 has the 

lowest SNP p-value, most SNPs and the highest sum of all the chi-squared tests in this locus. 

The locus on chromosome 4 (rs4253417 lowest p-value) has five genes with a p-value of 0 

(FXI, FXI-AS1, KLKB1, CYP4V2, TLR3). After selecting the top genes from the VEGAS 

output, a total of 31 genes were selected. The output from VEGAS was also used to analyze 

pathways.  
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Table 4. Top 20 Genes (Based on SNP-pvalue) from VEGAS 

Chr Gene nSNPs nSims Start Stop Test* p-value Best-SNP SNP p-value 

2 GCKR 26 106 27719705 27746550 294 1.80×10-05 rs780094 5.50×10-9 

2 SNX17 4 106 27593362 27600400 50 0 rs4665972 9.46×10-9 

2 SLC4A1AP 10 106 27886337 27917847 80 3.60×10-05 rs2178198 1.44×10-6 

3 KNG1 144 106 186435097 186462199 44478 0 rs710446 6.95×10-299 

3 RFC4 27 106 186507681 186524484 1601 0 rs266728 3.70×10-29 

3 FETUB 23 106 186358148 186370797 1255 0 rs6767451 7.96×10-29 

3 ADIPOQ 35 106 186560462 186576252 878 0 rs73185702 5.48×10-27 

3 HRG 17 106 186383746 186396023 833 0 rs1042445 4.92×10-26 

3 EIF4A2 8 106 186501360 186507685 332 0 rs266720 1.23×10-22 

3 ADIPOQ-AS1 9 106 186569675 186573912 184 0 rs2241766 8.09×10-10 

3 AHSG 15 106 186330849 186339107 197 1.00×10-06 rs35799453 2.19×10-8 

4 FXI 58 106 187187117 187210835 13421 0 rs4253417 3.04×10-190 

4 FXI-AS1 492 106 187207251 187422212 18851 0 rs2289252 7.33×10-188 

4 KLKB1 111 106 187148671 187179625 16549 0 rs4253253 3.39×10-78 

4 CYP4V2 76 106 187112673 187134617 9584 0 rs2276918 2.16×10-66 

4 TLR3 16 106 186990308 187006252 240 0 rs75357674 4.20×10-13 

4 FAM149A 54 106 187065994 187093817 527 3.00×10-06 rs114742882 1.98×10-9 

4 FLJ38576 11 106 187110185 187112644 133 9.90×10-05 rs35641294 3.54×10-7 

6 MCHR2 75 106 100367785 100442114 758 1.30×10-05 rs11155193 1.69×10-6 

11 FAT3 221 106 92085261 92629635 2671 7.00×10-06 rs505383 1.08×10-6 

*Is the sum of all the chi-squared one df statistics of that gene.  

 

3.6 Pathway analysis 

HRG and AHSG interacts with KNG1 through a secondary mechanism (Figure 12 and 13). 

We can therfore conclude that there exists a connection in form of a protein interaction 

between the locus on chromosomes 3 (rs710446 lowest p-value) and 4 (rs4253417 lowest p-

value).   

 The Interaction map indicates that KNG1, FXI and KLKB1 interact with each other 

(top left corner of Figure 14). Apart from that, there is no cluster of top genes 

Pathway analysis suggests that our data is a good representation of complement and 

coagulation cascades. This provides evidence that the analysis is a good representation of our 

FXI phenotype. Pathways with p-values below 0.0001 are not given and the top 3 pathways 

(Table 5) all have scores below 0.0001. Therefore they are sorted by Simple Feature Count (A 

single SNP in an area of linkage equilibrium) (Yaspan et al. 2011).  
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The GRAIL output shows a list of 20 keywords describing our set of SNPs associated 

with FXI levels. Some keywords were plasma, coagulation and blood. For the full keywords 

set and other output from GRAIL see Supplemental Table 5-6.  

 

 

 

 

Figure 12 Interaction map were lines indicate interactions. The text on the lines says how this interaction is proven. 

CHEBI:16924 is D-mannose 
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Figure 13. Interaction map were lines indicate interactions. The text on the lines says how this interaction is proven. 

CHEBI:16924 is D-mannose 
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Figure 14. Interaction map of genes from VEGAS with p-value less then 10-3. Lines indicate interactions. Several databases was used that is why there could be more than one line on each interaction.  The border color 

represent the SNP with the lowest p-value in that gene were the redder the color the lower it is. The inside color represent the p-value for the gene given by VEGAS were the bluer the color the lower. 
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Table 5. Top 3 Pathways from PARIS 

KB Name Pathway ID Pathway 

Name 

Description Simple 

Feature 

Count** 

Gene 

Count* 

KEGG 197339 has04610 Complement and coagulation cascades - 

Homo sapiens (human) 

328 3 

Gene 

Ontonology 

51644 GO:0005576 The space external to the outermost 

structure of a cell. For cells without 

external protective or external 

encapsulating structures this refers to 

space outside of the plasma membrane. 

This term covers the host cell 

environment outside an intracellular 

parasite. [GOC:go_curators] 

285 5 

NetPath 119 NetPath_9 netpath/NetPath_9_GeneReg.tsv 274 2 

* Genes that contain one or more feature with a p-value at or below 1e-08. 

** P-values of 0.005 or less. 

3.7 eQTL 

The SNPs with lowest p-value inside the genes from selection after VEGAS were used as 

input to the eQTL. The three top SNPs that are significant from GWAMA (rs710446, 

rs4253417 and rs780094) do not have any significant hits. Liver is the most relevant tissue 

because FXI is highly expressed there. Rs710446 seems to effect KNG1 expression levels to 

some extent in liver (Figure 15). Rs4253417 have nothing close to significant in liver (Figure 

16). Rs780094 have to some extent association to the expression of GCKR in liver (Figure 

17). This is also in line with the results from Annovar and RegulomeDB that both suggest that 

this SNP could be in an important region for expression.  

