Matematisk processmodellering och effektivitetsrekommendation för patientflöden på Mälaren Hästklinik AB

ANDREA STRAND
Matematisk processmodellering och effektivitetsrekommendation för patientflöden på Mälaren Hästklinik AB

ANDREA STRAND

Examensarbete inom teknik: Tillämpad matematik och industriell ekonomi (15 hp)
Civilingenjörsutbildning i industriell ekonomi (300 hp)
Kungliga Tekniska högskolan 2015
Handledare på KTH: Boualem Djehiche, Anna Jerbrant
Examinator: Boualem Djehiche

TRITA-MAT-K 2015:28
ISRN-KTH/MAT/K--15/28--SE

Royal Institute of Technology
SCI School of Engineering Sciences
KTH SCI
SE-100 44 Stockholm, Sweden
URL: www.kth.se/sci
Abstract

Patient flow related problems are a medial attention phenomenon, however, the debate is mainly focused on human healthcare (Delin, 2014). Through a focus on veterinary care and more specifically lameness exams on the equine vet clinic Mälaren Hästklinik AB this report intends to expand the scope of examination of patient flows. Mälaren Hästklinik is one of the leading clinics in Sweden and only within the department of lameness examination the clinic receives about 18 horses per day (Intervju, 2015). A primary problem for this vet clinic is the lack of a patient flow model and therefore it is common that customers have to queue upon arrival to the clinic. The main purpose of this project is to develop a clear picture of the patient flow through a mathematical process model with accompanying time for process throughput. A secondary target, an efficiency recommendation, is added based on the results from the mathematical process model.

The mathematical process modelling is done via two separate models, both of which are based on Markov processes and queuing theory. The first model is based on a reality adaptation to a Markov queuing system, M/M/1- systems, through predetermined assumptions about the flow characteristics. The second model is an “accurate reality model” with no predetermined assumptions. It is most common that similar but fictional mathematical process modelling problems in textbooks are formulated by the assumptions that the reality has markov properties (Enger & Gran Dell, 2014). The choice of project methodology aims to examine and thus contribute to an illustrative example of what can happen with the results if the same assumptions are made on a reality-rooted problem. Therefore, the methodology has a side objective in addition to delivering the desired results of the project goal.

The results of the modelling with M/M/1- systems prove to be illogical while the “accurate reality model” demonstrates valid results. The result from the latter model generates a result in line with the project objective.

Finally, a recommendation is given to the clinic in form of an efficiency project as a result of the secondary project objective. The proposal compiles relevant business management models and lean theories and is adapted to the clinic's operations.
**Sammanfattning**


Resultaten från modelleringen med M/M/1-system visar sig vara orimliga emedan resultaten för den verklighetsanpassade modelleringen visades verklighetsriktiga. Den senare modellen genererade följaktligen ett resultat i enlighet med projektmålet.

Slutligen ges en rekommendation till kliniken i form av ett effektiviseringsprojekt som ett resultat av det sekundära projektmålet. Rekommendationen sammanställer relevanta business management- och leanteorier och är anpassat till klinikens verksamhet.
Innehållsförteckning

1 INTRODUKTION.......................................................................................................................7
  1.1 HÅLTUTREDNINGSPROCESSER INOM VETERINÄRVÅRDEN ........................................7
    1.1.1 Processflödet för håltutredningen .................................................................................8
    1.1.2 Definition av processer inom flödet ............................................................................11
    1.1.3 Patienterna ..................................................................................................................11
    1.1.4 Veterinärerna ..............................................................................................................12

2 PROBLEMFORMULERING OCH MÅL ......................................................................................13

3 MATEMATISK TEORI.............................................................................................................14
  3.1 SANNOLIKHETSTEORI .....................................................................................................14
    3.1.1 Nomenklatur .............................................................................................................14
    3.1.2 Frekvens länkat till sannolikhet ................................................................................15
    3.1.3 Kolmogorovs axiomsystem .......................................................................................16
    3.1.4 Betingad sannolikhet ...............................................................................................16
    3.1.5 Oberoende händelser ...............................................................................................16
    3.1.6 Sannolikhetsfunktion, täthetsfunktion och fördelningsbegreppet ......................17
    3.1.7 Normalfördelning ......................................................................................................18
    3.1.8 Poissonfördelning .....................................................................................................19
    3.1.9 Exponentialfördelning ...............................................................................................20
    3.1.10 Likformig fördelning ..............................................................................................21
  3.2 MARKOVPROCESSER .....................................................................................................21
    3.2.1 Övergångssannolikheter .........................................................................................22
    3.2.2 Absorption ...............................................................................................................23
  3.3 KÖTEORI ..........................................................................................................................24
    3.3.1 Betecnkningar ..........................................................................................................25
    3.3.2 Littles formel .............................................................................................................25
    3.3.3 Markovska köer .......................................................................................................27
    3.3.4 Jacksonnätverk ........................................................................................................29

4 METOD ...................................................................................................................................30
  4.1 DATAINSAMLING ..........................................................................................................30
  4.2 BEGRÄNSNINGAR OCH BESTÄMMELSER ....................................................................30
  4.3 ANTAGANDEN ...............................................................................................................31
  4.4 BESKRIVNING AV PROGRAMVARAN ...........................................................................32
  4.5 STANDARDISERING AV BOKNINGSTIDER GENOM GANTT-MODELLERING ................32
  4.6 MATEMATISK MODELLERING .......................................................................................34
    4.6.1 Modellering av flödet med M/M/1-system ................................................................36
    4.6.2 Verkligshetsanpassad modellering .........................................................................48

5 RESULTAT .............................................................................................................................55
  5.1 RESULTAT FRÅN MODELLERINGEN AV FLÖDET MED M/M/1-SYSTEM ....................55
    5.1.1 Uppdelning av flödet ...............................................................................................55
    5.1.2 Simulering av initialfasen .......................................................................................56
    5.1.3 Beräkning av bilddiagnosystemet modellerat som tre M/M/1-system ...............59
    5.1.4 Simulering av den totala processen ............................................................61
  5.2 RESULTAT FÖR DEN VERKLIGHETSBASERADE MODELLERINGEN AV FLÖDET ..........62
    5.2.1 Simulering av initialfasen .......................................................................................62
    5.2.2 Beräkningar på bilddiagnosystemet .......................................................................63
    5.2.3 Simulering av den totala processen .......................................................................64
  5.3 SAMMANSTÄLLNING AV RESULTATEN FRÅN DEN FörSTA OCH DEN ANDRA MODELLEN .66
6 DISKUSION OCH SLUTSATSER ......................................................................................... 69
  6.1 DATALEVANS ........................................................................................................... 69
  6.2 ANALYS AV RESULTATET .......................................................................................... 70
  6.3 SLUTSATSER ............................................................................................................. 74

7 REKOMMENDATION TILL KLINIKEN ............................................................................ 76
  7.1 RELEVANT TEORI ...................................................................................................... 76
    7.1.1 Lean ..................................................................................................................... 77
    7.1.2 Agil projektledning ............................................................................................. 78
    7.1.3 Total Quality Management ............................................................................... 79
    7.1.4 Operations strategy - teori .............................................................................. 79
    7.1.5 Value stream mapping ....................................................................................... 79
    7.1.6 Open door policy .............................................................................................. 79
    7.1.7 5S ......................................................................................................................... 80
    7.1.8 Japansk sjö ......................................................................................................... 80
  7.2 NULÄGESANALYS .................................................................................................... 81
  7.3 FÖRBÄTTRINGSÅTGÄRDER: EFFEKTIVISERINGSPROJEKTET ........................................ 82
    7.3.1 Implementering av kaizen ................................................................................. 83
    7.3.2 Struktur för Operations management ................................................................. 83
    7.3.3 Förbättring genom Value Stream Mapping ....................................................... 83
    7.3.4 Implementering av open door policy ................................................................. 83
    7.3.5 Utvärdering av resurser .................................................................................... 84
  7.4 ADMINISTRATION AV PROJEKTET ........................................................................ 84
    7.4.1 Kommunikationsplan ......................................................................................... 84
    7.4.2 Implementering av Agil projektledning och scrummöten ................................... 85

8 SLUTORD ........................................................................................................................... 86

9 LITTERATURFÖRTECKNING ......................................................................................... 87
Figurförteckning och tabellförteckning

**Figur 1. Håltutredningens processflöde** .......................................................... 9
**Figur 2. Exempelbild på en normalfördelning** ...................................................... 18
**Figur 3. Exempelbild på en Poissonfördelning** .................................................... 19
**Figur 4. Exempelbild på en exponentialfördelning** .............................................. 20
**Figur 5. Exempelbild för en likformig fördelning** .............................................. 21
**Figur 6. Exempelbild för en övergångsgraf** ..................................................... 22
**Figur 7. Exempelbild av system av absorberande delkedjor** .............................. 24
**Figur 8. Konceptuell bild för den bärande idén barom köteori** ........................... 24
**Figur 9. Ett generellt exempel på ett Jacksonätverk** ........................................ 29
**Figur 10. GANTT-schema för framtaganden av bokningsintensiteter** ............... 33
**Figur 11. GANTT-schema fortsättnings** ............................................................... 33
**Figur 12. Konceptuell bild av Modell 1** ............................................................. 36
**Figur 13. Övergångsgraf för Modell 1** ............................................................... 38
**Figur 14. Övergångsmatris för Modell 1** ............................................................. 39
**Figur 15. Initialfasen som tillsammans med bilden avssystemet bildar en tvädelad process för Modell 139
**Figur 16. Översiktsbild av initialfasen med sannolikheter justerade till ett medelvärde för Modell 1** .......................................................... 40
**Figur 17. Närbild av bilden avssystemet för Modell 1** ........................................ 45
**Figur 18. Konceptuell bild av den verkligheitsbaserade modelleringen, Modell 2** .............. 49
**Figur 19. Övergångsgraf för den verkligheitsbaserade modellen, Modell 2** ............. 49
**Figur 20. Övergångsmatrisen för den verkligheitsbaserade modelleringen, Modell 2** ........ 50
**Figur 21. Närbild av bilden avssystemet för den verkligheitsbaserade modellen, Modell 2** ........ 52
**Figur 22. Konceptuell bild för Modell 2:s bilden avssystem** ................................ 53
**Figur 23. Varje möjlig tidsåtgärd för bilden avssystemet för Modell 2** ............ 54
**Figur 24. Initialfasen som tillsammans med bilden avssystemet bildar en tvädelad process för Modell 2** .......................................................... 54
**Figur 25. Frekvensgraf för antal patienter kopplade till tidsåtgärd i initialfasen för Modell 1** ........... 56
**Figur 26. Frekvensgraf för Δt för Modell 1** .......................................................... 57
**Figur 27. Närbild av bilden avssystemet för process för Modell 1** ..................... 59
**Figur 28. Frekvensgraf för total tid för processen för Modell 1** ...................... 61
**Figur 29. Frekvensgraf över initialfasen för Modell 2** ......................................... 63
**Figur 30. Patienters tid i bilden avssystemet, Modell 2** .................................... 64
**Figur 31. Frekvensgraf över total tid i systemet från Modell 2** ..................... 65
**Figur 32. Konceptuell bild av den japanska sjön** ............................................ 81
**Figur 33. SWOT-analys för utgångsläget av effektiviseringsprojektet** .......... 81
**Figur 35. Value Stream Mapping** ................................................................. 83

**Tabell 1. Frekvenstabell över olika relevanta tidsintervall för Δt för Modell 1** ....... 57
**Tabell 2. Frekvenstabell för Δt, för Modell 1, där [a, b] anger intervallet värde på Δt kan ligga inom** .... 58
**Tabell 3. Avdelningsspecifika trafikintensiteter för Modell 1** ............................. 60
**Tabell 4. Avdelningsspecifika resultat för antal kunder i systemet för Modell 1** .......... 60
**Tabell 5. Frekvenstabell över total bild för processen för Modell 1** ............... 62
**Tabell 6. Frekvenstabell över olika relevanta tidsintervall för initialfasen, Modell 2** ............. 63
**Tabell 7. Frekvenstabell över olika tidsåtgär för hela systemet, Modell 2** .......... 65
**Tabell 9. Sammanställning av resultat från Modell 1 och Modell 2** .................. 68
1 Introduktion

En ständig aktuell debatt i dagens Sverige är den om vård- och patientköer då dessa kopplas till långa väntetider och ineffektiv genomströmning (Delin, 2014). Effektivisering och processflödesgranskning inom vården förekommer i stor utsträckning men begränsas ofta till humanvården. Denna rapport syftar till att utöka ramen för undersökning av patientflöden och inriktar sig därför på veterinärvården och mer specifikt hältutredningen på Mälaren Hästklinik AB.

Patientflödet på veterinärkliniker liknar patientflödet på humana vårdenheter där processen ämnar utreda individens hälsotillstånd för att sedan ge lämplig behandling. Patienten, i detta fall hästen, som behandlas i en veterinärvårdsprocess kan dock själv inte berätta om sina symptom. Detta gör att diagnostiseringen utöver att undersöka och utreda sådant en människa hade kunnat förmedla verbalt.

Resultaten och analyserna från en studie av processer inom veterinärvård kan även vara relevanta för eventuell analog applicering på allmän sjukvård i Sverige. Resultaten kan ge ytterligare perspektiv på hur matematisk processmodellering kan användas för att granska patientflöden och därmed minska vårdköerna.

1.1 Hältutredningsprocesser inom veterinärvården

I detta avsnitt återges vad läsaren behöver vara införstådd i för att kunna följa rapporten. Denna del behandlar hur veterinärvården ser ut som bransch, hältutredningens processflöde, relevant information om patienterna och hur veterinärerna arbetar.
1.1.1 Processflödet för hältutredningen

Då patienten är ett levande väsen resulterar detta oundvikligen i avvikelser från standardprocessen vilket medför att processen inte ses på samma sätt som en produktionslina där varor kommer in vid bestämda tider med mekanisk precision. I en produktionslinas processflöde kan schemaläggning och bokningstider ske enklare och flödet modelleras mer konkret. En veterinärs process är att söka efter skador eller sjukdomar som inte kan kommuniceras av hästen. Denna process är förknippad med många olika risker och ingen häst är precis densamma som en annan, både undersökningsmässigt och diagnosmässigt. Exempelvis kan två hästar vara lika halta, men den ena tar väldigt lång tid då orsaken till hältan är svår att finna och hästen är svårhanterlig och ägaren tidskrävande.

Flödet har således olika hastigheter beroende på hur tidskrävande patienten är och vilken typ av patient som tas emot, emedan procedurerna och betjäningsstationerna är oförändrade. I samråd med ledningsgrupp, veterinärer och ägare har arbetsflödet för hältutredningen sammanställts och illustrerats i figur 1.
Figur 1. Hälutredningens processflöde

- Patient
  - Ja: 60-70%
    - Reception
      - 5 min
      - Box
        - Nej: 30-40%
        - Veterinär
          - 27-37 min
    - 5-10 min
      - Anamnes
      - 2 min
        - Rörelsekontroll
          - 10-15 min
          - Nu: 10 min
            - Richus
          - 8 min
            - Böjprov
              - om nödvändigt efter bedömningsprocess:
                - 2 min
              - Preparation
                - 20 min
                  - Bedömningsprocess
                    - 20-40 min
                      - Röntgen
                        - 15-20 min
                          - Ultraljud
                            - 15-20%
När en kund anländer till kliniken med sin häst ser flödet olika ut beroende på om kunden har varit där förut eller inte. Nya kunder går först till receptionen för diverse administrativt arbete, vilket adderar 5 minuter på processen. Har kunden varit där redan ställs hästen i box direkt och kunden inväntar veterinären.


Efter ”bedövningssnurran” är klar anländer patienten till bilddiagnosen. Då går hästen med sannolikhet på 80-85% till röntgen och med en sannolikhet på 15-20%
till ultraljud. Hästen kan även gå från röntgen till ultraljud och vice versa med en sannolikhet på 15-20%.

När bilddiagnosen är klar behandlas hästen och ägaren får sedan hemgångsråd samt en sammanfattning av diagnosen.

1.1.2 Definition av processer inom flödet

För att lättare kunna hantera flödet har systemet delats upp i fyra huvudprocesser:

- De första stegen innan veterinären ankommer benämns för förberedelseprocessen.

- Anamnesen fram till bedövningsprocessen inklusive eventuella extra rörelsekontroller och bedövningar benämns Rörelsekontrollsprocessen.

- Förberedelseprocessen och rörelsekontrollsprocessen benämns initialfasen.

- Efter rörelsekontrollsprocessen och innan behandlingen kommer bilddiagnosen.

- Efter bilddiagnosen kommer avslutningsprocessen.

1.1.3 Patienterna

Patienterna i en hältutredning är halta hästar. Varje häst är unik och kräver olika tidsåtgång. Enligt veterinärerna på hästkliniken finns tre huvudsakliga faktorer som påverkar tidsåtgången hos en patient (Intervju, 2015):

1. Om patienten har varit på kliniken innan eller inte. Nya kunder är mer tidskrävande.
2. Patienten kan kräva olika många bedövningar beroende på hur svårdagnostiserad den är.

3. En faktor på hur tidskrävande en patient är vilket är en modellering för att täcka tidsintervallen som anges i processflödet.

1.1.4 Veterinärerna

Två veterinärer jobbar parallellt under en arbetsdag. I dagsläget bokar veterinärerna sina patientbesök enligt individuella preferenser beroende på tycke och smak. Tillvägagångsättet är detsamma för båda veterinärerna men flödet saknar en standardisering.

2 Problemformulering och Mål

Det är viktigt för privatägda kliniker är att patientflödet går så pass smidigt och snabbt som möjligt eftersom detta möjliggör högre intäkter och nöjdare kunder.


Målet med projektet blir därför att leverera en klar bild av hältutredningens processflöde med tillhörande sannolikhetsanalys som fäster avseende vid olika patienttyper. Utifrån detta tillkommer ett sekundärt mål i form av en effektivitetsrekomendation till kliniken.
3 Matematisk teori

I den här delen behandlas den matematiska teori som lägger grund för rapporten. Den matematiska teorin syftar till att göra läsaren väl införstådd i de begrepp, modeller, teorier etc. som nämns och appliceras i rapporten.

3.1 Sannolikhetsteori

En gemensam och grundläggande betydelse för all vetenskap är begreppet modell. Varje modell är en approximering av verkligheten i ett sätt att försöka beskriva den. Olika typer av modeller används för olika ändamål där några exempel är fysiska modeller som hus ritade i skalar, analoga modeller som kartor eller ritningar och abstrakta modeller. (Blom & Enger & Englund & Grandell & Holst, 2005)

Abstrakta modeller kan beskrivas i matematiska termer och används ofta inom matematiska och experimentella vetenskaper. Dessa modeller kan antingen vara deterministiska eller stokastiska, även kallat slumpmodeller. Till deterministiska modeller hör exempelvis geometriska formler och modeller som beskriver gravitationskraft, acceleration, bestämda banförlopp etc. De stokastiska modellerna beskriver slumpmässiga försök, det vill säga av händelser som inte kan förutses. För att kunna tillämpa sannolikhetsteori på ett problem måste olika slumpmodeller appliceras, vissa är grundläggande och andra är mer invecklade. De slumpmodeller som kommer användas redovisas därför i denna sektion med tillhörande teorem och definitioner. (Blom & Enger & Englund & Grandell & Holst, 2005)

3.1.1 Nomenklatur

- Anta ett utfallsrum \( \Omega \). Om antalet utfall är ändligt eller uppräkneligt oändligt sägs \( \Omega \) vara ett diskret utfallsrum. Om antalet är ändligt, sägs \( \Omega \) vara ett ändligt utfallsrum. Om antalet utfall inte är ändligt eller ej uppräkneligt oändligt, säges \( \Omega \) vara ett kontinuerligt utfallsrum. (Definition 2.4. Blom & Enger & Englund & Grandell & Holst, 2005)

- Sannolikheten för att en händelse \( A \) ska inträffa betecknas \( P(A) \).
Följande skrivsätt $A \cap B$ och $A \cup B$ kan förklaras enligt:

$$\bigcup_{i=1}^{n} A_i = \text{minst en av händelserna } A_1, \ldots, A_n \text{ inträffar}$$

$$\bigcap_{i=1}^{n} A_i = \text{alla händelserna } A_1, \ldots, A_n \text{ inträffar}$$

Således blir $P(A \cap B)$ sannolikheten för att händelserna $A$ och $B$ inträffar samtidigt. Och $P(A \cup B)$ sannolikheten för att minst en av händelserna inträffar. (Blom & Enger & Englund & Grandell & Holst, 2005)

- Om två händelser $A_i$ och $A_j$ är oförenliga kallas de disjunkta.

För en mängd $A_1, \ldots, A_n$ sägs händelserna vara parvis oförenliga om alla par $A_i$ och $A_j$ är disjunkta. (Koski, 2014)

- En komplementär händelse beskriver en motsatt händelse som inte kan ske samtidigt som sitt komplement. Detta kommer väljas att betecknas $A^\ast$ enligt Blom, Enger, Englund, Grandell och Holst’s (2005) bok där $A^\ast$ är komplementet till händelsen $A$.

$$P(A^\ast) = 1 - P(A)$$

### 3.1.2 Frekvens länkat till sannolikhet

3.1.3 Kolmogorovs axiomsystem

Följande axiom för sannolikhetsmåttet $P(\cdot)$ skall vara uppfyllda:

- **Axiom 1:** För varje händelse $A$ gäller att $0 \leq P(A) < 1$
- **Axiom 2:** För hela utfallsrummet $\Omega$ gäller att $P(\Omega) = 1$
- **Axiom 3:** *Additionsformeln:* Om $A_1, \ldots, A_n$ är en ändlig eller uppräknlig oändlig följd av parvis oförenliga händelser gäller att

$$P(A_1 \cup A_2 \cup \ldots) = P(A_1) + P(A_2) + \cdots$$

*Utfallsrummet* $\Omega$, händelserna $A$, $B$,... och sannolikheterna $P(\cdot)$ säges tillsammans utgöra ett *sannolikhetsrum*.

3.1.4 Betingad sannolikhet

Betingad sannolikhet definieras rent matematiskt som

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$

Praktiskt betyder betingad sannolikhet "sannolikheten för att händelse B inträffar givet att händelse A har inträffat. *(Definition 2.6. Blom & Enger & Englund & Grandell & Holst, 2005)*

Betingade sannolikheter uppfyller Kolmogorovs axiomsystem vilket innebär att:

$$P(B^* \mid A) = 1 - P(B \mid A)$$

3.1.5 Oberoende händelser

Om två händelser $A$ och $B$ fungerar så att

$$P(B \mid A) = P(B)$$

Det vill säga att händelse $B$ inträffar oavsett om händelse $A$ har inträffat eller ej kan händelse $A$ och $B$ antas vara oberoende. Detta ger att formeln från betingad sannolikhet kan skriva om enligt:
\begin{align*}
P (B \mid A) &= \frac{P (A \cap B)}{P(A)} \
\Rightarrow P (B) &= \frac{P (A \cap B)}{P(A)}
\end{align*}

Detta gör att två oberoende händelsers sannolikhet kan räknas ut enligt följande;

\begin{equation*}
P (A \cap B) = P (B)P (A)
\end{equation*}

3.1.6 Sannolikhsfunktion, täthetsfunktion och fördelningsbegreppet

En sannolikhsfunktion används för diskreta stokastiska variabler. Sannolikhsfunktionen för en sådan variabel \( Z \) betecknas

\begin{equation*}
p_z(x) = P(Z = x), \quad x = a_1, a_2, a_3, ...
\end{equation*}

där \( a_1, a_2, a_3, ... \) är de uppräknelt higa tänkbara värden som \( Z \) kan anta. Såldes kan sannolikhsfunktionen illustreras som en graf när många \( a \) :n tas i beaktning. Denna graf illustrerar således sannolikhsfördelningen för \( Z \).

En täthetsfunktion används för kontinuerliga stokastiska variabler. Täthetsfunktionen för en sådan variabel \( Y \) uppfyller likheten:

\begin{equation*}
P (a < Y \leq b) = \int_a^b f_Y(x)\, dx, \quad x = (a, b]
\end{equation*}

Vidare definieras den så kallade fördelningsfunktionen \( F_Y(b) \) som

\begin{equation*}
P (Y \leq b) = \int_{-\infty}^b f_Y(b)\, dx = F_Y(b)
\end{equation*}

Vad gäller fördelningen utgör täthetsfunktionen själva funktionsgrafen och fördelningsfunktionen utgör arean under denna. (Koski, 2014)

Det finns många kända fördelningar, de som behöver nämnas i detta projekt är normalfördelning, poissonfördelning, exponentialfördelning och likformig fördelning.
3.1.7 Normalfördelning

Kodbeteckning: $Z \in Po(\mu, \sigma)$, där $\mu$ är väntevärdet och $\sigma$ standardavvikelsen.