Three other SNPs (rs62323564 on LNX1 in liver p-value 1.27*10-4, rs2508175 on 

ALG8 in aorta adventitia p-value 5.86*10-5 and rs2508175 on KCTD21 in liver p-value 

5.91*10-5) was found to be significant with FDR (Figure 18-19). Two of the three hits are 

significant with Bonferroni correction (p-value of 6.85*10-05).  
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Figure 15. Plot of the different tissues and the corresponding p-value for cis genes of the SNP. The expression levels is 

indicated with the size of the dot for each tissue. ASAP is Advanced Study of Aortic Pathology Patients. MMed = mammary 

artery intima-media (89 samples), L= liver (212 samples), AMed = aorta media (138 samples), AAdv= aorta adventitia (133 

samples) and H = heart (127 samples). 
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Figure 16. Plot of the different tissues and the corresponding p-value for cis genes of the SNP. The expression levels is 

indicated with the size of the dot for each tissue. ASAP is Advanced Study of Aortic Pathology Patients. MMed = mammary 

artery intima-media (89 samples), L= liver (212 samples), AMed = aorta media (138 samples), AAdv= aorta adventitia (133 

samples) and H = heart (127 samples). 
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Figure 17. Plot of the different tissues and the corresponding p-value for cis genes of the SNP. The expression levels is 

indicated with the size of the dot for each tissue. ASAP is Advanced Study of Aortic Pathology Patients. MMed = mammary 

artery intima-media (89 samples), L= liver (212 samples), AMed = aorta media (138 samples), AAdv= aorta adventitia (133 

samples) and H = heart (127 samples). 
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Figure 18. Plot of the different tissues and the corresponding p-value for cis genes of the SNP. The expression levels is 

indicated with the size of the dot for each tissue. ASAP is Advanced Study of Aortic Pathology Patients. MMed = mammary 

artery intima-media (89 samples), L= liver (212 samples), AMed = aorta media (138 samples), AAdv= aorta adventitia (133 

samples) and H = heart (127 samples). 
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Figure 19. Plot of the different tissues and the corresponding p-value for cis genes of the SNP. The expression levels is 

indicated with the size of the dot for each tissue. ASAP is Advanced Study of Aortic Pathology Patients. MMed = mammary 

artery intima-media (89 samples), L= liver (212 samples), AMed = aorta media (138 samples), AAdv= aorta adventitia (133 

samples) and H = heart (127 samples). 
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3.8 miRNA binding prediction 

The top two genes (KNG1 and FXI) were analyzed regarding their targeting by miRNAs 

through using a miRNA prediction algorithm. Since rs780094 is substantially weaker 

associated with FXI, it was excluded from the analysis. The gene KNG1 did not have any 

miRNA that passed through the prediction algorithm. FXI have several miRNA with binding 

prediction (Table 6). Some of them were already validated (Salloum-Asfar et al. 2014) and 

were therefore left out, except for miR-181a-5p as it worked as a positive control.  

 

Table 6. miRNA passing prediction algorithm. Predicted to bind to accordingly with MirWalk outcome in methods. 

#Algorithms: The number of algorithms predicted to bind from MirWalk 2 ordered as stated in Binding column. TargetScan 

context+ score (Friedman et al. 2009). miRanda total score (Enright et al. 2003). SVR: miRSVR score (Betel et al. 2010). 

MirWalk number of algorithms predicting binding to 5’ region. Tarbase miTG score (Vlachos et al. 2015). Green indicates 

best value of the 5 SNPs for that prediction tool. Blue is already tested miRNA (Salloum-Asfar et al. 2014). 

miRNA Binding  #Algorithms TargetScan miRanda SVR MirWalk1 Tarbase 

hsa-miR-15a-5p 3' and 

promoter 

6,3 -0.114 145 -0.1365 5 0.46 

hsa-miR-15b-5p 3' and 

promoter  

5,3 -0.114 149 -0.1365 5 0.464 

hsa-miR-145-5p 3' and 

promoter 

7,2 -0.287 155 -1.1535 6 0.751 

hsa-miR-150-5p 3' and 

promoter 

6,4 -0.111 140 -0.2513 5 0.637 

hsa-miR-424-5p 3' and 

promoter 

7,2 -0.133 157 -0.1338 5 0.555 

hsa-miR-181a-5p 3', 5' and 

promoter 

6,3,2 -0.047 145 -0.3645 6 0.515 

hsa-miR-16-5p 

3’ and 

promoter 

6,3  -0.114 146 -0.129 5 0.464 

hsa-miR-23a-3p 

3’ and 

promoter 

5, 2 -0.073 140 -0.6707 5 0.664 
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3.9 Luciferase reporter assay 

The miRNA miR-145, miR-181a from the miRNA prediction step and a scrambled miRNA 

were tested for expression effects on a vector with the FXI 3’ UTR region with a Luciferase 

reporter assay. The concentration of miRNA was 10 nM and the amount of vector was 100 ng 

when transfecting the cells. The samples from these experiments had low luminescence for 

the FXI vector. We believe that the transfection was at fault. Therefore an increase of miRNA 

and FXI vector was preformed to get a better transfection. The samples with the low 

luminescence were excluded. The luminescence from these experiments can be seen in 

Supplemental Table 8.  

 When increasing the miRNA concentration to 20 nM and the amount of vector to 400 

ng a stronger luminescence signal was detectable. Four replications were conducted for each 

of the six combinations. From Figure 20 we can see that the miR-145 and miR-181 have a 

lower luminescence mean than the scrambled when the vector carrying the luminescence is 

the vector with the FXI 3’ UTR region. This is not the case when the vector carrying the 

luminescence is the vector without the FXI 3’ UTR region. It should be noticed that the 

standard error of the mean is a lot bigger for the empty vector compared to the FXI vector.  
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Figure 20. Column plot of the normalized mean value of the luminescence from the luciferase reporter assay. A total of four 

samples of each combinations were produced and used. Values are normalized with the mean value of scrambled (SCR) 

miRNA for respective vector. Error bars indicate the standard error of the mean value. Only values from samples were 

miRNA concentration are 20 nM and the amount of vector are 400 ng are included. For raw luminescence values se 

Supplement Table 7. EV is the empty vector, FXI is the vector with the FXI 3’ UTR region insert, 145 is the miR-145 mimic, 

181 is the miR-181 mimic and SCR is the scrambled miRNA.  
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Chapter 4 Discussion  

Elevated levels of FXI levels in plasma have been associated with venous thrombosis (Meijers 

et al. 2000) and ischemic stroke (Yang et al. 2006), which are both severe diseases that could 

potentially be fatal. Recent studies have identified common SNPs, both within the FXI gene 

(Bezemer et al. 2008, Li et al. 2009), and within the KNG1 gene (Sabater-Lleal et al. 2012) 

that are associated with FXI levels. But the regulatory mechanisms are not fully understood 

and the studies need to be extended with a meta-analysis to increase power. We therefore 

present a meta-analysis of GWAS data conducted in European-ancestry individuals, aimed to 

find new regulatory mechanisms for FXI levels and functionally annotate the findings.  