Även känd under namnet Gauss-fördelning. Fördelningens form liknar en klocka, vilket leder till att variabler som är normalfördelade ofta antar värden runt medelvärdet, men desto sällare extremvärden.

Täthetsfunktionen för normalfördelningen ges av:

$$f_Z(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-(x-\mu)^2 / 2\sigma^2}, -\infty < x < +\infty.$$

Detta ger att $Z$ är normalfördelad med parametrarna $\mu$ och $\sigma$ där:

$$E[Z] = \mu$$
$$Var[Z] = \sigma^2$$

Normalfördelningen är vanligt förekommande på grund av Centrala Gränsvärdesatsen. Den säger att summan av ett stort antal slumpade oberoende variabler med samma fördelning kommer att vara normalfördelad. På grund av detta kommer många vanligt förekommande fenomen relativt träffsäkert tunna uppskattas med en normalfördelning (Koski, 2014)

**Figur 2. Exempelbild på en normalfördelning (Shafer & Zhang, 2012)**
3.1.8 Poissonfördelning

Kodbeteckning: Z ∈ Po(λ)

En poissonfördelning är en sannolikhetsfördelning som kan användas till att beskriva händelser såsom bilar som passerar tunnel, radioaktivt sönderfall och inkommande samtal till ett call center. Om N(t) är antalet kunder som ankommer till en bejäningsstation under intervallet (0, t] sägs

\[ N = \{N(t), t \geq 0\} \]

och att

\[ N \in Po(\lambda) \]

där tiderna mellan ankomsterna är exponentialfördelad (Enger & Grandell, 2014).

En poissonfördelning antar följande sannolikhetsfunktion

\[ p_Z(k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k = 0,1,2,\ldots \]

Figur 3. Exempelbild på en poissonfördelning (Bourne, 2010)
3.1.9 Exponentialfördelning

Kodbeteckning: $Z \in \text{Exp}(\lambda)$


En exponentialfördelad stokastisk variabel har tätethetsfunktionen

$$f_Z(x) = \lambda e^{-\lambda x}, \quad x > 0$$

där $\lambda$ samma parameter som för poissonfördelningen.(Koski,2014)

![Standard Exponential density function](image)

Figur 4. Exempelbild på en exponentialfördelning (Asher, 2010)
3.1.10 Likformig fördelning

Om en stokastisk variabel antar $m$ värden i en mängd med lika stor sannolikhet, $1/m$, säges denna variabel vara likformigt fördelad.

Sannolikhetsfunktionen för en likformigt fördelad variabel är:

$$p_z(k) = \frac{1}{m}, \quad k = 1, 2, \ldots, m$$

![Diagram](image)

Figur 5. Exempelbild för en likformig fördelning (Shafer & Zhang, 2012)

3.2 Markovprocesser

En stokastisk process är en markovprocess om de stokastiska variablerna i processen uppfyller markovegenskaperna. Markovegenskaperna definieras så som

Låt $\{X_n; n = 0, 1, 2, \ldots\}$ vara en stokastisk process. Processen sägs vara en markovprocess om:

$$P(X_{n+1} = i_{n+1} | X_0 = i_0, X_1 = i_1, \ldots, X_n = i_n) = P(X_{n+1} = i_{n+1} | X_n = i_n)$$

för alla tillstånd $i$.

Rent praktiskt innebär detta att markovprocessen saknar minne och att historiska resultat inte är relevanta för att förutspå kommande sannolikheter. (Koski 2014)

3.2.1 Övergångssannolikheter

Övergångssannolikheten \( p_{ij} \) i en tidshomogen Markovprocess eller Markovkedja definieras av sannolikheten att gå från \( i \) till \( j \) i ett tidssteg. Detta kan matematiskt beskrivas som:

\[
p_{ij} = P(X_n = j \mid X_{n-1} = i)
\]

Själva övergången eller övergångarna i en Markovkedja kan beskrivas i en övergångsgraf där tillstånden representeras av noder där pilar anger övergångarna tillsammans med övergångens riktning. (Enger & Grandell, 2014)

![Diagram of a transition graph](image)

Figur 6. Exempelbild för en övergångsgraf (Enger & Grandell, 2014)

När övergångssannolikheterna \( p_{ij} \) definierats kan en övergångsmatris som symboliserar övergångsgrafen modelleras.
Sannolikheten $p_{11}$ symboliserar sannolikheten för att stanna kvar i tillstånd 1 under ett tidssteg, $p_{12}$ symboliserar sannolikheten att gå från tillstånd 1 till tillstånd 2 osv. Följaktligen måste radsumman av alla element bli 1;

$$\sum_j p_{ij} = 1.$$ 

Är möjliga antal tillstånd oändligt blir övergångsmatrisen oändlig. Sannolikheterna för en övergång är fasta, det vill säga att gå från tillstånd i till tillstånd j kommer ha samma sannolikhet oavsett hur många hopp mellan i och j som skett in. Detta är en följd av minneslösheten som markovprocesser har.

**Startfördelningen** är hur processen startar och visar sannolikhetsfördelningen för att processen startas i de olika tillstånden (Enger & Grandell, 2014). Startfördelningen betecknas:

$$p^{(0)} = (p_1^{(0)}, p_2^{(0)}, p_3^{(0)}, \ldots)$$

### 3.2.2 Absorption

Definitionen av ett *absorberande* tillstånd är att kedjan alltid förblir i tillståndet givet att den kommer dit. även "delkedjor" kan vara absorberande.
I figur 3 är delkedjorna {2,3,4} och {5,6} absorberande då systemet inte kommer kunna gå därifrån ifall den hamnar där.

### 3.3 Köteori

Köteori bygger på följande koncept enligt Enger och Grandell (2014):

- Kunder eller liknande ankommer till ett betjningsställe med *intensitet* $\lambda$, det vill säga i genomsnitt $\lambda$ kunder/tidsenhet.
- Kunderna kan tvingas vänta och bildar då en kö eller i vissa modeller lämnar systemet
- Kunderna betjänas och detta tar i genomsnitt $b = \frac{1}{\mu}$
- Kunderna lämnar betjningsstället

![Diagram](image)

Figur 8. Konceptuell bild för den bärande idén bakom köteori (Enger & Grandell, 2014)
3.3.1 Beteckningar

Här presenteras relevanta beteckningar som används inom köteori.

3.3.1.1 Kendalls beteckningssystem

För att enkelt kunna beskriva ett kösystem används oftast Kendalls beteckningssystem:

\[ A/B/c \]

Där

- \( A \) anger ankomstprocess-fördelningen
- \( B \) anger betjäningstidsfördelningen
- \( C \) är antalet betjäningsstationer

3.3.1.2 Övriga beteckningar

- \( \lambda = \) ankomstintensitet
- \( b = \) förväntad betjäningstid
- \( \mu = \frac{1}{b} = betjäningsintensitet \)
- \( W = \) förväntad tid i systemet
- \( \rho = \) trafikintensitet/ Betjäningsfaktor/ Belastning
- \( c = \) antalet betjäningsstationer
- \( L = \) förväntat antal kunder i systemet
- \( L_q = \) förväntat antal kunder i kön
- \( W_q = \) förväntad tid kön

3.3.2 Littles formel

Littles formel är inte influerad av ankomstprocessen distribution, betjäningstidens distribution eller liknande (Simchi-Levi, 2011). Förutsättande antaganden för denna modell är att betjäningstiderna i systemet är oberoende och lika fördelade stokastiska
variabler. Betjäningstiderna är dessutom oberoende av ankomstprocessen. Trafikintensiteten definieras enligt följande formel:

\[ \rho = \frac{\lambda}{c\mu} < 1 \]


Littles Formel ser ut som följer och gäller under mycket allmänna villkor:

\[ L = W\lambda \]

Vidare definieras:

\[ W_q = \frac{L_q}{\lambda_q} \]

Formeln kan heuristiskt bevisas genom att först anta att antal kunder i systemet är lika med antal kunder som betjänas adderat med antal kunder i kön:

\[ L = L_q + \text{förväntat antal kunder som betjänas} \]

Förväntat antal kunder som betjänas kan beräknas enligt följande resonemang:

\[ \lambda = \text{förväntat antal kunder som betjänas} \ast \mu \]

vilket ger

\[ \text{förväntat antal kunder som betjänas} = \frac{\lambda}{\mu} \]
\[
\rho = \frac{\lambda}{c\mu} \rightarrow cp = \frac{\lambda}{\mu} = \text{förväntat antal kunder som betjänas}
\]

Detta insatt i den initiala formeln blir:

\[
L = L_q + cp
\]

Sist skrivs detta om tillsammans med formeln \( w_q = \frac{t_q}{\lambda} \):

\[
L = L_q + cp = \lambda W_q + \frac{\lambda}{\mu} = \lambda \left( W_q + \frac{1}{\mu} \right) = \lambda W
\]

Det sista steget kan förklaras med resonemanget:

\[
W = \text{förväntad tid i kön + förväntad betjänings tid} = W_q + b = W_q + \frac{1}{\mu}
\]

Således har Littles formel bevisats.

### 3.3.3 Markovska köer

Ett kösystem kallas *markovsk kö* om antalet kunder i systemet vid en given tidpunkt följer en Markovprocess (Enger & Grandell, 2014). Olika system kan definieras som en markovsk kö och det relevanta systemet för projektet, ett M/M/1-system, är ett sådant.

#### 3.3.3.1 M/M/1-system

Då antal betjäningsstationer är 1 gäller att trafikintensiteten betecknas:

\[ \rho = \frac{\lambda}{\mu} \]

och att \( \rho < 1 \).

Vidare gäller följande:

\[ L = \frac{\rho}{1 - \rho} \]
\[ W = \frac{1}{\mu(1 - \rho)} \]

Littles Formel kan appliceras även på M/M/1-system vilket kan härledas enligt:

\[ L = \frac{\rho}{1 - \rho} = \frac{\lambda}{\mu(1 - \rho)} = \lambda W \]

I ett nätverk av flera system kan den totala tiden räknas ut:

\[ W_i = V_i + \sum_j p_{ij} W_j \]

där \( V_i = \frac{\lambda_i}{\lambda_i} \)

Variabeln \( V_i \) symboliserar tiden från ankomst till en servicestation \( i \) till lämnandet av servicestationen \( i \). \( W_i \) symboliserar tiden från ankomst till en servicestation \( i \) till lämnandet av hela kössystemet.(Enger & Grandell, 2014).
3.3.4 Jacksonnätverk

Figur 9. Ett generellt exempel på ett Jacksonnätverk (Enger & Grandell, 2014)

Ett Jacksonnätverk är ett könätverk av flera delsystem. Citering av definition given av Enger & Grandell(2014):

Ett könätverk som har m noder kallas ett Jacksonnätverk om följande villkor är uppfyllda:

- Varje nod har identiska betjäningsstationer med exponentialfördelade betjäningsstider. Nod i har $c_i$ betjäningsstationer med förväntad betjänings tid $\frac{1}{\mu_i}$.

- Kunder som kommer till nod i utifrån anländer enligt en Poissonprocess med intensitet $\lambda_i$. (Kunder kan även komma till nod i från andra noder i systemet.)

- Så snart en kund är betjänad i nod i så går kunden till nod j med sannolikheten $p_{ij}$ för $j = 1, \ldots, m$ eller lämnar systemet med sannolikheten $p_{i} = 1 - \sum_{j=1}^{m} p_{ij}$. Alla förflyttningar sker ögonblickligen.

- Alla ankomstprocesser, betjäningsstider och förflyttningar är oberoende av varandra och av systemet i övrigt.

Vidare kan fler lambda i delsystemen räknas ut genom:

$$\lambda_j = \lambda_{tot} + \sum_i \lambda_i p_{ij}$$

(Enger & Grandell, 2014)
4 Metod

Målet med projektet är i korthet att kunna leverera en klar bild av flödet med tillhörande sannolikhetsanalys för de olika patienterna kopplade till olika tidsåtgång. För att uppnå målet modelleras flödet med matematiska processmodeller uteftter relevant data, begränsningar, bestämmelser och antaganden.

För att de matematiska modellerna ska kunna utformas måste en mellan-modell i form av ett GANTT-schema formges för att bestämma bokningsintensiteterna. Den bestämda bokningsintensiteten är ett mellanresultat som används i den matematiska processmodelleringen.

4.1 Datainsamling

Datainsamlingen görs genom intervju med ägare till kliniken, veterinär och administrationschef. Från dessa intervjuer utformas ett flödesschema(Figur 1). Data inkluderar även information om kliniken, patrienterna och andra praktiska detaljer. Anledningen till användningen av denna ”subjektiva data” är att ta hänsyn till veterinärernas åsikter och låta deras kompetens utgöra en grund för projektet. En veterinärs bedömning av hur lång tid ett moment bör ta är helt enkelt mer relevant än uppskattade medelvärden.

Kontrollen av data görs genom en fysisk vistelse på Mälarens Hästklinik AB. Avstämningar med delägare och veterinär görs regelbundet under projektets gång. Syftet med detta är att säkerhetsställa att de siffror modellen grundas på är rimliga, samt att den skapade modellen är applicerbar på den undersökta verksamheten.

4.2 Begränsningar och bestämmelser

För att anpassa de matematiska modellerna på ett optimalt sätt och få dem att överensstämma med verkligheten måste särskilda antaganden göras. Denna grund är själva visualiseringen av arbetsflödet på hästutredningen och baseras på att olika sorters patienter antas behöva olika sorters flöden. För ett jämnt och konsekvent arbete etableras följande:
– Enbart en form av djur analyseras.
  o Arbetet rör enbart hästar.

– Arbetet utförs enbart på en särskild klinik.
  o Den valda kliniken är som tidigare nämnts, Mälaren Hästklinik.

– Arbetet rör enbart en av avdelningarna på kliniken.
  o Den valda avdelningen är hältutredningen.

– Arbetet betraktar enbart en form av sjukdomsfall.
  o Det valda sjukdomsfallet är hälta. Detta på grund av att majoriteten av alla patienter som inkommer till kliniken är halta(Intervju, 2015).

– Arbetet definierar patientflödet enligt den presenterade flödeskartan(Figur 1).
  o Patientflödet börjar när patienten inkommer till kliniken, och slutar när en behandling har genomförts. Ingen hänsyn tas till återbesök, operationer eller liknande.

– Den valda veterinären som flödet modelleras kring är Gustaf Intervju.
  o Målet för kliniken är att veterinärerna ska följa samma flöde.

### 4.3 Antaganden

Utförandet baseras på följande antaganden:

– Det som har sagts i intervjuerna är sant.

– De sannolikheter och tidsåtgångar som används antas vara korrekta.

– De olika patienttyperna som behandlas i arbetet är tillräckligt täckande för att ge en relevant modell för verkligheten.
4.4 Beskrivning av programvaran

MATLAB som står för Matrix Laboratory är ett datorprogram framtaget för att göra matematiska och tekniska beräkningar. MATLAB använder sig av programspråket skriptspråk som innebär att skrivna program tolkas under simuleringen. MATLAB har många inbyggda funktioner och med hjälp av dessa kan många beräkningar automatiseras. (Mathworks, 2015)

4.5 Standardisering av bokningstider genom GANTT-modellering


Ett GANTT-schema modelleras efter följande information tillsammans med flödeskartan(figur 1):

- Efter rörelsekontrollerna för patient#1 brukar veterinären ta emot patient #2. Veterinären lämnar då hästen tillsammans med instruktioner för bilddiagnosen.

- Röntgas en patient krävs 5 minuter av veterinärens tid för att bedöma röntgenbilder.

- Tas ultraljud på patienten krävs 10 minuter av veterinärens tid då veterinären själv utför ultraljudet.

GANTT-schemat modelleras utefter standardfallet som är den minst tidskrävande patienten som följer de största sannolikheterna i processen, dvs. det vanligaste flödet. Avvikelserna från standardfallet används för att undersöka risker med bokningen och
avgränsas från flödesmodelleringen, inte modellera flöden. GANTT-schemat illustreras i figur 10 och 11.

**Figur 10. GANTT-schema för framtagandet av bokningsintensiteter**

**Figur 11. GANTT-schema fortsättning**

2. Efter rörelsekontrollsprocessen lämnar veterinären patienten och ta emot en ny patient medan patient 1 förs till bildundersökningen som för standardfallet innebär röntgen.

3. Då patient #2 bedövas går veterinären för att se till röntgenbilderna för patient #1 samt ge behandling.

4. Då patient #2 bedövas för andra gången kan veterinären ge hemgångsråd till patient #1.

5. När rörelsekontrollen är klar tas patient #3 emot.

6. Systemet upprepas sedan tills dagen är slut och är en Rekursiv process.


Följaktligen kan en bokningsintensitet på 1,5 timme bestämmas. Vidare rekommenderas att den ena veterinären bokar 15 minuter efter den andra veterinären för att undvika att två hästar är i ridhuset samtidigt. Detta ses som ett mellanresultat.

4.6 Matematisk modellering

Mellanresultatet lägger grunden för den matematiska processmodelleringen som görs enligt två tillvägagångsätt och därmed två separata modeller. Båda modellerna utgår från att flödet kan modelleras i en markovkedja om bilddiagnosen sammanslås och hanteras som ett separat system; bilddiagnostssystemet. Bilddiagnostssystemet kan
också inkludera behandlingen om modellen som används kräver det. Detta för att bilddiagnosen kräver en modellering genom applicering av köteori och därmed är det i hanteringen av bilddiagnosen de två alternativa modellerna kommer skilja sig åt.

Den första modellen görs enligt förbestämda antaganden om bilddiagnostiksystemets markovska egenskaper som ämnar till att möjliggöra en applicering av markovsk köteori på bilddiagnostiksystemet. Den första modellen blir således en modell med en fast teori som appliceras på en justerbar verklighet. Den andra modellen är tänkt till den förstas motsats där en justerbar modell som anpassas till verkligheten. Alltså två modeller kommer att sättas upp:

- **Modell 1: En modellering av flödet med M/M/1-system**
  Verkligheten passas in och injusteras i en förutbestämd matematisk köteoretisk modell för bilddiagnosen; M/M/1-system i ett jacksonnätverk. Verkligheten anpassas främst genom förutbestämda antaganden om bilddiagnostiksystemets egenskaper.

- **Modell 2: En verklighetsanpassad modellering**
  Utifrån verklighetstolkningen som utgjordes av processflödet anpassas en köteoretisk processmodell och justeras utefter verkligheten. Således görs inga förutbestämda antaganden om bilddiagnosen eller systemet som helhet utöver antagandet om att processflödet ger en verklighetsriktig bild av flödet.

Detta projekt undersöker och utför båda tillvägagångssätt för att sedan utvärdera resultaten med särskilt fokus på relevans vad gäller tiden för processgenomströmning och verklighetsriktighet för modellerna i enlighet med projektmålet.

4.6.1 Modellering av flödet med M/M/1-system

Figur 12. Konceptuell bild av Modell 1

Modelleringen av flödet med M/M/1-system görs i 4 steg.


2. Uppdelning av flödet görs enligt följande:
   a. Förberedelseprocessen (Patient → Anamnes) och Rörelsekontrollprocessen (Anamnes → innan röntgen/Ultraljud) modelleras till ett system, initialfasen.
   b. Bilddiagnoossystemet kommer att inkludera tillstånden röntgen, ultraljud och behandling.
c. Sist läggs tillståndet *sammanfattning och hemgångsråd* till som ett absorberande tillstånd.

3. Simuleringar för den markovska initialfasen görs för att generera:
   a. En ankomstintensitet för bilddiagnosystemet
   b. En frekvenstabell över tidsåtgång i initialfasen. 
      *Detta för att utvärdera modellens riktighet angående antaganden om ankomsternas distribution och för modelleringen för den totala tidsåtgången.*
   c. Tidsskillnaden mellan ankomsterna med tillhörande frekvenstabell. 
      *Detta för att utvärdera modellens riktighet angående antaganden om ankomsternas distribution och för att hitta ankomstintensiteten.*

4. Bilddiagnosystemets tidsåtgång beräknas enligt M/M/1-systemets och jacksonätverkets principer. Delresultat specifika för markovska köer beräknas liksom tid i de separata enheterna och antal kunder i systemet.

5. Tidsåtgången för de separata delarna initialfas, bilddiagnos och *sammanfattning och hemgångsråd* sammanslås.

Följande alterneringar och antaganden om verkligheten görs för att modellen ska kunna tillämpas:
- Ankomst till bilddiagnos ∈ *Po*(\(\lambda\))
  Ankomsternas tidsskillnad till bilddiagnosystemet ∈ *Exp*(\(\lambda\))

Ankomstprocessen till bilddiagnosystemet antar en poissonfördelning och tidsskillnaden mellan ankomsterna till bilddiagnosystemet antar en exponentialfördelning, oavsett frekvenstabellens utseende.
*Syftet med denna modell är att verkligheten ska anpassas till en förutbestämd teori, inte tvärtom.*
– Alla tider och sannolikheter som anges som intervall med undantag för tiderna i initialfasen justeras till ett medelvärde.

– Alla system saknar minne.

4.6.1.1 Steg I: Modellering av markovsk övergängsmatris
Övergängsmatrisen speglar övergångsgrafen och processflödeskartan, dock är sannolikheterna medelvärdesjusterade.
Figur 14. Övergängsmatris för Modell 1

Där startfördelningen är: \( p^{(0)} = (1 \: 0 \: 0 \: 0 \: 0 \: 0 \: 0 \: 0 \: 0 \: 0) \)

Och de olika tillstånden står för:
1: Patient
2: Ny
3: Gammal
4: Anamnes → Bedövning
5: En första bedövning
6: En till bedövning
7: En sista bedövning
8: Bilddiagnostiksystemet som behandlas sedan som ett separat system.
9: Sammanfattning och hemgångsråd

4.6.1.2 Steg II: Uppdelning av flödet och justering av verkligheten
Flödet delas upp för att kunna anpassas till den tilltänkta processen. Detta innebär att verkligheten justeras och modelleras till ett mindre komplext system där både tider och sannolikheter är medelvärdesjusterade.

![Diagram](image)

Figur 15. Initialfasen som tillsammans med bilddiagnostiksystemet bildar en tvådelad process för Modell 1
Figur 16. Översiktsbild av initialfasen med sannolikheter justerade till ett medelvärde för Modell 1

4.6.1.3 Steg III: Simuleringar av initialfasen

Dagen börjar med att två veterinärer parallellt tar emot varsin patient enligt de deterministiska bokningarna som sker varje 1,5 timme, den ena veterinären tar emot sin häst 15 minuter efter den första. Patienterna börjar således flödet med en kvarts skillnad i starttid. Detta tillsammans med fakturnat att sannolikheten är i princip obefintlig att det är precis samma patienttyp kommer patienterna gå ur processen efter olika lång tid. Detta ger en ankomstintensitet av hästar till bilddiagnossystemet.

De olika patienttyperna som tidigare beskrivits kan modelleras matematiskt med sannolikhetsteori. Det som söks är sannolikheten för en särskilt tidsåtgång givet bestämda egenskaper hos patienten:
Där $t$ står för tid i antingen initialfasen eller hela processen beroende på vad som söks. De andra variablerna är beteckningar för de olika egenskaperna en patient antas ha; om patienten är ny eller gammal, exakt hur många bedövningar den har behov av och hur tidskrävande den är. Detta skrivs som:

$$A_i = \{A_1, A_2\} = \{ny, gammal\}$$

$$B_i = \{B_1, B_2, B_3\} = \{behov av exakt 1 bedövning, behov av exakt 2 bedövningar, behov av exakt 3 bedövningar\}$$

$$C_i = \{C_1, ..., C_{10}\} = \{0 \text{ minuter extra}, ..., 10 \text{ minuter extra}\}$$

Egenskaperna $A_1, A_2$ är parvis oförenliga då $A_1$ och $A_2$ är disjunkta. Detta gäller $B_1, ..., B_3$ och $C_1, ..., C_{10}$.

Processen modelleras i MATLAB där ett stort antal iterationer skapar en frekvenstabell. En miljon hästar körs genom systemet med parametrar slumpade utefter de givna sannolikheterna. Utifrån dessa iterationer byggs en frekvenstabell där syftet är att finna det relativa gränsvärdet för ett stort antal iterationer som kan likställas med sannolikheten. Därefter undersöks distributionen som förväntas likna en poissonfördelning för att ett M/M/1-system ska kunna tillämpas.

Själva simuleringen går till som följande:

- För att hantera sannolikheterna används MATLABS funktion `rand()` där ett tal mellan 0 och 1 slumpas. Sannolikheten för att `rand()` slumpar ett tal från 0 till och med 0.24 är exakt 25 %.

  o Den slumpmässiga variabeln kan formuleras som ett slumpmässigt valt heltal mellan 1 och 10, $z$:

  $$z \in U(1:10), z \in R$$

41
En if-sats frågar sedan om talet är i en viss intervall där intervallet symboliserar den givna sannolikheten. If-satser fungerar så att programmet ser om (if) ett villkor är uppfyllt och om det är så görs det som står under villkoret.