Our findings show three loci (located in chromosome two, three and four) with SNPs 

passing the genome wide significant threshold. The SNPs with lowest p-value in each of the 

loci are rs710446 (chromosome three), rs4253417 (chromosome four) and rs780094 

(chromosome two). The combination of eQTL, pathway analyses, gene association and 

functional annotations indicate that the most plausible candidate genes for these regions are 

KNG1 (rs710446), FXI (rs4253417) and GCKR (rs780094).  

The KNG1 gene encodes the high-molecular-weight kininogen (HK) that is part of the 

contact pathway with FXI, FXII and plasma prekallikrein (Colman and Schmaier 1997). FXI 

circulating in blood is almost always in a complex with HK, and HK deficiency has been 

associated with low FXI levels (Maas et al. 2011). This was also indicated by the interaction 

map in our pathway analysis.  

The SNP with lowest p-value in the KNG1 locus (Rs710446) is located in an exon, 

causing an amino acid exchange. Therefore the amino acid could change the activity that this 

protein has and in turn change the FXI levels in blood. But from the eQTL we can also see 

some evidence (not significant) that the SNP changes the expression of KNG1. Therefore we 

have evidence for both theories. The one that is the underlying cause of the association to FXI 

levels cannot be concluded. It is plausible that both theories can be present at the same time 

and that is causing the association. From the gene association we can see that KNG1 is 

probably the gene of interest in this loci. This SNP is close to ADIPOQ that earlier has been 

associated with cardiovascular diseases (see methods). Association analysis between 

rs710446 and adiponectin levels showed that there was no significant association between the 

two. Rs710446 has been associated with activated partial thromboplastin time (aPTT) in other 
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studies (Houlihan et al. 2010). This supports our results because aPPT reflects the function of 

the intrinsic coagulation pathway, which FXI is a part of.  

The SNP with the lowest p-value in chromosome 4 is rs4253417 and it is located in an 

intron of the FXI gene, which encodes for the coagulation factor XI. Rs4253417 has no 

indication of changing the expression from the functional annotation or the eQTL. The reason 

why this SNP is associated with FXI level could be that it affects some post-transcriptional 

regulation factors. This will not be detected on the eQTL because it only measures the mRNA 

levels (transcriptional levels). This was not further investigated in our analyses. An expansion 

of the eQTL looking for trans-elements could also be done to answer if it actually effects 

trans-elements. From the gene association analysis, we found several genes (FXI, FXI-AS1 

and/or KLKB1) that were associated in this region (chromosome four). The FXI-AS1 is the 

anti-sense to FXI and KLKB1 encodes Kallikrein B, Plasma (Fletcher Factor) 1, which 

interacts directly with KNG1 that then interacts with FXI according to the pathway analysis.  

Finally, the SNP with the lowest p-value in the GCKR locus (Rs780094) is located in 

an intronic region of GCKR. The GCKR gene encodes for a glucokinase (hexokinase 4) 

regulator. The GCKR loci has been associated with FVII levels (Smith et al. 2010) and many 

more, but this is the first time that the GCKR loci has been significantly associated with FXI 

levels. From the functional annotation we got evidence that this SNP (Rs780094) changes the 

expression (strong enhancer) of nearby genes. The eQTL shows that this SNP (Rs780094) 

changes the expression of GCKR but the p-value was not significant when corrected with 

FDR. Even if the eQTL is not significant enough to be significant after FDR correction there 

is evidence from two independent sources. The gene association rank GCKR high in this loci, 

but also SNX17. When looking at the regional plot we see that there is a SNP (rs4665972) 

with low p-value in this gene. That could be why SNX17 is ranked so highly. Rs4665972 and 

Rs780094 are highly linked and because rs780094 has approximately a two-fold lower p-

value, we believe that the other SNP only ‘hitchhiked’ to popularity and is of minor 

importance.  

The three significant SNPs rs710446 (KNG1 gene), rs4253417 (FXI gene) and 

rs780094 (GCKR) have high heterogeneity. We investigated if there was one cohort that was 

responsible and if it was because of non-functional versus functional measurements of the 

phenotype. But none of this theory holds, and the underlying cause of this is more 

complicated and remains unknown. The three top SNPs were significant in the replication set 

and therefore further investigations of the heterogeneity was deemed unnecessary.  
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 We see that our gene/SNP contains information that describes cardiovascular disease 

from the pathway analysis. We found that it describes the complement and coagulation 

cascades for Homo sapiens (PARIS) and that some of the keywords describing our set would 

be plasma, coagulation and blood. With this we can conclude that our study have relevant data 

in it.  

 The miRNA prediction gave five miRNA with prediction to bind FXI that have not 

been previously described in relation to FXI regulation, and three already investigated 

miRNAs (Salloum-Asfar et al. 2014). No miRNA was predicted to bind to KNG1 following 

the scoring algorithm created (see methods). The miRNA with best score from most 

algorithms (5 of 6, Table 6) used was has-miR-145-5p.  

Has-miR-145-5p was then validated with a luciferase reporter assay. The mean 

luminescence did increase to desired amount (Figure 20). The results shows that when miR-

145-5p and miR-181-5p (positive control) are present with the FXI vector a lower mean 

luminescence can be found compared to a scrambled (negative control). These results indicate 

that miR-145-5p interact with the 3’ UTR region of FXI and lower its expression. But one 

should take into consideration that only four replications were done.  

In summary, we report a meta-analysis of five GWAS studies of FXI levels in blood. 

The Meta-analysis reveals three loci (KNG1 gene, FXI gene and GCKR gene) that regulate 

FXI levels. The KNG1 and FXI loci were described before in a previous GWAS study, but 

the GCKR locus is a novel finding. For the SNP with lowest p-value in the GCKR gene locus 

(rs780094) there is evidence that it changes the expression of GCKR. A miRNA prediction 

for miRNAs that can bind and regulate the FXI gene was done finding has-miR-145-5p as a 

candidate. Has-miR-145-5p was validation through a luciferase reporter assay for the FXI 

gene finding that it possibly binds and regulates the FXI gene.  

With this we have contributed to the understanding of FXI regulation, which may help 

determine risk of VTE and inspire the development of a promising medicine.  

 

4.1 Limitations 

The number of samples used in the eQTL may not be enough to produce necessary power. In 

the eQTL we look at 35 SNPs and that could make the multiple testing problem too big for 

the number of samples used to produce p-values significant after correction to multiple 

testing.  
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The high heterogeneity in the discovery set for some SNPs is high and may hide 

significant SNPs or produce false positives in our set. 

All look-ups from databases are dependent on what is currently available. There is a 

possibility that relevant data is not there or that the data is not completely accurate.  

The luminescence reporter assay only contains four replications. A bigger sample size 

would increase the trustworthiness of the experiment.  
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Appendix 

 

 

Supplemental Script 1. EasyQC script 

##############################################################################################

################### 

##### EasyQC-script to perform study-level and Meta-level QC on imputed 1000G data 

##### EasyQC version: 9.0 

##### Programmer: Thomas Winkler, 2014-09-22 

##### Contact: thomas.winkler@klinik.uni-regensburg.de 

##### Edited by Niklas Handin 2015-01-26 

##############################################################################################

################### 

### Please DEFINE here format and input columns of the following EASYIN files 

DEFINE --pathOut /media/disken/NikHan/easyQC/Results/ 

  --strMissing NA 

  --strSeparator , 

  --acolIn 

Markername;Chr;pos;NonEffect_allele;Effect_allele;Freq;Beta;Se;Pval;Ntotal;Imp_info;Imputation

_type 

  --acolInClasses 

character;character;integer;character;character;numeric;numeric;numeric;numeric;integer;numeri

c;numeric 

  --acolNewName 

SNP;CHR;POS;OTHER_ALLELE;EFFECT_ALLELE;EAF;BETA;SE;PVAL;N;IMPUTATION;IMPUTATION_TYPE 

 

## Please DO NOT CHANGE --acolNewName values because these reflect the column names used 

throughout the script 

## If the study used different column names, please amend the respective value at --acolIn, 

the column will then  

## be automatically renamed to the respective --acolNewName value 

### Please DEFINE here all input files: 

EASYIN --fileIn /media/disken/NikHan/Orginal/FXI-1 

### FXI-2 FXI-3 have differences for some params 

EASYIN  --fileIn /media/disken/NikHan/Orginal/FXI-2 

        --acolIn Markername;Chromosome;Position;Non.Effect Allele;Effect 

Allele;Freq;Beta;SE;p.value;N_total;Imp_info;Imputation 
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#Markername,Chromosome,Position,Effect Allele,Non-Effect 

Allele,Freq,Beta,SE,N_total,Imputation,Imp_info,p-value 

   

EASYIN  --fileIn /media/disken/NikHan/Orginal/FXI-3 

        --acolIn 

Markername;Chromosome;Position;NonEffectAllele;EffectAllele;Freq;Beta;SE;pval;N_total;Imp_info

;Imputation 

#Markername,Chromosome,Position,EffectAllele,NonEffectAllele,Freq,Beta,SE,N_total,Imputation,I

mp_info,pval 

 

### FXI-4 adhers to the default format 

EASYIN  --fileIn /media/disken/NikHan/Orginal/FXI-4 

  --acolIn 

Markername;Chromosome;Position;NonEffectAlleleA2;EffectAlleleA1;FreqA1;Beta;SE;Pvalue;Ntotal;I

mp_info;Imputation 

#Strand,Markername,Chromosome,Position,EffectAlleleA1,NonEffectAlleleA2,FreqA1,Beta,SE,Pvalue,

Ntotal,Imputation,Imp_info 

   

### FXI-5 has differences for some params   

EASYIN  --fileIn /media/disken/NikHan/Orginal/FXI-5 

  --acolIn 

Markername;Chromosome;Position;NonEffectAlleleA2;EffectAlleleA1;FreqA1;Beta;SE;Pvalue;Ntotal;I

mp_info;Imputation 

#Strand,Markername,Chromosome,Position,EffectAlleleA1,NonEffectAlleleA2,FreqA1,Beta,SE,Pvalue,

Ntotal,Imputation,Imp_info 

 

### FXI-6 has differences for some params 

EASYIN  --fileIn /media/disken/NikHan/Orginal/FXI-6 

        --strSeparator TAB 

  --acolIn 

Markername;Chromosome;Position;NonEffectAllele;EffectAllele;FREQ;Beta;SE;P.value;N_total;Imp_i

nfo_r2;Imputation 

#Markername    Chromosome       Position EffectAllele    NonEffectAllele FREQ    Beta    SE     

P-value  N_total Imputation      Imp_info_r2 

##############################################################################################