- Till exempel för det första steget i flödet: om talet är från 0 till och med 0.64 representerar detta en sannolikhet på 65%. Därmed kan man anta att kunden är ny och 5 minuter läggs på.

- Matematiskt formuleras detta:

\[ n_i = \begin{cases} 0, & P(x) < 0.65 \\ 5, & P(x) \geq 0.65 \end{cases} \]

If-satserna läggs sedan in i while-loopar som innebär att en procedur inom en bestämd loop körs önskat antal gånger genom att en lista fylls på för varje iteration. För varje varv i loopen ökar listan med 1 och när listan är full stannar loopen och en andel resultat som motsvarar varv i loopen.

För varje iteration slumpas en häst fram som besitter egenskaperna A, B och C enligt MATLAB-metoderna ovan.

- A symboliserar det första steget i flödet och är antingen 0 eller 5 beroende på om patienten är ny eller gammal. Enligt den modifierade flödeskartan är patienten nu ny med en sannolikhet på 65% och ej ny med en sannolikhet på 35%. Återigen:

\[ n_i = \begin{cases} 0, & P(x) < 0.65 \\ 5, & P(x) \geq 0.65 \end{cases} \]

- En häst som är ny får fem minuter adderat i processtid.

- B symboliserar hur svårdiagnostiserad hästen är. Detta gestaltas i hur många bedövningar patienten kommer att behöva. Sannolikheterna för de olika
upprepningarna är enligt flödesschemat och tidsåtgången likaså. Tidsåtgången beräknas enligt följande:

  - **En häst som enbart behöver en bedövning tar 57 minuter.**

- 75% av dessa hästar kommer behöva gå en runda till vilket betyder ytterligare en bedövning på 20 minuter och en sista snabb rörelsekontroll på 10 minuter som adderas på de redan spenderade 57 minuterna.
  - **En häst som behöver två bedövningar tar då 87 minuter.**
  - Vidare måste 23 procent av de hästar som gjort två bedövningar utsättas för ytterligare en tredje vilket adderar 20 minuter och sist en sista rörelsekontroll på 10 minuter.
  - **En häst som behöver tre bedövningar tar då 117 minuter.**

- Att en häst kommer behöva fyra bedövningar är så osannolikt att det försummas.

Den andra parametern kan således matematiskt formuleras som

\[
B_i = \begin{cases} 
57, & P(y) < 0,25 \\
87, & 0,25 \leq P(y) < 0,77 \\
117, & P(y) \geq 0,77 
\end{cases}
\]

- Sist kommer parametern \( C \) som symboliserar hur tidskrävande en patient är i den initiala rörelsekontrollen. Som flödeskartan visar kan denna första runda ta 27-37 minuter. Därmed är \( C \) eller tidsfaktorn ett tal mellan 0 och 10 som adderas till den totala tiden.
Denna simulering av initialfasen bör således leverera ankomstintensitetsfördelningen för bilddiagnossystemet i form av en frekvensgraf. Vidare undersöks distributionen för skillnaden mellan ankomstintensiteterna. Dessa två frekvenstabeller används för att utvärdera riktigheten i antagandet om att patienterna anländer till bilddiagnossystemet i en poissonprocess.

Simuleringen för $\Delta t$, vilket benämns skillnaden mellan de olika tidsåtgärna i initialfasen, och dess frekvenstabell görs genom att matlabsimuleringen med en miljon iterationer körs två gånger, varav den ena är förskjuten med 13 minuter (15 minuters bokningsskillnad med två minuters säkerhetsmarginal) och en differens tas. Denna differens kommer ange ankomstintensiteten till bilddiagnosen.

4.6.1.4 Steg IV: Bilddiagnossystemet som tre M/M/1-system

För att bilddiagnossystemet ska kunna beräknas som tre M/M/1-system i ett jacksonnätverk måste systemet antas vara minneslös, enligt de antagna markov-egenskaperna.

Detta innebär att om en patient befinner sig i röntgen är detta oberoende av var patienten var två steg innan. En patient som gått vägen ultaljud→röntgen→ulraljud→röntgen behandlas lika som en patient som bara gått vägen ultraljud→röntgen. Detta är nödvändigt för att markovprocesser ska kunna tillämpas på problemet och då denna modell är den där verkligheten justeras och inte modellen måste flödet modelleras enligt minneslösheten för ett fullständigt utförande.
Figur 17. Närbild av bilddiagnosystemet för Modell 1

Bilddiagnosystemet som tre M/M/1-systemet i ett jacksonnätverk kan systemmässigt beskrivas enligt följande:

1. Patienter kommer in till bilddiagnosystemet enligt den uträknade ankomstintensiteten.

2. En ankommen patient går med sannolikheten 82,5 % till röntgen, och med 17,5% till ultraljud.

3. En patient som är i röntgen går till ultraljud med sannolikheten 17,5 %.

4. En patient som är på ultraljudsavdelningen går med sannolikheten 17,5% till röntgen.

5. När patienten lämnar ultraljud, respektive röntgenavdelningen går den med sannolikheten 90 % vidare till behandling. De övriga 10 % försvinner ur systemet.

Behandlingstiderna för de olika systemen:

- 30 minuter för röntgen (2 i timmen)
- 18 minuter för ultraljud (eller 3 patienter i timmen)
- 10 minuter för behandling (6 patienter i timmen)
Därmed antar betjäningsintensiteten följande värden:

\[ \begin{align*}
\mu_R &= 2 \\
\mu_U &= 3 \\
\mu_B &= 6
\end{align*} \]

Följande beräkningar görs sedan:

1. Först noteras ankomstintensiteten till systemet:

\[ \lambda_{tot} = \text{från framtagen fördelning} \]

Alla betjäningstider måste vara mindre än \( \lambda_{tot} \) för att systemet ska kunna konvergera till ett stationärt tillstånd och kön inte ska gå mot oändligheten. Skulle \( \lambda_{tot} \) visa sig vara större än någon betjäningsintensitet, kan betjäningsintensiteterna alterneras inom intervallen i processflödet. Detta beskrivs matematiskt enligt

\[ \rho < 1 \]

2. Därmed kan ankomstintensiteterna till röntgen skrivas som

\[ \lambda_R = p_R * \lambda_{tot} + p_{UR} * \lambda_U \]

i. \( p_U = \text{sannolikheten att en patient går till ultraljud} \)

ii. \( p_R = \text{sannolikheten att en patient går till röntgen} \)

iii. \( p_{UR} = p_{RU} = \text{Sannolikheten att en patient går mellan noderna} \)

iv. \( p_B = \text{sannolikheten att patienten går vidare till behandlingen} \)

3. Ankomstintensiteterna till ultraljudet kan skrivas som:
\[ \lambda_U = p_U \cdot \lambda_{tot} + p_{RU} \cdot \lambda_R \]

4. Ankomstintensiteterna till behandlingen beräknas sedan enligt:

\[ \lambda_B = p_B \cdot (\lambda_U + \lambda_R) \]

5. Beräkningarna för trafikintensiteten \( \rho \) görs sedan:

\[ \rho = \frac{\lambda}{\mu} \]

där \( \rho < 1 \)

6. Utifrån dessa intensiteter beräknas sedan antal kunder vid godtycklig tidpunkt i systemet:

\[ L = \frac{\rho}{1 - \rho} \]

7. Slutligen beräknas den totala tiden i systemet med hjälp av följande formler:

\[ W_i = V_i + \sum_j p_{ji} W_j \]

där \( V_i = \frac{L_i}{\lambda_i} \)

\[ W_{Tot} = \sum_j p_{\text{start} i j} W_j \]

4.6.1.5 Steg V: Sammanställning

Tidsåtgången för initialfasen, bilddiagnossystemet och sammanfattning och hemgångsråd sammanslås. Avslutningsprocessen blir 7,5 minuter för sammanfattning och hemgångsråd. Detta avrundas till 8 då hela minuter är att föredra.
Resultatet utvärderas sedan genom kontroll av rimlighet med veterinärerna då de vet vad som är rimligt för hur lång tid det kan ta en för en patient att passera genom systemet. Vidare utvärderas modellen även matematiskt med särskilt fokus på antagandens överenstämelse med verkligheten.

4.6.2 Verklighetsanpassad modellering

Till skillnad från den andra modellen där teorin väljs först för att verkligheten sedan ska passas in i den givna modellen fungerar den här modellen tvärtom. I varje steg utvärderas först verkligheten och relevant teori väljs sedan för en skräddarsydd lösning. I den tidigare modellen var fokus att testa verkligheten i en given teori, M/M/1-system i ett jacksonätverk, vilket gjorde att verkligheten fick kompromissas. Följande görs för denna modell:

1. En markovska övergångsmatris och övergångsgraf tas fram för flödet exklusive bilddiagnossystemet., som i det här fallet inte inkluderar behandling.


4.6.2.1 Steg I: Övergångsmatris och övergångsgraf för flödet exklusive bilddiagnossystemet
Figur 20. Övergångsmatrisen för den verklighetsbaserade modelleringen, Modell 2

Där startfördelningen är: $p^{(0)} = (1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0)$

Och de olika tillstånden står för:

1: Patient
2: Ny
3: Gammal
4: Anamnes → Bedövning
5: En första bedövning
6: En till bedövning
7: En sista bedövning
8: Bilddiagnosticksystemet som behandlas sedan som ett separat system.
9: Behandling
10: Sammanfattning och hemgångsråd

Viktigt att notera är att för intervallen för ”ny” och ”gammal” måste sannolikheten för den ena vara lika med 1- den andra. Detta för att radsumman ska bli 1. Det vill säga:

$$P(Ny) = 1 - P(gammal)$$

Då gammal är komplementet till ny.

Alltså
Steg II: Simulering av initialfasen

Detta steg är metodmässigt identiskt med simuleringen av initialfasen för den förra modellen, med undantag från en skillnad. Skillnaden mot den tidigare modellen är att målet med simuleringen enbart är att räkna ut genomströmmingstider för denna del av processen. Då sannolikheterna redan har en felmarginal i och med datainsamlingens tillvägagångssätt, kan medelvärden användas även för denna modell utan att det påverkar resultatets riktighet märkbart. Fördelningen av utflödet kommer kräva en tolkning av verkligheten och därmed kan verkligheten komma att kompromissas vilket är anledningen till att den undviks för denna modell.

Återigen gäller:

\[ P(2 \mid 1) = 1 - P(3 \mid 1) \]

\[ P(t \mid A_i \cap B_i \cap C_i) \]

\[ A_i = \{A_1, A_2\} = \{ny, gammal\} \]

\[ B_i = \{B_1, B_2, B_3\} = \{behov av exakt 1 bedövning, behov av exakt 2 bedövningar, behov av exakt 3 bedövningar\} \]

\[ C_i = \{C_1, ..., C_{10}\} = \{0 minuter extra, ..., 10 minuter extra\} \]

Där egenskaperna \(A_1,A_2\) är parvis oförenliga då \(A_1\) och \(A_2\) är disjunkta. Det samma gäller \(B_1,..,B_3\) och \(C_1,..,C_{10}\).
4.6.2.3 Steg III: Framtagande av passande modell för bilddiagnossystemet

Följande villkor gäller för att en teori ska kunna appliceras på bilddiagnossystemet utan att verkligheten måste justeras:

- Inga förutbestämda antaganden görs om bilddiagnossystemet eller resten av processflödet utöver antagandet om att processflödet ger en verklighetsriktig bild av flödet.

- Tidsspannet i bilddiagnossystemet måste tas hänsyn till, dock är 5 minuters intervaller godkänt då en felmarginal på mindre än 5 minuter kan antas vara acceptabelt för Kliniken. Modellen ska därmed behandla diskret tid.

- De 90 % som försvinner ur systemet efter bilddiagnossystemet läggs in i processen med tid som motsvarar tidsåtgången fram till dess att patienten lämnar bilddiagnossystemet.

- Teorin ska kunna leverera förväntad tid för hela systemet och därmed förväntad tid i det separata delsystemet bilddiagnossystemet.

För att kunna möta villkoren behövs en teori som möjliggör för en modellering där tidsåtgången från processflödet i bilddiagnossystemet kan användas utan några kalkyleringar som genererar ett annat värde på tidsåtgången än det som är skrivet i
processflödet, föredragningsvis enbart en variabeln från en teori som symboliserar tidsåtgången för betjäningsstationer och möjliggör för en uträkning för hela bilddiagnosystemet. Därefter måste variabeln understödjas av en formel vars koncept ligger i linje med den verklighetsbaserade modelleringens villkor.

Littles formel möjliggör för många olika alternativ, bland annat det som behandlades i den tidigare modellen och variabeln \( W_i \) uppfyller de uppsatta villkoren. Skillnaden från förra modellen är att då tre M/M/1-system tillämpades var distributionen för ankomstintensiteten viktig. Distributioner öppnar för tolkning av verkligheten och undviks därför för denna modell. Variablerna \( \lambda \) och \( L \) okända och enbart \( W \) används, \( \lambda \) är en uppskattning som till stor del bygger på att den ena veterinären bokar 15 minuter efter den andra. Är den ena veterinären två minuter tidig och den andra två minuter sen ändras \( \lambda \) avsevärt och därmed även \( W \). Därför ska den här modellen inte vila på antagandet om att veterinärerna och deras kunder är punktliga på minuten och därmed antagandet om ett fast \( \lambda \).

Beräknas \( W_i \) kan förväntad total tid i systemet, \( W_{\text{tot}} \), beräknas enligt:

\[
W_{\text{tot}} = W_R * P_R + W_U * P_U + W_{UR} * P_{UR} + W_{RU} * P_{RU}
\]

Här har två fiktiva betjäningsstationer skapats som symboliserar ultraljud+röntgen vilket gör att systemet betraktas som 4 möjliga servicestationer till vilka patienterna kan ankomma. Detta gestaltas i Figur 22 och ska inte bebländas med ett M/M/1-system eller annat system med Kendalls beteckning, då detta innebär en tolkning av ankomsternas och service-stationernas distribution.

![Figur 22. Konceptuell bild för Modell 2’s bilddiagnossystem](image-url)
Då $W_i$ symboliserar tiden från start vid servicestationen $i$ till dess att patienten lämnar systemet blir $W_i$ för denna modell de angivna genomströmningstiderna från processflödet.

\[
W_R = 20 - 40 \text{ min}
\]
\[
W_U = 15 - 20 \text{ min}
\]
\[
W_{UR} = W_{RU} = 35 - 60 \text{ min}, \quad 35 = 15 + 20 \text{ och } 60 = 20 + 40
\]

Då de två stationerna ”ultraljud+ röntgen” kommer ha tidsåtgång som är lika med tid i röntgen adderat med tid i ultraljud kommer $W_{total}$ bero av tidsintervallen för $W_R$ och $W_U$ enligt 23.

<table>
<thead>
<tr>
<th>$W_U$=15 min</th>
<th>$W_R$=20 min</th>
<th>$W_R$=25 min</th>
<th>$W_R$=30 min</th>
<th>$W_R$=35 min</th>
<th>$W_R$=40 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W_U$=20 min</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Figur 23. Varje möjlig tidsåtgång för bilddiagnostiksystemet för Modell 2**

### 4.6.2.4 Steg IV: Sammanställning

Tidsåtgången för förberedelseprocessen, rörelsekontrollsprocessen, bilddiagnostiksystemet, behandling och ”sammanfattning och hemgångsråd” sammanställs i en enda simulering.

Resultatet utvärderas sedan genom kontroll av rimlighet med veterinärerna då de vet vad som är rimligt för en hur lång tid det kan ta en för en patient att passera genom systemet.
5 Resultat

I det följande avsnittet redovisas de erhållna resultaten. Dessa utvärderas sedan och jämförs i diskussionen.

5.1 Resultat från modelleringen av flödet med M/M/1-system

Resultaten från modelleringen av flödet som M/M/1-system i ett Jacksonnätverk följer strukturen från metoden i en stegvis process.

5.1.1 Uppdelning av flödet

Flödesuppfdelningen resulterar i två separata delar som granskas var för sig, initialfasen och bilddiagnossystemet.

![Diagram](attachment:24.png) Figur 24. Initialfasen som tillsammans med bilddiagnossystemet bildar en tvådelad process för Modell 1

Den deterministiska ankomstprocessen till bilddiagnossystemet genereras till en ankomst enligt specifik sannolikhetsfördelning genom den slumpmässiga tidsåtgången i initialfasen. För denna modell, där bilddiagnossystemet antar en modell av tre M/M/1-system i ett Jacksonnätverk, antas denna fördelning vara poissonfördelad. Därmed antas tidskillnaden mellan ankomsterna vara exponentialfördelad.
5.1.2 Simulering av initialfasen

Simuleringen av initialfasen resulterar i Tabell 1 och Figur 25 som visar på tre intervall och olika sannolikheter för att patientens tidsåtgång i initialfasen hamnar inom dessa intervall.

![Simulering av initialfasen](image)

**Figur 25. Frekvensgraf för antal patienter kopplade till tidsåtgång i initialfasen för Modell 1.**

Frekvensgrafen som gestaltas i **Figur 25** ställs i diskussionen mot antagandet att patienterna ankommer till bilddiagnostiksystemet i en poissonprocess. Anledningen till det till synes höga värdet på Y-axeln för **Figur 25** är att grafen representerar antalet patienter per diskret tidsenhet. Då 1 000 000 simuleringar körs kommer detta ge ett högt värde på denna axel.

Vidare erhålls:

\[
E[\text{tid i initialfasen}] = 92,4 \text{ minuter} = 1 \text{ h } 32 \text{ min}
\]

Detta innebär att genomsnittstiden för en patient i initialfasen är 1 timme och 32 minuter före den kan gå vidare i processen.
Tabell 1 visar att den största andelen patienter tar mellan 1 timme och 18 minuter till 1 timme och 37 minuter endast i initialfasen.

Vidare utvärderas $\Delta t$, det vill säga tidsskillnaden i ankomst till bilddiagnostiksystemet. Resultatet gestaltas i Figur 26 och Tabell 2, där mest förekommande intervallen representeras i en förhöjning i grafens kurva och högre frekvens i tabellen.

<table>
<thead>
<tr>
<th>Tid i initialfasen (min)</th>
<th>Avrundad tid</th>
<th>Frekvens</th>
</tr>
</thead>
<tbody>
<tr>
<td>57-71</td>
<td>1h - 1h 11m</td>
<td>24,97%</td>
</tr>
<tr>
<td>87-101</td>
<td>1h 18m - 1h 37m</td>
<td>57,79%</td>
</tr>
<tr>
<td>117-131</td>
<td>2h - 2h 11m</td>
<td>17,24%</td>
</tr>
</tbody>
</table>

Figur 26. Frekvensgraf för $\Delta t$ för Modell 1
Resultatet gestaltat i *Figur 26* ställs i diskussionen mot antagandet att patienterna ankommer till bilddiagnossystemet i en poissonprocess där tiden mellan ankomsterna är exponentialfördelad.

Vidare erhålls väntevärdet för $\Delta t$:

$$E[\Delta t] = 25,4 \text{ minuter}$$

<table>
<thead>
<tr>
<th>$\Delta t$ inom intervallet (min)</th>
<th>frekvens</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>13,13%</td>
</tr>
<tr>
<td>11-20</td>
<td>41,10%</td>
</tr>
<tr>
<td>21-30</td>
<td>12,63%</td>
</tr>
<tr>
<td>31-40</td>
<td>6,78%</td>
</tr>
<tr>
<td>41-50</td>
<td>17,83%</td>
</tr>
<tr>
<td>51-60</td>
<td>4,19%</td>
</tr>
<tr>
<td>61-70</td>
<td>1,14%</td>
</tr>
<tr>
<td>71-80</td>
<td>2,69%</td>
</tr>
<tr>
<td>81-90</td>
<td>0,5%</td>
</tr>
</tbody>
</table>

*Tabell 2. Frekvenstabell för $\Delta t$, för Modell 1, där [a,b] anger intervallet värdet på $\Delta t$ kan ligga inom*

Givet den antagna exponentialfördelningen av $\Delta t$ och kundernas ankomstprocess som en poissonfördelningen med intensitet $\lambda$

$$\Delta t \in \text{Exp}(\lambda)$$

$$\text{Ankomstprocess till bilddiagnos} \in \text{Po}(\lambda)$$

beräknas ett värde för intensiteten $\lambda$.

Ankomstintensiteten beräknas genom:

$$\text{antal patienter per tidsintervall} = \frac{\text{tidspann}}{\text{tid mellan patienterna}}$$

vilket ger:
och därmed:

\[
\frac{60 \text{ min}}{25,4 \text{ min}} = 2,36
\]

\[\lambda = 2,36\]

Ankomstprocess till bilddiagnos \( \in \text{Po}(2,36) \)

\[\Delta t \in \text{Exp}(2,36)\]

5.1.3 **Beräkning av bilddiagnossystemet modellerat som tre M/M/1-system**

Resultaten från undersökningen av bilddiagnossystemet enligt M/M/1-systemets och jacksonätverkets principer har numrerats enligt metodbeskrivningen:

1. Ankomstintensiteten \( \lambda_{tot} \) till är 2,36 patienter i timmen

Detta är högre än den snittade betjäningsintensitet metodens förespråkade, men då denna modell tillåter att verkligheten alterneras kan betjäningsstiden för röntgen ändras från tilltänkta, 2 patienter i timmen till 2.5. 2.5 symboliserar en betjäningstid på 24 minuter, vilket ligger inom tidsintervallet för röntgen på 20-40 minuter. Övriga betjäningsintensiteter kan förbli oförändrade.
Ankomstintensiteterna $\lambda_R, \lambda_U, \lambda_B$ till de separata M/M/1-systemen beräknas och resulterar i:

2. *Ankomstintensiteten till röntgen* = $\lambda_R = 2,08$ patienter i timmen
3. *Ankomstintensiteten till ultraljud* = $\lambda_U = 0,78$ patienter i timmen
4. *Ankomstintensiteten till behandling* = $\lambda_B = 2,57$ patienter i timmen

5. Resultatet för trafikintensiteten $\rho$:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho_R$</td>
<td>83,33%</td>
</tr>
<tr>
<td>$\rho_U$</td>
<td>25,92%</td>
</tr>
<tr>
<td>$\rho_B$</td>
<td>42,90%</td>
</tr>
</tbody>
</table>

Tabell 3. Avdelningsspecifika trafikintensiteter för Modell 1

I Tabell 3 syns att röntgen är den mest ockuperade betjäningsstationen.

6. Förväntat antal patienter i systemet vid godtycklig tidpunkt:

$$L_{tot} = 6,1 \text{ patienter}$$

Resultat för förväntat antal patienter i delssystemen:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_R$</td>
<td>5,00</td>
</tr>
<tr>
<td>$L_U$</td>
<td>0,35</td>
</tr>
<tr>
<td>$L_B$</td>
<td>0,75</td>
</tr>
</tbody>
</table>

Tabell 4. Avdelningsspecifika resultat för antal kunder i systemet för Modell 1

7. Den förväntade totala tiden i bilddiagnosystemet:

$$W_{tot} = 136 \text{ minuter} = 2 \text{ timmar och 16 minuter}$$

Där

$$V_R = 2h 24 \text{ min}$$
$$V_U = 27 \text{ min}$$
$$W_R = 2h 34 \text{ min}$$
$$W_U = 54 \text{ min}$$
Då patienten aldrig startar vid behandlingen uteblir beräkningar för denas servicestation för att undvika överflödig resultatsrapportering

5.1.4 Simulering av den totala processen

Initialfasen och bilddiagnostikens olika tider sammanställs med tillägg för sammanfattning och hemgångsråd. Detta resulterade i en förväntad tid på 236 minuter eller 3 timmar och 56 minuter och en frekvensgrafer gestaltat i Figur 28 tillsammans med en frekvensstabell, Tabell 5. Även här gestaltas tre sannolika tidsintervall där majoriteten av tiderna ligger mellan 3 timmar och 50 minuter till 4 timmar och 5 minuter.

![Figur 28. Frekvensgraf för total tid för processen för Modell 1](image-url)
<table>
<thead>
<tr>
<th>Total tid för processen(min)</th>
<th>Avrundad tid(timmer)</th>
<th>Frekvens</th>
</tr>
</thead>
<tbody>
<tr>
<td>201-215</td>
<td>3h 21m-3h 35m</td>
<td>24,96%</td>
</tr>
<tr>
<td>231-245</td>
<td>3h 51m - 4h 5m</td>
<td>57,78%</td>
</tr>
<tr>
<td>261-275</td>
<td>4h 21m- 4h 35m</td>
<td>17,27%</td>
</tr>
</tbody>
</table>

Tabell 5. Frekvenstabell över total tid för processen för Modell 1

Vidare beräknas medelvärdet i funktionen till följande:

\[ E[tidsåtgång] = 236 = 3 \text{ timmar} 56 \text{ minuter} \]

**5.2 Resultat för den verklighetsbaserade modelleringen av flödet**

**5.2.1 Simulering av initialfasen:**


\[ E[tid i initialfasen] = 92,4 \text{ minuter} = 1 \text{ h} 32 \text{ min} \]
5.2.2 Beräkningar på bilddiagnostiksystemet

Modelleringen av bilddiagnostiksystemet resulterar i en tabell med värden för hela bilddiagnostiksystemets tidsåtgång, vilket representeras i de vita rutorna i Figur 30.
Medelvärdet för det totala systemet utifrån matrisen är:

\[ W_{tot} = 30 \text{ minuter} \]

5.2.3 Simulering av den totala processen

Tabell 7. Frekvenstabell över olika tidsåtgång för hela systemet, Modell 2

Vidare beräknas medelvärdet i funktionen till följande:
E[tidsåtgång]=140,3=2 timmar och 20 minuter

Av Tabell 7 fås att majoriteten av tiderna är 2 timmar och 21 minuter till 2 timmar och 35 minuter.