################### 

## EASYQC Scripting interface: 

START EASYQC 

#################### 

## 1. Sanity checks:  
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CLEAN --rcdClean is.na(EFFECT_ALLELE)&is.na(OTHER_ALLELE) --strCleanName 

numDrop_Missing_Alleles 

CLEAN --rcdClean is.na(PVAL) --strCleanName numDrop_Missing_P 

CLEAN --rcdClean is.na(BETA) --strCleanName numDrop_Missing_BETA 

CLEAN --rcdClean is.na(SE) --strCleanName numDrop_Missing_SE 

CLEAN --rcdClean is.na(EAF) --strCleanName numDrop_Missing_EAF 

CLEAN --rcdClean is.na(N) --strCleanName numDrop_Missing_N 

CLEAN --rcdClean is.na(IMPUTATION) --strCleanName numDrop_Missing_Imputation 

CLEAN --rcdClean PVAL<0|PVAL>1 --strCleanName numDrop_invalid_PVAL 

CLEAN --rcdClean SE<=0|SE==Inf|SE>=10 --strCleanName numDrop_invalid_SE 

CLEAN --rcdClean abs(BETA)>=10 --strCleanName numDrop_invalid_BETA 

CLEAN --rcdClean EAF<0|EAF>1 --strCleanName numDrop_invalid_EAF 

CLEAN --rcdClean IMPUTATION<0 --strCleanName numDrop_invalid_IMPUTATION 

## This is important for data reduction, because some studies report an unnecessary large 

number of significant digits 

EDITCOL --rcdEditCol signif(EAF,4) --colEdit EAF 

EDITCOL --rcdEditCol signif(BETA,4) --colEdit BETA 

EDITCOL --rcdEditCol signif(SE,4) --colEdit SE 

EDITCOL --rcdEditCol signif(PVAL,4) --colEdit PVAL 

 

#################### 

## 2. Prepare files for filtering and apply minimum thresholds:  

## Exclude monomorphic SNPs: 

CLEAN --rcdClean (EAF==0)|(EAF==1) --strCleanName numDrop_Monomorph 

## Create column with minor allele count: 

ADDCOL --rcdAddCol signif(2*pmin(EAF,1-EAF)*N,4) --colOut MAC 

## If you do not want to apply filters at this stage, please comment out the following rows or 

amend the  

## filter thresholds according to your needs.  

## Change 

CLEAN --rcdClean N<30 --strCleanName numDrop_Nlt30 

CLEAN --rcdClean MAC<=6 --strCleanName numDrop_MAClet6 

CLEAN --rcdClean (!is.na(IMPUTATION))&IMPUTATION<0.3 --strCleanName numDrop_lowImpQual 

#################### 

#### 3. Harmonization of allele coding (I/D) 
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## The aim of this step is to compile uniform allele codes A/C/G/T or I/D from different 

versions f given alleles 

HARMONIZEALLELES  --colInA1 EFFECT_ALLELE  

     --colInA2 OTHER_ALLELE 

#################### 

## 4. Harmonization of marker names (compile 'cptid') 

 

CREATECPTID --fileMap 

/media/disken/NikHan/easyQC/rsmid_map.1000G_ALL_p1v3.merged_mach_impute.v1.txt.gz 

   --colMapMarker rsmid 

   --colMapChr chr 

   --colMapPos pos 

   --colInMarker SNP 

   --colInA1 EFFECT_ALLELE 

   --colInA2 OTHER_ALLELE 

   --colInChr CHR 

   --colInPos POS    

## TO DO:  Define the path to the reference file 

'rsmid_map.1000G_ALL_p1v3.merged_mach_impute.v1.txt.gz' at --fileMap.   

##    The mapping file can be found on our website www.genepi-

regensburg.de/easyqc. 

##    In case CHR or POS are not given in the input files, please remove "--

colInChr CHR" and "--colInPos POS" from the  

##    command and remove "CHR;POS;" from --acolIn and --acolNewName as well 

as the respective "character;integer;" 

##    from --acolInClasses  

#################### 

## 5.Filter duplicate SNPs 

## This will count duplicates and throw out the SNP with the lower sample size: 

CLEANDUPLICATES --colInMarker cptid  

    --strMode samplesize  

    --colN N     

## The duplicates are written to the output in a separate file "*duplicates.txt" 

#################### 

## 6. AF Checks 

### TO DO:  Define the path to the reference file 

'allelefreq.1000G_[ANCESTRY]_p1v3.impute_legends.noMono.noDup.noX.v2.gz' at --fileRef: 
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###   Please use the reference file ancestry that matches the ancestry of the study 

MERGE  --colInMarker cptid 

  --fileRef 

/media/disken/NikHan/easyQC/allelefreq.1000G_EUR_p1v3.impute_legends.noMono.noDup.noX.v2.gz 

   --acolIn cptid;a0;a1;eaf  

   --acolInClasses character;character;character;numeric 

  --strRefSuffix .ref 

  --colRefMarker cptid 

  --blnWriteNotInRef 1 

 

ADJUSTALLELES  --colInA1 EFFECT_ALLELE  

    --colInA2 OTHER_ALLELE  

    --colInFreq EAF 

    --colInBeta BETA 

    --colRefA1 a0.ref 

    --colRefA2 a1.ref 

    --blnMetalUseStrand 1 

    --blnRemoveMismatch 1 

    --blnRemoveInvalid 1 

 

## All mismatches will be removed (e.g. A/T in input, A/C in reference)    

AFCHECK --colInFreq EAF 

  --colRefFreq eaf.ref 

  --numLimOutlier 0.2 

  --blnPlotAll 0 

 

## blnPlotAll 0 causes that only outlying SNPs with |Freq-Freq.ref|>0.2 will be plotted (way 

less computational time) 

#################### 

## 7. Rearrange columns and Write CLEANED output 

GETCOLS --acolOut 

cptid;SNP;EFFECT_ALLELE;OTHER_ALLELE;EAF;IMPUTATION;IMPUTATION_TYPE;BETA;SE;PVAL;N;MAC 

WRITE --strPrefix CLEANED.  

  --strMissing .  

  --strMode gz 

#################### 
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## 8.  Plot Z versus P 

PZPLOT --colBeta BETA  

  --colSe SE  

  --colPval PVAL 

#################### 

## 9.  QQ plot 

QQPLOT --acolQQPlot PVAL 

  --numPvalOffset 0.05 

  --strMode subplot 

#################### 

## 10. Summary Stats post-QC 

CALCULATE --rcdCalc max(N,na.rm=T) --strCalcName N_max 

GC --colPval PVAL --blnSuppressCorrection 1 

RPLOT --rcdRPlotX N_max 

  --rcdRPlotY Lambda.PVAL.GC 

  --arcdAdd2Plot abline(h=1,col='orange');abline(h=1.1,col='red') 

  --strAxes lim(0,NULL,0,NULL) 

  --strPlotName GC-PLOT 

#################### 

## 11. SE-N Plot - Trait transformation 

CALCULATE --rcdCalc median(SE,na.rm=T) --strCalcName SE_median 

CALCULATE --rcdCalc median(1/sqrt(2*EAF*(1-EAF)), na.rm=T) --strCalcName c_trait_transf 

RPLOT  --rcdRPlotX sqrt(N_max) 

  --rcdRPlotY c_trait_transf/SE_median 

  --arcdAdd2Plot abline(0,1,col='orange') 

  --strAxes zeroequal 

  --strPlotName SEN-PLOT  

STOP EASYQC 

##############################################################################################

################### 
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Supplemental Script 2. Script to find a substitution SNP with the highest LD 

#!/bin/sh  

  

# A simple script to map a rs number to a reference database. 

# if it doesn't exist in the database it will look for the best approximation to that rs 

(Accordingly to LD) 

# example call: 

#  ./Prox.sh -r /media/disken/MariaS/refpanel_1000G -b 100 -i small-snp-list.txt -m map2.txt -

o myout.txt -c 0.4 

# -r the reference pathway separate files for every chromosome (should look like *.chr[1-22].* 

were '*' is any number of characters) 

# -b How many kb to use 

# -i input file with the SNPs and the chromosomes 

# -m the database with desired rs numbers 

# -o output file 

# -c cut-off for R2. SNP with lower value then this will not be examined. (The SNP with 

highest R2 will be chosen) 

  

### Functions  

Print_temp_chrSNPfiles () 

{  

tr -d '\r' < $1 | awk '  

      BEGIN {  

 FS="\t";   

 OFS="\t";  

   }  

   NR==1 {  

     for (f=1; f<=NF; f++) {  

  if (tolower($f) == "chr") { 

   chr=f;  

  } 

    if (tolower($f) == "snp") { 

   SNP=f;  

    } 

    }  

    if (length(chr) == 0) {  

    print "Could not find column chr";  

    exit;  

    }  

    if (length(SNP) == 0) {  

    print "could not find column SNP";  

    exit;  

    }  

     next  

   }  

   {   

   if ($chr ~ /^[0-9]{1,2}/ && $SNP ~/^rs.*/) { 

   print $SNP >> "temp/chr"$chr".temp"  

   } 

   else { 

   print "Syntax error in input file", "chr=" $chr, "SNP=" $SNP; 
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   } 

   }  

' 

}  

while [ "$1" != "" ]; do  

    case $1 in  

        -r | --reference )   shift  

                                reference=$1  

                                ;;  

        -i | --inputfile )   shift  

        inputfile=$1  

                                ;;  

        -m | --mapfile )   shift  

        mapfile=$1  

                                ;;  

  -o | --outfile )   shift  

        outFile=$1  

                                ;;  

  -c | --cutoff )    shift  

        cutoff=$1  

                                ;;  

        -b | --kb )     shift  

         kb=$1  

                                ;;  

    esac  

    shift  

done  

DIRECTORY=.; 

rm -rf temp 

mkdir -p temp 

file "$mapfile" | grep 'Zip archive data' &> /dev/null 

if [ $? == 0 ]; then 

 { 

 echo "Map file is ziped"; 

 unzip "$mapfile" -d temp/ > /dev/null; 

  

 if [ $(ls -1 temp | wc -l) -gt 1 ]; then 

  { 

  echo "Mapfile is multiple files. script will exit"; 

  exit; 

  } 

 elif [ $(ls -1 temp | wc -l) == 1 ]; then 

  { 

  mapfile="temp/$(ls temp)" 

  } 

 else 

  { 

  echo "internal error"; 

  exit; 

  } 

 fi 
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} 

fi 

  

#Do alot of cheeks!!!  

#if reference is file take the path to the file  

  

Print_temp_chrSNPfiles "$inputfile";  

echo "Created temp SNP files"; 

count=0; 

for i in $DIRECTORY/temp/chr*.temp  

do  

  

 filename=$(basename "$i"): 

 filename_no_ext="${filename%.*}"; 

 PathtoSpecificCHR="${reference}/*${filename_no_ext}.*";     

 finalRefPath=$(ls $PathtoSpecificCHR);  

 echo "$finalRefPath"; 

 while read SNP; do 

 count=$((count + 1)); 

 (plink --vcf "$finalRefPath" --r2 --ld-snp "$SNP" --ld-window-kb "$kb" --ld-window 

99999 --out temp/temp"$filename_no_ext""$SNP" | grep 'No valid variants specified by' &> 

/dev/null; 

 if [ $? == 0 ]; then 

 echo "$SNP failed in plink" >> "$outFile.error" 

 fi 

 )&#>/dev/null 

 if [ $count == 5 ]; then 

 { 

   wait;  

   count=0;  

 } 

 fi 

 done <$i 

done  

 wait; 

 echo "Done with all ld files"; 

 echo "old_rs-no new_rs-no R2" >> "$outFile.out"; 

 echo "old_rs-no">> "$outFile.notMaped"; 

for i in $DIRECTORY/temp/*.ld 

 do 

 SortedFile=$(sort -k7 -r -n "$i"); 

 found=0; 

 SortedFile=$(echo "$SortedFile" | awk '{if ($6 != "") print $0}'); 

 SortedFile=$(echo "$SortedFile" | awk '{if ($6 != ".") print $0}'); 

 SortedFile=$(echo "$SortedFile" | awk -v cutoff="${cutoff}" '{if ($7 > cutoff) print 