5.3 Sammanställning av resultaten från den första och den andra modellen

I detta stycke införs följande beteckningar:

Modelleringen av flödet med M/M/1-system = M1
Verklighetsbaserad modellering av flödet = M2

För M1 antas distributionen av ankomsterna vara $Po(\lambda = 2,67)$ fördelade och $\Delta t$, tidsskillnaden mellan ankomsterna, vara $Exp(\lambda = 2,67)$. För M2 behövs inga antaganden om distributionen göras då systemet som bilddiagnossystemet beräknas med inte kräver det.

Vad gäller tiden för hela bilddiagnossystemet adderas tiden för behandling för M2, då behandlingen är inkluderad i M1’s bilddiagnossystem men inte M2’s.
<table>
<thead>
<tr>
<th></th>
<th>M1</th>
<th>M2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genomsnittstid för initialfasen</td>
<td>1h 32m</td>
<td>1h 32m</td>
</tr>
<tr>
<td>Mest sannolika tidsintervall för initialfasen</td>
<td>1h 18m-1h 37m</td>
<td>1h 18m-1h 37m</td>
</tr>
<tr>
<td>Väntevärde för ( \Delta t )</td>
<td>25,4 minuter</td>
<td>25,4 minuter</td>
</tr>
<tr>
<td>Ankomstintensitet till bilddiagnossystemet</td>
<td>2,36 patienter/ timme</td>
<td></td>
</tr>
<tr>
<td>Ankomstintensitet till röntgen</td>
<td>2,08 patienter/ timme</td>
<td></td>
</tr>
<tr>
<td>Ankomstintensitet till ultraljud</td>
<td>0,78 patienter/ timme</td>
<td></td>
</tr>
<tr>
<td>Ankomstintensitet till behandling</td>
<td>2,57 patienter/ timme</td>
<td></td>
</tr>
<tr>
<td>Trafikintensitet för röntgen</td>
<td>83,33%</td>
<td></td>
</tr>
<tr>
<td>Trafikintensitet för ultraljud</td>
<td>25,92%</td>
<td></td>
</tr>
<tr>
<td>Trafikintensitet för behandling</td>
<td>42,90%</td>
<td></td>
</tr>
<tr>
<td>Förväntat antal kunder i röntgen</td>
<td>5,00 patienter</td>
<td></td>
</tr>
<tr>
<td>Förväntat antal kunder i ultraljud</td>
<td>0,35 patienter</td>
<td></td>
</tr>
<tr>
<td>Förväntat antal kunder i behandling</td>
<td>0,75 patienter</td>
<td></td>
</tr>
<tr>
<td>Förväntat totalt antal kunder i systemet</td>
<td>6,1 patienter</td>
<td></td>
</tr>
<tr>
<td>Förväntad total tid i bilddiagnossystemet, inklusive behandling</td>
<td>2h 16m</td>
<td>40 minuter</td>
</tr>
<tr>
<td>Möjligt intervall för total tid i bilddiagnossystemet, inklusive behandling för M2</td>
<td></td>
<td>32-49 minuter</td>
</tr>
<tr>
<td>Mest sannolikt intervall för den totala tiden för hela processen</td>
<td>3h 51m-4h 5m</td>
<td>2h 21m-2h 35m</td>
</tr>
<tr>
<td>Förväntad tidsåtgång för hela processen</td>
<td>3h 56m</td>
<td>2h 20m</td>
</tr>
</tbody>
</table>

Tabell 8. Sammanställning av resultat från Modell 1 och Modell 2
6 Diskussion och slutsatser

Följande diskussion inleds med en återkoppling till det huvudsakliga målet med projektet:

*Att leverera en klar bild av flödet som tar en patient från ankomst till diagnos med tillhörande sannolikhetsanalys för tidsgenomströmning som fäster avseende vid olika patienttyper.*


6.1 Datarelevans


överensstämmer med den uppskattade från intervjuer, får detta anses styrka korrektheten i tidsuppskattningarna.

Datan är inte alltid fasta procentsatser eller exakta minuter, utan intervall. Detta medför att alla beräkningar inkluderar marginella mätfel. Resultaten bör således betraktas som noggranna uppskattningar snara än exakta mätmetoder.

6.2 Analys av resultatet

I detta stycke införs följande beteckningar:

Modelleringen av flödet med M/M/1-system = M1
Verklighetsbaserad modellering av flödet = M2

För att utvärdera verklighetsriktigheten i jämförs resultaten med processflödet gestaltat i Figur 1. Detta då processflödet är den verklighet som förmedlats från intervju med veterinär och delägare.

resultera i ett mellanrum på runt omkring 20 minuter i resultaten från simuleringen. Detta återges i grafen där perioderna

\begin{align*}
57-71 \text{ min} \\
87-101 \text{ min} \\
117-131 \text{ min}
\end{align*}

belyser tre luckor i tidsåtgång för initialfasen runt omkring 20 minuter. Vilket ligger helt i linje med flödeskartans beskrivning. Vidare ges ett medelvärde för tid i initialfasen:

\[ E[\text{tid i initialfasen}] = 92,4 \text{ minuter} \]


liksom den förmedlad i teorin (Figur 3) står det klart att ankomstprocessen inte antar en poissonfördelning.

Vidare undersökts Δt där tidsåtgång och frekvensgraf redovisas i Figur 26 ochTabell 2. En tidskillnad på ca 25 minuter mellan två hästar till röntgen ger en påtaglig risk för köbildning då bilddiagnosen, röntgen och ultraljud tar mellan 15 och 60 minuter enligt flödeskarten. Det vill säga det finns risk att en patient inte är klar i bilddiagnosen när patienten från den andra veterinären anländer. Då

\[ \Delta t \in \text{Exp}(\lambda) \]

Ankomstprocessen till bilddiagnosen \( \in \text{Po}(\lambda) \)

Enligt antaganden bör tidskillnaden mellan ankomsterna anta en exponentialfördelning och därmed bör även Figur 26 göra det. Detta enligt samma motivering som innan om gränsvärde för relativ frekvens. Frekvensgrafen liknar dock inte en exponentialfördelning, gestaltad i Figur 4, och därmed dras slutsatsen att i verkligheten anländer inte patienterna till röntgen enligt en poissonprocess.

Ytterligare ett argument emot verklighetsriktigheten i antagandet om att Δt skulle anta en exponentialfördelning är att betjäningsstationerna saknar den minneslösa egenskapen som är ett karaktärsdrag för exponentialfördelningar. Detta gör att M/M/1-modellen ger en dålig bild av verkligheten.

Ankomstintensiteterna till M1’s bilddiagnossystems delsystem kan anses vara riktiga. Det är dock det enda i M/M/1-systemberäkningarna som kan anses vara rimliga. De övriga resultaten utgör ett belysande exempel på vad som kan hända om verkligheten anpassas till en förutbestämd teori. För att undvika en upprepning hänvisas läsaren till resultat för ankomstintensitetera, trafikintensitetera, totalt antal kunder i delsystemen och hela systemet samt tid i bilddiagnostiksystemet står. Tiden i hela bilddiagnostiksystemet är extra talande och kan därför anges:

\[ W_{tot} = 2 \text{ timmar och } 16 = 136 \text{ minuter} \]

Enligt processflödet i Figur 1 ska bilddiagnosen och behandling (som utgör bilddiagnostiksystemet för M1) ta mellan 25-70 minuter och då modellen hittills stämt i


M2 som modellerats enligt motsatt perspektiv med en modellering som alterneras efter verkligheten kompenserar för de bristfälliga siffrorna från den första modellen. M2 gav en matris, gestaltad i Figur 30, med tider för bilddiagnosystemet, som generade tider mellan 22 och 39 minuter. Detta är återigen exklusive behandling som inte är en del av bilddiagnosystemet för M2. Detta kan anses vara rimligt men inte perfekt då den kortast möjliga tid för systemet enligt processflödet är 15 minuter och längsta är 40 minuter. Dock genereras ett väntevärde för tiden för det totala systemet:

\[ W_{tot} = 30 \text{ minuter} \]

Vilket kan jämföras med processflödets tidsmedelvärde för röntgen och ultraljud:

\[ \frac{15 + 40}{2} = 27,5 \text{ minuter} \]

Här skiljer sig medelvärdena åt enbart med någon minut vilket innebär ett mycket rimligt resultat.
Därmed har M2 genererat tider som stämmer nästan på minuten med processflödets tidsuppskattning. Detta gör M2 till en mycket mer verklighetsriktig modell än M1 och resultatet för tidsåtgången för hela processen

\[ E[\text{tidsåtgång}] = 140,3 \text{ minuter} = 2 \text{ timmar och } 20 \text{ minuter} \]

tillsammans med frekvenstabellen och frekvensgrafen (Figur 31 och Tabell 7) kan anses vara mycket rimliga. Detta ger en verklighetsriktig och relevant matematisk modell av processflödet för hältutredningen.

Avslutningsvis har resultatet uppfyllt målet som sattes. En klar bild av flödet som tar en patient från ankomst till diagnos med tillhörande sannolikhetsanalys för tidsgenomströmning som fäster avseende vid olika patienttyper har därmed levererats.

6.3 Slutsatser

- För initialfasen återspeglar frekvensgrafen (Figur 24) och frekvenstabellen (Tabell 1) flödeskartan (Figur 1). Flödeskartan är ett resultat av den verklighet som förmedlats från intervju med veterinär och delägare. Därmed utfaller modelleringen av initialfasen som ett markovssystem i verklighetsriktiga resultat.

- Frekvensgrafen för initialfasen gestaltar en distribution för ankomsterna till bilddiagnostiksystemet. Denna distribution liknar inte en poissondistribution till utseendet vilket gör motsvarande antagande för M/M/1-modelleringen felaktigt.

- Väntevärdet tillsammans med den kortaste tiden för initialfasen förklarar köbildningen då kunder ankommer till kliniken.

- Resultaten från bilddiagnostiksystemet för M1 är helt orimlig medan resultaten för M2 återspeglar processflödet och därmed den verkligheten som förmedlades av veterinär och delägare. Detta gör att M1 är verklighetsriktig
och genererar ett resultat i enlighet med målet uppsatt utefter problemformuleringen.
7 Rekommendation till kliniken

Denna del syftar till att uppfylla det sekundära målet, en effektivitetsrekommen till Mälarens hästklinik. Denna effektivitetsrekomendation levereras i en mottagaranpassad och mer omfattande version till kliniken.

För att uppnå en konkret rekommendation delas denna del av rapporten upp enligt följande struktur:

1. En nulägesanalys presenteras där moderna business management-teorier stödjer en grundläggande analys av nuläget utifrån relevanta aspekter för verksamheten.
2. Förbättringsåtgärder, förankrade i business management- och Leanteörer, levereras som en rekommendation till ett effektiviseringsprojekt.
3. Administration av projektet som presenterar metoder för kommunikation och administrering.

7.1 Relevant teori

Nulägesanalysen kommer först behandla relevant information om olika teorier och principer för att läsaren ska kunna följa effektiviseringsprojektet utan svårigheter.
7.1.1 Lean

Lean är ett koncept som syftar till en systematisk arbetsmetod för att eliminera slöseri, *muda*, inom en process. Lean handlar om att detektera vad som är värdeskapande genom att eliminera det som inte är det. Lean är sprunget ur *Toyota Production System, TPS*) och har först och främst varit tillämpbart på produktionsföretag men har i hög grad börjat tillämpas på service och i synnerhet sjukvård. (Liker, 2009)

*Muda* är en japansk term som betyder ”slöseri”. Slöseri hos kliniken består av processfel, effektivitetsproblem, väntan och överbehandling.


7.1.1.1 Lean inom vårdrelaterade verksamheter

Många veterinärföretag är relativt små verksamheter och ofta betydligt mindre än sjukhus. Detta gör att utbudet av specifika studier på operation management och lean applicerat på veterinärvård är mycket liten. Dock har många studier gjorts vad gäller operation management och lean applicerat på human sjukvård och detta är i dagsläget någonting som frekvent används. Särskilt stort har detta blivit i USA, och redan 2007 hade minst en tredjedel av sjukhusen implementerat ett lean-tänk (Region Skåne, 2007).

För att bredda kunskapsbasen inom området sjukvårdsrelaterad lean-applicering har flertalet artiklar granskats. Artiklarna är överens om att lean används och tillämpas inom svensk och internationell sjukvård. Det åt således möjligt att använda delar av lean-verktygslådan för att förbättra en veterinärklinik. Målet med lean är att förbättra flöden, och även veterinärkliniker har flödesrelaterade problem. Filosofier som utgår från värdeskapande processer som ”Just in time” och ”Total quality management” som kan vara aplicerbara på veterinärvårdens processer, dock har Just in time visat
sig vara svårt att applicera då det råder varierande resursåtgång och det är i praktiken omöjligt att ha ett tomt lager. (Skogmalm & Carlqvist, 2011)

Viktigt att ta i beaktning är att en implementation av vissa Lean-relaterade teorier inte innebär ett fullskaligt lean-arbete.

7.1.2 **Agil projektledning**

Agil projektledning är ett samlingsnamn på flertalet olika metoder för projektledning som skiljer sig mot de traditionella ”vattenfallsmodellerna”. I ett traditionellt projekt med en vattenfallsmetod görs saker ett steg i taget, som ett vattenfall. De agila metoderna gör anspråk på att vara smidigare, vilket namnet antyder.

Den traditionella metoden har sin grund i tillverkningsindustrin och bygger på att det är ytterst kostsamt att genomföra förändringar sent i projektet, eftersom marginalkostnaden blir så pass hög. Således måste projektet planeras noggrant. Detta är sant för tillverkningsindustrin, eftersom en ändring av en produkt i slutfasen av utvecklingen kan bli högst kostsam, men inte nödvändigtvis för andra branscher. Detta ledde till skapandet av agila metoder inom system- och programutveckling. Således är planeringen inom de agila projekten oftast betydligt mindre, eftersom målet är att anpassa sig efter situationerna som uppstår. Ett projekt delas upp i mindre delprojekt, som genomförs var för sig. Detta kan leda till högre kvalitet, eftersom det sker en testning i slutet av varje delfas, någonting som endast görs en gång på slutet i de mer traditionella modellerna.


Precis som i rugbyn leds mötet av en lagkapten, som i detta fall kallas scrum-master. Scrum-mastern leder mötena som i huvudsak består i att behandla 3 frågor:

- Vad gjorde jag igår?
- Vad ska jag göra idag?
Stötte jag på några problem?

Möttena syftar till att ge självinsikt och skapa kontinuerlig förbättring. (Gustavsson, 2013)

7.1.3 Total Quality Management

TQM är en filosofi och ett ramverk som vilar på pelarna; kundens behov, de anställdas färdigheter och den nuvarande kvalitetshanteringen inom företaget (James, 2011). TQM förespråkar att kunden definierar kvalitet och deras behov måste därför tillgodoses.

7.1.4 Operations strategy - teori


7.1.5 Value stream mapping

Value stream mapping (VSM) är en lean-metod för att analysera en värdekedja som tar en produkt från input → output och sedan förbättra denna värdekedja. VSM används inom healthcare (Miller, 2005) och går ut på följande:

1. En första processmappning görs
2. Denna process analyseras för förbättringsapplicering
3. Förbättringarna appliceras sedan i lean-anda och genererar en ny bättre process.

Detta är ett illusterande och koncist sätt att optimera värdekedjor. (Bicheno, 2004)

7.1.6 Open door policy

En open door policy innebär att all möjlighet till kommunikation ska hållas öppen oavsett hierarkisk verksamhetsstruktur. Det är ett medel för att kommunikation ska kunna flöda genom organisationen och ingen viktig input ska gå till spillo. (Quast, 2013).
7.1.7 5S

5S står för sortera, systematisera, städa, standardisera och se till(bibehåll). Metoden resulterar i tidsbesparing, ökad effektivitet och en säkrare arbetsplats. (Liker, 2009)

**Sortera**
- Se till att enbart det som är nödvändigt finns till hand, skilj lager från lager.

**Systematisera**
- Det som är kvar efter sorteringen ska ha en given plats.

**Städa**
- Instrument och miljö ska hållas städat
- Alla är ansvariga för att ordning ska hållas.

**Standardisera**
- Standardisera arbetsflöden och processer.

**Se till(bibehåll)**
- Alla måste vara en del av 5S för att det ska fungera
- Alla rutiner måste bli vanor.

7.1.8 Japansk sjö

Japanska sjön är en filosofi som ofta tillämpas inom operations management på verksamheter med lager. Grundtanken är att vid normal verksamhet är vattennivån i sjön normal, och allting fungerar ungefär som det ska. Dock finns det stora problem under ytan, som leder till att sjön inte är optimal att vistas i. För att hitta och åtgärda dessa problem måste först vattennivån i sjön sänkas. (Svanäng, 2013)
7.2 Nulägesanalys

**STRENGTHS**
- Veterinkrkompetens
- Aktiva ägare
- Passion
- Fungerar redan i veterinärens processer
- Branschen präglas av ett generellt lågt business-tänk

**WEAKNESSES**
- Administrationskulturen
- Nuvarande kommunikationsplan
- Problematiskt utgångsläge

**OPPORTUNITIES**
- Attraktiv kundbas
- Utveckla en konkurrens på två fronter
- Högre vinstmarginal
- Ökad kundnöjdhet

**THREATS**
- Bristande implementationsförmåga
- Bristande implementationsvilja

Figur 33. Konceptuell bild av den japanska sjön

Figur 34. SWOT-analys för utgångslaget av effektiviseringsprojektet
En sammanfattad analys av kliniken uteft TQM’s pelare:

*Costumer needs:*

Kunden behöver medarbetare som jobbar uteft ett system med bestämda och klara processer och professionella, lugna och metodiska veterinärer.

*Employee skills:*

Administrationspersonal som möter kundens behov och veterinärer som gör desamma. Medarbetarna behöver jobba efter ett system med bestämda och klara processer på ett engagerat, effektivt och service-minded sätt.

*Current state of quality management within the organisation:*

Receptionspersonalen hanterar kunden på ett ogenerat sätt, utan att ha nödvändig insikt i vad deras arbetsuppgift bör resultera i, det vill säga rätt papper ifyllda, registring av kunden etc. (Anonyma intervjuer, 2015),

Veterinärerna bemöter kunden professionellt och engagerat sätt helt enligt kundens behov (anonyama intervjuer, 2015).

7.3 Förbättringsåtgärder: Effektiviseringsprojektet

Projektets mål syftar till att uppnå en företagskultur som genomsyras av ett agilt arbetssätt som genom kontinuerlig förbättring ständigt jobbar i framkant, inte bara som en av Sveriges ledande veterinärkliniker utan som ett kvalitetsbolag vad gäller modern och smart verksamhetsstyrning.

Effektiviseringsprojektet bör till en början begränsas till en början till administrationen och veterinärerna på hältutredningen för att sedan implementeras på hela koncernen.
7.3.1 Implementering av kaizen

För att uppnå struktur och kontroll som ska leda till ett koncept av ständig förbättring (Kaizen) måste hela organisationen fungera på samma sätt med samma tänk. Ingenting får någonsin vara bra nog. Det är individens strävan efter att bli bättre som sedan gör gruppens strävan och hela organisationens resultat.

7.3.2 Struktur för Operations management


7.3.3 Förbättring genom Value Stream Mapping

![Diagram](image.png)

Figur 35. Value Stream Mapping

7.3.4 Implementering av open door policy

Då information som ska nå högt positionerade medarbetare för tillfället blir dirigerade till en mellanhand är detta en struktur som skulle kunna innebära en effektivisering för verksamheten. En open door policy skulle verka till klinikens fördel på flera fronter:

- *Open Flow of communication.*
Det har visats på att de företag med en open door policy har enklare tillgång till mer informativa diskussioner som ger viktig insyn i vad som försiggår på företaget (Quast, 2013).

- **Fast access to information:**
  Open door policy uppmuntrar medarbetare att berätta när problem eller viktiga situationer uppstår eller när någon får en kreativ idé. Hos företag med högt tempo är snabb tillgång till information en nyckel till framgång (Quast, 2013).

- Närmare arbetsrelationer.

Denna open door policy har redan applicerats i viss mån vad gäller kunder (anonym intervju, 2015) där många veterinärer gett sitt privata nummer till en orolig kund för att snabbt kunna nås utan mellanhänder. Det är detta tänk som även bör appliceras på administrationsavdelningen och receptionen.

### 7.3.5 Utvärdering av resurser

I analogi med den japanska sjön kan kliniken ha dolda problem som täcks över av extra resurser, istället för lager. Det kan vara så att de fördröjda fakturorna är en klipptopp som börjar sticka upp ur vattnet. Om detta sedan löses med fler resurser i detta fall med kanske mer personal som jobbar med fakturor finns problemen kvar trots att de inte syns och de kan växa sig större allt med att vattennivån höjs. Sänker man vattennivån måste problemen löstras samtidigt som resurser kan frigöras och därmed marginalerna förbättras.

### 7.4 Administration av projektet

Det är viktigt att administrationen av projektet sker på ett sätt som gör projektet smidigare och inte innebär extra arbete.

#### 7.4.1 Kommunikationsplan

Kommunikationsplanen är en viktig tillgång som är nödvändig för projektets genomförande. Kommunikationsplanen kommer berätta i vilken ordning information ska styras och hur beslut fattas. Den ska placeras på en central plats t.ex. i fikarummet så de anställda lär sig vem de ska vända sig till med frågor, problem, funderingar och idéer angående effektiviseringsprojektet.
Projektets och klinikens kommunikationsplan bör utformas utefter följande parametrar:

- **Till vem?** T ex. avdelningschef, delägare, faktureringsansvarig eller veterinärkollega.
- **Vad?** Typ av information som ska förmedlas till vem.
- **När?** När på dagen är det bäst att nå vem angående vad.
- **Varför?** Innan man kommunikerar måste meddelaren reflektera kring önska output av det som kommunikeras. Resonera kring det möjliga resultatet som väntas av informationen, det vill säga syftet med själva meddelandet, mötet eller samtalen.
- **Hur?** Hur kommunikerar meddelaren sitt meddelande? Vad är bäst för respektive vem?
- **Av vem?** T ex. avdelningschef, veterinär, delägare, receptionist etc. Det vill säga samma parametrar som till vem.

Denna plan bör utformats i en matris och med open door policyn i åtanke.

### 7.4.2 Implementering av Agil projektledning och scrummöten

Agil projektledning i praktiken för kliniken kommer helt enkelt innebära smidighet och flexibilitet. Stolpar i form av kontinuerliga scrumöten sätts och hanteras i en agil anda. När delprojekt ska genomföras och projektet utvecklas är det inom ramverket för agil projektledning.
8 Slutord

Ett stort tack till Mälaren Hästklinik AB och särskilt Gustaf Croon och Karolina Butler som bidragit med en bred kunskapsbas vad gäller veterinärvården och processerna på kliniken. Förhoppningsvis kommer ni finna nytta och användning av våra modeller, slutsatser och rekommendationer.
9 Litteraturförteckning

Asher, Matt. 2010. *A different way to view probability densities.*
http://www.statisticsblog.com/2010/06/a-different-way-to-view-probability-densities/
(Hämtad 20150510; Skriven 20100612)


http://www.lakartidningen.se/Functions/OldArticleView.aspx?articleId=14532
(Hämtad 20150510)


(Hämtad: 20150510; Skriven: 20100419)

Intervju med delägare och veterinär Mälaren Hästklinik. 2015. Första intervju 24 februari och löpande under projektet.

http://www.dn.se/nyheter/sverige/vardkoer-doljs-for-att-fa-miljoner/
(Hämtad 20150328)


Koski, Timo. 2014. *Lecture Notes: Probability and Random Processes at KTH.* Stockholm:
Department of mathematics, KTH


Mathworks Inc. 2015.
http://se.mathworks.com/products/matlab/
(Hämtad: 20150510)


Region Skåne. 2007. Lean Healthcare – Räddningen för sjukvården?


Ej namngivna: Anonymiserade intervjuer med kunder . Februari-April. 2015