$0}'); 

 while read line 

  do 

  echo "$line"; 

  filename=$(basename "$i"); 

  filename_no_ext="${filename%.*}"; 
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  oldRS=$(echo "$filename_no_ext"| cut -d's' -f 2); 

  oldRS="rs${oldRS}" 

  newRS=$(echo "$line" | awk '{print $6}'); 

  newR2=$(echo "$line" | awk '{print $7}'); 

  if zgrep -q "${newRS}\s" "$mapfile"; then 

  { 

   echo "$oldRS $newRS $newR2" >> "$outFile.out"; 

   found=1; 

   break; 

  } 

  fi 

 done <<< "$SortedFile"; 

 if [ $found == "0" ]; then 

  echo "$oldRS did not have any approximation rs..."; 

  echo "$oldRS">> "$outFile.notMaped"; 

 fi 

done  

rm -r temp 

 

 

 

Supplemental Script 3. Configuration script for PARIS 

# Variations data 

VARIATION_FILENAME variations.bn 

 

# BioFilter data 

SETTINGS_DB bio-settings.cn 

 

# List the various knowledge base (by KB ID) separated by spaces 

INCLUDE_KNOWLEDGE 1 2 3 4 

 

# filename containing snp,pvalue 

DATA_SOURCE ../Input/DataSource2 

 

# Set the population ID to match the population your data is drawn 

# from so that LD patterns can be used to expand the gene boundaries. 

POPULATION EUR 

 

# Prefix used for all reports 

#REPORT_PREFIX 

 

# Single word to describe data followed by optional long description 

# which can contain spaces (no returns, though). These will be used in some of the reports. 

REPORT_NAME Test1 

 

# Loads all aliases and generates a text report containing their associations 

LOAD_ALL_ALIASES YES 

 

# Write reports in html format (not all reports support HTML formatting 

HTML_REPORTS NO 
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# Target number of features inside each bin. Paris will define bins to 

# be as close as possible to this number, but seldom will the count be exact. 

BIN_SIZE 10000 

 

# Number of permutations to be performed on each pathway. 

P_COUNT 10000 

 

# Threshold for determining the significance of a pathway (based on permutations) 

PATHWAY_SIG_THRESH 0.005 

 

# Threshold for determining if a SNP is significant. 

RESULTS_SIG_THRESH 0.00000001 

 

# How many base pair locations up and down stream do we expand gene boundaries 

GENE_BOUNDARY_EXTENSION 50000 

 

# Set the random seed used in permutations 

RANDOM_SEED 1371 

 

# ON/OFF to ignore pvalues of zero. If they aren't ignored, they will be 

# counted as insignificant 

IGNORE_PVALUES_OF_ZERO ON 

 

# ON/OFF to allow features common to multiple genes in the same pathway to 

# be counted multipe times 

ALLOW_REDUNDANT_FEATURES OFF 

 

# Columnar location used for chromosome (1-22XY 

COL_CHROMOSOME 1 

 

# Columnar location of the RS (can have rs prefix (caps or not) or just be a 

# numerical value 

COL_RSID 2 

 

# Columnar location of the pvalue to be used 

COL_PVALUE 3 

 

# The lower bound for borderline pvalues (set this to equal 

# REFINEMENT_THRESHOLD_MAX to not perform refinement) 

REFINEMENT_THRESHOLD_MIN 0.0001 

 

# The upper bound for borderline pvalues (set this to equal 

# REFINEMENT_THRESHOLD_MIN to not perform refinement) 

REFINEMENT_THRESHOLD_MAX 0.001 

 

# The number of repeteated ptests performed when a pvalue is determined to be 

# borderline 

REFINEMENT_REP_COUNT 1000 

 

# When writing pathway investigation reports, do we show all pathways or only 
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# the signficant ones? 

SHOW_ALL_ASSOCIATED_PATHWAYS OFF 

 

# User defined group file 

#USER_PATHWAY_FILE 

 

 

 

 

 

 

Supplemental Figure 1.Luciferase reporter assay vector FXI. PL10 is a constitutive promoter. The RenSP_reporter_gene is 

the gene producing the luciferase protein (synthetic renilla luciferase). FXI_3’UTR is the 3’ UTR region of FXI. The 

FXI_3’UTR is absent in the empty vector.  
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Supplemental Table 1. numSNPsIn Number of SNPs in the input. numSNPsOut: the number of SNPs in the cleaned output file after all Quality checks. Missing 

X is if the SNP had a missing value in field X 

Name numSNPsIn numSNPsOut Missing_Alleles Missing_P Missing_BETA Missing_SE Missing_EAF Missing_N Missing_Imputation 

FXI-1 22896100 18181775 0 0 0 0 0 0 0 

FXI-2 7856324 7312395 0 0 0 0 0 0 0 

FXI-3 7858383 7304354 0 0 0 0 0 0 0 

FXI-4 9119903 8653402 0 0 0 0 0 0 0 

FXI-5 9118482 8652206 0 0 0 0 0 0 0 

FXI-6 17864829 11834987 0 0 0 0 0 0 0 

 

Supplemental Table 2. Invalid_X is when the value interred in X is not possible (see methods). Monomorphic the number of Monomorphic SNPs. Nlt30: the 

number off SNPs that is in only 30 individuals. MAClet6: the number of SNPs that have MAC lesser or equal to six. lowImpQual: when the imputation quality 

is lower than 0.3.   

Name invalid_PVAL invalid_SE invalid_BETA invalid_EAF Invalid_IMPUTATION Monomorphic Nlt30 MAClet6 lowImpQual 

FXI-1 0 0 0 0 0 0 0 4031446 682850 

FXI-2 0 0 0 0 0 0 0 0 543716 

FXI-3 0 0 0 0 0 0 0 0 553816 

FXI-4 0 0 0 0 0 0 0 0 466501 

FXI-5 0 0 0 0 0 0 0 0 466276 

FXI-6 0 208616 37778 0 0 0 0 5783062 0 

 

 



 

69 

 

Supplemental Table 3. BothAllelesMissing: When both NonEffect allele and Effect_allele is missing. #_Recoded_DEL 

Name 

BothAlleles

Missing 

#_Recoded_

DEL 

Recoded_M

ACH_R 

Recoded_ 

SEQ 

Invalid_ 

Alleles 

cor_eaf.ref_

EAF numOutlier N_max 

Lambda 

PVAL.GC SE_median 

C trait 

transf 

FXI-1 0 2370 0 1161393 0 0.9986 402 7753 0.9782 0.0245 7.9120 

FXI-2 0 0 923956 0 0 0.9977 252 2992 1.0103 0.0065 1.9125 

FXI-3 0 0 925256 0 0 0.9974 238 1165 1.0023 0.0112 1.9125 

FXI-4 0 0 829421 0 0 0.9979 151 3525 1.1131 0.0132 2.1744 

FXI-5 0 0 824896 0 0 0.9965 162 640 1.0518 0.0345 2.1799 

FXI-6 0 0 1543964 0 0 0.9876 18380 734 1.0014 0.0250 2.6291 
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Supplemental Table 4 In column one stand the SNPs to investigate the I2 values. They are with the lowest p-value first. Then there is there cptID. All other 

values is there represented I2 values for that SNP. The color indicates if the value is better (Green) or worse (Red) then when all cohorts is used. Columns 4-8 

is when one cohort is left out. Indicated with Not x when x is not present. Column 9-10 is when the functional/non-functional is group together. 

rs-number cptID All cohorts Not 

FXI-1 

Not FXI-

2 

Not FXI-

3 

Not FXI-6 Not FXI-4 Non-Functional 

(FXI-1,4) 

Functional 

(FXI-2,3,6) 

rs710446 3:186459927 0.85103 0.68312 0.846085 0.831084 0.873126 0.881878 0.796892 0.788736 

rs4253417 4:187199005 0.888161 0.85746 0.813931 0.893963 0.904609 0.905612 0 0.815705 

s780094 2:27741237 0.552008 0.44773 0 0.664005 0.663237 0.572868 0 0 

rs4253421 4:187204937 0.860664 0.84329 0.771123 0.875255 0.894768 0.843852 0.717135 0 

rs76438938 3:186461524 0.797651 0.29667 0.825684 0.695803 0.845591 0.847659 0 0.342115 

rs505383 11:92249613 0.220546 0.41478 0.363102 0.399218 0.352605 0 0.728373 0 

rs2045869 12:21707920 0 0 0 0 0 0 0 0 

rs78802760 17:66163686 0 0 0 0 0 0 0 0 

rs266728 3:186523301 0.237957 0 0.332609 0.416213 0 0.394544 0.066389 0 

rs4253253 4:187158433 0.382195 0.52128 0.488142 0.496356 0.244486 0.046796 0.672989 0.363967 
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Supplemental Figure 2. The three different transformations investigated (ln, inverse and square root) and the original plotted against the data if it was normally distributed. 

The R2 value is a good value to score the different transformations.  
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Supplemental Table 5. Keywords from GRAIL when our SNPs associated with FXI levels was used as input.  

Keywords 

kallikrein 

histidine 

plasma 

bradykinin 

glycoprotein 

rich 

weight 

initiation 

matter 

heparin 

coagulation 

white 

plasminogen 

chain 

translation 

factor 

heavy 

blood 

eukaryotic 

molecular 
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Supplemental Table 6. Genes of interests and similar genes from GRAIL when all associated FXI SNPs was used as input. 

GENE GRAIL p-value SELECTED SIMILAR GENES (Rank in parantheses) 

KNG1 0.000247 KLKB1(1), FXI(13), EIF4A2(136), NRBP1(702), XAB1(758), HRG(807), PPM1G(924), CAD(1241), ZNF512(1437), ADIPOQ(1510) 

KLKB1 0.000349 KNG1(2), FXI(17), EIF4A2(237), ADIPOQ(288), ZNF512(480), PPM1G(727), GCKR(844), XAB1(1097), NRBP1(1211), CAD(1483) 

HRG 0.002322 KNG1(35), FETUB(150), KLKB1(233), PPM1G(613), EIF4A2(627), NRBP1(646), XAB1(1134), FXI(1153) 

FXI 0.002946 KLKB1(2), KNG1(12), EIF4A2(187), C2orf28(197), CYP4V2(438), PPM1G(712), CAD(733), ZNF512(847), XAB1(1064), NRBP1(1275), ZNF513(1758) 

EIF2B4 0.020076 EIF4A2(13), PPM1G(253), XAB1(584), RFC4(657), NRBP1(1373), CAD(1478) 

 

 

Supplemental Table 7. Luminecense values for samples with 400 ng of vector and 20 nM of miRNA. EV is the empty vector, FXI is the vector with the FXI 3’ 

UTR region insert, 145 is the miR-145 mimic, 181 is the miR-181 mimic and SCR is the scrambled miRNA. 
EV+SCR EV+145 EV+181 FXI+SCR FXI+145 FXI+181 

65 707,60 24 825,60 51 918,10 57 763,70 28 462,30 39 587,60 

289 346,00 55 056,10 458 399,00 30 208,20 22 961,30 21 963,10 

242 660,00 127 475,00 189 252,00 19 135,10 30 551,20 15 225,60 

321 153,00 527 904,00 755 968,00 50 927,70 29 543,80 37 381,00 
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Supplemental Table 8. Luminecense values for samples with 100 ng of vector and 10 nM of miRNA. EV is the empty vector, FXI is the vector with the FXI 3’ 

UTR region insert, 145 is the miR-145 mimic, 181 is the miR-181 mimic and SCR is the scrambled miRNA. 

EV+SCR EV+145 EV+181 FXI+SCR FXI+145 FXI+181 

128 932,00 94 949,80 150 312,00 5 932,19 12 101,00 5 758,09 

133 035,00 98 241,10 95 315,60 7 042,88 8 508,97 6 720,17 

152 230,00 86 128,10 89 223,00 9 322,67 16 110,40 8 299,30 

131 072,00 453 366,00 188 907,00 7 084,41 11 175,00 17 490,20 

154 869,00 574 066,00 270 990,00 15 650,80 16 155,00 26 649,50 

293 633,00 802 536,00 303 455,00 17 324,90 15 361,30 18 201,40 

 

 


